Approximating the Norms of Graph Spanners

APPROX 2019

Approximating the Norms of Graph Spanners

APPROX 2019 1 / 17

Graph Spanners: Basics

This talk is about *spanners*

Given graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$, subgraph \mathbf{H} of \mathbf{G} is a **t**-spanner of \mathbf{G} if

 $d_{H}(u, v) \leq t \cdot d_{G}(u, v)$ for all $u, v \in V$

- t is the *stretch* of the spanner.
- In this paper: G undirected, unweighted, connected
- Sufficient for stretch condition to hold for all edges $\{u, v\} \in E$

Graph Spanners: Basics

This talk is about *spanners*

Given graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$, subgraph \mathbf{H} of \mathbf{G} is a t-spanner of \mathbf{G} if

 $d_{H}(u, v) \leq t \cdot d_{G}(u, v)$ for all $u, v \in V$

- t is the *stretch* of the spanner.
- In this paper: G undirected, unweighted, connected
- Sufficient for stretch condition to hold for all edges $\{u, v\} \in E$

Want to have small stretch, and small "cost". Two natural cost measures: total # edges, maximum degree.

Want to have small stretch, and small "cost". Two natural cost measures: total # edges, maximum degree.

```
# edges: [Althöfer et al '93]:
```

• For any positive integer k, all graphs have a (2k - 1)-spanner with $O(n^{1+1/k})$ edges, and

Want to have small stretch, and small "cost". Two natural cost measures: total # edges, maximum degree.

edges: [Althöfer et al '93]:

- For any positive integer k, all graphs have a (2k 1)-spanner with $O(n^{1+1/k})$ edges, and
- There exist graphs in which all (2k 1)-spanners have $\Omega(n^{1+1/k})$ edges (assuming Erdös Girth Conjecture).

Want to have small stretch, and small "cost". Two natural cost measures: total # edges, maximum degree.

```
# edges: [Althöfer et al '93]:
```

- For any positive integer k, all graphs have a (2k 1)-spanner with $O(n^{1+1/k})$ edges, and
- There exist graphs in which all (2k 1)-spanners have $\Omega(n^{1+1/k})$ edges (assuming Erdös Girth Conjecture).

No such theorem possible for max degree! Star graph. Removing any edge cases infinite stretch

Switch our point of view from tradeoffs to optimization. Given **G**, **k**, efficient algorithm for finding *best* **t**-spanner of **G**? Switch our point of view from tradeoffs to optimization. Given **G**, **k**, efficient algorithm for finding *best* **t**-spanner of **G**?

- BASIC **t**-Spanner: "best" = fewest edges
 - Lots known come chat with me!
 - High-level view: can't really beat trivial $O(n^{1/k})$ -approximation for t = 2k 1.
 - Can slightly in some special cases: t = 3 [BBMRY '13] and t = 4 [D-Zhang '16]
- LOWEST DEGREE t-SPANNER (LDtS): "best" = min max degree
 - Chlamtáč-D '16: $O(\Delta^{(1-\frac{1}{t})^2})\text{-approximation}, \, \Omega(\Delta^{1/t})$ lower bound
 - Chlamtáč-D-Krauthgamer '12: $\tilde{O}(\Delta^{3-2\sqrt{2}})$ -approx when t = 2 (Sherali-Adams)

- Number of Edges:
 - Pros: natural objective, very nice tradeoff theorems. Well-studied. Often what's needed in applications.
 - Cons: Do we really not care if one node has huge degree, as long as others small? Load in distributed settings?
- Maximum Degree:
 - Pros: Encourages low loads in distributed settings. Natural objective.
 - Cons: If some node forced to have large degree, do we really want to allow all other nodes to have large degree?

- Number of Edges:
 - Pros: natural objective, very nice tradeoff theorems. Well-studied. Often what's needed in applications.
 - Cons: Do we really not care if one node has huge degree, as long as others small? Load in distributed settings?
- Maximum Degree:
 - Pros: Encourages low loads in distributed settings. Natural objective.
 - Cons: If some node forced to have large degree, do we really want to allow all other nodes to have large degree?
- Want something new: encourages max degree to be small, but also encourages other nodes to have small degree even if max forced to be large.

- Observation: consider vector $d_G \in \mathbb{Z}_{\geq 0}^n$ of vertex degrees in G.
 - Number of edges is $\frac{1}{2} \| \mathbf{d}_{\mathbf{G}} \|_1$
 - Maximum degree is $\|\mathbf{d}_{\mathbf{G}}\|_{\infty}$
- Interpolate between the two!

