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Abstract

This dissertation is about ordering. The problem of arranging a set of n items in
a desired order is quite common, as well as fundamental to computer science. Sorting
is one instance, as is the Traveling Salesman Problem. Each problem instance can be
thought of as optimization of a function that applies to the set of permutations.

The dissertation treats word reordering for machine translation as another instance
of a combinatorial optimization problem. The approach introduced is to combine
three different functions of permutations. The first function is based on finite-state
automata, the second is an instance of the Linear Ordering Problem, and the third
is an entirely new permutation problem related to the LOP.

The Linear Ordering Problem has the most attractive computational properties of
the three, all of which are NP-hard optimization problems. The dissertation expends
significant effort developing neighborhoods for local search on the LOP, and uses
grammars and other tools from natural language parsing to introduce several new
results, including a state-of-the-art local search procedure.

Combinatorial optimization problems such as the TSP or the LOP are usually
given the function over permutations. In the machine translation setting, the weights
are not given, only words. The dissertation applies machine learning techniques
to derive a LOP from each given sentence using a corpus of sentences and their
translations for training. It proposes a set of features for such learning and argues
their propriety for translation based on an analogy to dependency parsing. It adapts
a number of parameter optimization procedures to the novel setting of the LOP.

The signature result of the thesis is the application of a machine learned set of
linear ordering problems to machine translation. Using reorderings found by search
as a preprocessing step significantly improves translation of German to English, and
significantly more than the lexicalized reordering model that is the default of the
translation system.

In addition, the dissertation provides a number of new theoretical results, and
lays out an ambitious program for potential future research. Both the reordering
model and the optimization techniques have broad applicability, and the availability of
machine learning makes even new problems without obvious structure approachable.
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Chapter 1

Introduction

Ordering problems are pervasive in computer science and outside: Given a collec-
tion of items, arrange them in a sequence according to some rules. When the rules
consist of a total order, the problem is simply sorting, one of the fundamental studies
of computer science. Definition 2.5 in Section 2.11.1 will formally define a total order.
The essential property of a total order relation is that it is transitive—if a belongs
before b and b belongs before c, then a necessarily also belongs before c.

Transitivity doesn’t always hold in practice. Among items with pairwise prece-
dence preferences derived from measurements of properties of the items, cycles exist.
One formulation of ordering rules under this more general setting leads to the Linear
Ordering Problem: Find the sequential arrangement that maximizes the sum of the
satisfied pairwise precedences. It will be given formally in Definition 2.2 in Section 2.1.
It is an intractable combinatorial optimization problem. The corresponding decision
problem—is there a permutation of the items with score at least K?—is known to be
NP-complete.

A different criterion for ordering leads to the Traveling Salesman Problem, an-
other NP-complete combinatorial optimization problem. The TSP can be thought
of as concerning itself with the local structure of the permutation, while the LOP is
concerned with global structure. In addition to the LOP, this dissertation considers
a generalization of the TSP expressed using finite-state automata.

These and one more completely new function of permutations are adopted to
address the problem of word reordering for machine translation. Machine translation
is another difficult problem, several formulations of which are known to be NP-hard
as well. The approach taken here is to assume that translation would be easy if it was
always monotonic. This is probably not true, but it is certainly true that it would be
less difficult. The assumption allows reordering to become the primary focus of the
translation problem, and the formulation uses a trick involving lookahead through a
finite-state transducer to convert the entire translation problem into a permutation
problem.

More generally, this dissertation concerns itself with three areas of study, and
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makes novel connections among the three. The first is local search for the Linear
Ordering Problem, the second is reordering for Machine Translation, and the third is
machine learning. The dissertation applies techniques from natural language parsing
to the Linear Ordering Problem, applies the Linear Ordering Problem to reordering
for Machine Translation, and finally uses machine learning to improve reordering
models.

1.1 The Linear Ordering Problem

The Linear Ordering Problem arises in a surprising number of applications in
fields including social choice theory, economics, archaeology, and information retrieval,
among others. Section 2.1.1 will give a more complete enumeration, and describe the
details of each. Here, it is enough to observe that this problem, in spite of its difficulty,
is of significant practical interest. Many exact solution methods exist for the Linear
Ordering Problem, but all necessarily start to fail when the problems become too
large. Search is therefore a common approach to the LOP.

The work of this thesis derived from a novel dynamic programming algorithm for
efficiently computing costs of permutations under the Linear Ordering Problem. The
idea was to use shared substructure to convert the scores for pairwise item orderings,
given in the LOP, into scores for pairs of adjacent blocks of items. Computing the
score for arranging a single pair of adjacent blocks would require Θ(n2) time, for
some blocks taken from a collection of size n, but the dynamic program computes
the scores for all Θ(n3) such pairs of blocks in only Θ(n3) time—constant time per
pair of adjacent blocks. The dynamic program will appear in detail in Figure 2.26 of
Section 2.8.2.

Another essential property of the dynamic program is that the score for arranging
a particular pair of blocks does not depend at all on the permutations of items within
those blocks. As a result, it remains a Θ(n3) operation to compute the best score
considering all possible nested arrangements of pairs of adjacent blocks. This makes
it convenient to use a grammar to describe the process.

The dynamic program works given an existing sequential arrangement—a permu-
tation—of the collection of items. The resulting set of block orderings for which
computation is efficient thus depends on the starting permutation. The dynamic pro-
gram induces a neighborhood about the starting permutation—a set of permutations
linked to that starting point by the property of efficient computation.

Section 2.2 reviews several local search neighborhoods that have been applied to
the Linear Ordering Problem, and adds the Block Insertion neighborhood described
above. Constant-time-per-neighbor search is an important property of each. Sec-
tion 2.4 describes simultaneous versions of each neighborhood, including nested block
insertions. Each of these neighborhoods has an exponential number of members, but
the same polynomial search time as their single-move counterparts. All these neigh-
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borhoods fit into a hierarchy, where the number of computations required for search
is related to the number of local maxima.

Neighborhoods lead directly to local search algorithms. This dissertation explores
one very simple local search approach—greedy local search, or hillclimbing—in Sec-
tion 2.5.2. It applies hillclimbing to benchmark Linear Ordering Problems using a
number of neighborhoods, including the one described informally above, and subsets
of it searchable in Θ(n2) time instead, in Section 2.6.

Evaluation of local search methods for the Linear Ordering Problem uses XLOLIB,
a collection of large random problems derived from real-world economics data. A
shortcut version of this dissertation’s Block Insertion neigborhood proves to have
excellent performance on this benchmark, surpassing prior methods at hillclimbing
with random restarts.

On these same benchmarks, the performance of the very large-scale neighborhood
(VLSN) search is disappointing. It fails to outperform the shortcut methods. This
may be due to the fact that though the VLSNs contain far more permutations than
their simple counterparts, they have the same local maxima. This is a key point of
discussion.

Procedural descriptions of neighborhoods are common in the literature, but it
proves both elegant and useful to describe them using grammars. Both finite-state
and context-free grammars appear. The Linear Ordering Problem supplies weights
for the grammar rules, and the dissertation then applies techniques from natural
language processing to find best permutations in the neighborhoods expressed by the
weighted grammars. For example, instead of finding just the single best permutation,
a parser can find the K best permutations in the neighborhood, for some K > 1.
Other such methods include pruning, A* parsing, and forest rescoring.

Many useful computations that a parser can perform depend on a one-to-one
correspondence between permutations and derivations of those permutations under
the grammar. The simplest grammars describing neighborhoods often have spurious
ambiguity, representing some permutations with many distinct derivations. After
the introduction of grammars in Section 2.8, Section 2.9 proceeds to complicate those
grammars in order to arrive at normal forms that prohibit multiple derivations. Some
of these normal forms are novel.

The immediate consequence of the normal forms is that they make possible the
computation of the sizes of the neighborhoods—the cardinalities of the sets of unique
permutations that they contain. Section 2.10 derives recurrence equations from the
normal-form grammars and uses them to perform these computations for several
neighborhoods. More important consequences of normal form arise when the Linear
Ordering Problem is considered from the standpoint of learning.

Finally, Section 2.11 invokes analogies to sorting algorithms to analyze the diam-
eters of graphs induced by the neighborhoods, and gives a linear-time shift-reduce
parser for determining neighborhood membership. It also introduces a LOP matrix
that defines a total order, which will prove useful for machine learning.

3



1.2 Machine Translation

The field of natural language processing includes ordering problems of its own.
One application is multi-document extractive summarization, which Section 2.1.1
will touch upon.1 Of particular interest to this dissertation is the problem of machine
translation. Adequate translation between human languages, using software, is an
important and difficult task.

Different human languages express the same or nearly the same concepts in a vari-
ety of ways. One such divergence is word ordering. An example of particular interest
to this dissertation is the difference between German and English. German verbs of-
ten occur at the very ends of their clauses. English verbs, on the other hand, usually
occur between their subjects and their objects. As a result, machine translation from
German to English must “move” the concept represented by the German verb, across
a potentially long distance occupied by intervening words, in order to produce a fluent
translation. Section 3.4 will discuss this and other divergences between German and
English in more detail.

This dissertation combines a reordering model derived from the Linear Order-
ing Problem and other permutation problems with monotone finite-state transla-
tion. Weighted finite-state transducers are a weighted generalization of finite-state
automata that map strings from one regular language to strings from another. Sec-
tion 3.5 will give formal definitions. It will also explore possible representations for
the monotonic WFST translation model. In general, such transducers are capable of
capturing all sorts of interesting phenomena related to monotonic translation, from
the morpheme level up to phrases. Also, if the target language model is finite-state,
composition allows it to participate in the ordering model as well.

Section 3.6 will introduce the Linear Ordering Problem as a model of word re-
ordering for machine translation. The idea is to assign scores to pairs of words in the
sentence for remaining in order or reversing order based on features observable in the
sentence as a whole. This section will add a model of monotonic translation that may
also express preferences for different orders, using WFSTs.

The finite-state automata actually perform two roles in this model. The first is to
locally constrain the reordering, as in the TSP. The second is to perform monotonic
translation. Through WFST composition, these two models can combine into a single
transducer.

Section 3.9 will address the implications of this automaton model for the grammars
and algorithms that Chapter 2 will apply to the Linear Ordering Problem alone. The
situation is not nearly as tidy as for the LOP. The grammars must account for paths
through the automaton by keeping track of states, and that leads to another cubic
factor in the asymptotic runtime, this one in the number of states |Q|. The resulting

1Information ordering in general is a difficult task, even for humans. I can attest to this after
trying to construct a linear ordering of this introduction from the heavily interrelated topics of the
ensuing chapters.
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runtime of Θ(n3 |Q|3) is quite large for the models of interest. A trigram language
model component alone contributes a factor of n6, without accounting for translation
at all.

Sections 3.9 and 3.10 will adapt several methods from the natural language pars-
ing and machine translation communities to the grammars of this dissertation. Sec-
tion 3.9.2 proposes A* search as one possible solution to the runtime problem. Sec-
tion 3.9.3 proposes another based on the most successful LOP search algorithm that
Chapter 2 will present—Block LSf . Section 3.10 introduces further approximations,
in line with more standard MT decoders. Exact methods for neighborhood search fail
to be practical because of the order of the polynomials in the asymptotic runtime.

This chapter will also use the models derived from the LOP alone as a prepro-
cessing step. Section 3.8 will show that this is a rewarding approach. A standard
phrase-based decoder that uses German′ as input instead of German produces signif-
icantly better translations into English under several automatic evaluation measures.
In particular, using the LOP reordering model as preprocessing outperforms the stan-
dard lexicalized reordering model integrated into the phrase-based Moses decoder.
German′ reorders German using the LOP search methods of Chapter 2.

1.3 Machine Learning

Using a Linear Ordering Problem for machine translation requires a matrix of
precedence scores. The success of the translation experiments depends heavily on
finding a parametric model from which such a matrix can be derived for each given
input sentence, as well as a good setting for the parameters of the model. Section 4.4
proposes a linear model for each matrix entry, and adapts a set of features from the
task of dependency parsing, arguing an analogy between the two tasks. The rest of
Chapter 4 searches for a good set of parameters for the linear model.

Parameter optimization is a search problem of a rather different character from
combinatorial optimization. The size and nature of the permutation search space
renders several standard machine learning algorithms unfit for this problem, and
leads to the development of alternatives.

Even simple learning algorithms such as the perceptron do not apply out of the
box. The problem is that the standard perceptron update requires access to the best
output according to the current model. In this case, finding that best output means
solving the Linear Ordering Problem. The only alternative is to adapt the perceptron
to deal with non-optimal outputs. Fortunately, this is straightforward and it seems
to work well. Section 4.7 will adapt perceptrons to the LOP learning problem, while
Section 4.9 will introduce explicit large-margin updates of the same type. Section 4.8
will explicitly account for the fact that learning is taking place in the context of greedy
local search.

Likelihood-based methods are more attractive than perceptrons in some respects.
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For one thing, they take more information into account at each update. However,
interpreting LOP scores as probabilities means interpreting the LOP matrix as a
log-linear model and computing an intractable partition function. Section 4.11 will
propose sampling as one solution, and several tractable alternatives based on condi-
tional likelihood distributions given a single neighborhood.

These likelihood-based methods use the grammars of Chapter 2, with parsing
algorithms modified to sum over derivations instead of simply finding one best. Use
of the normal-form grammars that Chapter 2 will introduce is therefore necessary
to avoid skewing the distribution toward permutations with more derivations. In
addition, some of the methods make use of K-best lists, for which normal form is also
appropriate.

The most reliable evaluation of learned parameters is the translation task of Chap-
ter 3. However, this evaluation is quite expensive. Chapter 4 will also explore several
other measures of reordering performance, including Kendall’s τ rank correlation and
a monolingual version of BLEU score, and will measure correlations among them.

Some of these loss functions have useful properties that make them attractive to
use either directly for optimization or as a convergence criterion. Although these
do produce models that can improve translation quality, their prediction is not per-
fect. Experiments on learning vary several meta-parameters, including feature sets,
learning methods, learning rates, oracle orderings, and parallelization.

1.4 Summary

In sum, this work connects several problems in novel ways. It applies sophisticated
dynamic programming, familiar to natural language parsing, to improve search for
the Linear Ordering Problem. It introduces the Linear Ordering Problem, and its
local search methods, to machine translation, where it stands in contrast to existing
reordering models in important ways. Finally, it introduces machine learning for the
Linear Ordering Problem, and adapts several learning algorithms using search and
neighborhoods. Each of these areas is vast and this dissertation only invokes small
portions of each, but it also opens up new possibilities that may lead to further fruitful
cross-pollination.

Some of the ideas appearing here were published in Eisner and Tromble (2006),
with minimal empirical validation. Other ideas are completely novel to the disserta-
tion. All of the experimental results reported here are new.

1.5 Road Map

The novel contributions and results of the dissertation are contained in the next
three chapters, described at a high level above. Chapter 2 is largely independent
of the other two, though there will be some forward references. Chapters 3 and 4,
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however, are heavily interdependent. For some readers, it may make sense to read
Chapter 4 first, because Chapter 3 will invoke the models learned there.

The last section of each chapter will present a summary of the chapter and high-
light the most important points therein. Chapter 5 will briefly summarize the contri-
butions of the dissertation again.

The Appendix contains technical information that would be a digression in the
main text. Appendix A contains a description of several machine translation evalua-
tion measures and significance tests. Appendix B presents the German part of speech
and dependency label sets from the TIGER treebank.
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Chapter 2

Local Search for the Linear
Ordering Problem

This chapter describes the linear ordering problem (LOP), surveys its history, and
describes a benchmark problem set called LOLIB. It then introduces the concept of a
neighborhood and describes several neighborhoods with nice computational properties,
including very large-scale neighborhoods, which have exponential size but polynomial
search time. Next, it applies greedy local search, which works with any neighborhood,
to the benchmark problems.

The second half of the chapter, beginning with Section 2.8, presents results of a
more theoretical nature. First, it defines the very large-scale neighborhoods in terms
of grammars that generate them. Then it moves on to normal-form grammars, which
eliminate the derivational ambiguity of the simple grammars. Normal-form grammars
allow computation of the neighborhood size, because they have only one derivation
per neighbor. The chapter’s final section considers the graph that neighborhoods
induce on the set of permutations, and investigates the graph diameter, as well as
other properties.

The results of this chapter stand on their own and may prove of interest to some
or any of the application areas of the Linear Ordering Problem. At the same time,
the algorithms presented here are essential to the rest of the dissertation, and some
forward references occur where appropriate.

2.1 The Linear Ordering Problem

The linear ordering problem is an NP-complete permutation optimization prob-
lem, like the famous traveling salesman problem (TSP). Membership in NP of the
decision-problem formulation of the LOP will be clear from its definition below. Karp
(1972) reduced the vertex cover problem to the minimum feedback arc set problem,
the weighted version of which is equivalent to the LOP, demonstrating that it is

8



NP-hard.1

Definition 2.1 Let S be an arbitrary set. A permutation π : S 7→ S is a bijection
from S onto itself.

In this dissertation, S will usually be the set {1, 2, . . . , n}, for some natural number
n. Although it is defined as a function, it will be useful to think of a permutation π
as a sequence:

π = π1 π2 . . . πn
def
= π−1(1) π−1(2) . . . π−1(n). (2.1)

That is, π is defined by the number that it maps to 1, followed by the number that
it maps to 2, etc. For example, if π is 3 1 2 then π(1) = 2, π(2) = 3, and π(3) = 1.

Definition 2.2 Let Πn be the set of permutations of the integers {1, 2, . . . , n}, such
that |Πn| = n!. Then, given an n × n matrix B, B[i, j] ∈ R, of scores, the linear
ordering problem (LOP) is to find the optimal permutation:

π∗ = arg max
π∈Πn

B(π) = arg max
π∈Πn

n−1∑
i=1

n∑
j=i+1

B[πi, πj]. (2.2)

B[`, r] represents the value of putting ` before r in the permutation, and the total
value of a permutation is the sum of the values of all

(
n
2

)
pairwise orderings.

An equivalent problem statement is to find a permutation of the rows and columns
of the matrix B that maximizes the sum of the entries above the diagonal (Garcia,
Pérez-Brito, Campos, and Mart́ı, 2006).

In words, the object of the LOP is to find a total order of a set of objects that best
satisfies a set of, in general, mutually-inconsistent pairwise precedence preferences.
The LOP setting has no regard for adjacency. Unlike the traveling salesman problem,
in the LOP two items will be adjacent in π∗ only because nothing fits between them,
never because they belong together.

2.1.1 History and Applications

Charon and Hudry (2007) attributed the linear ordering problem to Condorcet
(1785), rediscovered by Kemeny (1959), and a different formulation to Slater (1961).
The first formulation comes from the origins of social choice theory. The problem is
to rank a set of candidates given voters’ preferences among them. Here, the matrix
entry B[`, r] holds the number of voters who prefer candidate ` to candidate r.

The second formulation comes from psychological experiments involving paired
comparisons, where the problem is to find a linear ordering maximally consistent

1The maximization version of the LOP, given here, is known to be APX-complete, meaning there
is no polynomial time approximation scheme, unless P=NP. The minimization version is APX-hard,
and conjectured to be outside APX (Mishra and Sikdar, 2004).
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with a subject’s possibly inconsistent preferences. Here, B[`, r] ∈ {0, 1} indicates
whether the subject preferred item ` to item r.

Another instance of the linear ordering problem originated in the field of eco-
nomics, where it was posed as minimizing the sum of entries below the diagonal in
permutations of input-output matrices (Chenery and Watanabe, 1958). An input-
output matrix represents relationships among sectors of an economy. Here, B[`, r]
is a monetary measure of the flow of goods from sector ` to sector r. The optimal
ordering of the economic sectors provides insight into the structure of the economy.

The problem is also known as Kemeny’s problem or Kemeny’s rule, the median
order problem, and the permutation problem (Charon and Hudry, 2007). It is equiv-
alent to the minimum reversing set problem, the minimum weighted feedback arc set
problem, and the maximum acyclic subgraph problem. Lenstra (1973) also formulates
it as an instance of the quadratic assignment problem.

Glover, Klastorin, and Klingman (1974) proposed finding a minimum weighted
feedback arc set for chronological ordering of pottery types discovered at gravesites.
This is the stratification problem of archaeology. Here, B[`, r] is some measure of the
occurrences of pottery type ` below type r at a single site. The measure proposed by
Glover et al. (1974) accounts for the relative depths of the artifacts.

In the area of graph drawing, the problem of minimizing the number of crossing
edges in a two-layer bipartite graph with the order of one layer fixed can be cast as
a linear ordering problem (Eades and Whitesides, 1994; Jünger and Mutzel, 1997).
Here, B[`, r] is the number of resulting crossings among the edges incident upon
nodes ` and r if ` should precede r. This can be computed because the order of their
neighbors—in the other layer—is fixed. In this case, (2.2) is a minimization.

Cohen, Schapire, and Singer (1999) proposed a linear ordering problem for search
engine combination. In this setting, B[`, r] is an aggregation of the rankings of several
search engines. This bears an obvious resemblance to Kemeny’s problem, but differs
because the “voters” are weighted. Section 4.2 on page 130 discusses this work in
more detail as an instance of learning the matrix B.

Finally, Grötschel, Jünger, and Reinelt (1984) cited Boenchendorf (1982) as the
source of another equivalent problem—minimizing total weighted completion time
in one-machine scheduling. Grötschel et al. (1984) also proposed ranking players or
teams in sports tournaments as another application.

One potential application of the LOP in natural language processing is multi-
document extractive summarization. This bears some resemblance to the stratifi-
cation problem—compiling information from multiple sites—but is more complex
because of the extraction component—only a relatively small subset of the many
available sentences will be used. Barzilay, Elhadad, and McKeown (2002) proposed a
“Majority Ordering” procedure that creates an instance of the linear ordering prob-
lem for multidocument summarization. Like Cohen et al. (1999), they used a greedy
heuristic to find a candidate ordering.

Chapter 3 of this dissertation will introduce word reordering for machine transla-
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tion as another application of the LOP. It will cast word reordering in terms of the
LOP by letting the {1, 2, . . . , n} represent indices into a sentence. The matrix entry
B[`, r] then assigns value to the relative order of the pair of words ` and r. They
derive from a given sentence as follows:

B[`, r] = θ · φ(w, `, r), (2.3)

where θ is a weight vector to learn (see Chapter 4), φ is a vector of feature functions
(see Section 4.4), and w contains the words in the sentence. In addition to the
words themselves, Section 4.4 will introduce features that consider parts of speech
and dependency parses.

2.1.2 LOLIB and XLOLIB

The economics application of the linear ordering problem—triangulation of input-
output matrices—is probably the most studied of any of those the previous section
describes. It is also an application for which there is a great deal of data available.

LOLIB is a collection of 49 input-output matrices for fifty sectors of various Eu-
ropean economies. It is maintained by Gerhard Reinelt.2 The problem size, n = 50,
is small enough to be solved using exact methods (see Section 2.5), and is therefore
not sufficient to challenge local search methods. However, these real-world problems
have a different character from randomly generated problem instances, such as those
used by Mitchell and Borchers (2000) and Laguna, Mart́ı, and Campos (1999).

