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We are motivated by the longstanding
challenge of determining the structure of
a language from its superficial features.
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evolutionarily tuned system that is

specifically adapted to natural language,
which can predict typological properties
(“parameters”) by spotting telltale |gmmrErm R
configurations in purely linguistic input | b
(Gibson and Wexler, 1994). Here we \\Cae_v Lo o TEE G
investigate whether such configurations

even exist, by asking an artificial system
to find them.
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Scatterplots by language of predicted (y-axis) vs. true (x-axis) directionality. The first 3 plots show predictions by our full system on
some of the relations. The 4th shows how performance degrades without the use of synthetic data to illustrate the surface word

order of postpositional languages.
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The Galactic Dependencies Treebanks

ermute the children of verbs

. More than 50,000 synthetic languages

. Resemble real languages, but not found on Earth

. Each has a corpus of dependency parses

. In the Universal Dependencies format
. Vertices are words labeled with POS tags hikdren of nouns
. Edges are labeled syntactic relationships

. Provide train/dev/test splits, alignments, tools

mute the children of verbs
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Cross-validation loss broken down by relation. We plot each
relation r with x coordinate = the proportion of r in the
average training corpus, and with y coordinate = the
weighted average e-insensitive loss.

[MSI3| NI0 || EC | @ | UD |+GD
loss | 0.156 | 0.134 || 0.110 | 0.093 || 0.090 | 0.044

Cross-validation average expected loss of the two grammar
induction methods, MS13 (Marecek and Straka, 2013) and
N10 (Naseem et al., 2010), compared to the “expected
count” (EC) heuristic and our approach. In these
experiments, the dependency relation types are ordered
POS pairs. N10 harnesses prior linguistic knowledge, but its
improvement upon MS13 is not statistically significant. Both
grammar induction systems are significantly worse than the
rest of the systems, including even our 2 baseline systems,
namely EC and @ (the no-feature baseline system).
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The y coordinate is the average loss of our model. The x
coordinate is the average loss of a simple baseline model
that ignores the input corpus.

Family | Sub-Family e (Treehank ID) Split | UD  +GD
T anish (da) Tainl | 0024 0.017
Norwegian (no) Tainl [ 0.008 0011
Gern (de) M6 0.027
Germanic Gothic (gor) 0003 0.030
0069 0.064
Teins | 0025 0036
Test 0012 0.007
Crech (cs) TaainZ | 0025 0014
Bulgarian (bg) Taind | 0037 0015
Stavic Croatian (hr) Test | 0062 0012
VS| Ol Church Slavonie (cu) | Test [ 0024 0.029
Polish (pl) Test | 0056 0022
Slovenian (sl) Test | 0015 0031
Indo-European Portuguese (pt) TrainZ | 0038 0.004
Talian (it} 0011 0.010
Romance French (1) wind | 0024 0020
Spanish (¢s) Taains | 0012 0008
Romanian (ro) Test 0029 0.009
Greek Greek (el) Test | 0.056 0010
Celiic Trish (za) Test | 0.181 0.159
Indic Hindi (hi) I 0.173
Tranian Persian (fa} 0.121
Estonian (et) 0.015
_— Finnic Finnish (fi) 0069 0.070
Ugric Hungarian (hu) 0119 0101
. N Arabic (ar) Traim] 016 0.056
Afio-Asiatic | Semitic Hebrew (he) Test | 0079 0.034
Austronesian Indonesian Gid) Test | 0.099 0073
Basque - Basque (eu) Test | 0250 0077
Dravidian | Southern Tamil (1a) Test | 0.238 0052
Tapanese Japanese (ja_kic) Test | 0247 0.080
veraze Test | 0.112 0,054
® Train+Test | 0084 0.045%

Our final comparison on the 15 test languages (boldfaced).
We ask whether the average expected loss on these 15 real
target languages is reduced by augmenting the training pool
of 20 UD treebanks with +20*21*21 GD languages. For
completeness, we extend the table with the cross-validation
results on the training pool. The “Avg.” lines report the
average of 15 test or 31 training+testing languages. We
mark both “+GD” averages with “*” as they are significantly
better than their “UD” counterparts (paired permutation test
by language, p < 0.05).