• Observation: consider vector $d_G \in \mathbb{Z}_{\geq 0}^n$ of vertex degrees in G.

- Number of edges is $\frac{1}{2} \|\mathbf{d}_{\mathbf{G}}\|_1$
- Maximum degree is $\|\mathbf{d}_{\mathbf{G}}\|_{\infty}$
- Interpolate between the two!

The ℓ_p -norm objective is to minimize

$$\|\mathbf{H}\|_{p} = \|\mathbf{d}_{\mathbf{H}}\|_{p} = \left(\sum_{u \in \mathbf{V}} \mathbf{d}_{\mathbf{H}}(u)^{p}\right)^{1/p}$$

• For 1 , encourages both sparsity and low maximum degree!

• Standard objective in clustering, scheduling, etc.

Introduced this objective in [Chlamtáč-D-Robinson ICALP '19]

Theorem: For every $k, p \ge 1$, every graph admits a (2k - 1)-spanner with ℓ_p -norm $max(O(n), O(n^{\frac{k+p}{kp}}))$. This bound is also tight.

Introduced this objective in [Chlamtáč-D-Robinson ICALP '19]

Theorem: For every $k, p \ge 1$, every graph admits a (2k - 1)-spanner with ℓ_p -norm $max(O(n), O(n^{\frac{k+p}{kp}}))$. This bound is also tight.

Solved the tradeoff question, but what about optimization?

Definition: In the MINIMUM ℓ_p -NORM t-SPANNER problem, we are given p, t, G, and our goal is to find the t-spanner H of G minimizing $\|H\|_p$

Focus of this paper, with p = 2, t = 3 (some results generalizable)

Results

First, study greedy algorithm (used to prove tradeoffs).

Greedy is an $\tilde{O}(n^{3/7})\text{-approximation}$ for MINIMUM $\ell_2\text{-NORM}$ 3-SPANNER (and this is tight).

New algorithm based on rounding convex relaxation.

There is an $\tilde{O}(n^{5/13})$ -approximation for MINIMUM ℓ_2 -NORM 3-SPANNER.

Hardness result (more careful analysis of max-degree hardness).

Unless NP \subseteq BPTIME(2^{polylog(n)}), for any $\epsilon > 0$ there is no polynomial-time algorithm for MINIMUM ℓ_2 -NORM 3-SPANNER with approximation ratio better than $2^{\log^{1-\epsilon} n}$.

- Natural and important algorithm should understand its performance!
- Demonstrates that ℓ_2 norm for stretch **3** is *fundamentally different* from ℓ_1 or ℓ_{∞} in terms of greedy approximation.

- Natural and important algorithm should understand its performance!
- Demonstrates that ℓ_2 norm for stretch **3** is *fundamentally different* from ℓ_1 or ℓ_{∞} in terms of greedy approximation.
 - ℓ_1 : Greedy always has at most $O(n^{3/2})$ edges, so trivially an $O(n^{1/2})$ -approximation. Tight.
 - ℓ_{∞} : Greedy has max degree at most Δ , and $OPT \ge \Delta^{1/3}$. So $O(\Delta^{2/3}) = O(n^{2/3})$ -approximation. Tight.

- Natural and important algorithm should understand its performance!
- Demonstrates that ℓ_2 norm for stretch **3** is *fundamentally different* from ℓ_1 or ℓ_{∞} in terms of greedy approximation.
 - ℓ_1 : Greedy always has at most $O(n^{3/2})$ edges, so trivially an $O(n^{1/2})$ -approximation. Tight.
 - ℓ_{∞} : Greedy has max degree at most Δ , and $OPT \ge \Delta^{1/3}$. So $O(\Delta^{2/3}) = O(n^{2/3})$ -approximation. Tight.
 - ℓ_2 : Greedy has at most O(n) edges (tight), $OPT \ge \Omega(n^{1/2})$ (tight). But greedy is $\tilde{O}(n^{3/7})$ -approximation!

- Natural and important algorithm should understand its performance!
- Demonstrates that ℓ_2 norm for stretch **3** is *fundamentally different* from ℓ_1 or ℓ_∞ in terms of greedy approximation.
 - ℓ_1 : Greedy always has at most $O(n^{3/2})$ edges, so trivially an $O(n^{1/2})$ -approximation. Tight.
 - ℓ_{∞} : Greedy has max degree at most Δ , and $OPT \ge \Delta^{1/3}$. So $O(\Delta^{2/3}) = O(n^{2/3})$ -approximation. Tight.
 - ℓ_2 : Greedy has at most O(n) edges (tight), $OPT \ge \Omega(n^{1/2})$ (tight). But greedy is $\tilde{O}(n^{3/7})$ -approximation!
- Approximation ratio of greedy cannot be determined by "absolute" guarantees for p = 2, unlike $p = 1, \infty$!