For this reason, Schiavinotto and Stützle (2004) introduced XLOLIB, problem
instances of size n = 150 and n = 250 generated by resampling matrix entries from
corresponding LOLIB problems. They show that these new problem instances resem-
ble the real LOLIB problems more closely than other random problems using several
measures.

The following sections introduce several neighborhoods and search procedures for
the LOP, and Section 2.6 applies a search quality comparison described there to these
procedures, benchmarking performance on XLOLIB250.

2.2 Neighborhoods

This section reviews several neighborhoods for permutation search known in the
literature, and introduces neighborhoods new to this work. It describes these neigh-
borhoods in terms of sets of functions, and places them all into a subsumption hier-
archy. Neighborhoods constitute the inner loop of the local search algorithms that
Section 2.5.2 describes. It is obviously intractable to consider all the permutations, so
local search looks only at those in a single neighborhood at a time. This presentation

2http://www.informatik.uni-heidelberg.de/groups/comopt/software/LOLIB/index.html
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of neighborhoods focuses on properties related to search, especially the complexity of
finding the best neighbor.

Recall that Πn represents the set of permutations of the integers from 1 to n, such
that |Πn| = n! and that Definition 2.1 described a permutation as a function. It is
possible to compose permutation functions to produce new permutations.

Let π be one permutation in Πn and let σ be another, possibly identical. Then,

σ(π)i = π−1(σ−1(i)) = πσi . (2.4)

For example, let σ be the permutation 2 5 3 1 4, and let π be the permutation 3 1 5 2 4.
Then σ(π) = 1 4 5 3 2. That is, it is the second member of π followed by the fifth,
third, first, and fourth.

Definition 2.3 A neighborhood is a set of permutations.

That is, if N is a neighborhood then N ⊆ Πn, for some n. We can also treat a
neighborhood as a function, such that

N (π) = {σ(π) | σ ∈ N}

In a slight abuse of notation, also let neighborhood refer to a class of neighborhoods
Nn derived by some rule for each n. That is the sense the following sections use.

2.2.1 Transposition

Schiavinotto and Stützle (2004) experimented with several different neighborhoods
from the linear ordering problem literature, including transposition, which they called
swap, insertion, and interchange.

The simplest neighborhood of interest is the transposition neighborhood,

Transn =



2 1 3 4 . . . n− 1 n,
1 3 2 4 . . . n− 1 n,
1 2 4 3 . . . n− 1 n,

...
1 2 3 4 . . . n n− 1


. (2.5)

Transn has size |Transn| = n − 1 and consists of all permutation functions with
symmetric difference distance 1 from the identity permutation. Section 2.11.2 defines
this distance measure.
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2.2.2 Insertion

Let the Insertkn neighborhood refer to the set of permutation functions of length
n that move the kth item to a new position,

Insertkn =



k 1 2 . . . k − 1 k + 1 . . . n,
1 k 2 . . . k − 1 k + 1 . . . n,

...
1 2 . . . k k − 1 k + 1 . . . n,
1 2 . . . k − 1 k + 1 k . . . n,

...
1 2 . . . k − 1 k + 1 . . . k n,
1 2 . . . k − 1 k + 1 . . . n k


. (2.6)

This neighborhood omits the identity permutation, and has size n − 1 as a result.
Picking up k leaves a sequence of n − 1 items, with n possible destinations corre-
sponding to the zero-width offsets (see Figure 2.1), but one of those destinations puts
k back where it started.

The full Insertn =
⋃
k∈(n1)

Insertkn neighborhood has size (n− 1)2—it is the union

of n neighborhoods of size n − 1 each, but those neighborhoods are not entirely
disjoint. Insertn subsumes Transn, and the members of Transn each appear twice.
Transn ⊂ Insertn for n > 2. Trans3 contains just 2 1 3 and 1 3 2, while Insert3 also
contains 2 3 1 and 3 1 2.

2.2.3 Interchange

The neighborhood that Schiavinotto and Stützle called interchange consists of
the exchange of any two items in the permutation, which need not be adjacent.
It is clearly a superset of Transn. It can also be thought of as two simultaneous
insertions—interchange of positions i and j moves πi to position j and πj to position
i. The interchange neighborhood has size

(
n
2

)
, and is therefore smaller than Insertn

for n > 2.
In addition, the local maxima of the interchange neighborhood are a superset of

the local maxima of Insertn, as Section 2.5.3 will argue. This neighborhood therefore
offers no computational advantage over Insertn, and this dissertation will not consider
it further.

2.2.4 Block Insertion

This section introduces a new set of block insertion neighborhoods. Block inser-
tions have apparently not previously been used for local search for the linear ordering
problem, though there is related work—see Section 2.7 for a discussion.
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Figure 2.1: Zero-width offsets as indices into a permutation.

Definition 2.4 For a given permutation π, let (i, j) refer to the subsequence be-
tween the zero-width offsets (see Figure 2.1) i and j. That is,

(i, j)
def
= πi+1 πi+2 . . . πj. (2.7)

In this notation, the entire permutation π is (0, n), and the three subsequences
(0, i), (i, j), (j, n) combine to form the entire sequence. (i, i) denotes an empty subse-
quence.

In a slight abuse of notation, let the binomial coefficients have the following in-
terpretation as sets:(

n
1

) def
= {i | 1 ≤ i ≤ n}

(
n+1

1

) def
= {i | 0 ≤ i ≤ n}(

n
2

) def
= {(i, j) | 1 ≤ i < j ≤ n}

(
n+1

2

) def
= {(i, j) | 0 ≤ i ≤ n}(

n
3

) def
= {(i, j, k) | 1 ≤ i < j < k ≤ n}

(
n+1

3

) def
= {(i, j, k) | 0 ≤ i < j < k ≤ n}

(2.8)
Let the neighborhood Insert(i,j)

n , (i, j) ∈
(
n+1

2

)
consist of all permutations that

move the subsequence (i, j) to a new position k, with k < i or j < k. The block insert
neighborhoods generalize the insert neighborhoods, with Insertkn ≡ Insert(k−1,k)

n .
If k < i, the resulting permutation is (0, k) (i, j) (k, i) (j, n). This could equiva-

lently be considered a transposition of blocks (k, i) and (i, j). If j < k, on the other
hand, the result is (0, i) (j, k) (i, j) (k, n). This is a transposition of blocks (i, j) and

(j, k). For example, k = 1 gives the following member of Insert
(3,5)
6 :

1 4 5︸︷︷︸
(3,5)

2 3 6.

This neighborhood also omits the identity permutation, and has size n− (k− i) as
a result—(i, k) has k− i items, so removing it leaves a sequence of n− (k− i) items,
and therefore n− (k − i) possible new destinations for (i, k) .

Call the entire neighborhood

BlockInsertn =
⋃

(i,k)∈(n+1
2 )

Insert(i,k)
n . (2.9)

The size of BlockInsertn is
(
n+1

3

)
= n3−n

6
. Summing the sizes of the individual neigh-

borhoods would give twice this number, since each transposition (0, i) (j, k) (i, j) (k, n)
is a member of two neighborhoods—Insert(i,j)

n and Insert(j,k)
n .

Because Insertkn ≡ Insert(k−1,k)
n , it is clear that Insertn ⊆ BlockInsertn. The

inclusion is strict for n > 3. For example, BlockInsert4 includes 3 4 1 2, which
Insert4 does not.
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2.2.5 Limited-width Block Insertion

BlockInsertn allows subsequences of any length to relocate. Limiting the size of
the subsequence that can move to lengths ≤ w leads to a subset of BlockInsertn:

Insert≤wn
def
=

⋃
(i,k)∈(n+1

2 ), k−i≤w

Insert(i,k)
n . (2.10)

The special case w = 1 is Insert≤1
n ≡ Insertn. If w ≥ n

2
, then Insert≤wn ≡ BlockInsertn.

The size of Insert≤wn is more complicated to compute than the others. As with
the definition of BlockInsertn, the sets that Insert≤wn unites are not disjoint—every
transposition of (i, j) and (j, k) such that both have width≤ w appears in two subsets.
There does not appear to be an elegant closed form, so it will suffice to observe that∣∣Insert≤wn

∣∣ = Θ(wn2). (2.11)

2.3 Neighborhoods and Computation

Under Definition 2.3, any subset of the permutations is a neighborhood. What
makes the neighborhoods described in Section 2.2 interesting are their computational
properties. In general, computing the best permutation in a neighborhood N under
a n × n linear ordering problem matrix B costs Θ(|N |n2) time. Computing B(π)
costs Θ(n2) for each neighbor π. However, the neighborhoods in Section 2.2 have
the special property that their best neighbor can be found in Θ(|N |) time—constant
time per neighbor.

2.3.1 Search in the Transposition Neighborhood

The Transn neighborhood, of size Θ(n) would cost Θ(n3) to search näıvely. How-
ever, assuming the total score B(π) of the current permutation π is known, the score
of the best permutation in Transn(π) can be computed in Θ(n) time.3 Each of the
neighbors swaps a single pair of adjacent elements in π, say πi and πi+1. The resulting
permutation incurs all of the same scores as π except instead of B[πi, πi+1], it incurs
B[πi+1, πi]. Therefore, letting π(i) represent the ith member of Transn,

B(π(i)) = B(π)−B[πi, πi+1] +B[πi+1, πi]. (2.12)

The score of each permutation in Transn can thus be computed in constant time.

3Even if B(π) is unknown, it is still possible to compute the best neighbor in Transn(π) by this
method. Simply ignore the B(π) term.
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2.3.2 Search in the Insertion Neighborhood

Similar observations lead to improved runtime for Insertkn as well. Again, assuming
B(π) is known, searching Insertkn(π) requires only Θ(n) time. Inserting πk one position
to the left or to the right is simply an adjacent transposition. Computing the scores
of these neighbors first allows computation of the scores of inserting to positions k−2
and k + 2 using the same technique. That is, let π(i) now represent the permutation
that results from inserting πk at position i. Then,

B(π(k−2)) = B(π(k−1))−B[πk−2, πk] +B[πk, πk−2]. (2.13)

The scores of π(k−3), . . . , π(1) follow similarly, each in constant time given its predeces-
sors. Likewise π(k+2), . . . , π(n). The entire Insertn neighborhood can thus be searched
in Θ(n2) time. Schiavinotto and Stützle used this method for their LSf procedure,
which Section 2.5 describes.

2.3.3 Search in the Block Insertion Neighborhood

The individual Insert(i,j) neighborhoods cannot be searched in constant time per
member separately. However, the entire BlockInsertn neighborhood can. Start by
searching all the Insert(i,i+1)

n neighborhoods—the simple insert neighborhoods—as
described in Section 2.3.2. Then move to Insert(i,i+2), etc.

Consider BlockInsertn(π), where again B(π) is already known. Let π(i,j,k) be the
permutation that transposes (i, j) and (j, k) and let

∆(i, j, k) = B(π(i,j,k))−B(π). (2.14)

The procedure described below computes each ∆ in constant time by dynamic pro-
gramming. First, observe that

∆(i, j, k) =

j∑
`=i+1

k∑
r=j+1

∆[π`, πr], (2.15)

where
∆[π`, πr] = B[πr, π`]−B[π`, πr] (2.16)

is the change in score due to transposing π` and πr. That is, the total difference be-
tween the scores of the permutations is determined by differences in pairwise orderings
from (i, j)× (j, k).

These sums overlap in advantageous ways. For example,

∆(i+ 1, j, k) =

j∑
`=i+2

k∑
r=j+1

∆[π`, πr],
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∆(i, j, k) = ∆(i+ 1, j, k) +∆(i, j, k − 1)−∆(i+ 1, j, k − 1)+ ∆[πi+1, πk]

j k

i

=

j k

i+ 1
+

j k − 1

i

−

j k − 1

i+ 1
+

k

i

Figure 2.2: Visualization of block insertion dynamic programming. Each box rep-
resents a single ∆[π`, πr], with ` ∈ (i, j) running from bottom to top and r ∈ (j, k)
running from left to right.

so,

∆(i, j, k)−∆(i+ 1, j, k) =
k∑

r=j+1

∆[πi+1, πr].

This reduces the computational cost from Θ(n2) to Θ(n) if ∆(i + 1, j, k) is already
available. Further, notice that

∆(i, j, k − 1)−∆(i+ 1, j, k − 1) =
k−1∑
r=j+1

∆[πi+1, πr], (2.17)

so that the difference between these two differences is just ∆[πi+1, πk]. Therefore, if
quantities are computed in the correct order and stored, each ∆ can be arrived at
incrementally in constant time:

∆(i, j, k) = ∆(i+ 1, j, k)︸ ︷︷ ︸
←

+ ∆(i, j, k − 1)︸ ︷︷ ︸
→

−∆(i+ 1, j, k − 1) + ∆[πi+1, πk]. (2.18)

Figure 2.2 illustrates this dynamic program with overlapping rectangles.
Consider a particular neighborhood Insert(`,r)

n (π), which inserts the block (`, r)
both to its left and to its right. Insertions to the left score B(π) + ∆(i, `, r), where
i < `, and require access to ∆(i + 1, `, r), ∆(i, `, r − 1), and ∆(i + 1, `, r − 1). The
latter two involve a narrower block, (`, r − 1), which will always be available when
considering the block insert neighborhoods from narrowest to widest. The first term,
on the other hand, involves the same span (`, r). As the arrow indicates, these terms
must therefore be computed in right-to-left order.

Similarly, insertions to the right score B(π) + ∆(`, r, k), where r < k. In addition
to terms involving a narrower span, these will require access to ∆(`, r, k − 1), which
must therefore be computed left-to-right.
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The procedure that results is to start with ∆(` − 1, `, r) and decrement the first
index until arriving at ∆(0, `, r). Then start with ∆(`, r, r + 1) and increment the
third index until arriving at ∆(`, r, n).

The base cases of the dynamic program, ∆(i, i, k) and ∆(i, k, k), must be initialized
to zero. Using these update equations, the entire BlockInsertn neighborhood can be
searched in Θ(n3) time, or constant time per neighbor.

The next section describes procedures for searching related neighborhoods of ex-
ponential size in the same polynomial time, using similar dynamic programming.

2.4 Very Large-Scale Neighborhoods

Each of the neighborhoods described in the previous section can be generalized by
considering multiple nested or non-overlapping changes simultaneously. The result,
in each case, is a neighborhood of size exponential in the length of the permutation,
which can nonetheless be searched in polynomial time. These are Very Large-Scale
Neighborhoods (VLSNs) (Ahuja, Orlin, and Sharma, 2000). From the standpoint of
local search, considering an exponential number of neighbors in polynomial time is
an enormous boon.

2.4.1 Non-Overlapping Transpositions

Exploration of the Transn neighborhood computes ∆[πi−1, πi] for all i ∈
(
n
1

)
. If

many of these are positive, it would be beneficial to make all the changes at once.
This idea leads to a neighborhood that allows many simultaneous non-overlapping
transpositions. This is one of the Dynasearch neighborhoods of Potts and van de
Velde (1995). Refer to this neighborhood as Trans∗n.

Transposing πi−1 and πi renders those items unavailable for other transpositions.
The neighborhood cannot also transpose πi−2 and πi−1 or πi and πi+1. Therefore, it
may not necessarily be possible to make all of the transpositions with positive ∆s.
Computing the best neighbor in Trans∗n(π) requires a bit of sophistication as a result.

Section 2.8.1 later in this chapter describes this neighborhood in terms of both a
context-free grammar and a finite-state acceptor. Section 2.10.1 shows that it does
indeed have exponential size. For now, a simple dynamic program for computing the
best neighbor will suffice. Let ∆∗i be the change in score of the best rearrangement,
in the Trans∗n neighborhood, of the subsequence of π indexed by (0, i). ∆∗0 and ∆∗1 are
both zero because no transpositions are possible on the empty sequence or a sequence
of length one. For 2 ≤ i ≤ n,

∆∗i = max
(
∆∗i−1, ∆∗i−2 + ∆[πi−1, πi]

)
. (2.19)

The best neighbor up to position i either uses the best neighbor up to i−1 and defers
the question of whether πi swaps with πi+1, or it swaps πi with πi−1 and combines
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1: procedure Trans∗(B, π)
2: ∆∗[0]← 0
3: ∆∗[1]← 0
4: p[1]← 0
5: for i← 2 to |π| do
6: ∆[πi−1, πi]← B[πi, πi−1]−B[πi−1, πi]
7: if ∆∗[i− 1] ≥ ∆∗[i− 2] + ∆[πi−1, πi] then
8: ∆∗[i]← ∆∗[i− 1]
9: p[i]← i− 1

10: else
11: ∆∗[i]← ∆∗[i− 2] + ∆[πi−1, πi]
12: p[i]← i− 2
13: end if
14: end for
15: for (i← |π| ; i > 0; i← p[i]) do
16: if p[i] = i− 2 then
17: Swap(πi−1, πi)
18: end if
19: end for
20: return π
21: end procedure

Figure 2.3: Pseudocode for computing the best neighbor in Trans∗n(π)

that with the best neighbor up to i − 2. Finding the best neighbor given the best
score ∆∗n is a simple matter of keeping back-pointers during dynamic programming
and following them from the end. Figure 2.3 shows pseudocode.

2.4.2 Nested Insertions and Block Insertions

The key insight in generalizing the BlockInsertn neighborhood is that the change
in score to transpose adjacent blocks (i, j) and (j, k) is independent of the order of
the items within those blocks. That is, ∆(i, j, k) from (2.15) is the same regardless
of permutations of the items within (i, j) or (j, k).

A top-down description of this neighborhood, called BlockInsert∗n, may be the
simplest. Choose any index 1 ≤ j ≤ n − 1 and choose either to keep (0, j) and
(j, n) in order with no change of score, or to exchange them, changing the score by
∆(0, j, n). In either case, perform the same procedure recursively on (0, j) and (j, n).
Whenever the sequence under consideration has width one, only one permutation
is possible and the recursion ends. Any permutation that can be achieved by this
procedure is a member of the neighborhood.

Just as a finite-state automaton can represent the Trans∗n neighborhood, so can a
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context-free grammar represent BlockInsert∗n. The top-down description of neighbor-
hood member generation hints at this fact. The details of the grammar, and the size
of the neighborhood, which requires introduction of normal form, will wait for later
sections.

A bottom-up dynamic program based on the intuitions discussed so far is straight-
forward. Let ∆∗(i,k) be the change in score of the best rearrangement of the (i, k)

subsequence of π. Each ∆∗(k−1,k) is zero, because (k − 1, k) consists of a single item

that cannot be rearranged on its own. For all (i, k) ∈
(
n+1

2

)
such that k − i ≥ 2,

∆∗(i,k) = max
i<j<k

(
∆∗(i,j) + ∆∗(j,k) + max (0, ∆(i, j, k))

)
, (2.20)

where ∆(i, j, k) is as in (2.15) and can be computed according to its own dynamic
program, as in (2.18).

To derive the VLSN version of Insertn, Insert∗n, restrict the grammar that derives
BlockInsert∗n. In the top-down description, rather than choosing j ∈

(
n−1

1

)
, restrict

j to {1, n− 1}. Then one of the two sub-constituents always has width one and the
recursive procedure applies only to the other. This generalizes simply to a VLSN
version of Insert≤wn as well.

Finding the best neighbor in BlockInsert∗n is Θ(n3) for two reasons:

• The dynamic program (2.20) computes Θ(n2) quantities, each of which is a
maximization over Θ(n) quantities, and

• There are Θ(n3) block transposition scores, each computed in constant time
using the dynamic program (2.18).

Restricting j in the dynamic program of (2.20) also leads to dynamic programs
for searching these restricted VLSNs. Restricting j to {i + 1, k − 1} means each
computation in (2.20) is a maximization over a constant number of items, reducing
that to Θ(n2).

What is less obvious is that the runtime of the second part reduces as well. Because
the dynamic program of (2.18) only refers to narrower ∆s to compute ∆(i, j, k), if
(i, j, k) satisfies the restrictions on j then all of the other quantities will also be
available. As a result, finding the best neighbor in Insert∗n is Θ(n2), and finding the
best neighbor in the VLSN version of Insert≤wn is Θ(wn2).

Figure 2.4 summarizes the neighborhoods this section describes by placing them
into a hierarchy. The next section treats the linear ordering problem as a search
problem and invokes the neighborhoods of this section for iterated greedy local search.
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Insertn Interchangen

Insert≤wn

Trans∗n

Insert∗n

BlockInsert∗n

Transn

Insert≤w∗nBlockInsertn

Figure 2.4: A Hasse diagram relating permutation neighborhoods. A directed edge
N1 → N2 from neighborhood N1 to neighborhood N2 indicates that N1 ⊆ N2.
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2.5 Search

Because the linear ordering problem is NP-hard, there is no polynomial time
algorithm for finding a solution, in general, unless P = NP.4 The literature on the LOP
includes many proposals of exact solution methods that can be efficient in practice
for relatively small problems. Ultimately, as the problem size grows larger, these
methods will fail, and the only recourse will be inexact algorithms. This section
primarily concerns itself with those.

In particular, this section describes two basic approaches to search for the linear
ordering problem. The first builds a candidate permutation from the ground up, one
index at a time—constructive search. The second starts with a complete candidate
permutation, possibly chosen at random, and makes a sequence of small updates,
each of which results in another complete permutation. When the update is within
the confines of a neighborhood, this is local search.

2.5.1 Constructive Search

The best known example of a constructive approach to the linear ordering problem
is the greedy procedure of Becker (1967). This procedure builds a permutation π from
left to right according to the following rule:

π1 = arg max
`∈(n1)

n∑
r=1

B[`, r]

n∑
r=1

B[r, `]

, (2.21)

where
(
n
1

)
indicates the set {1, 2, . . . , n} as in (2.8). B[`, `] is assumed to be zero for

all `. The procedure arrives at the successive elements of π by eliminating π1 from
the matrix and following the same procedure recursively.

This rule is potentially problematic because nothing guarantees that the denomi-
nator is not zero, or negative, in practice. Cohen et al. (1999) proposed a very similar
algorithm which uses an additive decision rule instead:

π1 = arg max
`∈(n1)

n∑
r=1

B[`, r]−
n∑
r=1

B[r, `]. (2.22)

Although they went to the trouble of proving that their algorithm is within a factor
of two of optimal, its performance is dismal on the examples from XLOLIB250. This
chapter does not make use of these procedures further, but mentions them for com-
pleteness. While they are of little use alone, they might make good initializers for
other methods, including greedy local search.

4This dissertation assumes that P 6= NP and does not address the question further.
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2.5.2 Greedy Local Search

Greedy local search, given a neighborhood N , is trivial to describe:

1. Begin with an arbitrary permutation π(0)—perhaps the identity permutation or
one chosen at random.

2. At each time t = 1, 2, . . ., set π(t) to the best permutation in the neighborhood
N (π(t−1)).5

3. Repeat until no better permutation is available. If this happens at time T + 1,
then π(T ) is a local maximum of the neighborhood N .

Many metaheuristic search procedures, such as iterated local search (ILS) or
memetic algorithms, invoke greedy local search as a subroutine. Some of these are
described in more detail in Section 2.7. This chapter uses only the simplest of these—
random restarts—for benchmarking the neighborhoods.

