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Richer Annotation
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Richer Annotation?

• Usually, an annotator indicates what the correct 
answer is.

• We propose the annotator also indicate why.

⇒ Each training example provides data about its

class and why.

⇒ Richer annotation provides more data.

• Idea #1: richer annotation can aid ML.

• Idea #2: richer better use of our time than more.
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Rationales in Text Categorization

The following segments were taken from movie reviews. Did the 
reviewer have a positive or negative opinion of the movie?

• Trust me, you will enjoy the hell out of American Pie.

• He continues to be one of the most exciting artists on the big screen, 
performing his own stunts and dazzling audiences.

• …and the romance was enchanting.

• The movie is so badly put together that even the most casual viewer 
may notice the miserable pacing and stray plot threads.

• …and it even makes watching Eddie Murphy a tedious experience.

• A woman in peril. A confrontation. An explosion. The end. Yawn. 
Yawn. Yawn. 
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Saving Private Ryan

War became a reality to me after seeing Saving 
Private Ryan. Steve Spielberg goes beyond reality 
with his latest production. Keep the kids home as the 
R rating is for Reality. Tom Hanks is stunning as 
Capt John Miller, set out in France during WW II to 
rescue and return home a soldier, Private Ryan (Matt 
Damon) who lost three brothers in the war. 
Spielberg takes us inside the heads of these 
individuals as they face death during the horrific 
battle scenes. Private Ryan is not for everyone, but I 
felt the time was right for a movie like this to be 
made. The movie reminds us of the sacrifices made 
by our fighting men and women. For this I thank 
them and for Steve Spielberg for making a movie 
that I will never forget. And I’m sure the Academy 
will not forget Tom Hanks come April, as another 
well deserved Oscar with be in Tom's possession.
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The Postman

Question: after the disaster that was Waterworld, 
what the fuck were the execs who gave Costner the 
money to make another movie thinking??

In this 3 hour advertisement for his new hair weave, 
Costner plays a nameless drifter who dons a long 
dead postal employee's uniform (I shit you not) and 
gradually turns a nuked-out USA into an idealized 
hippy-dippy society. (The main accomplishment of 
this brave new world is in re-inventing polyester.) 
When he's not pointing the camera directly at 
himself, director Costner does have a nice visual 
sense, but by the time the second hour rolled 
around, I was reduced to sitting on my hands to 
keep from clawing out my own eyes. Mark this one 
"return to sender". . . .

. . .
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Class and also 
“rationales”

OK …
now what??
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Saving Private Ryan

War became a reality to me after seeing Saving 
Private Ryan. Steve Spielberg goes beyond reality 
with his latest production. Keep the kids home as the 
R rating is for Reality. Tom Hanks is stunning as 
Capt John Miller, set out in France during WW II to 
rescue and return home a soldier, Private Ryan (Matt 
Damon) who lost three brothers in the war. 
Spielberg takes us inside the heads of these 
individuals as they face death during the horrific 
battle scenes. Private Ryan is not for everyone, but I 
felt the time was right for a movie like this to be 
made. The movie reminds us of the sacrifices made 
by our fighting men and women. For this I thank 
them and for Steve Spielberg for making a movie 
that I will never forget. And I’m sure the Academy 
will not forget Tom Hanks come April, as another 
well deserved Oscar with be in Tom's possession.

How sure was 
the annotator 
that this is a 
positive review?

Zaidan et. al – Annotator Rationales

Saving Private Ryan

War became a reality to me after seeing Saving 
Private Ryan. Steve Spielberg goes beyond reality 
with his latest production. Keep the kids home as the 
R rating is for Reality. Tom Hanks is stunning as 
Capt John Miller, set out in France during WW II to 
rescue and return home a soldier, Private Ryan (Matt 
Damon) who lost three brothers in the war. 
Spielberg takes us inside the heads of these 
individuals as they face death during the horrific 
battle scenes. Private Ryan is not for everyone, but I 
felt the time was right for a movie like this to be 
made. The movie reminds us of the sacrifices made 
by our fighting men and women. For this I thank 
them and for Steve Spielberg for making a movie 
that I will never forget. And I’m sure the Academy 
will not forget Tom Hanks come April, as another 
well deserved Oscar with be in Tom's possession.

If a rationale is 
masked out, the 
annotator would 

not be as sure 
that this is a 
positive review.

Intuition: a 
good model 
should also be 
less sure.

How sure was 
the annotator 
that this is a 
positive review?
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“Contrast” Examples

Original Example

Contrast Examples

Obtain a contrast by 
masking out a rationale

Intuition: a good model should 

be less sure of a positive 

classification on contrasts than 

on the original.

Our work: modified SVM that 

takes this intuition into account.
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Standard SVM

Class +1 examples

Class -1 examples

Zaidan et. al – Annotator Rationales

Class +1 examples

Class -1 examples

Support vectors

Standard SVM
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What this Means in Practice

Standard 
SVM cares 
about this 
margin
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What this Means in Practice

Standard 
SVM cares 
about this 
margin

Modified 
SVM cares 
about both
margins

i.e. a hyperplane that might reduce standard margin  (to help the other margin)
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Recap

• Training examples: (x1,y1), (x2,y2), …

• yi has ni rationales: ri1,ri2,…,rin

• xi gives ni contrast examples: vi1,vi2,…,vin

(obtain jth contrast by masking out jth rationale.)