- Natural and important algorithm should understand its performance!
- Demonstrates that ℓ_2 norm for stretch **3** is *fundamentally different* from ℓ_1 or ℓ_{∞} in terms of greedy approximation.
 - ℓ_1 : Greedy always has at most $O(n^{3/2})$ edges, so trivially an $O(n^{1/2})$ -approximation. Tight.
 - ℓ_{∞} : Greedy has max degree at most Δ , and $OPT \ge \Delta^{1/3}$. So $O(\Delta^{2/3}) = O(n^{2/3})$ -approximation. Tight.
 - ℓ_2 : Greedy has at most O(n) edges (tight), $OPT \ge \Omega(n^{1/2})$ (tight). But greedy is $\tilde{O}(n^{3/7})$ -approximation!
- Approximation ratio of greedy cannot be determined by "absolute" guarantees for p = 2, unlike $p = 1, \infty$!
- Interesting analysis: write a constant-size LP, argue it characterizes approximation ratio, give tight bound on LP.

Approximation Algorithm: Convex Relaxation

• Let $\mathcal{P}(u,v)$ be all $u \rightsquigarrow v$ paths of length at most 3

$$\begin{array}{ll} \mbox{min} & \left(\sum\limits_{v \in V} \left(\sum\limits_{e \sim v} x_e\right)^2\right)^{1/2} \\ \mbox{s.t.} & \sum\limits_{p \in \mathcal{P}(u,v)} y_p = 1 & \forall (u,v) \in E \\ & x_e \geq \sum\limits_{p \in \mathcal{P}(u,v): e \in p} y_p & \forall (u,v), e \in E \\ & x_e, y_p \geq 0 & \forall e, p \end{array}$$

- Standard network design LP relaxation, except non-linear objective
 - Easily solved with (e.g.) Ellipsoid
- Use two different rounding algorithms, trade them both off with greedy

Chlamtáč, Dinitz, Robinson

Super simple rounding algorithm:

 \bullet Add each $e \in E$ to H_1 independently with probability $x_e^{3/7}$

Super simple rounding algorithm:

• Add each $\mathbf{e} \in \mathbf{E}$ to \mathbf{H}_1 independently with probability $\mathbf{x}_{e}^{3/7}$

Problem: might not result in a spanner.

If add with probability $x_e^{1/3}$, would be a spanner, would exactly be algorithm for ℓ_{∞} objective from [Chlamtáč-D '16]

Rounding Algorithm 2 (Simplified)

- For each $u \in V$, draw $z_u \in_R [0,1]$ u.a.r.
- For each $e \in E$, draw $z_e \in_R [0, 1]$ u.a.r.
- Add **e** = {**u**, **v**} to **H**₂ if at least one of the following conditions holds:

$$\label{eq:constraint} \begin{array}{l} \mathbf{z}_{u} \leq x_{e}^{1/4} \mbox{ and } \mathbf{z}_{v} \leq x_{e}^{1/4}, \mbox{ or } \\ \mathbf{z}_{u} \leq x_{e}^{1/4} \mbox{ and } \mathbf{z}_{e} \leq x_{e}^{1/4}, \mbox{ or } \\ \mathbf{z}_{v} \leq x_{e}^{1/4} \mbox{ and } \mathbf{z}_{e} \leq x_{e}^{1/4}. \end{array}$$

Rounding Algorithm 2 (Simplified)

- For each $u \in V$, draw $z_u \in_R [0,1]$ u.a.r.
- For each $e \in E,$ draw $z_e \in_R [0,1]$ u.a.r.
- Add **e** = {**u**, **v**} to **H**₂ if at least one of the following conditions holds:

•
$$z_u \le x_e^{1/4}$$
 and $z_v \le x_e^{1/4}$, or
• $z_u \le x_e^{1/4}$ and $z_e \le x_e^{1/4}$, or
• $z_v \le x_e^{1/4}$ and $z_e \le x_e^{1/4}$.

New aspect: rounds based on randomness at both vertices *and* edges

- Sampling at edges: [D-Krauthgamer '11, BBMRY '13, Chlamtáč-D '16]
- Sampling at vertices [D-Krauthgamer '11, D-Zhang '16].
- First algorithm that does both (?)

- Use [Chlamtáč-D '16]:
 - $\bullet\,$ Bucket and prune $u \leadsto v$ paths
 - Get that WLOG, LP solution very regular:
 - Loses some polylogs

Fix $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$.