2.5.3 Local Maxima

Each of the neighborhoods introduced in Sections 2.2 and 2.4 is compatible with
greedy local search. Generally speaking, the larger neighborhoods have fewer local
maxima. For example, BlockInsertn has fewer local maxima than Insertn, which in
turn has fewer than Transn.

The relationship between Insertn and Interchangen is of particular interest. Inter-
changen is not a subset of Insertn, nor even of BlockInsertn. However, its local maxima
are a superset of those of Insertn. To see this, let πi↔j be the permutation that results
from interchanging πi and πj, and consider the relative score:

B(πi↔j)−B(π) =

j∑
r=i+1

∆[πi, πr] +

j−1∑
`=i+1

∆[π`, πj]. (2.23)

The two terms of the score are the same as the relative score of inserting πi immedi-
ately after πj and the score of inserting πj immediately after πi, respectively. For this
score difference to be greater than zero, at least one of the terms must be positive,
which implies that there exists an improving insertion. Therefore, if there are no im-
proving insertions—a local maximum for Insertn—then there are also no improving
interchanges.

An important fact about the very large-scale neighborhoods of Section 2.4, is that
they do not have fewer local maxima than their simple counterparts. For example, if
a permutation π is a local maximum for Transn, then it is also a local maximum of
Trans∗n. This fact is easy to miss, especially considering the enormous size differences

5In general there may be ties. Any tie-breaking strategy is acceptable.
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among these neighborhoods, which Table 2.5 on page 71 shows. The reason for this
fact is that each of the VLSNs consists of independent applications of changes that
are compatible with the simple neighborhoods. Trans∗n can make several simultaneous
transpositions, but the same set of changes could be made using successive Transn
neighbors. If no single transposition is available to Transn, then Trans∗n is stuck as
well.

The same argument applies, with a bit more complexity, to the Insert∗n and
BlockInsert∗n neighborhoods. If there is any positive ∆(i, j, k), then both BlockInsertn
and BlockInsert∗n contain a better neighbor. If there is no positive ∆(i, j, k), then both
neighborhoods are at a local maximum.

This is not the end of the story, however. While the VLSNs have the same local
maxima, they may be less susceptible to arriving at bad local maxima, because they
can “see” further than their simple counterparts. The simplest possible example
occurs with the following LOP matrix:

B =

1 2 3 4
1 − 0 1 1
2 2 − 0 1
3 0 3 − 0
4 0 0 2 −

.

Starting from the permutation π(0) = 1 2 3 4, both Trans4 and Trans∗4 have the
following scores:

∆[1, 2] = B[2, 1]−B[1, 2] = 2,

∆[2, 3] = B[3, 2]−B[2, 3] = 3, and

∆[3, 4] = B[4, 3]−B[3, 4] = 2.

The greedy choice for Trans4 is 1 3 2 4, while the greedy choice for Trans∗4 is 2 1 4 3.
Both are local maxima, but the one that Trans∗4 finds is better.

This is not to say that the VLSNs will always find better solutions. If we make a
small change to B,

B′ =

1 2 3 4
1 − 0 1 1
2 2 − 0 0
3 0 3 − 0
4 0 2 2 −

,

then 1 3 2 4 is no longer a local maximum, and Trans4 will move on to the better
permutation 1 3 4 2, which has a higher score than the maximum where Trans∗4
is still stuck. It is an empirical question which case is more common in practice.
Section 2.6.2 addresses this question.
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2.5.4 Shortcuts

Schiavinotto and Stützle (2004) proposed a shortcut version of the Insertn neigh-
borhood that they called LSf . The procedure, in the notation of this chapter, is the
following:

1. Let k run from 1 to n.

2. For each k, search Insertkn, the set of permutations achieved by moving πk.

3. If Insertkn contains an improvement over the current permutation, immediately
return it and do not consider larger k.

That is, LSf searches in the neighborhood Insert1
n first. It moves to the best permuta-

tion in that neighborhood if one improves on the current permutation. If not, search
moves on to the Insert2

n neighborhood. It continues in this manner until Insertnn, and
if no improvement is found, it stops.
LSf has the same local maxima as the Insertn neighborhood. When it reaches

a local maximum, it searches the entire Insertn neighborhood, requiring Θ(n2) time,
before stopping. However, if there are successive improvements available involving
the successive first few elements of π(t), then many of the steps of LSf may take only
Θ(n) time. Also, the shortcut behavior means LSf settles, in general, for a neighbor
that is not the best neighbor in Insertn. Nonetheless, Schiavinotto and Stützle found
that it performed the best of several options they considered under their metaheuristic
search procedures.

The following, novel, search procedure, called Block LSf , builds on the procedure
of LSf :

1. Let w run from 1 to
⌊
n
2

⌋
.

2. Let i run from 0 to n− 1.

3. If Insert(i,i+w)
n contains any improvements, return the best one immediately.

The first iteration of the outer loop, when w = 1, is identical to LSf . If the current
permutation is a local maximum for Insertn, then Block LSf moves on to block
transpositions.

Figure 2.5 shows pseudocode for a more general width-limited case of Block LSf .
Line 12 decrements ` from i− 1 down to zero, while line 15 inrements r from j+ 1 up
to n, to ensure that the ∆ quantities get computed in the right order, as discussed in
Section 2.3.3.

Block LSf , as described, has the same local maxima as search in the BlockInsertn
neighborhood, and requires Θ(n3) time for the last step. The next section will also
consider variants with a maximum width. If the maximum width is O(1) then every
step of the width-limited Block LSf is O(n2), like LSf .

Considering blocks of width w or more is only beneficial in the following situation:
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1: procedure BlockLSf(B, π, ŵ)
2: n← |π|
3: for i← 0 to n− 1 do
4: for k ← i+ 1 to n do
5: ∆[i, i, k]← 0
6: ∆[i, k, k]← 0
7: end for
8: end for
9: for w ← 1 to ŵ do

10: for i← 0 to n− w do
11: k ← i+ w
12: for `← i− 1 to 0 do
13: ∆[`, i, k]← Compute(B, π,∆, `, i, k)
14: end for
15: for r ← k + 1 to n do
16: ∆[i, k, r]← Compute(B, π,∆, i, k, r)
17: end for
18: ˆ̀← arg max` ∆[`, i, k]
19: r̂ ← arg maxr ∆[i, k, r]
20: if max(ˆ̀, r̂) > 0 then
21: if ˆ̀≥ r̂ then
22: return Transpose(π, ˆ̀, i, k)
23: else
24: return Transpose(π, i, k, r̂)
25: end if
26: end if
27: end for
28: end for
29: return π
30: end procedure

31: function Compute(B, π,∆, i, j, k)
32: return ∆[i+1, j, k]+∆[i, j, k−1]−∆[i+1, j, k−1]+B[πk, πi+1]−B[πi+1, πk]
33: end function

Figure 2.5: Pseudocode for Block LSf , including a width-limit parameter. For full
Block LSf , ŵ is set to

⌊
n
2

⌋
.
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• Two blocks of size at least w increase the score when transposed.

• No improvement is possible by transposing blocks such that one is smaller than
w.

As w increases, the likelihood that this situation occurs becomes smaller and smaller,
as Θ(w2) matrix entries are involved. Therefore, there should be diminishing returns
from searching up to larger and larger w. The next section shows that this is indeed
the case for the problems in XLOLIB250.

2.6 Benchmarks

Greedy local search procedures differ along several dimensions. In general, all of
the following will vary:

• the time to run each iteration,

• the number of iterations to reach a local maximum, and

• the local maxima.

This section proposes a search quality comparison that accounts for all these dif-
ferences. The goal of search for the LOP is presumably to find the highest scoring
permutation possible. The comparison considers the trajectory of the score of the best
permutation found so far versus the clock time required to find it. In order to reduce
variance, the comparison starts each search procedure from many random permuta-
tions, and randomly permutes those random starting points many times, producing
an average best score trajectory to plot versus clock time.

The procedure for each search method and for each of the 49 XLOLIB250 instances
is as follows:

1. From each of 100 random starting permutations, run the local search algorithm
until a local maximum is reached. Record the score of the local maximum and
the total clock time required for search to stop.

2. For each of 1000 random permutations of the 100 starting points, compute the
best score achieved after each multiple of some interval, e.g. one second. This
simulates many sequences of random restarts, but merely reuses the statistics
from the one sequence of 100.

3. Plot the average best score at each time interval.

Call π(t) the best permutation found by a search method by time t, including as
many random restarts as necessary. Ideally, computation of the averages in step 3
would range over all possible sequences of random restarts. That would give the exact
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Run Score Iterations Time (s) Total (s)
1 9.04149e+06 1151 1.03 1.03
2 8.99885e+06 1072 1.01 2.04
3 8.9842e+06 1142 1.06 3.10
4 9.06643e+06 1171 0.97 4.07
5 9.03331e+06 1128 1.02 5.09
6 9.07546e+06 1126 0.95 6.04
7 9.0733e+06 1070 0.88 6.92
8 9.00814e+06 876 0.84 7.76
9 9.06367e+06 1286 1.18 8.94

10 8.97501e+06 957 0.90 9.84

Table 2.1: Example benchmark data from one XLOLIB250 instance.

Time (s) Best Score
1 0
2 9.04149e+06
3 9.04149e+06
4 9.04149e+06
5 9.06643e+06
6 9.06643e+06
7 9.07546e+06
8 9.07546e+06
9 9.07546e+06

10 9.07546e+06

Table 2.2: Best score vs. time interval for the data from Table 2.1.
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Name Description
block Block LSf with no maximum width
block w Block LSf with maximum width w
lsf LSf ≡ Block LSf with maximum width 1

Table 2.3: Benchmark search algorithms

expectation of B(π(t)). Unfortunately, the number of sequences of 100 random restarts
is 250!100. The plots that result show an approximation to the true expectation.

As an example of steps 1 and 2, Table 2.1 shows ten random restarts on the first
XLOLIB250 instance for one local search method. Using the identity permutation of
the random restarts, Table 2.2 shows the best score achieved so far at intervals of one
second.

2.6.1 Results

Figures 2.6–2.12 show performance of several local search algorithms on all 49
problems from XLOLIB250. The systems in question are described in Table 2.3.

Each figure was generated according to the search quality procedure described
above, using 1000 randomly generated permutations of 100 random restarts for greedy
local search.

The results demonstrate that, while Block LSf necessarily requires more time
than LSf to reach a local maximum from a given starting permutation, Block LSf
also frequently finds better local maxima than LSf , and the improved maxima are
found far more quickly than the alternative of starting LSf from a new random
permutation. There are five qualitatively different types of benchmark graphs:

1. By far the most common type has each of the width-limited Block LSf curves
dominating the red Block LSf curve, which in turn dominates the magenta LSf
curve. The first graph in Figure 2.6 is a good example.

2. The next most common type differs from the first only in the position of the
yellow Block LSf w = 2 curve, which falls below the red Block LSf curve. The
fourth graph in Figure 2.8 is a good example.

3. Less frequently, the green Block LSf w = 3 curve also falls below the red Block
LSf curve. The bottom left graph of Figure 2.10 is the best example.

4. The magenta LSf curve occasionally crosses the red Block LSf curve. This
happens in the sixth graph of Figure 2.6.

5. Finally, twice, the LSf curve also crosses the width-limited Block LSf curves—
the fifth graph in Figure 2.8 and the second graph in Figure 2.11.
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Figure 2.6: XLOLIB250 search quality results, part 1.
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Figure 2.7: XLOLIB250 search quality results, part 2.
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Figure 2.8: XLOLIB250 search quality results, part 3.
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Figure 2.9: XLOLIB250 search quality results, part 4.
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Figure 2.10: XLOLIB250 search quality results, part 5.
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Figure 2.11: XLOLIB250 search quality results, part 6.
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Figure 2.12: XLOLIB250 search quality results, part 7.

Figures 2.13–2.19 show similar search quality graphs comparing LSf to VLSN
search with the Insert≤3∗

250 neighborhood, which showed the best performance among
VLSNs. These graphs include error bars of a sort, showing a single standard deviation
for both curves. Most of the time the differences between the two methods are within
one standard deviation. In rare cases, one clearly outperforms the other.

2.6.2 Discussion

Why doesn’t local search with very large-scale neighborhoods work better? For
one thing, they don’t have different local maxima than their simple counterparts, as
Section 2.5.2 explains. This is not entirely convincing, though. Insert∗n has the same
local maxima as LSf , but Insert≤3∗

n , to which LSf is compared, has fewer. This
VLSN can take advantage of all the same improvements as Block LSf w = 3.

A more important reason may be that the VLSNs don’t take shortcuts. Every step
with Insert∗n, or its wider-block variants, is Θ(n2), and every step with BlockInsert∗n is
Θ(n3). The good news is that these steps can move many items at once, completely
reversing the permutation, for example, if it is advantageous. The bad news is that
they can’t make a few small changes relatively quickly, like LSf .

This is a confusing point, however, because Block LSf suffers from the same
problem any time it makes a change that LSf can’t also make—it is Θ(n2) to discover
that LSf is stuck. Therefore, it seems safe to conclude that much of the advantage
of Block LSf over VLSN search comes from its hybridization with LSf , which makes
some changes in Θ(n) time. It is also possible to hybridize VLSN search with LSf ,
running LSf to a local maximum and then invoking the very large neighborhood to
try to jump out of it. However, it is not clear that the VLSNs offer any advantage
over Block LSf in this respect, because they have the same local maxima.

Another possible explanation for the disappointing performance of VLSN search
is that the vast majority of the neighbors in the neighborhood are relatively far
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Figure 2.13: XLOLIB250 VLSN search quality results, part 1.
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Figure 2.14: XLOLIB250 VLSN search quality results, part 2.
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Figure 2.15: XLOLIB250 VLSN search quality results, part 3.
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Figure 2.16: XLOLIB250 VLSN search quality results, part 4.
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Figure 2.17: XLOLIB250 VLSN search quality results, part 5.
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Figure 2.18: XLOLIB250 VLSN search quality results, part 6.
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Figure 2.19: XLOLIB250 VLSN search quality results, part 7.

away from the current permutation in terms of the number of transposed pairs—the
symmetric difference distance of Section 2.11.2—, so if the current permutation is
relatively good, most of the permutations in the very large-scale neighborhood will
be bad.

A final suggestion is that LSf gains its advantage by improving the current per-
mutation quickly, and then moving on to another random starting point. Trying lots
of random restarts is better than spending a long time looking for modifications to
just one. Block LSf outperforms LSf because it can often find further changes, still
relatively quickly. The VLSNs fall behind because the further improvements they
make take too long.

To conclude, Block LSf seems a clear improvement over a state-of-the-art local
search method. Although it is somewhat more complicated to implement than LSf ,
this should hardly be a deterrent to its application, given its superior performance on
these benchmarks.

2.7 Related Work

2.7.1 Exact Methods

Grötschel et al. (1984) used integer linear programming to solve the LOP. They
combined cutting planes, based on their analysis of the 0/1-polytope associated with
the LOP, with branch and bound, and used the simplex method to solve successive
linear program relaxations. They reported successful solutions of input-output matrix
problems up to size n = 60.

Mitchell and Borchers (1996) also used cutting planes to solve the LOP with linear
programming. Instead of the simplex method, they used the primal-dual interior point
method. They reported results on problems up to size n = 79.

Charon and Hudry (2006) used a sophisticated application of branch-and-bound
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to solve the LOP. They applied the Lagrangian relaxation of Arditti (1984) as an
evaluation function to bound the quality of partial solutions. They solved problems
of size as large as n = 100.

These results show that exact solutions to the LOP are possible for many practical
applications. As processor speeds continue to increase and these methods become
increasingly sophisticated, yet more LOP instances will fall into this class. Still, the
difficulty of the LOP guarantees that there will always be instances that defeat these
methods, so the study of inexact methods will remain important.

2.7.2 Precedents

Körte and Oberhofer (1971) introduced the notion of relatively optimal ranking,
and an ordering relation based upon it. A triple of indices (i, j, k) is a relatively
optimal ranking if the block (i, j) has a higher score before the block (j, k) than after
it. This work introduced two search procedures—one exact, the other approximate—
based on this notion. The exact procedure considers all permutations in lexicographic
order, but shortcuts search as soon as a partial permutation contains any blocks that
are not relatively optimal. The approximate method is essentially to choose the
best move in the BlockInsertn neighborhood. Körte and Oberhofer (1971) do have
dynamic programs for computing some quantities, but come up short of constant time
per block transposition, which Section 2.3.3 provides. This may be why the block
transpositions have not seen further use in search for the linear ordering problem until
now.

The VLSN counterpart of BlockInsertn, BlockInsert∗n, is the same as the twisted
tree neighborhoods of Děıneko and Woeginger (2000). The novel contribution of this
chapter is the dynamic program to compute the scores (2.18), which reduces the
asymptotic runtime from the Θ(n5) of Bompadre and Orlin (2005) to Θ(n3).

2.7.3 Metaheuristics

While this chapter measures LOP search performance using random restarts for
initialization, Schiavinotto and Stützle (2004) used memetic algorithms for their
search. Memetic algorithms are a variant of genetic algorithms. In addition to the
usual mutation and cross-over operations of GAs, MAs have a local search operation.
Whenever a new member of the population is created—a permutation in the case of
MAs for the LOP—local search is performed to climb to a local maximum.

An important question is what neighborhood would perform best as the local
search component of such memetic algorithms. Block LSf may not continue to out-
perform LSf when the permutations used for initialization are not random, but gener-
ated according to a memetic algorithm, where mutations and cross-over are expected
to produce reasonably good starting permutations, given that they operate on existing
permutations that are already local maxima.
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Nareyek (2003) explored a variety of heuristic updates for weighting local search
strategies. This approach could be adapted to the hybrid search setting, where many
different neighborhoods are available with different size/time tradeoffs. Instead of
choosing the neighborhood to search in a fixed hierarchical order, it could decide the
next neighborhood probabilistically and then reward or punish the method chosen
based on some trade-off between the quality of the improvement it proposed and the
amount of time it took to find that improvement. One of the search options would be
to restart at a random permutation, rather than continuing search from the current
one.

2.7.4 Stochastic Search

Search need not always be greedy. The neighborhoods of this chapter are also
compatible with stochastic search methods. Simulated annealing (Martin and Otto,
1994) is a good example, though Johnson and McGeoch (1997) found that hillclimbing
outperformed it for the traveling salesman problem. Simulated annealing would take
a random walk in the permutation space, sampling the next permutation from the
neighborhood of each permutation it visits, while gradually sharpening the probability
distrubtion towards its mode.

This requires several capabilities, including computing the total unnormalized
weight of all permutations in the neighborhood, and sampling from the neighborhood.
The methods of this chapter and Chapter 4 provide all of these tools. Chapter 4 will
introduce a probability distribution over permutations and use it for various learning
procedures in Section 4.11. These methods require the normal forms of Section 2.9
to avoid counting permutations multiple times. The next section works toward this
goal by introducing grammars.

2.8 Grammars

In order to specify neighborhoods precisely and unambiguously, this section intro-
duces context-free grammars. It will be convenient to think of grammars as generating
sets of permutations given an initial permutation π. That is, the language represented
by the CFG corresponding to neighborhood N is the set of permutations N (π).

Binary permutation trees will represent derivations from these grammars. These
permutation trees will use two types of internal nodes, as illustrated in Figure 2.20—
in-order nodes and reverse nodes. In-order nodes generate their left child subpermu-
tations before their right child subpermutations, while reverse nodes generate their
right children first.

Because the display of a reverse node shows the left child on the left, the permuta-
tion displayed at the leaves of the tree is the same regardless of the tree—Figures 2.22,
2.25, and 2.28 show example permutation trees and indicate the implied permutations.
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(i, j) (j, k)

(i, k)

(i, j) (j, k)

(i, k)

Figure 2.20: Internal nodes of binary permutation trees. The unmarked node, on
the left, represents a derivation of a non-terminal spanning (i, k) that generates the
span (i, j) before the span (j, k). The marked node, on the right, represents the
opposite—a non-terminal spanning (i, k) that generates (j, k) first, then (i, j).

Si → πi Si+1

Si → πi+1 πi Si+2, ∀i ∈ (0, n− 2)

Sn−1 → πn−1 Sn

Sn−1 → πn πn−1

Sn → πn

Figure 2.21: A grammar for Trans∗n(π).

The next few sections give grammars for each of the very large-scale neighborhoods
of Section 2.4.

2.8.1 A Grammar for Transpositions

The first grammar formally describes the Trans∗n neighborhood by generating
Trans∗n(π). Let S1 be the start symbol. Then the grammar is as shown in Figure 2.21.

There are special rules for Sn−1 and Sn because the sequence ends at n. (Defining
Sn+1 → ε, would obviate the special rule for Sn−1.) Figure 2.22 shows an example
derivation.

1 2 3 4 5 6

Figure 2.22: An example derivation from the transpositions grammar of Figure 2.21.
The tree is drawn as though the grammar had been binarized by replacing the rule
Si → πi+1 πi Si+2 with two rules: Si → Ri Si+2 and Ri → πi+1 πi. The tree shows a
derivation of the permutation 1 3 2 4 6 5 in the neighborhood Trans∗(1 2 3 4 5 6).
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π2/0 π3/0π2 π1/∆[π1, π2] π4 π3/∆[π3, π4]
π1/0

π3 π2/∆[π2, π3]
π4/0

Figure 2.23: A weighted FSA representing the Trans∗4 neighborhood.

Si,k → Si,j Sj,k

Si,k → Sj,k Si,j, ∀(i, j, k) ∈
(
n+1

3

)
Si−1,i → πi, ∀i ∈ (0, n)

Figure 2.24: A grammar for BlockInsert∗n(π).

This grammar, as given, is unweighted. Computing the highest-scoring neighbor
requires adding weights to the grammar. Because computing B(π) from scratch is
Θ(n2), the grammar will compute relative scores, as in Section 2.3.1, to keep search
Θ(n). Therefore, the weight of each permutation π′ ∈ Trans∗n(π) will be B(π′)−B(π).

The weight of each context-free rule that transposes a pair of neighboring items
πi and πi+1 is ∆[πi, πi+1] as defined in (2.16). The weight of any other rule is zero.

The grammar of Figure 2.21 is not just context-free, but regular, meaning the
neighborhood can also be represented as a regular expression, or as a finite-state
automaton. Figure 2.23 shows a weighted finite-state acceptor for the neighborhood
Trans∗4(π).

Section 2.10 will point to the absence of spurious ambiguity in this grammar,
and use the first pair of rules to derive the recurrence relation for the size of the
neighborhood, and the latter rules to provide the base case.

2.8.2 A Grammar for Block Insertions

Moving on to a grammar for BlockInsert∗n(π), let S0,n be the start symbol, and
create a non-terminal Si,k for all

(
n+1

2

)
pairs of positions such the 0 ≤ i < k ≤ n.

The base cases—pre-terminals—of the grammar are Si−1,i. The grammar is given in
Figure 2.24, which uses

(
n+1

3

)
as shorthand for the set {(i, j, k) | 0 ≤ i < j < k ≤ n}

as in (2.8). Figure 2.25 shows an example derivation under this grammar.

