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Graph Spanners: Basics

This talk is about spanners

Given graph G = (V,E), subgraph H of G is a t-spanner of G if

dH(u,v) ≤ t ⋅ dG(u,v) for all u,v ∈ V

t is the stretch of the spanner.
In this paper: G undirected, unweighted, connected
Sufficient for stretch condition to hold for all edges {u,v} ∈ E

Original graph G A 3-spanner H
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Classical Objectives

Want to have small stretch, and small “cost”.
Two natural cost measures: total # edges, maximum degree.

# edges: [Althöfer et al ’93]:

For any positive integer k, all graphs have a (2k − 1)-spanner with O(n1+1/k) edges,
and

There exist graphs in which all (2k − 1)-spanners have Ω(n1+1/k) edges (assuming
Erdös Girth Conjecture).

No such theorem possible for max degree! Star graph.
Removing any edge cases infinite stretch
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Optimizing Spanners

Switch our point of view from tradeoffs to optimization.
Given G,k, efficient algorithm for finding best t-spanner of G?

Basic t-Spanner: “best” = fewest edges

Lots known – come chat with me!
High-level view: can’t really beat trivial O(n1/k)-approximation for t = 2k − 1.
Can slightly in some special cases: t = 3 [BBMRY ’13] and t = 4 [D-Zhang ’16]

Lowest Degree t-Spanner (LDtS): “best” = min max degree

Chlamtáč-D ’16: O(∆(1−
1
t
)

2

)-approximation, Ω(∆1/t) lower bound

Chlamtáč-D-Krauthgamer ’12: Õ(∆3−2
√

2)-approx when t = 2 (Sherali-Adams)
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Classical Objectives: Motivation and Issues

Number of Edges:

Pros: natural objective, very nice tradeoff theorems. Well-studied. Often what’s needed in
applications.
Cons: Do we really not care if one node has huge degree, as long as others small? Load in
distributed settings?

Maximum Degree:

Pros: Encourages low loads in distributed settings. Natural objective.
Cons: If some node forced to have large degree, do we really want to allow all other nodes to
have large degree?

Want something new: encourages max degree to be small, but also encourages other
nodes to have small degree even if max forced to be large.
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New Objective

Observation: consider vector dG ∈ Zn
≥0

of vertex degrees in G.

Number of edges is 1
2
∥dG∥1

Maximum degree is ∥dG∥∞
Interpolate between the two!

The `p-norm objective is to minimize

∥H∥p = ∥dH∥p = (∑
u∈V

dH(u)p)
1/p

For 1 < p < ∞, encourages both sparsity and low maximum degree!

Standard objective in clustering, scheduling, etc.

Chlamtáč, Dinitz, Robinson Approximating the Norms of Graph Spanners APPROX 2019 6 / 17



New Objective

Observation: consider vector dG ∈ Zn
≥0

of vertex degrees in G.

Number of edges is 1
2
∥dG∥1

Maximum degree is ∥dG∥∞
Interpolate between the two!

The `p-norm objective is to minimize

∥H∥p = ∥dH∥p = (∑
u∈V

dH(u)p)
1/p

For 1 < p < ∞, encourages both sparsity and low maximum degree!

Standard objective in clustering, scheduling, etc.
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`p-Objective: Tradeoffs

Introduced this objective in [Chlamtáč-D-Robinson ICALP ’19]

Theorem: For every k,p ≥ 1, every graph admits a (2k − 1)-spanner with `p-norm

max(O(n),O(n
k+p
kp )). This bound is also tight.

Solved the tradeoff question, but what about optimization?

Definition: In the Minimum `p-Norm t-Spanner problem, we are given p, t,G, and our
goal is to find the t-spanner H of G minimizing ∥H∥p

Focus of this paper, with p = 2, t = 3 (some results generalizable)
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Results

First, study greedy algorithm (used to prove tradeoffs).

Greedy is an Õ(n3/7)-approximation for Minimum `2-Norm 3-Spanner (and this is
tight).

New algorithm based on rounding convex relaxation.

There is an Õ(n5/13)-approximation for Minimum `2-Norm 3-Spanner.

Hardness result (more careful analysis of max-degree hardness).

Unless NP ⊆ BPTIME(2polylog(n)), for any ε > 0 there is no polynomial-time algorithm

for Minimum `2-Norm 3-Spanner with approximation ratio better than 2log1−ε n.
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Why greedy?

Since we have a better algorithm, why study greedy?

Natural and important algorithm – should understand its performance!

Demonstrates that `2 norm for stretch 3 is fundamentally different from `1 or `∞ in
terms of greedy approximation.

`1: Greedy always has at most O(n3/2) edges, so trivially an O(n1/2)-approximation. Tight.
`∞: Greedy has max degree at most ∆, and OPT ≥ ∆1/3. So
O(∆2/3) = O(n2/3)-approximation. Tight.
`2: Greedy has at most O(n) edges (tight), OPT ≥ Ω(n1/2) (tight). But greedy is
Õ(n3/7)-approximation!

Approximation ratio of greedy cannot be determined by “absolute” guarantees for p = 2,
unlike p = 1,∞!

Interesting analysis: write a constant-size LP, argue it characterizes approximation ratio,
give tight bound on LP.
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Chlamtáč, Dinitz, Robinson Approximating the Norms of Graph Spanners APPROX 2019 9 / 17



Why greedy?

Since we have a better algorithm, why study greedy?

Natural and important algorithm – should understand its performance!