Lemma: If $max(d_L, d_R) \ge \tilde{\Omega}(y_0^{-2/3})$, then Rounding Algorithm 1 will include some $p \in \mathcal{P}(u, v)$ with probability $\tilde{\Omega}(1)$.

Lemma: If $d_L, d_R \leq \tilde{O}(y_0^{-2/3})$, then Rounding Algorithm 2 will include some $p \in \mathcal{P}(u, v)$ with probability $\tilde{\Omega}(1)$

So repeat $\tilde{O}(1)$ times, get high probability bounds. Union bound over all $\{u, v\} \in E$.

Correctness: Intuition

Modified Algorithm 1: choose each edge e independently w.p. $x_e^{1/3}$ (instead of $x_e^{3/7}$)

• Get path $p = (e_1, e_2, e_3)$ with probability

$$(x_{e_1}x_{e_2}x_{e_3})^{1/3} \ge (\min(x_{e_1}x_{e_2}x_{e_3}))^1 \ge y_p$$

- So get each path with the "right" probability, so in expectation get at least one path since $\sum_{p\in \mathcal{P}(u,v)}y_p=1$
 - Issue: Paths not disjoint! Concentration?

Correctness: Intuition

Modified Algorithm 1: choose each edge e independently w.p. $x_e^{1/3}$ (instead of $x_e^{3/7}$)

• Get path $p = (e_1, e_2, e_3)$ with probability

$$(x_{e_1}x_{e_2}x_{e_3})^{1/3} \ge (\min(x_{e_1}x_{e_2}x_{e_3}))^1 \ge y_p$$

- So get each path with the "right" probability, so in expectation get at least one path since $\sum_{p\in \mathcal{P}(u,v)}y_p=1$
 - Issue: Paths not disjoint! Concentration?
- Intuition of [Chlamtáč-D '16] : if paths not disjoint, actually doing much better!
 - Get $n(1/n)^{1/3} = n^{2/3}$ left edges, $n^{2/3}$ right edges
 - $n^{4/3}$ ways to complete a path, get each w.p. $1/n^{2/3}$
 - So get about $n^{2/3}$ paths!

APPROX 2019 15 / 17

Decrease sampling probability to $x_e^{3/7}$.

- If paths overlap a lot $(\max(d_L, d_R) \ge \tilde{\Omega}(y_0^{-2/3}))$, Rounding Alg 1 still works.
- If not, do something else: correlate at nodes!
- Can't do this for ℓ_{∞} -metric, but (in this case) can do this for ℓ_2 -metric.

Decrease sampling probability to $x_e^{3/7}$.

- If paths overlap a lot $(\max(d_L, d_R) \ge \tilde{\Omega}(y_0^{-2/3}))$, Rounding Alg 1 still works.
- If not, do something else: correlate at nodes!
- Can't do this for ℓ_{∞} -metric, but (in this case) can do this for ℓ_2 -metric.
 - Having edges bought *only* by nodes has too much correlation, ends up with large degrees.
 - Need to mix edges paying for themselves (randomness at edges) with being bought by endpoints (randomness at nodes)
 - Argue that if paths "mostly disjoint", works well in expectation, and can prove concentration.

Conclusion & Open Questions

• For stretch **3**, ℓ_2 -norm: analyzed greedy (tight), hardness of approximation, complicated algorithm to beat greedy.

Conclusion & Open Questions

- For stretch 3, ℓ_2 -norm: analyzed greedy (tight), hardness of approximation, complicated algorithm to beat greedy.
- What about other **p**, other stretch?
 - Some things generalize.
 - Hardness
 - Analysis of greedy should (some really annoying technicalities)
 - Algorithm 2 should generalize to other **p**
 - Some don't
 - Better than greedy for stretch > 3?
- Even for $\mathbf{p} = \mathbf{2}, \mathbf{k} = \mathbf{3}$, gap between upper bound and hardness. Better algorithms?
- What about ℓ_p -norm of degree vector for other network design problems?

Conclusion & Open Questions

- For stretch 3, ℓ_2 -norm: analyzed greedy (tight), hardness of approximation, complicated algorithm to beat greedy.
- What about other **p**, other stretch?
 - Some things generalize.
 - Hardness
 - Analysis of greedy should (some really annoying technicalities)
 - Algorithm 2 should generalize to other **p**
 - Some don't
 - Better than greedy for stretch > 3?
- Even for p = 2, k = 3, gap between upper bound and hardness. Better algorithms?
- What about ℓ_p -norm of degree vector for other network design problems?

Thanks!