Because the size of this grammar is Θ(n3), it is efficient to compute the actual
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1 2 3 4 5 6

Figure 2.25: An example derivation from the block insertions grammar of Figure 2.24.
The tree shows a derivation of the permutation 5 6 3 4 1 2 in the neighborhood
BlockInsert∗6(1 2 3 4 5 6).

→
γ i,i,k = 0
→
γ i,k,k = 0
→
γ i,j,k =

→
γ i,j,k−1 +

→
γ i+1,j,k −

→
γ i+1,j,k−1 +B[πi+1, πk]

←
γ i,i,k = 0
←
γ i,k,k = 0
←
γ i,j,k =

←
γ i,j,k−1 +

←
γ i+1,j,k −

←
γ i+1,j,k−1 +B[πk, πi+1]

Figure 2.26: A dynamic program for computing weights of grammar rules.
→
γ i,j,k is

the weight of any rule, such as Si,k → Si,j Sj,k, that generates (i, j) and (j, k) in order.
←
γ i,j,k is the weight of any rule, such as Si,k → Sj,k Si,j, that generates (j, k) before
(i, j). Preterminals, such as Si−1,i → πi, always have weight 0.
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score of each permutation π′ ∈ BlockInsert∗n(π). The grammar weights are as follows:

→
γ i,j,k

def
=

j∑
`=i+1

k∑
r=j+1

B[π`, πr] (2.24)

←
γ i,j,k

def
=

j∑
`=i+1

k∑
r=j+1

B[πr, π`] (2.25)

Figure 2.26 gives a dynamic program for computing these weights efficiently and
describes the rules to which they apply. Like the grammar, this dynamic program
has Θ(n3) items, each of which can be computed from earlier items in constant time.

Theorem 2.1 Let T be a binary permutation tree expressing the permutation π. If
each in-order node in T combining (i, j) and (j, k) to span (i, k) receives the score
(2.24), and each reverse node in T combining (i, j) and (j, k) to span (i, k) receives
the score (2.25), then the sum of the scores of all nodes in the tree is B(π).

Proof: The proof is by induction on the length of the permutation, n. It assumes
that the total grammar score is correct for all permutations of length m < n, and
shows that it is also correct for permutations of length n.

For the base case, n = 1, B(π) is always zero. Likewise, the total grammar cost
is zero, because the trivial tree has no interior nodes.

For the induction case, consider the node spanning (0, n) that combines two sub-
trees spanning (0, k) and (k, n), for some 0 < k < n. First, observe that (0, k) and
(k, n) both have length less than n, so the induction hypothesis implies that the
scores of the two sub-permutations equal the sums of the grammar scores in the two
subtrees.

Now, every pair of items ` ≺ r in π falls into one of three cases:

1. Both ` and r are in the left span (0, k),

2. Both ` and r are in the right span (k, n), or

3. Exactly one of ` and r is in the left span, and the other is in the right span.

In the first case, B[`, r] is included in the score of the left subtree, by the induction
hypothesis. In the second case, B[`, r] is included in the score of the right subtree,
also by the induction hypothesis. Therefore, we need only consider those pairs split
between the subtrees.

If the node spanning (0, n) is in-order, then ` must fall in (0, k) and r in (k, n) in

order to achieve ` ≺ r. The grammar score is
→
γ0,k,n, which includes the score B[`, r].

If the node spanning (0, n) reverses, then ` must fall in (k, n) and r in (0, k) in

order to achieve ` ≺ r. In this case, the grammar score is
←
γ0,k,n, which includes the

score B[`, r].
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Start symbol and base cases Si−1,i as in Figure 2.24, but

Si,k → Si,i+1 Si+1,k

Si,k → Si+1,k Si,i+1

Si,k → Si,k−1 Sk−1,k

Si,k → Sk−1,k Si,k−1

Or, equivalently,

Si,k → πi+1 Si+1,k

Si,k → Si+1,k πi+1

Si,k → Si,k−1 πk

Si,k → πk Si,k−1

Figure 2.27: Two equivalent grammars for Insert∗n(π).

1 2 3 4 5 6

Figure 2.28: An example derivation from the insertions grammars of Figure 2.27.
The tree shows a derivation of the permutation 6 5 2 3 1 4 in the neighborhood
Insert∗(1 2 3 4 5 6).

Further, these grammar scores for (0, n) include only those B scores for ` and r
in separate subtrees. This proves that the induction hypothesis holds for all n ≥ 1.

�

This grammar suffers from spurious ambiguity, which, along with its size, will be
addressed in following sections.

2.8.3 A Grammar for Insertions

The Insert∗n(π) neighborhood can be generated by a subset of the previous gram-
mar, where j is limited to the set {i + 1, k − 1}. See Figure 2.27. Note that when
k− i = 2, the four rules only have two unique right-hand sides. Figure 2.28 shows an
example permutation tree from these grammars.

The weights from Figure 2.26 apply to this grammar as well. Only those weights
for which grammar rules exist need to be computed, meaning a size Θ(n2) subset.
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1 2 3 4 5 6

Figure 2.29: An example derivation from the insertions grammar with a special case.
In addition to the rules of Figure 2.27, the grammar has rules of the form S0,k →
S0,j Sj,k and S0,k → Sj,k S0,j for all 0 < j < k ≤ n. This tree shows a derivation of
the permutation 2 3 1 6 4 5 in the neighborhood of 1 2 3 4 5 6. This permutation is
not a member of Insert∗(1 2 3 4 5 6).

1 2 3 4 5 6

Figure 2.30: An example derivation from the insertions grammar with a different
special case. In addition to the rules of Figure 2.27, the grammar has rules of the
form Si,n → Si,j Sj,n and Si,n → Sj,n Si,j for all 0 ≤ i < j < n. This tree shows a
derivation of the permutation 4 3 6 5 1 2 in the neighborhood of 1 2 3 4 5 6. This
permutation is not a member of Insert∗(1 2 3 4 5 6) nor of the neighborhood described
in Figure 2.29.

Allowing j to take on additional values, e.g. j ∈ {i+1, . . . , i+w, k−w, . . . , k−1},
for some width w, where values outside (i + 1, k − 1) are obviously disallowed when
k − i < 2w + 1, results in the width-limited block insertion neighborhoods. The
example tree in Figure 2.25 is compatible with a grammar of this type for w = 2.

Further, special cases can be allowed. For example, if i = 0, allow any j ∈
(i+ 1, k − 1), but otherwise limit j. Figure 2.29 shows an example permutation tree
derived from a grammar of this sort. Figure 2.30 gives an example with k = n as a
special case.

2.8.4 Computation with Grammars

The important thing to understand is that, for computing with the grammar,
the runtime is proportional to the number of rules in the grammar—the grammar
constant, as it is called in the parsing community. All of these grammars have the
property that the weights of the rules can be computed in constant time per rule using
dynamic programming. Some will require modifications of the rules from Section 2.2.
Those cases receive special mention when they arise.

For Trans∗n(π), the grammar has 2n − 1 rules, so finding the best neighbor of π
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→
γ0,j,k =

→
γ0,j,k−1 +

→
γ0,j−1,k −

→
γ0,j−1,k−1 +B[πj, πk]

←
γ0,j,k =

←
γ0,j,k−1 +

←
γ0,j−1,k −

←
γ0,j−1,k−1 +B[πk, πj]

→
γ i,j,n =

→
γ i+1,j,n +

→
γ i,j+1,n −

→
γ i+1,j+1,n +B[πi+1, πj+1]

←
γ i,j,n =

←
γ i+1,j,n +

←
γ i,j+1,n −

←
γ i+1,j+1,n +B[πj+1, πi+1]

Figure 2.31: Dynamic programs for special cases. The (0, j, k) rules must be computed
with j ranging from left to right, because γ0,j,k depends on γ0,j−1,k. The (i, j, n) rules
must be computed right to left, because γi,j,n depends on γi,j+1,n.

Grammar Name Size
Transpositions (Figure 2.21) GT Θ(n)
Insertions (Figure 2.27) GI Θ(n2)
Special case i = 0 (Figure 2.29) Gi=0 Θ(n2)
Special case k = n (Figure 2.30) Gk=n Θ(n2)
Insertions with blocks of size ≤ w GB≤w Θ(wn2)
Block insertions (Figure 2.24) GB Θ(n3)

Table 2.4: Number of rules in various grammars. The special case grammars Gi=0

and Gk=n, consisting only of the rules explicitly given in Figure 2.29 and Figure 2.30,
respectively, are incomplete on their own. Figure 2.29 shows derivations from GI ∪
Gi=0 and Figure 2.30 from GI ∪ Gk=n. The size of the united grammars is bounded
above by the sums of the sizes, so both remain Θ(n2).

can be done in Θ(n) time.

For Insert∗n(π), there are 4
(
n+1

2

)
− 3n = Θ(n2) rules. Allowing j ∈ {i+ 1, . . . , i+

w, k − w, . . . , k − 1} increases this to approximately 4w
(
n+1

2

)
= Θ(wn2). If w is a

small constant, this is asymptotically the same as Insert∗n(π).

Allowing any j when i = 0 means Θ(n) rules for each non-terminal S0,k alone, but
there are only Θ(n) of these non-terminals, making Θ(n2) rules of this type. Likewise
if k = n is a special case. These rules can therefore be added to the Insert∗n(π)
grammar without changing its asymptotic runtime.

These cases require different dynamic programming, however, because when con-
sidering S0,k, for example, the corresponding weight of the S1,k rule may never have
been computed. Figure 2.31 shows the new dynamic programs for the two cases i = 0
and k = n.

Finally, BlockInsert∗n(π) has 2
(
n+1

3

)
−n grammar rules, making it Θ(n3). Table 2.4

summarizes this information and names the grammars.
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γ(Si,m → Sj,k S`,m Si,j Sk,`)

=
←
γ i,j,m −

←
γ i,j,` +

←
γ i,j,k︸ ︷︷ ︸

Sj,k≺Si,j , S`,m≺Si,j

+
→
γ i,j,` −

→
γ i,j,k︸ ︷︷ ︸

Si,j≺Sk,`

+
→
γ j,k,m︸ ︷︷ ︸

Sj,k≺Sk,`, Sj,k≺S`,m

+
←
γk,`,m︸ ︷︷ ︸

S`,m≺Sk,`

Figure 2.32: A dynamic program for computing the weight of an inside-out grammar
rule. This is significantly more complex than the rules in Figure 2.26, but is also
constant time per rule, given the needed γ values.

2.8.5 Grammars for More Complex Neighborhoods

Most of these grammars, and more, were covered in Bompadre and Orlin (2005),
though without the dynamic programs for efficiently computing grammar weights.
From there it is easy to see how to avoid, for example, the “inside-out” permutations
from the ITG literature—2 4 1 3 and 3 1 4 2—by introducing rules of the form
Si,m → Sj,kS`,mSi,jSk,`, and its reverse, but at the cost of a grammar with Θ(n5)
rules, since there are

(
n+1

5

)
quintuples (i, j, k, `,m) for which to form such rules.

Illustration of such permutations unfortunately cannot be accomplished with bi-
nary permutation trees, because the derivation rules necessarily have more than two
non-terminals on their right-hand sides.

Computing the weights of such rules is also necessarily more complicated, though
it can still be done in constant time per rule given the weights of the rules from the
BlockInsert∗(π) grammar. See Figure 2.32.6

The differences between the scores of these inside-out rules and the rule that
keeps the four subsequences in order shows how these rules eliminate some of the
local maxima of the BlockInsert∗n neighborhood.

γ(Si,m → Sj,k S`,m Si,j Sk,`)− γ(Si,m → Si,j Sj,k Sk,` S`,m) (2.26)

= ∆(i, j,m)−∆(i, j, `) + ∆(i, j, k) + ∆(k, `,m), and

γ(Si,m → Sk,` Si,j S`,m Sj,k)− γ(Si,m → Si,j Sj,k Sk,` S`,m) (2.27)

= ∆(i, k, `) + ∆(j, k,m)−∆(j, k, `).

The presence of the negative terms, namely ∆(i, j, `) in (2.26) and ∆(j, k, `) in (2.27),
implies that the differences can be positive even when none of the individual block
moves are.

Two more complex neighborhoods result from composition of the finite-state

6No concerted attempt has been made to provide a dynamic program with the minimum number
of lookups. A simpler set of grammar weights than those given may exist.
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Trans∗n neighborhood with the context-free BlockInsert∗n neighborhood, namely

Trans∗n(BlockInsert∗n(π))

and

BlockInsert∗n(Trans∗n(π)).

These neighborhoods are not the same and probably have different sizes. Both are
clearly larger than BlockInsert∗n(π) alone. They include some of the inside-out per-
mutations handled by the previous grammar.

Composition of a weighted context-free language with a weighted regular rela-
tion results in another weighted context-free language, so both of these composite
neighborhoods are context-free.7 Trans∗n(BlockInsert∗n(π)) can be handled using the
techniques of the next chapter—Section 3.9—by implementing the Trans∗n transducer
as the A model there. This transducer is quite different from the one shown in 2.23.
It has a distinguished initial state qI and an additional state qi for each i ∈

(
n
1

)
, and

the following arcs:

qI
i:i/0−→ qI ∀i ∈

(
n
1

)
qI

i:ε/0−→ qi ∀i ∈
(
n
1

)
qi

j:j i/∆[i,j]−→ qI ∀i, j ∈
(
n
1

)
, j 6= i.

The first type of arc is a self-loop at the initial state that leaves items in order.
The second and third types create loops through an intermediate state that swap
neighboring items. Because the transducer will be projected to its input language for
use with the search algorithms, it doesn’t matter that some of the arcs have multiple
output symbols.

It is possible to convert the grammar GB(π) from Figure 2.24 into a grammar for
the BlockInsert∗n(Trans∗n(π)) neighborhood by augmenting each non-terminal with two
binary variables—one for its left endpoint and one for its right—indicating whether
those endpoints transpose with their neighbors outside the span. A rule that combines
(i, j) and (j, k) into (i, k) is only valid in this grammar if the right annotation on (i, j)
matches the left annotation on (j, k), possibly indicating transposition of πj and πj+1.

This dissertation does not consider any of these complex neighborhoods further,
though it would be interesting to derive normal forms and determine their sizes.

2.8.6 Parsing with Permutation Grammars

“Parsing” with permutation grammars is straightforward. Viterbi chart pars-
ing, as in the weighted CKY algorithm, finds the best way of deriving each gram-

7Technically, all the grammars of this chapter are finite-state, because the languages they express
are finite. The crucial distinction, then, is that the context-free grammars that result from these
compositions have a polynomial number of rules, whereas the enumeration of the language as a
regular expression would require exponential size.
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mar non-terminal starting at each position (i, k) ∈
(
n+1

2

)
in the chart. Viterbi

permutation parsing, on the other hand, simply finds the best permutation (of a
sub-sequence) starting from each non-terminal—the non-terminals are necessarily
position-dependent. It can use the same kind of chart, and the same algorithms,
including many known optimizations, some of which arise in Chapter 3.

As an example, consider finding the best neighbor of π in Trans∗(π) using the
grammar of Figure 2.21. Compute the weight β(N) of the best permutation generated
by each non-terminal N in the grammar, in bottom-up order, starting with Sn. The
permutation itself can be retrieved from back-pointers. Sn only has one derivation—
πn—and the weight of that rule—not given in the grammar—is 0, so

β(Sn) = 0. (2.28)

There are two possible derivations of Sn−1, and

β(Sn−1) = max (0, ∆[πn−1, πn]) . (2.29)

For each remaining non-terminal, use the rule

β(Si) = max (β(Si+1), ∆[πi, πi+1] + β(Si+2)) . (2.30)

β(S1) then gives B(π̂) − B(π), where π̂ is the neighborhood’s best permutation.
Compare this to the “forward” dynamic program (2.19) from Section 2.4.1.

Figure 2.33 shows pseudocode for computing the score of the best permutation in
BlockInsert∗n(π) using the grammar GB. It considers spans (i, k) in narrow-to-wide
order, and includes the dynamic program for computing the grammar weights from
Figure 2.26. The pseudocode dispenses with back pointers for simplicity, but it is
easy to see how to include them.

2.9 Normal Forms

Using grammars and parsing to explore permutations has a side effect. Neighbor-
hoods, as in Definition 2.3, are sets of permutations, meaning that each permutation
is present in or absent from the neighborhood. The permutations themselves are the
objects of interest, but the procedural descriptions of the neighborhoods, and the
grammars of the previous section, may admit more than one way of arriving at the
same permutation. For example, in the simple neighborhood Insertn, moving the ele-
ment at position i one to the right results in the same permutation (a transposition),
as moving the element at i + 1 one to the left. In the case of grammars, multiple
different permutation trees express the same permutation. For the mathematical
perspective of sets of permutations, multiple distinct derivations leading to the same
permutation is spurious ambiguity.
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1: procedure BlockInsert∗(B, π)
2: n← |π|
3: for i← 0 to n− 1 do
4: β[i, i+ 1]← 0
5: for k ← i+ 1 to n do
6:

→
γ [i, i, k]←←

γ [i, i, k]← 0

7:
→
γ [i, k, k]←←

γ [i, k, k]← 0
8: end for
9: end for

10: for w ← 2 to n do
11: for i← 0 to n− w do
12: k ← i+ w
13: β[i, k]← −∞
14: for j ← i+ 1 to k − 1 do
15:

→
γ [i, j, k]← Compute(

→
γ, i, j, k) +B[πi+1, πk]

16: β[i, k]← max(β[i, k],
→
γ [i, j, k] + β[i, j] + β[j, k])

17:
←
γ [i, j, k]← Compute(

←
γ, i, j, k) +B[πk, πi+1]

18: β[i, k]← max(β[i, k],
←
γ [i, j, k] + β[i, j] + β[j, k])

19: end for
20: end for
21: end for
22: return β[0, n]
23: end procedure

24: function Compute(γ, i, j, k)
25: return γ[i, j, k − 1] + γ[i+ 1, j, k]− γ[i+ 1, j, k − 1]
26: end function

Figure 2.33: Pseudocode for parsing with GB. This procedure returns the score of
the best permutation in the neighborhood, rather than that permutation, to avoid
the complicated notation required to keep back pointers.

56



During search, this spurious ambiguity is not a problem. The parse forest may
include many permutation trees that express the same permutation, but, crucially,
each of these trees will compute the same score for the permutation, and search can
choose arbitrarily among the derivations since the next step of search will throw away
the tree and work only with the new permutation. In fact, it may be beneficial to
allow spurious ambiguity, because the grammar may be smaller, and search faster, as
a result.

There are, however, circumstances in which a one-to-one correspondence between
trees and permutations is necessary:

• The simplest case is counting the number of permutations in a neighborhood
using the grammar. It is straightforward to compute the number of trees in the
parse forest, but unless each expresses an unique permutation, this will only be
an upper bound on the size, in permutations, of the neighborhood, and not a
tight one.

• Simulated annealing (Section 2.7.4), and other stochastic methods such as the
Metropolis-Hastings algorithm, which will come up in Section 4.11.1, require a
distribution over permutations rather than over derivations thereof.

• Several of the learning methods in Chapter 4, including k-best MIRA (Sec-
tion 4.9), constrastive likelihood (Section 4.11.2), and expected loss minimiza-
tion (Section 4.11.3), will also require normal-form.

How does spurious ambiguity arise, and how can it be eliminated? These are the
central questions this section addresses. To begin, it shows necessary and sufficient
conditions for spurious ambiguity. Second, it considers colorings of the nodes in the
permutation trees, and corresponding grammar rules, that eliminate the ambiguity
and result in a forest with a one-to-one correspondence between trees and permu-
tations. Section 2.10 then considers the question of neighborhood size for several
particular neighborhoods discussed above.

2.9.1 Spurious Ambiguity

A sufficient condition for spurious ambiguity of a grammar arises when it allows
distinct trees with more than two consecutive spans that combine sequentially either
all in order, or all reversed. Let the first three such spans be (i, j), (j, k), and (k, `), for
example. (i, j) can combine with (j, k) first, and the result with (k, `), or (j, k) with
(k, `) first, and the result with (i, j). Either way, the same permutation is expressed
in two different ways (see Figure 2.34). With m such constituents, the number of
trees expressing the same permutation increases as the Catalan number Cm−1. For
example, the identity permutation corresponds to any derivation that contains no
exchanges, and there are an exponential number of these.
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(i, j) (j, k) (k, `) (i, j) (j, k) (k, `)

Figure 2.34: Spurious ambiguity in permutation trees: both trees on the left preserve
the permutation (i, j) (j, k) (k, `), and both trees on the right reverse the permutation
to (k, `) (j, k) (i, j).

In fact, refining the requirement above just a little will lead to a necessary condi-
tion for spurious ambiguity. The additional requirement is that the spans to combine
are not themselves already combinations of the same orientation. That is, when
combining the spans in order, they must consist of either single items or reversed
sub-spans, and when combining them in reverse, they must consist of single items or
in-order sub-spans. Call this the more-than-two condition.

Theorem 2.2 The more-than-two condition is necessary for spurious ambiguity.

Proof: Assume there exist distinct trees, T1 and T2, that express the same permuta-
tion π′ of length n. In order to arrive at a contradiction, assume also that T1 and T2

do not satisfy the requirement described above that they share a sequence of more
than two spans that either remain in sequence or exactly reverse their sequence.

Let (i, k) be the span of the first node in T1 that differs from T2 in a depth-
first traversal starting at the root. Because T1 and T2 are assumed different, this
necessarily exists. Call the nodes N1 and N2 respectively. Clearly N1 and N2 have
the same orientation, because T1 and T2 must express the same relative ordering of
πi+1 and πk.

Therefore, N1 and N2 must differ in their split point. Let j1 be the split point of
N1, so that it combines (i, j1) and (j1, k), and let j2 be the split point of N2, so that
it combines (i, j2) and (j2, k). Assume without loss of generality that j1 < j2.

Now, consider the three spans (i, j1), (j1, j2), and (j2, k). To see that they must
satisfy the more-than-two condition, consider that T1 implies that (j1, j2) is adjacent
to (j2, k) in π′, because (j1, k) is a constituent of T1. Likewise, T2 implies that (j1, j2)
is adjacent to (i, j1) in π′.

This contradiction implies that two trees cannot differ and still express the same
permutation without satisfying the more-than-two condition. �

The next concern is to eliminate spurious ambiguity from the parse forest to allow
computation of the neighborhood size. The essential insight here derives from the fact,
established above, that the more-than-two condition is the only source of spurious
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Si−1,i → πi
→
Si−1,i → πi
←
Si−1,i → πi, ∀i ∈

(
n
1

)
Si,k →

→
Si,k

Si,k →
←
Si,k, ∀(i, k) ∈

(
n+1

2

)
, k − i ≥ 2

→
Si,k → Si,j

←
Sj,k

←
Si,k →

→
Sj,k Si,j, ∀(i, j, k) ∈

(
n+1

3

)
Figure 2.35: A normal-form grammar for the dynamic programming block insertion
neighborhood. The second set of rules explicitly excludes the case k = i+ 1, which is
handled by the first set of rules, to avoid ambiguity in the grammar. The alternative
would be a more complicated third set of rules, with special handling for width-one
children on either or both sides—six additional rules. The given grammar has only
one way of generating πi πi+1, that is by labelling πi with Si−1,i and πi+1 with

←
Si,i+1.