• We extend the SVM to determine best hyperplane

subject to:

– Constraints for standard margin,

and also

– Constraints for original/contrast separating margin.
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What this is not

• In tasks like digit recognition, one can “generate” more 
training data from the existing examples

Class-preserving 
transformations

=
?
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What this is not

Class-preserving

Information from new 
examples similar to that 
from real examples

Can get benefit by 
automatic preprocessing 
(rescale, deslant, etc)

=
?
≠

Not necessarily (contrast)

Information from contrast 
examples is of a different 
kind

Actually provides new 
information via human 
insight
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The Dataset

• The movie review dataset (Pang & Lee)
– 1000 positive reviews

– 1000 negative reviews

• For each document, given the class annotation, 
we added the rationale annotation
– Annotation process: in an HTML editor, rationale 

segments are boldfaced.
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• How big is the overhead for annotating rationales?

• Ought to establish that richer annotation is a good use of 
an annotator’s time.

– vs. just annotating more documents

• One can imagine three annotation tasks:

– T1: given document, annotate the class.

– T2: given document and gold standard class,

annotate the rationales.

– T3: given document, annotate both the class

and the rationales.

• 50 docs/task given to four annotators

Annotation Time
Zaidan et. al – Annotator Rationales

– T1: given document, annotate the class.

– T2: given document and gold standard class,

annotate the rationales.

– T3: given document, annotate both the class

and the rationales.

• We found that Time(T3) ≈ 2 x Time(T1)

• Even though on average 8.3 rationales/doc + class!

• Annotator already needs to find rationales to determine 
class. Extra work is only to make them explicit:

Time(T3) < Time(T1)+Time(T2) by about 20%

Annotation Time
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– T1: given document, annotate the class.

– T2: given document and gold standard class,

annotate the rationales.

– T3: given document, annotate both the class

and the rationales.

• Synergy: Time(T3) < Time(T1)+Time(T2)

• Extra time reduced with better annotation setup (e.g. 
automatic boldfacing of highlighting, stylus, etc) or smart 
use of eye tracking.

• Note: the task of classifying full docs is a worst-case 

scenario for rationales.

– Other tasks would have simpler/fewer rationales and more 

complex classes.

Annotation Time
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Feature Set

• Binary unigram features
– A document is reduced to a 0-1 vector with 17,744 

dimensions.

• Feature set too simple?
– Goal is not to build the best classifier.

– Goal is to improve an existing classifier regardless of 
its feature set.

– We use this feature set to mirror previous work.

(( Pang & Lee actually tried other features and found it 
did not matter much ))
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Let’s see some experimental results…
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⇒ Pieces to solving classification puzzle

cannot be found solely in the rationales
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Using Rationales from

some (and not all) Documents

• We showed what happens if you use all the rationales in 
all the training documents.

• What if you use all the rationales from some training 

documents instead of all training documents?

Baseline

Contrasts Introduced

Explore 
this space
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T = 800: Class annotation from 800 documents.

R = 200: Rationales from 200 documents only.
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• Observation #1: much of the benefit can be obtained 
without annotating 100% of the documents

– e.g. (0%, 50%, 100%) for T = 800 and T = 1600

Using Rationales from

some (and not all) Documents
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• Observation #2: if you have a lot of training documents, 
adding more may not help much (curves flatten out).

BUT adding more rationales provides a fresh benefit.

⇒Benefit from R even if T “reaches its potential”

Using Rationales from

some (and not all) Documents
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Simulating a “Lazy Annotator”

• In last few experiments, we kept all rationales 
from some training documents.

– R=200 and T=800 means 600 documents contributed 
no contrast examples. Each of the 200 R documents 
contributes all its rationales.

• What if we keep some rationales from all 
documents?

– Instead of using all the rationales in 200 documents, 
use the same number of rationales spread out over all 
800 documents.
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Simulating a “Lazy Annotator”

0                       400                     800             1200                   1600

Training Set Size T (Documents)

93

91

89

87

85

83

81

79

A
c

c
u

ra
c

y
 (

%
)

Zaidan et. al – Annotator Rationales

Any Differences? Not Really.

Diligent Lazy
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The two (T=800,R=200) points are comparable: same 

number of rationales. Difference is in distribution only.
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Simulating a “Lazy Annotator”

• Experiment simulates a not-so-diligent 

annotator

– This might be more common in reality.

– Likely to pick ‘obvious’ rationales, yielding 
faster rationale annotation.

– Also, obvious rationales may prove to be 
better.

(Though experiment doesn't test for that; rationales 
were picked at random)
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Big Picture

• Idea #1: richer annotation can aid ML.

• Idea #2: richer better use of our time than more.

• Example of richer annotation: rationales.

• Developed and tested one method to use 
rationales (our extended SVM).

• Simulated degree of annotator laziness.

• Bonus: annotator knows nothing about the ML 
method (or even feature set).
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Future Work

• More datasets:
– Different task may require different kind of rationales.

– Might also require different annotation tool.

• More experiments:
– Examination of annotation process.

– Real experiments to see effect of a lazy annotator.

• More models:
– Generative models: model annotation of rationales as 

a noisy process (annotators are not perfect).

– Potentially other discriminative methods.
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On The Internets

• The enriched dataset (and slides) here:
http://cs.jhu.edu/~ozaidan/rationales
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