Demonstrates that `2 norm for stretch 3 is fundamentally different from `1 or `∞ in
terms of greedy approximation.

`1: Greedy always has at most O(n3/2) edges, so trivially an O(n1/2)-approximation. Tight.
`∞: Greedy has max degree at most ∆, and OPT ≥ ∆1/3. So
O(∆2/3) = O(n2/3)-approximation. Tight.
`2: Greedy has at most O(n) edges (tight), OPT ≥ Ω(n1/2) (tight). But greedy is
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Chlamtáč, Dinitz, Robinson Approximating the Norms of Graph Spanners APPROX 2019 9 / 17



Why greedy?

Since we have a better algorithm, why study greedy?

Natural and important algorithm – should understand its performance!

Demonstrates that `2 norm for stretch 3 is fundamentally different from `1 or `∞ in
terms of greedy approximation.

`1: Greedy always has at most O(n3/2) edges, so trivially an O(n1/2)-approximation. Tight.
`∞: Greedy has max degree at most ∆, and OPT ≥ ∆1/3. So
O(∆2/3) = O(n2/3)-approximation. Tight.
`2: Greedy has at most O(n) edges (tight), OPT ≥ Ω(n1/2) (tight). But greedy is
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Approximation Algorithm: Convex Relaxation

Let P(u,v) be all u ; v paths of length at most 3

min
⎛
⎝∑v∈V

(∑
e∼v

xe)
2⎞
⎠

1/2

s.t. ∑
p∈P(u,v)

yp = 1 ∀(u,v) ∈ E

xe ≥ ∑
p∈P(u,v)∶e∈p

yp ∀(u,v),e ∈ E

xe,yp ≥ 0 ∀e,p

Standard network design LP relaxation, except non-linear objective
Easily solved with (e.g.) Ellipsoid

Use two different rounding algorithms, trade them both off with greedy
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Rounding Algorithm 1

Super simple rounding algorithm:

Add each e ∈ E to H1 independently with probability x
3/7
e

Problem: might not result in a spanner.

If add with probability x
1/3
e , would be a spanner, would exactly be algorithm for `∞ objective

from [Chlamtáč-D ’16]
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Rounding Algorithm 2 (Simplified)

For each u ∈ V, draw zu ∈R [0,1] u.a.r.

For each e ∈ E, draw ze ∈R [0,1] u.a.r.

Add e = {u,v} to H2 if at least one of the following
conditions holds:

zu ≤ x1/4
e and zv ≤ x1/4

e , or

zu ≤ x1/4
e and ze ≤ x1/4

e , or

zv ≤ x1/4
e and ze ≤ x1/4

e .

u v

zezu zv

xe

New aspect: rounds based on randomness at both vertices and edges

Sampling at edges: [D-Krauthgamer ’11, BBMRY ’13, Chlamtáč-D ’16]

Sampling at vertices [D-Krauthgamer ’11, D-Zhang ’16].

First algorithm that does both (?)
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Correctness: Regularization

Use [Chlamtáč-D ’16]:

Bucket and prune u ; v paths

Get that WLOG, LP solution very regular:

Loses some polylogs

xe ≈ y0

deg dL

deg dR
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Correctness

Fix {u,v} ∈ E.

Lemma: If max(dL,dR) ≥ Ω̃(y
−2/3
0

), then Rounding Algorithm 1 will include some p ∈
P(u,v) with probability Ω̃(1).

Lemma: If dL,dR ≤ Õ(y
−2/3
0

), then Rounding Algorithm 2 will include some p ∈ P(u,v)
with probability Ω̃(1)

So repeat Õ(1) times, get high probability bounds.
Union bound over all {u,v} ∈ E.
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Correctness: Intuition

Modified Algorithm 1: choose each edge e independently w.p. x
1/3
e (instead of x

3/7
e )

Get path p = (e1,e2,e3) with probability

(xe1xe2xe3)
1/3 ≥ (min(xe1xe2xe3))

1 ≥ yp

So get each path with the “right” probability, so in expectation get at least one path
since ∑p∈P(u,v) yp = 1

Issue: Paths not disjoint! Concentration?

Intuition of [Chlamtáč-D ’16] : if paths not disjoint,
actually doing much better!

Get n(1/n)1/3 = n2/3 left edges, n2/3 right edges
n4/3 ways to complete a path, get each w.p. 1/n2/3

So get about n2/3 paths!

1/n2

1/n 1/n
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Correctness: Intuition

Decrease sampling probability to x
3/7
e .

If paths overlap a lot (max(dL,dR) ≥ Ω̃(y
−2/3
0

)), Rounding Alg 1 still works.

If not, do something else: correlate at nodes!

Can’t do this for `∞-metric, but (in this case) can do this for `2-metric.

Having edges bought only by nodes has too much correlation, ends up with large degrees.
Need to mix edges paying for themselves (randomness at edges) with being bought by
endpoints (randomness at nodes)
Argue that if paths “mostly disjoint”, works well in expectation, and can prove concentration.
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Conclusion & Open Questions

For stretch 3, `2-norm: analyzed greedy (tight), hardness of approximation, complicated
algorithm to beat greedy.

What about other p, other stretch?
Some things generalize.

Hardness
Analysis of greedy should (some really annoying technicalities)
Algorithm 2 should generalize to other p

Some don’t

Better than greedy for stretch > 3?

Even for p = 2,k = 3, gap between upper bound and hardness. Better algorithms?

What about `p-norm of degree vector for other network design problems?

Thanks!
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