Analogously, there is only one way to generate πi+1 πi.

ambiguity. In order to eliminate spurious ambiguity, it will suffice to allow only one
of the trees that combines more than two sub-constituents of the opposite type.

2.9.2 Normal Form for Block Insertions

In the case of the BlockInsert∗n neighborhood, eliminating spurious ambiguity is
simple, straightforward, and well studied (Eisner, 1996; Zens and Ney, 2003). Allow
either left-to-right or right-to-left combination (which to allow is a decision that can
be made independently for in-order and reversed combinations) with only a simple
change to the grammar.

The full grammar of Figure 2.24 allowed any pair of constituents to be combined in
order. To eliminate spurious ambiguity, require that the right constituent not already
be combined in order. Likewise with reversed combinations. (The left constituent
would work just as well.) The new grammar, GNF

B , is given in Figure 2.35. The
left-branching trees shown above the permutations in Figure 2.34 are normal under
this grammar, while the right-branching trees shown below the permutations are not.

Normal form does not come at no cost. GNF
B has Θ(n2) more rules than GB.

Instead of computing a single value β(Si,k) for each span (i, k) during search, normal
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A B C

N

A B C

N
M M⇒

Figure 2.36: Converting in-order nodes to normal form.

A B C

N

A B C

N
M M⇒

Figure 2.37: Converting swap nodes to normal form.

form requires computation of three values: β(Si,k), β(
→
Si,k), and β(

←
Si,k).

β(Si,k) = max(β(
→
Si,k), β(

←
Si,k))

is cheap to compute, though. Since GB requires Θ(n3) to parse, an extra factor of
Θ(n2) is only a small change in efficiency.

Theorem 2.3 The normal-form grammar GNF
B expresses the same permutations as

the grammar GB: L(GNF
B ) ≡ L(GB).

Proof: If T is a non-normal tree, then it has a node N whose right child M is the
same type. Let A be the left child of N , and B and C be the left and right children
of M , respectively.

If N is an in-order node, then the following achieves the same permutation, namely
π(A) π(B) π(C):

• change M to join A and B,

• make M the left child of N , and

• promote C to be N ’s right child.

Both N and M remain in-order nodes. An illustration of this transformation appears
in Figure 2.36.

If N is a swap node, then the same procedure achieves the correct permutation,
namely π(C) π(B) π(A), with N and M remaining swap nodes. See Figure 2.37.

If T has multiple such non-normal constructions, eliminating them in a depth-first
order is guaranteed to preserve the permutation and result in a normal tree. �

Theorem 2.4 The normal-form grammar GNF
B is unambigous: each permutation in

L(GNF
B ) has a single derivation under the grammar.
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1)

R1 R2 S

2)

R S1 S2

3)

R1 R2 S1 S2

Figure 2.38: Alternate trees to the normal-form tree

Proof: Overloading notation and additionally treating each sub-tree as the set of
indices at its leaves, then given an in-order node N with left and right children A and
B respectively,

∀a ∈ A, ∀b ∈ B, a ≺ b, (2.31)

meaning a precedes b in the permutation. Whereas if N is a swap node, then

∀a ∈ A,∀b ∈ B, b ≺ a. (2.32)

A permutation is fully determined by the set of precedence relations that such a tree
encodes.

Consider any normal-form tree or subtree T whose topmost node is in-order, and
whose children nodes are R and S. This tree, and any that might contain it, clearly
has R ≺ S, where this overloading is meant to imply the relationship in (2.31).
Whenever a reverse node occurs, it permanently changes the order of the sets that its
two children comprise. Therefore, any tree that expresses R ≺ S must combine any
subset of R with any subset of S in order. Assume, for the sake of a contradiction, that
there is a normal-form tree, T ′, different from T , that encodes the same permutation.

There are only three possibilities,8 depicted in Figure 2.38:

1. T ′ combines R1 with R2 ∪ S, where R = R1 ∪R2,

2. T ′ combines R ∪ S1 with S2, where S = S1 ∪ S2, or

3. it combines R1 and S2 separately with R2 ∪ S1, where R = R1 ∪ R2 and S =
S1 ∪ S2.

Consider each in turn: In (1), both T ′ and its right child must be in-order, which is
non-normal. In (2), the implication is that the current S is an in-order node, since
it puts S1 ≺ S2. This would make T non-normal, because T is in-order and so is
its right child S—a contradiction. In (3), S must be an in-order node (to keep S1

before S2) or it contradicts R2 ≺ S, but this leads to the same contradiction as (2).
Therefore normal-form in-order nodes express unique permutations.

Reverse nodes have the same three cases. Separately putting two parts of R—R1

and R2—after S can only be accomplished by a non-normal tree. Separately putting
two parts of S—S1 and S2—before R requires that S2 ≺ S1 in the permutation,

8If R or S is a leaf node, then some of these scenarios are impossible, because leaves cannot be
split. The argument stands.
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1 2 3 4 5 6 1 2 3 4 5 6

Figure 2.39: Normal-form trees from the dynamic programming insertion neighbor-
hood. A red circle, , marks red nodes of either orientation. The tree on the left
corresponds to the permutation 1 2 4 3 5 6, while the tree on the right corresponds
to 6 5 3 4 2 1.

implying that S itself is a swap node, a contradiction. Finally, if part of R (R2)
combines with part of S (S1) first, that must be a reverse node. Then T ′ must
further put S2 before S1R2 to achieve S2 ≺ R2, implying again that S swaps to
achieve S2 ≺ S1. This is the same contradiction as in the second case.

The only conclusion is that T ′ does not exist, implying that normal-form trees
under GNF

B express unique permutations. �

2.9.3 Normal Form for Insertions

For the limited-width insertion neighborhoods expressed by the grammars GI and
GB≤w, normal form is not as simple, and has not previously been studied. This section
introduces a novel normal form for any GB≤w neighborhood, including GI ≡ GB≤1.

In GB≤w, one of the constituents combined at each node in the tree must have size
≤ w. The more-than-two condition is still necessary and sufficient, but its description
can be refined in this case. At most one of the many spans can have size more than w,
and each tree must successively combine smaller constituents with the one large one.
There are nonetheless many possible combination orders in any case except when the
large constituent is left- or rightmost.

There is one further possibility that the above paragraph misses, which is that
some of the smaller constituents could combine first to form slightly larger con-
stituents that are still no wider than w, assuming w ≥ 2. This doesn’t change
the analysis, however, because such trees could never be normal.

Decree that the normal-form tree is the one that combines the large constituent
first with all the small constituents to its left, and then with those to its right—
necessarily in inside-out order. In order to enforce this, the grammar must allow
only trees of this type. For this purpose, it will be necessary to introduce a new
label for nodes. Let “white” refer to nodes that combine constituents in order in
a left-branching structure, and “black” to those that reverse constituents, also left-
branching. Nodes that combine constituents right to left, in a right-branching struc-
ture, of either type, will be colored “red”. Finally, leaf nodes can freely participate
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Si−1,i → πi
→
Si−1,i → πi
←
Si−1,i → πi, ∀i ∈

(
n
1

)
Si,k →

→
Si,k or

←
Si,k or

red

S i,k, ∀(i, k) ∈
(
n+1

2

)
, k − i ≥ 2

→
Si,k → Si,j

←
Sj,k

←
Si,k →

→
Sj,k Si,j, ∀(i, j, k) ∈

(
n+1

3

)
, k − w ≤ j < k

red

S i,k →
←
Si,j

(
←
Sj,k or

red

S j,k

)
red

S i,k →
(
→
Sj,k or

red

S j,k

)
→
Si,j, ∀(i, j, k) ∈

(
n+1

3

)
, i < j ≤ min(i+ w, k − w − 1)

Figure 2.40: A normal-form grammar GNF
B≤w.

→
S is “white”,

←
S is “black”, and

red

S is

“red”.

in any combinations and have no color.9

One example of a normal-form grammar is sketched as follows. If the right con-
stituent to be combined has width ≤ w, use these rules:

• White → Any Non-White (in order)

• Black → Any Non-Black (reversed)

If, on the other hand, the right constituent has width > w but the left constituent
has width ≤ w, use these rules:

• Red → Non-White Non-White (in order)

• Red → Non-Black Non-Black (reversed)

The first pair of rules are identical to those in the grammar GNF
B . The second pair are

invoked only when combining a wider constituent with narrower constituents to its
left. A formal definition of this grammar appears in Figure 2.40. Call this grammar
GNF
B≤w, and let GNF

I = GNF
B≤1.

Theorem 2.5 The normal-form grammar GNF
B≤w expresses the same permutations as

the grammar GB≤w: L(GNF
B≤w) ≡ L(GB≤w).

9Or let “green” be a color that substitutes for any of the others.
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Proof: It suffices to show that for any tree T compatible with GB≤w that is not com-
patible with GNF

B≤w, there is a normal form tree T ′ expressing the same permutation.

If T is not normal, then the more-than-two condition indicates that there is some
sequence of at least three spans that T combines in sequential order. At most one of
those spans has width > w. Call this (i, j) if it exists.

There exists a normal-form tree that combines the same spans and results in the
same permutation. If there is no span (i, j) such that j − i > w, then T ′ combines
the spans with a left-branching tree. If (i, j) exists, then T ′ combines the spans to its
left with it in a right-branching tree, then combines that tree with the spans to the
right of (i, j) with a left-branching structure. In either case, T ′ exists given T . �

Theorem 2.6 The normal-form grammar GNF
B≤w is unambiguous: each permutation

in L(GNF
B≤w) has a single derivation under the grammar.

Proof: Repeat the argument from the proof of Theorem 2.2. Let T1 be compatible
with GNF

B≤w and let T2, assumed different, express the same permutation. It suffices
to show that T2 is not normal.

As in the prior proof, let N1 and N2, both spanning some (i, k) be the first dif-
ference between the trees. If N1 has no wide children, then the proof of Theorem 2.4
applies, because the grammars are identical for narrow spans. Therefore, consider
only the case where N1 has a wide child span.

If j1 and j2, j1 < j2 are the two split points, regardless of which pertains to which
tree, then the proof of Theorem 2.2 argues that the three spans (i, j1), (j1, j2), and
(j2, k) combine in both trees either all in order or all in reverse.

First, let j1 pertain to T1, so N1 combines (i, j1) with (j1, k). N1’s right child
must therefore have the same orientation as N1. Along with the assumption that T1 is
normal, this implies that N1 and its right child are both red. N1 therefore has a largest
wide right corner with the opposite orientation, whose left endpoint is necessarily
beyond j2. Call its span (j3, k). T2 must have a node with the same orientation
covering (j3, k), because the relative order of πj3+1 and πk is fixed. ThereforeN2’s right
child is wide, and N2 is also red. But, because T2 combines (i, j2) before attaching
that to (j2, k), N2’s left child must have the same orientation as N2, which the red
rules disallow. Therefore, T2 cannot be normal.

Second, let j2 pertain to T1, so N1 combines (i, j2) and (j2, k). Again, (i, j2) must
be wide by the assumptions. Either of its children may be wide, or it may be the
first wide node. If its left child is wide, then T2 violates normal form by combining
(j1, j2) and (j2, k) before attaching them to (i, j1). If N1’s right child is wide, then T2

combines to the right before it combines to the left, and if neither child is wide, then
T2 violates the left-branching condition. In any case, T2 cannot be normal. �
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1 2 3 4 5 6 1 2 3 4 5 6

Figure 2.41: Two left-anchored trees expressing the same permutation, 1 3 2 4 6 5.
The tree on the left is not normal according to GNF

i=0 because it tries to combine two
wide children with opposite orientations, indicated by dotted lines. The tree on the
right is normal because both children are red.

πi+1 . . . πj πj+1 . . . πk πk+1 . . . πn

Figure 2.42: An example right-anchored tree. Three black constituents can be com-
bined in-order at the right anchor using the right-branching rules. The in-order nodes
would be colored red.

2.9.4 Normal Forms for Special Cases

Now, consider the neighborhood that allows two wide constituents to combine in
the special case when the left-most endpoint is zero using the rules of Gi=0, introduced
in Section 2.8.3. These combinations always take place in a left-to-right manner,
obviously. But, the fact that the right constituent may be wide means that in many
cases it will be colored red, which means its type is unknown. Therefore it won’t
work to indiscriminately use the usual left-to-right rules.

Fortunately, because the i = 0 constraint already enforces a left-branching struc-
ture, the grammar can treat constituents with two wide children as red and use the
right-branching rules instead, with a slight modification. The Gi=0 rules that build in-
order nodes then combine only red and black nodes, and the rules that build reversed
nodes combine only red and white nodes. The result is a left-branching structure
anchored at 0, consisting of right-branching subconstituents. Figure 2.45 shows the
modified grammar rules, and Figure 2.41 shows an example.

Symmetrically, consider the case when the right-most endpoint is n, the length
of the permutation. Now the combinations are necessarily right-branching. Unfor-
tunately, left-branching rules are inadequate for this case. Consider three wide con-
stituents colored black that must combine in order, the rightmost endpoint at n, as
shown in Figure 2.42. These could only combine in a right-branching way. However,
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πi+1 . . . πj πj+1 . . . πk πk+1 . . . πn−1 πn

Figure 2.43: Another example right-anchored tree. Three black constituents followed
by a leaf at n cannot be combined using the right-branching rules, because the in-order
node spanning (k, n) would be colored white.

the left-branching rules don’t allow this—they forbid the right constituent from being
white.

Right-branching rules are also inadequate. They would allow the given instance—
form a red node from the two rightmost, then combine with the leftmost using the
same rule. But consider the case of three wide black nodes followed by a leaf node at
n, as in Figure 2.43. To combine these, the rightmost black node must combine with
the leaf first (two wide nodes can’t combine unless they are anchored at n). That
creates a white node using the left-branching rules. Neither pair of rules allows a
black node to combine with a white node in order.

The problem, essentially, is that the grammar prefers left-branching structure but
needs to accommodate a right-branching situation. The obvious, though somewhat
expensive, solution is to introduce an additional color. A better solution is to use
a right-branching version of the existing left-branching rules when both constituents
are wide and k = n, such that

• White → Non-White Any (in order)

• Black → Non-Black Any (reversed)

This pair of rules, combined with those that already exist, would admit both of the
examples described above.

This will only work properly if these grammar rules apply only when both con-
stituents are wide, because otherwise these right-branching rules would coincide with
the right-branching red rules. With this stipulation, narrow constituents must be
incorporated into wide red constituents before they can be combined with other wide
constituents ending at n.

Even if that is a solution for the k = n case, what happens with Gi=0 ∪ Gk=n?
That is, how do the two cases interact when i = 0 and k = n? The rules that
apply when i = 0 cannot build constituents from 0 to n using wide right constituents
of the same type built with right-branching rules, because those latter are not red.
However, the same rules can apply from both directions if the right constituent is of
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(0, i) (i, j) (j, k) (k, n)

Figure 2.44: An example tree with children anchored at both 0 and n. All four spans
shown are wider than w. (0, j) is therefore built according to GNF

i=0 and (j, n) according
to GNF

k=n. The node covering (0, n) could be built according to GNF
i=0, resulting in a red

node, or according to GNF
k=n, resulting in a white node. As Figure 2.45 indicates, the

solution is to remove the GNF
k=n rule when i = 0.

red

S 0,k →
(
←
S0,j or

red

S 0,j

) (
←
Sj,k or

red

S j,k

)
red

S 0,k →
(
→
Sj,k or

red

S j,k

) (
→
S0,j or

red

S 0,j

)
, ∀(j, k) ∈

(
n
2

)
, w < j < k − w

→
Si,n →

(
←
Si,j or

red

S i,j

)
Sj,n

←
Si,n → Sj,n

(
→
Si,j or

red

S i,j

)
, ∀(i, j) ∈

(
n+1

2

)
, i+ w < j < n− w

Figure 2.45: Normal-form grammar rules for special cases Gi=0 and Gk=n, with im-
plicit argument w. These rules apply in addition to the rules of GNF

B≤w. If both Gi=0

and Gk=n are in use, then disallow the case i = 0 from the special k = n rules.

the opposite type. Say there is a red constituent, connecting two wide constituents in
order, spanning (0, j), and a black constituent, also connecting two wide constituents,
spanning (j, n). Then both the i = 0 red rule and the k = n white rule apply to build
an in order constituent spanning (0, n).

This is not the same spurious ambiguity encountered before. This is a new kind
of spurious ambiguity created by the colored grammar rules that were introduced to
prevent the other kind. The two trees built in this case would be identical, but they
would nonetheless be treated separately within the grammar. A simple solution is
to explicitly prevent the k = n rules from use when i = 0 and the latter rules are in
effect.

Figure 2.45 gives additional grammar rules for GNF
i=0 and GNF

k=n, for use in addition
to those of some GNF

B≤w.
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2.10 Neighborhood Size

Given the normal form grammars described or introduced in the previous section,
it is possible to compute the number of distinct permutations in the corresponding
neighborhoods. This section does so for a few of the neighborhoods. For Trans∗n,
there was no spurious ambiguity in the original grammar, therefore GT suffices. The
other computations use the normal-form grammars GNF

B , GNF
I , and GNF

B≤2.

2.10.1 Size of the Transpositions Neighborhood

The size of Trans∗n, T (n), follows from the recurrence equation:

T (n) = T (n− 1) + T (n− 2), (2.33)

which derives directly from the grammar GT of Figure 2.21. Some neighbors of
π leave π1 unchanged, in which case there are n − 1 remaining items to permute.
Others transpose π1 and π2, leaving n− 2 others to permute.

Including the identity permutation in the neighborhood means T (1) = 1 and

T (2) = 2. Therefore T (n) is a Fibonacci number, and T (n) = Θ(φn) where φ = 1+
√

5
2

is the golden ratio. The neighborhood has exponential size, as promised, despite
linear search time.

2.10.2 Size of the Block Insertions Neighborhood

The size of the BlockInsert∗n neighborhood is not as simple to compute. Let s(n)
be the number of normal-form trees for permutations of length n whose top-most node
is in-order, or white. Observe that, because of symmetry, s(n) also counts the number
of trees with top-most reversal, colored black. Let s(1) = 1, so that leaf nodes count
as both black and white. Now observe that the total number of normal-form trees for
permutations of length n is S(n) = 2s(n), except for the special case S(1) = 1. The
following recurrence derives directly from the grammar GNF

B :

s(n) =
n−1∑
k=1

S(k)s(n− k). (2.34)

A tree spanning n items can be formed by combining any tree on the left spanning k
items and a tree of the opposite type on the right spanning n− k items.

Zens and Ney (2003) studied the size of this neighborhood before, and cited
Shapiro and Stephens (1991), who showed that this S(n) is a large Schröder number—
s(n) is a small Schröder number—after Schröder’s second problem (Schröder, 1870).
They also gave the following approximation to Sn ≡ S(n− 1), from Knuth (1973a):

Sn ≈
1

2

√
3
√

2− 4

π

(
3 + 2

√
2
)n
n−

3
2 . (2.35)
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This sequence also satisfies the more concise recurrence (Shapiro and Stephens, 1991):

nS(n) = (6n− 9)S(n− 1)− (n− 3)S(n− 2). (2.36)

It is instructive to compare (2.35) to the number of trees allowed by the non-
normal from grammar GB. The number of binary-branching trees with n leaf nodes
is the Catalan number Cn−1, and for any such tree, each internal node can be either
of two colors—white or black, order-preserving or -reversing. The number of such
trees is therefore Tn−1 = Cn−12n−1, giving

Tn ≈

(
4n

n
3
2
√
π

)
2n =

1√
π

8nn−
3
2 . (2.37)

2.10.3 Size of the Insertions Neighborhood

Consider the grammar GNF
I . Let wn, bn, rn, and tn be respectively the number of

white, black, red, and total normal-form trees with n leaves. Arbitrarily call a leaf
node red, so that r1 = t1 = 1 and w1 = b1 = 0. Now, observe that wn = bn = tn−1

because there is only one normal rule of each type—the right-branching rule. There
are two rules with red left-hand sides, so

rn = (tn−1 − wn−1) + (tn−1 − bn−1) (2.38)

= 2(tn−1 − tn−2). (2.39)

The total number of trees with n leaves is

tn = rn + wn + bn (2.40)

= rn + 2tn−1. (2.41)

Rearranging (2.41) gives rn = tn − 2tn−1. Therefore,

tn − 2tn−1 = 2tn−1 − 2tn−2 (2.42)

tn = 4tn−1 − 2tn−2. (2.43)

Assume that tn has the form cxn for some unknowns c and x. Then (2.43) leads to
the quadratic equation

x2 − 4x+ 2 = 0, (2.44)

which has solutions x = 2±
√

2. Therefore,

tn = c1(2 +
√

2)n + c2(2−
√

2)n. (2.45)

Invoking the base cases t1 = 1 and t2 = 2 gives two equations with two unknowns,
the solution to which is

c1 =
2−
√

2

4
, (2.46)

c2 =
2 +
√

2

4
. (2.47)
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Finally, substituting these back into (2.45) and simplifying gives

tn =
(2 +

√
2)n−1 + (2−

√
2)n−1

2
. (2.48)

This is sequence A006012 in the On-Line Encyclopedia of Integer Sequences.10

2.10.4 Size of the Width-2 Block Insertions Neighborhood

The analysis of GNF
B≤2 is similar to that of GNF

I from the previous section. It makes
use of the same symbols. Observe, now, that wn = bn = tn−1 + tn−2, and

rn = 2(tn−1 − wn−1) + 2(tn−2 − wn−2) (2.49)

= 2(tn−1 − tn−2 − tn−3) + 2(tn−2 − tn−3 − tn−4) (2.50)

= 2(tn−1 − 2tn−3 − tn−4). (2.51)

The total number of trees with n leaves is

tn = rn + wn + bn (2.52)

= rn + 2(tn−1 + tn−2). (2.53)

Combining these two expressions for rn gives

tn − 2(tn−1 + tn−2) = 2(tn−1 − 2tn−3 − tn−4) (2.54)

tn = 4tn−1 + 2tn−2 − 4tn−3 − 2tn−4. (2.55)

With the assumption that tn = cxn this leads to the quartic equation

x4 − 4x3 − 2x2 + 4x− 2 = 0, (2.56)

whose largest solution is an algebraic constant x ≈ 4.2227433. Therefore this tn =
Θ((≈ 4.2227433)n).

Table 2.5 summarizes the sizes of many of the neighborhoods from this chapter,
including the single-change neighborhoods. It includes the size for the case n = 250,
of interest because of the XLOLIB benchmarks from Section 2.6. Table 2.6 shows
the first ten sizes for a number of the neighborhoods from this chapter. The Trans∗n
neighborhood has exponential size, but the base of the exponent is relatively small,
and its growth much slower than the others.

