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to Reduce Annotation Cost

Motivation

Task: classification of movie reviews
into and negative reviews.
Typically, an annotator is given a set of
unannotated documents, and annotates
the correct class for each one (=).

This classification task is actually hard
for a machine learner. Place yourself in
its position, and imagine the task In
Arabic instead ({). If you are not fluent
iIn Arabic, class data alone might not be
very helpful. This is truly the situation
from a computer’s point of view!

But what if, in addition to class, you
were also told which segments of the
text actually support that class ()7 That
should make it easier for you to learn
the true model. Presumably, the same is
true for a machine learner as well.
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Proposal: we wish to better utilize
annotators by having them tell us more
about their classification process. We
propose annotators indicate not only
what the correct answers are, but also
provide hints about why.

We propose that they should highlight
relevant portions of the example,
such as substrings (=), that help to
justify their annotations. We call such
hints rationales.

We have collected rationales for the
movie review dataset of [PL0O4], and
have developed two methods that use
the rationales during training. One Is a
discriminative method [ZEPO7] and one
IS generative [ZEO8]. Both methods yield
significant accuracy improvements...

L —
o—
...............................................................................................................................................................

This disaster flick is a disaster alright. Directed by
. Tony Scott (Top Gun), it's the story of an asteroid :
the size of Texas caught on a collision course with§
. Earth. After a great opening, in which an American :
. spaceship, plus NYC, are completely destroyed by :
. a comet shower, NASA detects said asteroid and :
§g0 into a frenzy. They hire the world's best oil :
- driller (Bruce Willis), and send him and his crew :
up into space to fix our global problem. 5

. The action scenes are over the top and too
- ludicrous for words. So much so, I had to sigh and :
§hit my head with my notebook a couple of times.
. Also, to see a wonderful actor like Billy Bob':
. Thornton in a film like this is a waste of his talents.
. The only real reason for making this film was to
somehow out- perform Deep Impact. Bottom line is,
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. This disaster flick is a disaster alright. Directed by :
. Tony Scott (Top Gun), it's the story of an asteroid :
the size of Texas caught on a collision course with :
. Earth. After a great opening, in which an American :
. spaceship, plus NYC, are completely destroyed by :
-a comet shower, NASA detects said asteroid and :
. go into a frenzy. They hire the world's best oil
. driller (Bruce Willis), and send him and his crew :
up into space to fix our global problem. ’

. The action scenes are over the top and too
- ludicrous for words. So much so, I had to sigh and
§hit my head with my notebook a couple of times. :
. Also, to see a wonderful actor like Billy Bob
. Thornton in a film like this is a waste of his talents. :
§The only real reason for making this film was t0§
somehow out- perform Deep Impact. Bottom line is, :
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Discriminative Approach

From the rationale annotations on a positive
example x, we construct several “not-quite-as-
positive” contrast examples v,.. Each contrast v, is
obtained by starting with the original and "masking
out” a rationale substring:

D Original Example (x,)
D Contrast Examples (v;;)

The intuition: a _correct model should be less sure
of a positive classification on the contrast example
v; than on the original example x;, because v,
lacks evidence the annotator found significant.

We express our intuition as additional constraints
on an SVM-like model: we want (for each j) to
have w + x; —w + v, > pu, where p > 0 controls the
size of a margin between original and contrast
examples:
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Generative Approach

We typically choose parameters
labels y of training data. Wit
propose that parameters be c

that explain class
N rationales, we
nosen to explain

rationale data » in addition to ¢

ass labels y. For

iInstance, a conditional log-linear model:
p(y | x,6) o< expl@ - F(x,»))

would have a parameter vector 6

chosen so that:

—

6 =argmax [ [|p(y; | x,,0) P, (7 | 7%, 0)
Learned i )I

jointly

l.e. try to model class labels & rationales well

The second factor corresponds to a model for r. Its
parameters, ¢ capture how the true @ influence the
annotator. To do this, we encode the rationales as

a tag sequence and model it usin

g a CRF:
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The first-order “emission” features of 2(:) relate the

tag r,
“transition” features of g(-) relate
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(Plus several other g features...) |

to (x,.v,6,), whereas the second-order

thetagr, tor, ,

What is B,,?

What this means in practice

Classifying pos 987.txt (correct class: +1):

Standard model:d - f(x,y=+1)=-041<0=—>|y =—1
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Our model:
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Results

Both methods give significant improvements in
accuracy over two strong baselines:
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Above curves were generated using rationales
from a single annotator, A0. What about other
annotators? We solicited rationales from
several other annotators (on 100 documents)
and saw similar improvements in accuracy:

AQ A3 A4 A5

Log-linear baseline 71.0 73.0 71.0

Generative Method 76.0 76.0 77.0

SVM baseline 72.0 720 | 72.0

Discriminative Method 75.0 73.0 74.0

Take-home Message:

e Annotators are underutilized! Richer annotations,
such as rationales, can aid machine learning.

* Existing machine learning methods can be
modified to exploit rationales.

e Remember, at test time:
- No change to decision rule.
- No new features.
- No need for rationales.

Improvements due solely to better-learned w/g

* Doing an annotation project? Collect rationales!
Even a small number could help.
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