10http://www.research.att.com/~njas/sequences/A006012
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Neighborhood Size n = 250
Transn n− 1 249
Insertn (n− 1)2 62,001
BlockInsertn

(
n+1

3

)
2,604,125

Trans∗n Θ
((

1+
√

5
2

)n)
1.277652× 1052

Insert∗n Θ
((

2 +
√

2
)n)

3.078578× 10132

BlockInsert∗n, w ≤ 2 Θ ((≈ 4.2227433)n) 1.655187× 10155

BlockInsert∗n Θ
((

3 +
√

8
)n
n−

3
2

)
8.598488× 10186

Πn n! 3.232856× 10492

Table 2.5: Neighborhood sizes

n GT GNF
I GNF

B≤2 GNF
B≤3 GNF

B Πn

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 6 6 6 6 6
4 5 20 22 22 22 24
5 8 68 90 90 90 120
6 13 232 376 394 394 720
7 21 792 1,584 1,806 1,806 5,040
8 34 2,704 6,684 8,316 8,558 40,320
9 55 9,232 28,220 38,396 41,586 362,880

10 89 31,520 119,160 177,672 206,098 3,628,800

Table 2.6: The first few terms in the recurrences for several neighborhood sizes.
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2.11 Path Length

Each of the neighborhoods considered in this chapter induces a graph on the set of
permutations Πn. The graph has a vertex for each permutation π ∈ Πn, and an edge
connecting π → π′ for each π′ ∈ N (π). Because each of the neighborhoods considered
is symmetric, i.e. π′ ∈ N (π) implies π ∈ N (π′), an undirected graph suffices.

This section gives several interesting results related to search trajectories in these
induced graphs. First, though, it will consider the special case of the linear ordering
problem under a total order.

2.11.1 Total Orders

What makes the linear ordering problem NP-hard in general is the possibility
that the ordering preferences expressed in the matrix B are mutually inconsistent.
For example, the matrix might express a preference for all three of i ≺ j, j ≺ k, and
k ≺ i. If no such inconsistent preferences exist in B, then the corresponding linear
ordering problem is not hard at all—it reduces to sorting.

Definition 2.5 A relation R is a total order if and only if

1. R is antisymmetric: iRj implies ¬jRi,

2. R is transitive: iRj and jRk implies iRk, and

3. R is total: iRj or jRi, for all i, j.

Definition 2.6 A LOP matrix B is consistent if there exists some total order re-
lation R on {1, 2, . . . , n} such that iRj if and only if B[i, j] > B[j, i].

The following theorem will prove necessary to demonstrate the usefulness of con-
sistent LOP matrices for search.

Theorem 2.7 If R is a total order relation and π∗ ∈ Πn is the corresponding ordered
permutation—∀i < j, π∗iRπ

∗
j—, then for any π ∈ Πn, π 6= π∗, there must be some

adjacent pair in π that is out of order, i.e. there exists an i, 1 ≤ i < n such that
πi+1Rπi.

Proof: Assume, without loss of generality, that π∗ is the identity permutation
1 2 . . . n. Renaming the items in π∗ with their positions always achieves this. No
out-of-order adjacent pairs in π then means the items in π are increasing.

If the items in π are increasing, then n must occupy πn, because if it occupied
any other position, it would be immediately followed by something smaller. Further,
n− 1 must occupy πn−1, because πn = n and n is no longer available to follow n− 1
anywhere else. Applying this argument recursively leads to the conclusion that π is
the identity permutation. Therefore, no π 6= π∗ with the property in question exists.

�
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Theorem 2.7 implies that search using the Transn neighborhood will always find
the true permutation π∗ if the matrix B is consistent. Any superset of Transn,
including each of the neighborhoods discussed in this chapter, has the same property.

2.11.2 Rank Correlation

One particularly useful consistent LOP matrix Bτ
π∗ is defined as follows for some

target permutation π∗ ∈ Πn:

Bτ
π∗ [i, j] = 1 if i ≺ j ∈ π∗,

Bτ
π∗ [i, j] = 0 if j ≺ i ∈ π∗.

The matrix is called Bτ because of its relationship to Kendall’s τ (Kendall, 1938), a
measure of rank correlation. Bτ

π∗(π) counts the number of pairs in π that are in-order
with respect to π∗, and is related to the rank correlation by

τ(π∗, π) =
2Bτ

π∗(π)(
n
2

) − 1. (2.57)

The factor of
(
n
2

)
normalizes the count to a fraction in the interval [0, 1], and the

multiplication by two and subtraction of one makes it a correlation in the interval
[−1, 1].

Altering Bτ
π∗(π) by making it grow larger as π becomes more different from π∗

converts it into a loss function. Charon and Hudry (2007) called this loss function
the symmetric difference distance δ:

δ(π∗, π)
def
=
(
n
2

)
−Bτ

π∗(π). (2.58)

Chapter 4 will make extensive use of this loss function, particularly for the guided
learning procedures in Section 4.8 and expected loss minimization in Section 4.11.3.

2.11.3 Graph Diameter

Section 2.11.1 mentioned that the linear ordering problem with a consistent matrix
is the same as sorting. This section makes that relationship explicit in order to
measure the diameters of the graphs induced on the permutations by two of the
neighborhoods.

An analogy to bubble sort shows that the diameter of the graph induced by the
Trans∗n neighborhood is O(n). Actually, this differs slightly from bubble sort, because
bubble sort can make multiple swaps of the same element in a single pass through the
list, bubbling the largest element all the way to the end on the first pass. However,
this fact doesn’t affect the asymptotic runtime. Figure 2.46 shows an example.
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6 5 4 3 2 1

5 6 3 4 1 2

5 3 6 1 4 2

3 5 1 6 2 4

3 1 5 2 6 4

1 3 2 5 4 6

Figure 2.46: Bubble sort using transpositions. The result of the last permutation
tree is the identity permutation 1 2 3 4 5 6. The distance between the permutations
6 5 4 3 2 1 and 1 2 3 4 5 6 in the graph induced by GT is therefore no more than 6.
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Figure 2.47: An odd-even sorting network. Horizontal lines represent wires, while
vertical line segments represent comparisons. The result of a comparison is that the
bottom wire holds the min, and the top wire the max, of the two inputs. For any n,
the network contains n parallel layers and

(
n
2

)
total comparisons.

Theorem 2.8 The diameter of the graph induced on Πn by the Trans∗n neighborhood
is at most n.

Proof: The proof uses the odd-even sorting network, a sorting network that uses
only adjacent transpositions (Knuth, 1973b; Cormen, Leiserson, Rivest, and Stein,
2001). The network consists of n layers, each with approximately n

2
comparisons.

Odd-numbered layers compare all pairs of wires (2i− 1, 2i) for 1 ≤ i ≤ n
2
, and even-

numbered layers compare pairs (2i, 2i + 1) for 1 ≤ i < n
2
, where wires are numbered

1–n. Figure 2.47 shows an example. Compare to Figure 2.46.
Given the fact that odd-even transposition networks are sorting networks, meaning

they sort their inputs, the proof of this theorem is trivial. Trans∗n can simulate the
layers of the odd-even network in sequence. Therefore every permutation is within n
steps of the identity permutation. This suffices, because the neighborhood is invariant
to renaming. �

A similar analogy to quick sort shows that the diameter of the graph induced
by L(GI ∪ Gi=0) is O(log n). Because larger neighborhoods have all the edges of
this neighborhood, as well as additional edges, this result applies to them as well.
Figure 2.48 shows an example.

Theorem 2.9 The diameter of the graph induced on Πn by the neighborhood L(GI ∪
Gi=0) is at most dlog2 ne.

Proof: It suffices to show that every permutation π is within dlog2 ne steps of the
identity permutation, because the neighborhood is invariant to renaming.

Given a permutation π, let m be a median element of π. Construct the normal-
form permutation tree that joins first each element to the left of m, then each element
to the right of m, onto the subtree that governs m. Among elements to the left of m,
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6 3 8 2 5 1 7 4

4 1 3 2 5 8 6 7

2 1 3 4 5 6 7 8

Figure 2.48: Quick sort using insertions. In the first tree, 5 serves as the pivot.
In the second tree, 3 and 7 do. In the third tree, the sequences are size 2 each,
so the pivot is irrelevant. The result of the third tree is the identity permutation
1 2 3 4 5 6 7 8, only three steps away from any other permutation in the graph
induced by the neighborhood L(GI ∪Gi=0).
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those smaller than m stay in-order and those larger move to the other side. Among
elements to the right, smaller move and larger stay. The result is a permutation with
m in the middle, all smaller items to its left, and all larger items to its right. Call
this π(1). That is,

• π(1)’s span (0,
⌊
n
2

⌋
) contains the items {0, . . . ,

⌊
n
2

⌋
}, and

• π(1)’s span (
⌈
n
2

⌉
, n) contains the items {

⌈
n
2

⌉
, . . . , n}.

The next step recursively considers the two halves of π(1) and performs the same
procedure, then joins the two halves with an in-order node anchored at i = 0. The
result is π(2), which has four subsequences, each an unsorted collection of the items
in the appropriate subsequence.

By π(dlog2 ne), this procedure reaches the identity permutation. �

2.11.4 Neighborhood Membership

An important question related to neighborhood permutation graphs is whether π
and π′ ∈ Πn are neighbors. That is, is π′ ∈ N (π). Because all these neighborhoods
are symmetric, whether π ∈ N (π′) has the same answer.

It is straightfoward to answer this question using parsing algorithms, given a
grammar corresponding to the neighborhood in question. Let G(π) be the grammar.
Then parse π′ under G(π) using a standard chart parsing algorithm, such as CKY. If
parsing succeeds, then the two are neighbors, and if it fails, they are not. Because of
the size of the grammar, using this method to determine if π′ ∈ L(GB(π)) requires
Θ(n3) time. This can be improved upon, however. A shift-reduce parser can decide
the question in Θ(n) time.11

The shift-reduce parser takes advantage of contiguity. If π′ ∈ L(GB(π)), then
every subsequence of π′ that includes items from a contiguous subsequence of π,
including individual items—subsequences of length one—, must be adjacent in π′ to
another such subsequence, to which it is also adjacent in π.

This description of the shift-reduce parser assumes, again without loss of general-
ity, that π is always the identity permutation 1 2 . . . n.

• The shift step removes one item i from the front of the permutation π′ and
pushes the span (i− 1, i) onto the stack.

• The reduce step looks at the top two spans on the stack: (i, j) and (k, `). There
are two possible reductions:

– If j = k, then the two spans are contiguous and in-order, and they are
replaced on the stack with the new span (i, `).

11The parser as given answers the question for the BlockInsert∗n neighborhood. However, a simple
modification, not presented here, makes it parse Insert∗n, or other subsets of BlockInsert∗n, instead.
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→ 3 1 2 4
(2, 3) → 1 2 4

(2, 3) (0, 1) → 2 4
(2, 3) (0, 1) (1, 2) ← 4

(2, 3) (0, 2) ← 4
(0, 3) → 4

(0, 3) (3, 4) ←
(0, 4)

→ 3 1 4 2
(2, 3) → 1 4 2

(2, 3) (0, 1) → 4 2
(2, 3) (0, 1) (3, 4) → 2

(2, 3) (0, 1) (3, 4) (1, 2)

Figure 2.49: Two examples of shift-reduce parsing for permutations of length 4. The
stack is on the left, the permutation on the right, → indicates a shift step, and ← a
reduction. The parse on the left shows that 3 1 2 4 is in L(GB(1 2 3 4)), while the
failed parse on the right shows that 3 1 4 2—one of the inside-out permutations—is
not.

– If i = `, then the two spans are contiguous but out-of-order, and they are
replaced on the stack with the new span (k, j).

The parser tries to reduce as long as the stack contains at least two spans. Whenever
the stack is too small or no reduction is possible, it performs one shift step and tries
to reduce again. Once the parser is finished, if the stack contains the single span
(0, n), then parsing is successful and π′ is a member of the neighborhood. Otherwise,
parsing fails, because π′ is not in the neighborhood.

Figure 2.49 shows the steps of the shift-reduce parser on two example permutations
of length 4. One is a member of the neighborhood, the other is not.

Theorem 2.10 The shift-reduce parser described above runs in Θ(n) time.

Proof: The shift step is performed exactly n times. Each shift is followed by a reduce
step. The reduce step can succeed at combining two spans at most n−1 times, because
each such combination reduces the number of available spans by one, and there are
exactly n primitive spans. Each time reduce is called, it returns by failing exactly
once. Each of the operations described above is constant time. Therefore, the total
time is Θ(n). �

Aurenhammer (1988) presented an algorithm for sorting twisted sequences in linear
time. The definition of twisted sequences is slightly different from the neighborhood
here, but constitutes the same set of permutations. The presentation is quite different,
using a geometric interpretation. That algorithm is capable of sorting sequences other
than permutations of known objects, making it more general.
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Length Sentences CDF
0 71,196 0.095
1 332,160 0.540
2 279,514 0.914
3 60,037 0.994
4 4,099 1.000
5 82 1.000

Table 2.7: Path lengths from source to target ordering of greedy search on German-
English parallel sentences. This table aggregates the data from Figure 2.50 over
all sentence lengths. More than half of the reordered German sentences are in the
neighborhood of the source German, and more than 90% are within two steps.

2.11.5 Shortest Paths

Section 2.11.4 showed how to determine whether two permutations π and π′ are
neighbors in a given neighborhood. This section takes the question one step further.
If π and π′ are not neighbors in the graph, how far apart are they? That is, what
is the shortest path in the neighborhood permutation graph from π′ to π? Short of
brute force enumeration, no way of answering this question exactly is known for the
neighborhoods described in this chapter. However, this section provides an empirical
upper bound, often smaller than the graph diameter—a trivial upper bound itself.

Starting at π′ and using the LOP matrix Bτ
π for search, Section 2.11.2 argued

that, for any of the neighborhoods under consideration, the search is guaranteed to
arrive at π. Because search takes steps in the induced permutation graph, the number
of steps it requires to reach π is obviously an upper bound on the distance between
them.

Figure 2.50 shows upper bounds on shortest paths generated from German-English
translation alignment data described in Chapter 3. Empirical path lengths vary
between zero—meaning the source and target permutations are identical—and five.
The data consist of 747,088 sentence pairs, and the total breakdown of path lengths
is given in Table 2.7.

It is worth pointing out, though it may be obvious, that when search in the very
large-scale neighborhoods arrives at the desired permutation in one or two steps, then
the bound is exact, but more than two steps is really an upper bound. For example,
if the search takes three steps, that does not necessarily imply that there is no path
of exactly two steps.

The smallest n for which the length of the search path is greater than two for
any permutation in Πn, is n = 7. There are 88 such permutations requiring three
steps in the search path. One example is 1 4 6 2 7 3 5. The minimum loss neighbor
is 1 2 4 6 3 5 7, which contains an inside-out permutation of loss 3 in its middle—
4 6 3 5. This then requires two additional steps to untangle. But the permutation
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Figure 2.50: Path length from source to target ordering of greedy search on German-
English parallel sentences. Length 0 means the source and target ordering are the
same. Lengths greater than two are upper bounds on the true path length, which
may be as small as two.
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1 4 5 6 7 2 3, which has a loss of 8, is only one step from the identity.
This section ends with an open question: Is there a different LOP matrix that is

better than Bτ
π? That is, can a different matrix reduce the average empirical search

path length between arbitrary pairs of permutations?

2.12 Summary

This chapter presents a unified view of neighborhood search for the Linear Order-
ing Problem. Many of the neighborhoods, as well as other results herein, are of prior
provenance, but this chapter fills in gaps where they occur, and extends prior work
in completely new directions as well.

The Block LSf shortcut search procedure introduced here is a state-of-the-art
local search neighborhood for the XLOLIB benchmarks. It may prove of use for
other LOP instances as well. The novel dynamic program for computing the costs of
block transpositions in constant time per neighbor is essential to this result.

This chapter also attempts the first application of very large-scale neighborhood
search to the LOP. Although the VLSNs do not outperform LSf on XLOLIB bench-
marks, the following chapters will show that these neighborhoods are nonetheless
tremendously useful in their own right. Search for a good sentence reordering for ma-
chine translation will use the BlockInsert∗n neighborhood as a constraint to improve
performance. Machine learning methods will make use of the VLSNs to approximate
the partition function, which is intractable to compute over all n! permutations.

To the extent that the VLSNs are useful, normal form grammars for them are
necessary as well, to ensure a one-to-one correspondence between derivations and
permutations. The three-color normal form for Insert∗n and limited-width block in-
sertions is therefore also an important contribution. The normal forms also allow
computation of neighborhood sizes, which are interesting in their own right. Finally,
the graph diameter results contribute to understanding the structure that the VLSNs
induce on the set of permutations.

81



Chapter 3

Reordering and Machine
Translation

This chapter introduces a model of reordering for machine translation, including
the Linear Ordering Problem of Chapter 2 as a component. It proposes handling word-
to-word translation monotonically using a weighted finite-state transducer, and uses
a trick involving FST projection to convert the entire translation problem, including a
target N -gram language model, into a combinatorial optimization problem, reordering
the source language sentence.

In order to reach that point, it introduces the Machine Translation problem, fo-
cusing heavily on the reordering component in the exposition. Section 3.3 reviews
a number of prior reordering models, and discusses their strengths and weaknesses
relative to a model based on the LOP. Section 3.4 describes aspects of the German
language relevant to translation, and particularly the reordering necessary to translate
German to English.

Section 3.5 gives a brief tutorial introduction to weighted finite-state transducers,
then describes how to encode some well known models of translation using WFSTs.
Section 3.6 then combines those finite-state automata with the Linear Ordering Prob-
lem and another novel function of permutations to produce the translation model that
is this chapter’s primary contribution. Section 3.7 describes the cyclic cost function,
which scores triples of items in the permutation the same way the LOP scores pairs.

Section 3.8 provides the main empirical results of the dissertation. It demonstrates
the utility of models based on the LOP for word reordering as a preprocessing step.
This provides a fully automatic way to systematically rearrange German sentences
into an order that is more conducive to translation into English.

The remainder of the chapter is dedicated to proposals of methods for decoding the
entire model of Section 3.6. Because of the complexity of VLSN search in the presence
of the finite-state automaton—polynomial, but with an unattractive exponent—these
methods have not yet yielded empirical translation results. However, there are several
interesting possibilities for further investigation.
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Before proposing this chapter’s translation model, it is appropriate to lay out the
context into which it fits.

3.1 Machine Translation

Machine translation—the problem of translating among human languages auto-
matically with computers—is as old as artificial intelligence (AI). Proposed as early
as 1949 by Warren Weaver, it is now one of the major subfields of natural language
processing. It is generally posed as a sentence-by-sentence problem—i.e. given a single
sentence in one source language, often called f , translate that sentence into the target
language, often called e.1 Ultimately, in order to capture all the information avail-
able in the source language, machine translation will have to move beyond treating
each sentence independently, but the complexity of the task as it is currently posed
is already great.

For much of its history, machine translation was carried out in the tradition of
symbolic AI. This thesis will not concern itself with this tradition, except to briefly
mention a connection in Section 4.4 on features for learning.

In 1990, researchers at IBM published a seminal paper (Brown, Cocke, Della
Pietra, Della Pietra, Jelinek, Lafferty, Mercer, and Roossin, 1990) introducing statis-
tical machine translation. A later paper (Brown, Della Pietra, Della Pietra, and Mer-
cer, 1993) proposed five increasingly sophisticated models of word-to-word translation
now commonly known as IBM Models 1–5. Their Model 4 appears in Section 3.5.1,
part of a discussion of encoding translation models as finite-state transducers. These
models are now used primarily for the task of word alignment—see Section 3.8.1—
rather than for the full translation task. They have been replaced by phrase-based
and syntactic translation models.

Knight (1999) showed that decoding under such word-based translation models
is NP-complete by separate reductions from the Hamiltonian Circuit Problem and
the Minimum Set Cover Problem. The latter reduction points to the complexity in
choosing multi-word translations to cover the source language sentence. The former
reduction—more important to this thesis—demonstrates that another source of com-
plexity is the ordering of the words. Section 3.6 will introduce a slightly different, more
general, model of translation in terms of two NP-complete ordering problems—the
Linear Ordering Problem of Chapter 2, and a generalization of the famous Traveling
Salesman Problem.

Word-based statistical translation models have largely been surpassed by the more
general phrase-based models described in detail in Och and Ney (2004). Phrase-
based decoders segment the source sentence into contiguous chunks and use a phrase
dictionary to translate entire chunks into the target language. The segmentation is
non-deterministic, and the decoder searches simultaneously for the best segmentation,

1Some authors use a noisy channel formulation and reverse the source and target labels.
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phrase translations, and target language phrase ordering. Section 3.3 discusses several
reordering models proposed in the literature.

Several increasingly popular alternatives to phrase-based translation models fall
under the generic label of syntax-based statistical machine translation. The simplest
such models use unlabeled binary trees much like the permutation trees described
in Section 2.8. The difference is that the translation models, such as inversion-
transduction grammar (ITG) (Wu, 1997), use synchronous grammars—grammars
that generate multiple strings simultaneously.

The full battery of syntax-based translation models is beyond the scope of this
dissertation, but because of the relationship between synchronous grammars and the
permutation trees used here, much of the work on decoding with such models is
relevant to this work. This chapter invokes several instances of such work.

3.2 Resources

Because the machine translation problem is so well established, the field has devel-
oped numerous tools for evaluation of different models and decoding systems. These
include large corpora of parallel sentences, automatic evaluation measures, aligners,
decoders, and more. This chapter makes use of the following:

• The Europarl corpus (Koehn, 2005) consists of hundreds of thousands of paral-
lel sentences in many languages from the proceedings of the European parlia-
ment. The experiments this chapter describes are carried out using the German-
English portion of this corpus.

• GIZA++ (Och and Ney, 2003) is an alignment tool that implements all of the
IBM models (Brown et al., 1993) and the HMM alignment model of Vogel, Ney,
and Tillmann (1996).

• BerkeleyAligner (Liang, Taskar, and Klein, 2006b; DeNero and Klein, 2007) is
an alternative to GIZA++. It is standard practice to train GIZA++ using both
channel directions—source-to-target and target-to-source. Combining the two
sets of alignments usually produces a better result than using either alignment
alone. BerkeleyAligner shares information between these tasks during parame-
ter estimation to improve alignment quality.

• Moses (Koehn, Hoang, Birch, Callison-Burch, Federico, Bertoldi, Cowan, Shen,
Moran, Zens, Dyer, Bojar, Constantin, and Herbst, 2007) is a complete ma-
chine translation decoder. It uses beam search for phrase-based translation,
incorporating lexicalized reordering models and target language models.

• Fsa (Kanthak and Ney, 2004) is a weighted finite-state transducer toolkit, used
to implement the finite-state algorithms.
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• BLEU score (Papineni, Roukos, Ward, and Zhu, 2002) is an automatic transla-
tion evaluation measure. Section A.1 describes it in full.

• METEOR (Lavie, Sagae, and Jayaraman, 2004; Banerjee and Lavie, 2005; Lavie
and Agarwal, 2007) is another translation evaluation measure, described in Sec-
tion A.3.

• TER (Snover, Dorr, Schwartz, Micciulla, and Makhoul, 2006) is still a third
translation evaluation measure, described in Section A.4.

3.3 Reordering

As Section 3.1 suggests, choosing the word order in the target language is an im-
portant source of complexity in the machine translation task. This section further
demonstrates that the reordering model is essential for good translation performance,
and that the language model, though a good source of ordering information, is inad-
equate by itself.

This chapter and the next make extensive use of the concepts of search error and
model error.

Definition 3.1 A search error occurs when the answer returned by the search pro-
cedure differs from the answer that is optimal according to the model.

Definition 3.2 A model error occurs when the answer that is optimal according to
the model differs from the true answer.

3.3.1 Target Language Models

An early throw-away experiment in the work of this dissertation tried to recover
English sentences from “bags of words” using an n-gram language model and the
VLSN search methods of Chapter 2.2 Greedy search using these neighborhoods rarely
returned the correct English sentence, but not simply because of search error. Rather,
model error was also to blame. The language model rarely prefers the true English
sentence to all of its possible permutations.

While this problem might be mitigated to some extent with higher-order n-gram
models, it will never go away completely. For example, a corpus consisting of the
two sentences “John loves Mary.” and “Mary loves John.” would always defeat the
language model on one of the two.

These unreported experiments do not stand alone. Al-Onaizan and Papineni
(2006) reported substantially similar results. They defined what they called a word

2The language model component complicates the grammars of Section 2.8. Section 3.6 introduces
a general model that handles this case, and Figure 3.6 on page 118 gives a grammar.
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Figure 3.1: The word order restoration results of Al-Onaizan and Papineni (2006).
The source is English words in Arabic word order, and the target is the original
English. Arabic word order has a BLEU score of 0.5617. Each ordering is scored
using only a trigram language model. Performance degrades for all maximum skip
sizes as the window size increases, allowing words to move farther and farther from
their source-language position.
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order restoration task. English words start out in, in their case, Arabic word order,
and the task is to restore them to English word order. Figure 3.1 shows a summary of
their results using only a trigram language model to assign a score to each ordering.
They varied two parameters to the search, as in Tillmann and Ney (2003):

Window is the maximum number of words allowed from the left-most uncovered
source word to the right-most covered word. For a word to move to its right, it
must remain uncovered while other words are covered. For a word to move to
its left, it must be covered before its predecessors. In either case, the window
parameter limits the extent of its movement.

Skip is the maximum number of uncovered source words allowed to the left of the
right-most covered word. It determines how many words can move simultane-
ously and also limits movement to the left.

It is interesting to consider these constraints as forming neighborhoods in the sense
of Chapter 2. When both the window and skip parameters are set to 1, the result is
exactly the Trans∗n neighborhood. However, more permissive settings result in new
neighborhoods. Zens and Ney (2003) showed that when the window is unconstrained,
resulting in the so-called IBM constraints (Berger, Brown, Della Pietra, Della Pietra,
Kehler, and Mercer, 1996), the size of the neighborhood for skip parameter s is

rn =

{
sn−s · s! if n > k,

n! if n ≤ k.
(3.1)

The task is limited to reordering, so the BLEU scores reported always have perfect
unigram precision—Section 4.6, starting on page 138, discusses such monolingual
BLEU scores in more detail.

While these results indicate that the language model should help find a better
target order than monotonic decoding, they also show that the language model alone
suffers from a great deal of model error—even given the correct words. The window
and skip parameters introduce systematic search errors, forcing the decoder to choose
from among a subset of the possible permutations, in order to limit the effect of model
error.

The most obvious problem with the language model is that it completely ignores
the source language sentence. It looks exclusively at the target language words after
translation of the source. The models that follow, including the one Section 3.6 pro-
poses, take the source ordering into account in a variety of ways, modeling reordering
as though it occurs before translation.

3.3.2 Distance Models

It is important to make a distinction, with phrase-based models, between the
reordering that occurs within phrases, and reordering between phrases. Within-
phrase reordering occurs without an explicit model, as part of the phrase translation
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process—phrase-table entries, such as the one depicted in Figure 3.2 on page 99, may
contain arbitrary reordering of concepts. The models described below are thus limited
to between-phrase reordering.

Och and Ney (2004) employed a very simple reordering model, defined in terms
of an alignment feature hAL:

hAL(eI1, f
J
1 , π

K
1 , z

K
1 ) =

K+1∑
k=1

∣∣jπk−1 − jπk−1

∣∣ , (3.2)

where e and f are the sentences, z is the sequence of alignment templates, and π is
the sequence of phrase alignments. jπk−1 is the position before the start of phrase k,
while jπk−1

is the last position of the previous phrase. If phrase translation is entirely
monotonic, hAL = 0, and it is larger than 0 if any reordering occurs.

Incorporated into a log-linear model, this implies a geometric distribution with
parameter exp(λAL), where λAL is the weight of feature hAL. Assuming λAL < 0, this
model always assigns the highest weight to the monotonic ordering, and penalizes
long-distance movement exponentially more than short-distance movement.

While this model is somewhat appropriate for some language pairs, it is a poor
model in general. For example, translation between German and English has to move
verbs from SOV order to SVO order. This distance can become arbitrarily long as the
object becomes increasingly complex. Section 3.4 describes German for the purposes
of translating to English.

3.3.3 Lexicalized Models

Brown et al. (1993) introduced “distortion” in Models 3 and 4 to model the per-
mutation of words in the source language (theirs is a noisy channel model). Model
5 addresses the deficiency in Model 4, which allows “orderings” that are not per-
mutations. These models include sophisticated conditioning, such as on classes of
words. So-called lexicalized reordering models follow in this tradition by conditioning
reordering probability on the words in the reordered phrases.

Tillmann (2004) introduced a simple “unigram” model that predicted whether the
translation of a given phrase would occur to the right or to the left of its predeces-
sor’s translation in the target language ordering. It is a unigram model because the
prediction is conditioned only on the given phrase, not on its predecessor. Tillmann
showed that this model improved translation performance over the target language
model alone.

Kumar and Byrne (2005) proposed a jump-based reordering model where the
random variable in question, bK1 , is the sequence of differences between each phrase’s
position in the source language phrase sequence and its position in the target language
phrase sequence. The probability of each bk is conditioned on the probability of bk−1
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and on the phrase table entry. It is thus a bigram jump model, but, like Tillmann’s
model, only considers phrase unigrams.

Al-Onaizan and Papineni (2006) proposed a related, but more sophisticated,
model consisting of three parts:

Outbound Distortion predicts the position in the reordering of the next word rel-
ative to the position of the current word given the current word.

Inbound Distortion predicts the relative position given the next word.

Pairwise Distortion predicts the relative position given both the current and next
words.

The first two are different ways of backing off from the third, which models the relative
order of pairs of words. This model differs from the model this chapter proposes in
two important ways:

• It predicts relative position of pairs of words, rather than just relative ordering—
a binary variable.

• It only predicts the relative position of words that are adjacent in the source
sentence, rather than all pairs of words.

Kuhn, Yuen, Simard, Paul, Foster, Joanis, and Johnson (2006) proposed “segment
choice models”, where segment is a synonym for phrase in the non-linguistic sense
of phrase-based translation. They assumed the segmentation of the source language
sentence into phrases was given, and modeled the relative order of those phrases in the
target language. The probability of a phrase order decomposes into a sequence of de-
cisions about the next phrase to include in a left-to-right ordering. They used decision
trees (Breiman, Friedman, Olshen, and Stone, 1984) to assign probabilities. Their
“features”—the questions the decision trees can ask—concern the relative positions
of the phrases in the source sentence, their lengths, and the words they contain.

Xiong, Liu, and Lin (2006) proposed a constituent reordering model for a bracket-
ing transduction grammar (BTG) (Wu, 1995). Their model predicts the probability
that a pair of subconstituents will remain in order or reverse order when combined
to form a new constituent. The features of their model look only at the first source
and target words of each constituent. This could be considered a sparse version of
the reordering model that this chapter proposes. The details of training and applying
the models are quite different, however.

The model of Chang and Toutanova (2007) is altogether different. It predicts the
position of each child relative to its parent using global features of a target dependency
tree, obtained via projection from the source language. Their features consider target
language words, source and target language parts of speech, and the displacements
of target language words relative to the source sentence.

89



The default lexicalized reordering model for Moses, described in Koehn, Axelrod,
Mayne, Callison-Burch, Osborne, and Talbot (2005), is similar to Tillmann’s model.
It distinguishes three different cases:

Monotone phrases are adjacent and in the same order in both the source and target
languages.

Swap phrases are adjacent in both languages, but in opposite orders.

Discontinuous phrases are adjacent in one language but not the other.

The model assigns probability to each of the three possibilities given the phrase-table
entries, and Moses uses the model in both the source-to-target and target-to-source
directions.

This model is certainly an improvement over the distance-based distortion models
of the previous section, and that improvement is reflected in improved performance,
but it remains a unigram model. The probability that the current phrase occurs in
monotone, swap, or discontinuous order relative to the previous phrase is independent
of the identity of the previous phrase. The model that Section 3.6 introduces addresses
this shortcoming.

3.4 German

Prior to introduction of this chapter’s reordering model, it is appropriate to have
a concrete notion of the types of reordering that the machine translation task is
confronted with. This section describes aspects of the German language, with an
emphasis on phenomena that relate to ordering differences from English.

English is typologically characterized as an SVO language, meaning the subject
precedes the verb, and the object follows it. German, on the other hand, is SOV,
meaning the verb comes after the object. This is the greatest typological distinction
between the two languages, which in many respects remain quite similar. German’s
SOV label requires some refinement, however.

First, German retains case markings that English has lost, except on pronouns
and possessives. English uses SVO order to indicate subject and object. German,
on the other hand, has explicit nominative case marking to indicate the subject, and
accusative and dative case markings to indicate different types of objects. As a result,
word order is relatively less constrained in German. Sometimes the object appears
before the subject of the same clause, as in

(1) Das
That

muß
must

ich
I

erst
first

einmal
once

klären.
resolve.

“I will have to look into that.”
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Second, the main finite verb appears in second position in declarative sentences. The
element that appears before that verb may be a noun phrase, a prepositional phrase,
an adverb, etc. It may be the subject of the main verb, its object, or neither. Besides
the main finite verb, other parts of the verb, including separable prefixes, infinitives,
past participles, etc., appear at the end of the clause. Everything else comes in
between.

(2) Wir
We

werden
will

das
that

überprüfen.
review.

“We will consider the matter.”

(3) Vielleicht
Maybe

könnten
can

die
the

Kommission
Commission

oder
or

Sie
you

mir
me

einen
a

Punkt
point

erläutern.
explain.

“Perhaps the Commission or you could clarify a point for me.”

In general, subordinate clauses differ from the main clause in the lack of this second
position requirement. The entire verb appears in the final position. It is in this sense
that German is typologically verb-final.

(4) Ich
I

kann
can

nicht
not

erkennen,
discern,

was
what

das
that

mit
with

dem
the

Protokoll
Minutes

zu
to

tun
do

hat.
has.

“I cannot see what that has to do with the Minutes.”

Durrell (1997) gives the following basic word order plan for German:

1. Vorfeld—first position

2. Bracket1—the first part of the verb

3. Pronouns

4. Noun subject

5. Dative noun

6. Most adverbials

7. Accusative noun

8. nicht—negative adverb

9. Adverbials of manner

10. Complements—genitive or prepositional objects

11. Bracket2—the rest of the verb
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In imperative sentences and questions, the Vorfeld is empty, and in subordinate
clauses, Bracket1 is. This shows that adverbs, including negation, will often require
reordering to English as well.

(5) Ich
I

kann
can

diesen
this

Vorschlag
proposal

nicht
not

nachvollziehen.
comprehend.

“I cannot support this proposal.”

Another important phenomenon is that of separable prefix verbs. The dictionary
form is often written prefix+verb, and the prefix is usually orthographically identical
to a preposition. For example, the infinitive zustimmen, meaning to agree, breaks
down into the prefix zu and the verb stimmen, which alone means to vote. When
inflected, the prefix separates from the verb and moves to the end of the clause.
Effectively, these constitute compound words whose two parts can move arbitrarily
far apart. Putting them back together is almost essential for correct translation. The
last sentence in Table 3.9 on page 116 shows an example use of zustimmen.

Prepositional phrases and noun phrases are substantially similar between German
and English. Prepositions precede determiners, which are followed by adjectives and
then nouns. However, whereas English puts possessors before their possessions, and
indicates the relationship with a clitic ’s, German puts the possessor after, and uses
genitive case marking, except with proper nouns. This is less problematic for reorder-
ing models for two reasons. First, the movement is not over a long distance. Second,
English can preserve order by translating with of, rather than a possessive.

(6) Wir
We

kommen
come

nun
now

zur
to the

Festsetzung
determination

des
of the

Arbeitsplans.
work plan.

“The next item is the order of business.”

Finally, German is notorious for compounding nouns. English also has noun-noun
compounds, but often keeps them as separate words, especially with newly coined
terms. Because German removes spaces, and the prefix noun often undergoes mor-
phological changes, segmenting nouns into their components is non-trivial—cf. Schmid
(2005). This is not a particular problem for reordering, but it is an essential part of
translation from German. Many compound words in the test set are likely to be
absent from the vocabulary of the phrase table. The methods presented here do not
address this problem.

3.5 Translation with Finite-State Transducers

Finite-state automata are a computation-theoretic abstraction that have made
the jump to practical algorithms because of their convenient properties. Finite-state
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acceptors (FSAs) have a one-to-one correspondence with regular expressions.3 One
of their most important properties is that, unlike context-free grammars, FSAs are
closed under intersection.

Finite-state transducers (FSTs) are automata representing regular relations. They
express not just one regular language, but two—an input and an output language.
They can be thought of as accepting ordered pairs of strings, or as mapping one
string to another, in either direction. Because of closure under intersection, so-called
composition of transducers is possible.4 This intersects the output language of one
transducer with the input language of another, producing a third transducer that
maps a subset of the first input language to a subset of the second output language.

Both FSAs and FSTs can be weighted without altering many of their closure
properties, including intersection/composition, though some of the resulting algo-
rithms require significantly more sophistication.5 The resulting weighted finite-state
transducers (WFSTs) represent weighted regular relations, where each pair of strings
has a corresponding weight, which can be interpreted as a cost, a probability, etc.,
depending on the semiring (see Definition 3.3 ahead).

It is often convenient to devise complex WFSTs as cascades of simpler transducers
that can be combined successively using composition. The intermediate languages can
make use of abstract marker symbols that do not appear in either the ultimate input
or output languages. The cascade of transducers that Section 3.5.1 constructs is an
excellent example.

Formal presentation of WFSTs begins with two definitions.

Definition 3.3 A semiring is a 5-tuple 〈K,⊕,⊗, 0̄, 1̄〉 with the following properties
(Mohri, Pereira, and Riley, 2000):

1. 〈K,⊕〉 is a commutative monoid with identity element 0̄,

2. 〈K,⊗〉 is a (possibly non-commutative) monoid with identity element 1̄,

3. ⊗ distributes over ⊕, and

4. 0̄ is an annihilator, meaning 0̄⊗ w = w ⊗ 0̄ = 0̄, ∀w ∈ K.

Examples of semirings include:

• the real semiring 〈R,+, ·, 0, 1〉,
3Meaning regular expressions of the computation-theoretic variety, consisting of the union, con-

catenation, and closure operations. Regular expressions as implemented in popular programming
languages, such as perl, often have additional operators that make them non-finite-state.

4FSTs are not closed under intersection, meaning intersection of their regular relations. For
example, if one transducer maps the language an to the language anb∗ while another maps an to
a∗bn, then their intersection maps an to anbn, which is not regular.

5Cf. Mohri, Pereira, and Riley (1996); Mohri (2000, 2001); Eisner (2003).
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• the log semiring 〈R ∪ −∞, log+,+,−∞, 0〉, where

log+(v, w)
def
= log (ev + ew) , (3.3)

• the tropical semiring 〈R ∪∞,min,+,∞, 0〉, and

• the expectation semiring (Eisner, 2001, 2002).

The expectation semiring will prove useful in Section 4.11.3 of the next chapter. For
details, see Definition 4.2 on page 152.

Definition 3.4 A weighted finite-state transducer (WFST) (Mohri, 1997) is a
7-tuple 〈Q,Σ,∆, K, δ, i, F 〉:

1. Q is the finite set of states.

2. Σ is the finite input or upper alphabet.

3. ∆ is the finite output or lower alphabet.

4. 〈K,⊕,⊗, 0̄, 1̄〉 is a semiring. The ⊕ operator is sometimes called collect, be-
cause it aggregates the weights of multiple paths, and the ⊗ operator extend,
because it aggregates the weights along a single path.

5. δ : Q × Q × (Σ ∪ ε) × (∆ ∪ ε) 7→ K is the transition function. The symbol
ε indicates the empty string, which matches any position in a string without
consuming any symbols. If δ(q, r, a, b) = w then there is an arc from state q to
state r with input symbol a, output symbol b, and weight w. This is sometimes
written

q
a:b/w−→ r. (3.4)

If δ(q, r, a, b) = 0̄ then there is no arc from q to r that accepts a : b.

6. i ∈ Q is a distinguished initial state.

7. F : Q 7→ K is the state final weight function. The set of final states is
{q ∈ Q | F (q) 6= 0̄}.

A weighted finite-state acceptor (WFSA) is defined identically, except it lacks the
second alphabet ∆ and δ has one parameter fewer. Projection converts a WFST into
a WFSA by eliminating one of the alphabets, and the corresponding arc labels. A
WFST can be projected onto either its input or its output language.

A WFST can be thought of as a function T : Σ∗×∆∗ 7→ K from pairs of strings to
weights. Likewise, a WFSA can be thought of as a function A : Σ∗ 7→ K from strings
to weights. For x ∈ Σ∗, A accepts x if A(x) 6= 0̄. In general, there may be multiple
paths in the transducer matching x : y, or in the acceptor matching x. T (x, y) and
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Symbol Name Meaning
e English the source sentence, in the noisy channel formulation
f French the target sentence, in the noisy channel formulation,

which is given
φ fertility the number of French words to which each English word

aligns
τ tableau the list of French words to which each English word aligns
π permutation the French word order
a alignment the combination of τ and π

Table 3.1: Random variables from IBM Model 4.

A(x) compute the semiring sum of the weights of all matching paths. In the tropical
semiring, this is simply the weight of the best path.

Composition of two transducers T1 and T2 produces a third transducer T1 ◦ T2,
such that

(T1 ◦ T2)(x, z) =
⊕
y∈∆∗

T1(x, y)⊗ T2(y, z), (3.5)

where ∆ is both the output alphabet of T1 and the input alphabet of T2.6

The remainder of this section explores WFST implementations of standard trans-
lation models. The formulations described here sometimes include a reordering com-
ponent. Section 3.6, in contrast, introduces a model where the WFST only performs
monotonic translation. Search for a good ordering takes place outside the automaton,
and incorporates scores from other models of reordering, including the linear ordering
problem.

3.5.1 IBM Model 4

Knight and Al-Onaizan (1998) first proposed translation with transducers. They
discussed how to formulate IBM Models 1–3 as WFSTs. They also proposed alterna-
tives to Model 3 with simpler reordering models. This section extends that work by
encoding IBM Model 4 as a WFST. Section 3.5.2 turns to phrase-based translation
models.

IBM Model 4 (Brown et al., 1993) models the random variables shown in Table
3.1 using the following formulae and assumptions, and the parameters from Table 3.2.
The exposition uses French and English to respectively name the target and source
languages of the noisy channel, following their precedent. The model is obviously not

6In general, the output alphabet of T1 and the input alphabet of T2 may differ, so long as they
share some symbols. In that case, ∆ is the union of the two alphabets.
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Notation Meaning
n(φ | e) fertility probability
p0, p1 null fertility probabilities
t(f | e) word translation probability
d1(∆j | A,B) distortion probability for the first word aligned to each English

word
d>1(∆j | B) distortion probability for other words aligned to each English

word

Table 3.2: Parameters of IBM Model 4.

limited to this language pair.

Pθ(τ ,π | e) = Pθ(φ | e)Pθ(τ | φ, e)Pθ(π | τ ,φ, e), (3.6)

Pθ(f , a | e) =
∑

(τ ,π)∈〈f ,a〉

Pθ(τ ,π | e), (3.7)

Pθ(φ | e) = n0

(
φ0 |

l∑
i=1

φi

)
l∏

i=1

n(φi | ei), (3.8)

Pθ(τ | φ, e) =
l∏

i=0

φi∏
k=1

t(τik | ei), (3.9)

Pθ(π | τ ,φ, e) =
1

φ0!

l∏
i=1

φi∏
k=1

pik(πik), (3.10)

n0(φ0 | m′) =

(
m′

φ0

)
pm
′−φ0

0 pφ0

1 , (3.11)

pik(j) =

{
d1(j − cρi | A(eρi),B(τi1)) if k = 1,

d>1(j − πik−1 | B(τik)) if k > 1,
(3.12)

ρi = max
i′<i
{i′ : φi′ > 0}, (3.13)

cρ =

⌈
φ−1
ρ

φρ∑
k=1

πρk

⌉
. (3.14)

In order to map this generative process onto finite-state transducers, it will be
convenient to further subdivide it. The resulting cascade of transducers can com-
bine through composition to produce a single model. The formulation given below
assumes that the French sentence is given. This assumption is necessary because of
the distributions and dependencies used in Model 4, particularly (3.10), (3.11), and
(3.12), which require counts.

The first step, because (3.8) depends on it, is to choose fertilities for all of the

96



English words. To model fertility, let each English word transduce to itself an appro-
priate number of times. For later use, preface any English word with fertility greater
than zero with a special bracket symbol indexed by the class of that word. Thus, the
sequence

e1 e2 e3 e4

would become
[A(e1) e1 e1 [A(e2) e2 [A(e4) e4 e4 e4

with probability
n(2 | e1) · n(1 | e2) · n(0 | e3) · n(3 | e4).

The structure of this transducer depends on the structure of each n(· | ·) distribution.
If the distributions are geometric, then the transducer needs only one state for each
word. If they are arbitrary multinomial distributions, then the transducer needs one
state for each word/fertility combination. The number of states mirrors the number
of parameters of the distributions.7

To complete (3.8), compose the first transducer with one that optionally inserts
the symbol e0 = null after each instance of an English word with probability p1, and
doesn’t do so with probability p0. This would, for example, turn

[A(e1) e1 e1 [A(e2) e2 [A(e4) e4 e4 e4

into
[A(e1) e1 null e1 [A(e2) e2 [A(e4) e4 e4 null e4

with probability
p1 · p0 · p0 · p0 · p1 · p0.

This accounts for most of (3.11). In order to handle the
(
m′

φ0

)
term, it suffices to use

the states to count φ0, since m′ = m − φ0, where m is the given total number of
French words. Using the notation of Definition 3.4, the final weight of state qφ then
is F (qφ) =

(
m−φ
φ

)
.

The next step is to translate the English words, including null, according to (3.9).
A one-state transducer accomplishes this, and augments the French word symbols
with their positions in the French string, information that the next step will use. So,
for example, this might transduce

[A(e1) e1 null e1 [A(e2) e2 [A(e4) e4 e4 null e4

7This is not true of discrete probability distributions in general. For example, the Poisson distri-
bution, with the single parameter λ,

P (X = x) = e−λ
λx

x!
, (3.15)

requires an arbitrary number of states to correctly compute the denominator. Fortunately, the
number of English words is bounded by the number of French words, so this is still finite-state given
the French sentence.
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into
[A(e1) f5 null(f8) f6 [A(e2) f1 [A(e4) f4 f2 null(f3) f7

with probability

t(f5 | e1) · t(f8 | null) · t(f6 | e1) · t(f1 | e2) · t(f4 | e4) · t(f2 | e4) · t(f3 | null) · t(f7 | e4).

Note that this transducer does not account for the positions of the French words, it
merely assigns them. In practice, the French words and their positions are given, it is
the English words that are unknown. This transducer can therefore map each French
word position to all non-zero English entries in the translation table for that word.

Next, score the permutation implied by the indices on the French words (namely,
the one that would result in the sequence f1 f2 . . . f8) according to the distortion
probability (3.10). First, there is the 1

φ0!
term that accounts for the many possible

permutations of those French words generated by null. This is why the mark-up of
null words is needed. The example sequence remains unchanged by this step but is
assigned probability 1

2
since there are 2 instances of null. This automaton is such

that the kth instance of null gets probability 1
k
, and needs as many states as there

are possible null-aligned French words.8

Another acceptor incorporates the d>1 probabilities. This assigns the example
sequence probability

d>1(1 | B(f6)) · d>1(−2 | B(f2)) · d>1(5 | B(f7)).

It does so by ignoring null-generated words and skipping over word boundaries
separated by a bracket.

The last step incorporates the d1 probabilities of the words immediately following
brackets. It assigns the example sequence probability

d1(5 | A(?),B(f5)) · d1(−5 | A(e1),B(f1)) · d1(3 | A(e2),B(f4)).

This is the most challenging part for finite-state modeling, because the distribution d1

depends on cρi . In words, ρi is the index of the previous English word that generates
at least one French word, and cρ is the average position of French words aligned to
eρ. To accomplish this computation, the automaton must count the non-null words
between the brackets and sum their positions.

Index the states of the automaton with an ordered triple (`, s, a), where ` counts
the number of words since the most recent bracket, s counts the sum of word positions,
and a is the class of the most recent English word. The arc that matches French word
fj from state (`, s, a) goes to state (`+1, s+j, a). Self-loops match null words. Arcs
that match brackets [a′ go from state (`, s, a) to a special state labeled (

⌈
s
`

⌉
, a, a′).

Each special state (c, a, a′) has an arc matching each fj with the appropriate weight

8Model 4 allows at most half the French words to be aligned to null.
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0

überarbeitet : should
werden : have

ε : revised / w

sollten : been

Figure 3.2: One path of a transducer representing the phrase table. Each phrase
table entry forms a weighted loop from the distinguished state 0. Arcs without
explicit weights have weight zero. Note that, because of within-phrase reordering,
there is no lexical correspondence along the arcs. The alignment within the phrase is
überarbeitet—revised, werden—have been, sollten—should.

d1(j − c | a,B(fj)) that goes to state (1, j, a′). This automaton needs O(m3 |A| +
m |A|2) states, where m is the number of French words.

Finally, remove the brackets and the null annotations to produce the reordered
French string annotated with its word positions. Notice that this cascade of trans-
ducers does not generate the French string in French order. That is the job of the
reordering search, as Section 3.6 will explain.

3.5.2 Phrase-Based Translation

Kumar and Byrne (2003) showed how to implement the Alignment Template
Translation Model of Och and Ney (2004) with finite-state transducers. Their imple-
mentation consists of a cascade of six automata:

1. Source sentence: a straight-line FSA with n+ 1 states and n arcs.

2. Source segmentation model: a WFST that maps from the alphabet of words to
an alphabet that has a different symbol for each phrase.

3. Phrase permutation model: a WFST that allows a subset of the possible per-
mutations of the available phrases.

4. Template sequence model: a WFST that maps source language phrases in target
language order to alignment templates.

5. Phrasal translation model: a WFST that converts alignment templates to target
language words. It is itself a composition of several simpler automata.

6. Target language model: a WFSA that computes the probability of the target
sentence.

Koehn, Och, and Marcu (2003) proposed a simpler phrase-based model, consisting
of four parts:

1. a phrase translation table,
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2. a distortion model,

3. a word penalty, and

4. a language model.

The translation table can be implemented simply after the example of Figure 3.2.
The WFST has a single final state—the initial state 0. Each phrase table entry
corresponds to a path from state 0 back to state 0 that accepts the appropriate
source and target language word sequences with the appropriate weight from the
table. The experiments reported here use five features for each phrase table entry:

• source-to-target phrase translation probability,

• target-to-source phrase translation probability,

• source-to-target word translation probabilities,

• target-to-source word translation probabilities, and

• phrase count—each entry has value 1 for this feature.

The word penalty, which biases the model to produce longer or shorter output, can
also be incorporated into the phrase table weight, as each phrase table entry knows
how many target words it generates.

Conveniently, a simple distance-based distortion model can be implemented as an
n-state WFSA without even encoding the phrase segmentation. There is a transition
from each state i to each other state j with label j and weight α|j−i−1|, so that if
j = i+ 1 the weight is one. Every source word sequence that will be used as a phrase
will thus incur no cost within the phrase. The only costs come at non-contiguous
phrase boundaries.9

Finally, the N -gram language model can be implemented as a WFSA in the stan-
dard way (Mohri, 1997). The experiments in later sections use finite-state models
built according to this description. The weights of each of these models is tuned on
the development data set using minimum error-rate training (MERT) (Och, 2003).

3.6 An ABC Ordering Model

This section describes a novel reordering model that combines three different
sources of information.10 Although the model is formulated here exclusively as a

9Looking forward to Section 3.6, this WFSA would be composed onto the cascade in front of
the FST W that maps positions to words. It is also not unreasonable to throw away this distortion
model and rely on B and C to provide adequate models of reordering.

10This model, and some of the other work of the dissertation, appeared in Eisner and Tromble
(2006).
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reordering model, it can also be considered a translation model, because the finite-
state component can be a transducer. The components are:

A: a weighted finite-state acceptor (WFSA),

B: a linear ordering problem matrix, and

C: a three-dimensional cost matrix scoring triples of indices, analogous to the linear
ordering problem, and detailed in Section 3.7.

Each of these models assigns a value to every permutation π ∈ Πn, where n is the
length in words11 of the source sentence. The score of a permutation under this ABC
model is A(π) +B(π) + C(π).

The weighted acceptor A has Σ = {1, 2, . . . , n}. It would be awkward and ineffi-
cient to limit A to accepting Πn—assigning weight 0̄ to Σ∗\Πn. Instead, it is practical
to allow A to accept any string and to restrict the search algorithms to consider only
permutations.

Section 3.5 describes how to encode translation models as weighted finite-state
transducers (WFSTs). In order to convert such a transducer into a finite-state accep-
tor whose language is Πn, compose on the source side with an unweighted one-state
transducer W that maps source language positions to the words that occupy those
positions, then project the resulting transducer to its (weighted) input language to
get A. The weight A assigns to a permutation π is then identical to the weight of the
best path through the transducer that has W (π) as its input.12

To perform translation, first search for the best ordering π∗—finding the best
permutation is NP-complete in general under each of these models separately, so
some non-optimal search, such as Section 2.5 described, is necessary for efficiency.
Given some good permutation π̂, find the best transduction of π̂ by the WFST from
which A was derived.

The trick here is that the projection of the WFST onto A, assuming a max-based
semiring, assigns the same weight to a permutation π as the WFST assigns to the pair
of strings W (π) and its best translation. In a sense, A looks ahead to the transduction
step without actually performing it.

The problem of finding the best permutation according to A(π) is related to
classical path algorithms. If A has the structure of a bigram language model, then
there is a one-to-one correspondence between the states of A and the items in the
permutation. In this case, because a permutation necessarily visits each state once,
finding the best permutation is a weighted Hamiltonian path problem, a close relative
of the traveling salesman problem.

11For some languages, the word may not be the appropriate unit for reordering. This dissertation
uses word for transparency, where token or some other concept might be more appropriate.

12Here, W (π) means the unique string to which the unweighted transducer W maps the permu-
tation π.
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In general, however, the automaton A has unlabeled nodes and only edges labeled
with indices, corresponding to the words of the source sentence. The problem is to
find a path through A that traverses exactly one edge labeled with each index, and
an arbitrary number of edges labeled ε, the empty string.

The B model is the primary focus of this dissertation. The linear ordering problem
is the topic of Chapter 2, while Chapter 4, particularly Section 4.4, describes models
for generating LOP matrices from source language sentences. Both the B model and
specific instances of the A model have been extensively studied on their own, but
never before in combination.

The C model remains speculative—the experiments this chapter reports do not
use it at all. Still, it is worth considering here briefly. Section 3.7 discusses it.

3.6.1 Discussion

The A model, because it is finite-state, is best suited to modeling the local struc-
ture of the permutation. It is the logical place to incorporate an n-gram target
language model, as well as noisy-channel reordering models like those presented in
Section 3.3. That is, most of those models predict what happens to adjacent words
or phrases, and the A model sees what is adjacent in the target language, therefore
reordering models that predict source given target are appropriate.

The B model, on the other hand, pays no attention to adjacency, but only con-
siders relative ordering. It can incorporate some of the reordering models from Sec-
tion 3.3 in the source-to-target direction, though not those that predict specific dis-
tances. B can incorporate such predictions not just for adjacent words in the source
sentence, but for all pairs of words.

One limitation of the B model is that it doesn’t pay attention to phrases. If a
phrase segmentation is given, as with the segment choice model of Kuhn et al. (2006),
then the phrases can act as the units of movement, instead of words. However, if the
phrase segmentation is non-deterministic, as in standard phrase-based translation,
then B leaves phrase coherency to the A model.

It is possible, though, to introduce additional indices into the permutation corre-
sponding to, e.g., phrase brackets in the source sentence. Eisner and Tromble (2006)
proposed symbols such as [NP4 and ]NP4 for indicating the endpoints of the fourth
noun phrase in the sentence. The following additions to the B matrix would be
appropriate:

• The score for moving the right bracket before its corresponding left bracket
should be a large negative value, even −∞.

• Likewise the score for moving a word from within the phrase either before the left
bracket or after the right bracket. However, this need not be a hard constraint.

102



• Words outside the phrase that should reorder with respect to it can use the
phrase brackets as reference points—moving before the phrase means moving
before the left bracket, and moving after the phrase means moving after the
right bracket.

Unless this system can accommodate some nondeterminism, it is just a more expensive
way of accomplishing the word-to-phrase transformation mentioned above. Therefore,
allowing words to move outside their phrases at some cost is a reasonable possibility.
That cost should derive from features of the phrase, including the confidence of the
parser that bracketed it.

One potentially important difference between the B model and many of the re-
ordering models of Section 3.3 is that the B model is capable of assigning a distinct
score to every possible permutation of the source sentence. Some of those models can
accomplish the same thing by considering the probability in both source-to-target and
target-to-source directions. Nonetheless, if a pair of words or phrases is adjacent in
neither the source nor the target ordering, then most of the models described above
only “care” about that pair via second-order effects. The B model considers their
relative order directly.

For example, the verb and its object noun may be separated in both the source
and target sentence by other words, including adverbs or other parts of the noun
phrase, such as adjectives. Nonetheless, English order will usually require the verb
to precede that noun. The B model can account for this with an appropriate matrix
entry.

3.7 Cyclic Costs

This section details the C model, novel to Eisner and Tromble (2006). Given an
n× n× n table C, define C(π) as follows:

C(π)
def
=

n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

C[πi, πj, πk]. (3.16)

This is an analog of the linear ordering problem definition (2.2), scoring ordered triples
instead of pairs.

Remarkably, the efficient dynamic programming of Chapter 2 goes through for
the C model if the table satisfies a special cyclic structure:13

C[πi, πj, πk] = C[πj, πk, πi] = C[πk, πi, πj]. (3.17)

While this is certainly not as general as an unconstrained table, it still provides a
potentially useful distinction—even permutations of i, j, and k receive one score,

13The appendix of Eisner and Tromble (2006) works around this constraint by adding additional
symbols to the permutation.
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while odd permutations receive a different score. Further, in conjunction with the B
model, there are a total of four score differences to manipulate for each triple. This
is not as general as the six possible scores in an unconstrained C model, but the
efficiency gained may be worth the compromise.

The four score differences for each triple i, j, k are:

C[πi, πj, πk]− C[πk, πj, πi],
B[πi, πj]−B[πj, πi],
B[πi, πk]−B[πk, πi], and
B[πj, πk]−B[πk, πj].

These four differences allow (B+C)(π) to differentiate between different even and odd
permutations of πi, πj, and πk. For example, the difference between (B+C)(πi πj πk)
and (B + C)(πk πi πj) is

(B[πi, πk]−B[πk, πi]) + (B[πj, πk]−B[πk, πj]) .

Because each B model difference is shared by Θ(n) triples, though, combining B
with a cyclicly-constrained C model is still far from approximating an unconstrained
C model, in general.

The reason for the cyclicity requirement is that, at the time that the span (i, j) is
combined with the span (j, k), the relative order of every ` ∈ (i, j) and every r ∈ (j, k)
is known. (This was the insight for the linear ordering problem.) The relative order
of every o ∈ (0, n) \ (i, k) with respect to ` and r, on the other hand, is unknown—it
could be o ≺ `, r or `, r ≺ o. However, if the table has the cyclic property (3.17),
then those scores are the same.

The grammar weights associated with the C score are defined as follows:

→
γ i,j,k

def
=

j∑
`=i+1

k∑
r=j+1

(
i∑

o=1

C[πo, π`, πr] +
n∑

o=k+1

C[π`, πr, πo]

)
(3.18)

←
γ i,j,k

def
=

j∑
`=i+1

k∑
r=j+1

(
i∑

o=1

C[πo, πr, π`] +
n∑

o=k+1

C[πr, π`, πo]

)
(3.19)

Figure 3.3 shows a modification of the dynamic program from Figure 2.26 on page 48
that computes the value C(π) instead of B(π). Include the B[·, ·] terms from Fig-
ure 2.26 to compute B(π) + C(π) simultaneously.

This dynamic program appears to increase the complexity of the one for B—it
computes Θ(n3) quantities, and each appears to require three Θ(n) sums to compute
its value. Fortunately, the three sums on the right hand side are analogous to B
matrix entries—there are only Θ(n2) of them. Each can be computed in Θ(n) time
during preprocessing, and the results stored in a matrix. This optimization keeps the
total runtime at Θ(n3).

104



→
γ i,i,k = 0
→
γ i,k,k = 0
→
γ i,j,k =

→
γ i,j,k−1 +

→
γ i+1,j,k −

→
γ i+1,j,k−1

−
k−1∑

m=i+2

C[πi+1, πm, πk] +
i∑

`=1

C[π`, πi+1, πk] +
n∑

r=k+1

C[πi+1, πk, πr]

←
γ i,i,k = 0
←
γ i,k,k = 0
←
γ i,j,k =

←
γ i,j,k−1 +

←
γ i+1,j,k −

←
γ i+1,j,k−1

−
k−1∑

m=i+2

C[πk, πm, πi+1] +
i∑

`=1

C[π`, πk, πi+1] +
n∑

r=k+1

C[πk, πi+1, πr]

Figure 3.3: A dynamic program for computing grammar rule weights under the C
model. These equations rely on the cyclic property (3.17) for correctness.

Theorem 3.1 Let T be a binary permutation tree expressing the permutation π. If
each in-order node in T combining (i, j) and (j, k) to span (i, k) receives the score
(3.18), and each reverse node in T combining (i, j) and (j, k) to span (i, k) receives
the score (3.19), then the sum of the scores of all nodes in the tree is C(π), assuming
C has the cyclic property (3.17).

The proof is more complex than the corresponding proof for the LOP Theorem 2.1
because the grammar scores include items outside their spans.

Proof: C(π) is the sum over all ordered triples ` ≺ m ≺ r in π of C[`,m, r]. It
suffices to show that each such table entry is included in exactly one grammar score.

Each internal node in the tree covers some span (i, k) and combines two child spans
(i, j) and (j, k). If (i, j) and (j, k) are kept in order, then the grammar score for (i, k)

is
→
γ i,j,k, which includes all table costs of the form C[` ∈ (i, j),m ∈ (j, k), r 6∈ (i, k)].

If (i, j) and (j, k) are reversed, then the grammar score is
←
γ i,j,k, which includes all

table costs of the form C[` ∈ (j, k),m ∈ (i, j), r 6∈ (i, k)]. It further suffices to show
that for each triple ` ≺ m ≺ r, there is exactly one node in the tree such that one of
`,m, r is in the span (i, j) of its left child, one is in the span (j, k) of its right child,
and one is outside its span (i, k).

For every triple ` ≺ m ≺ r in π, there is a minimal node governing both ` and
m—call it L—and a different minimal node governing both m and r—call it R. L
and R cannot be the same node, because m falls between ` and r in the permutation.
Therefore, either L governs R, or vice versa.
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Suppose L governs R. Then call the span of R (i, k), the span of its left child
(i, j), and the span of its right child (j, k). Either m ∈ (i, j), r ∈ (j, k), and R is
in-order, or m ∈ (j, k), r ∈ (i, j), and R is reversed. In the first case, the score at R

is
→
γ i,j,k, which includes either C[`,m, r] or C[m, r, `], equal by the assumption of the

cyclic property. In the second case, the score at R is
←
γ i,j,k, which includes one of the

same two scores.
Suppose R governs L. Then call the span of L (i, k), the span of its left child

(i, j), and the span of its right child (j, k). Either ` ∈ (i, j), m ∈ (j, k), and L is
in-order, or ` ∈ (j, k), m ∈ (i, j), and L is reversed. In the first case, the score at L

is
→
γ i,j,k, which includes either C[r, `,m] or C[`,m, r], equal by the assumption of the

cyclic property. In the second case, the score at L is
←
γ i,j,k, which includes one of the

same two scores.
Therefore, there exists a unique node whose grammar score includes a score equal

to C[`,m, r], and the sum of all grammar scores in T is C(π). �

3.8 Reordered Source Language

One prior approach to reordering for machine translation involves preprocessing
the source language to make it easier to translate into the target language, but to
continue to use standard tools for the actual translation step. Xia and McCord (2004)
improved English to French translation using syntactic rewrite rules derived from
Slot Grammar parses. Costa-jussà and Fonollosa (2006) improved Spanish-English
and Chinese-English translation using a two-step translation process. The first step
used the same translation models as the second step, but merely reordered the source
language words.

Collins, Koehn, and Kučerová (2005) reported an improvement from 25.2% to
26.8% BLEU score on German-English translation using six different hand-written
rules to reorder German sentences using automatically generated phrase-structure
parse trees. This section reports the results of similar experiments using fully auto-
matic reordering models that build instances of the linear ordering problem for each
source language sentence based on automatically assigned part of speech tags.

3.8.1 Word Alignment

The first experiment uses an oracle English ordering for the German sentences
derived from unweighted symmetrized alignments of parallel sentences in the corpus.
That is, GIZA++ (Och and Ney, 2003) produced lexical alignments for both the
German-English and the English-German translation direction, and those were com-
bined using the “grow-diag-final” heuristic. Figure 3.4 shows an example of such an
alignment.

The oracle English ordering was derived from these alignments as follows:
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that can i thus from the position not say

Das kann ich so aus dem Stand nicht sagen .

I cannot say anything at this stage .

[Das ich so] [kann nicht] sagen Stand aus dem .

Figure 3.4: An automatically-generated alignment. Links shown with dashed lines
are poor alignments. The German′ derived under Oracle 1 for this sentence appears
below the English. Square brackets indicate multiple German words with the same
left-most English alignment.

• Each German word was mapped to the position of the leftmost English word
to which it was aligned.

• If a German word was not aligned to any English word, it was mapped to the
position to the left of all other German words.

• Ties were broken by preserving left-to-right order of the German, so that if two
German words were both mapped to the same English position, the one that
occurred earlier in the German sentence also occurred first in English order.

This is similar to the oracle ordering used by Al-Onaizan and Papineni (2006). In
their scheme, which puts the target-language sentence in source-language order,

If a target word is not aligned, then, we assume that it is aligned to the
same source word that the preceding aligned target word is aligned to.

The second experiment used an oracle English ordering derived from alignments
computed in only one direction, from English to German, with null alignments disal-
lowed, so that the alignment was many-to-one in the German-to-English direction.

• Each German word was mapped to the position of the unique English word to
which it was aligned.

• Ties were broken by preserving left-to-right order of the German words.

A third experiment used alignments computed using the BerkeleyAligner. This
produced different alignments from GIZA++, but the procedure for constructing an
English order was identical to Oracle 2. These alignments also disallowed nulls, so
that every German word had at least one corresponding English word.
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3.8.2 Corpus

The experiments in this section began with the training section of the German-
English portion of the Europarl corpus (Koehn, 2005), consisting of 751,088 sentence
pairs. From this were extracted two random samples of size 2000 sentence pairs
each for use as a development corpus and an evaluation corpus, respectively. The
remaining 747,088 sentences comprise the training set.

3.8.3 Method

Given a linear model, as in (2.3), from which to construct a linear ordering problem
for each German sentence, the experiments of this section use the following procedure:

1. Reorder each training, development, and evaluation sentence using search for
the linear ordering problem. Search was limited to the exponential-size neigh-
borhood BlockInsert∗n(In), where In is the identity permutation. See Section
4.12.3 for an explanation of this constraint.

2. Align and extract phrases from the training portion of the reordered data.

3. Tune Moses parameters using minimum error-rate training on the development
portion of the reordered data.

4. Decode the evaluation portion of the corpus using the tuned Moses parameters.

5. Use automatic evaluation to measure the resulting translation performance.

Unless otherwise specified, Moses used standard settings, including a bi-directional
lexicalized reordering model and a distortion limit of 6. Some of the experiments used
a distance-based reordering model.

3.8.4 Results

Table 3.3 shows the phrase table size and translation performance for different
German orderings. The first section is the original German, the second section used
models learned via the techniques of Chapter 4, and the remainder are oracle or-
derings as described in Section 3.8.1. The BLEU score improvements between the
original German and reordering using the LOP model, though apparently small, are
statistically significant according to the tests described in Section A.2 of Appendix A.

Additionally, it is worth observing that translating LOP POS 1 with the simple
distance-based reordering within Moses outperforms the translation of unreordered
German using a lexicalized reordering model in Moses. This BLEU score difference
is also significant according to both the sign and paired permutation tests.

The phrase table statistics are interesting in their own right. Moses extracts
a phrase consisting of German words gi–gj and English words ek–e` only if all the
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Source Order |Phrase Table| Reordering BLEU METEOR TER
German 32,746,913 Distance 25.27 54.03 60.60

Lexical 25.55 54.18 59.76
LOP POS 1 35,948,638 Distance 26.03 54.62 59.39

Lexical 26.25 54.49 59.67
LOP POS 2 35,991,596 Lexical 26.35 54.66 59.39
LOP POS+Word 2 36,888,806 Lexical 26.44 54.61 59.23
LOP POS+Word 3 36,417,828 Lexical 26.10 54.42 59.68
Oracle 1 44,463,584 Distance 32.96 57.67 50.72

Lexical 32.86 57.61 51.05
Oracle 2 44,457,955 Lexical 32.16 57.40 52.23
Oracle 3 47,476,788 Lexical 34.70 57.88 53.96

Table 3.3: German-English translation performance and other statistics of several
systematic reorderings. Higher BLEU and METEOR and lower TER is better. For
the LOP models, the second part of the name is the feature sets, and the number
corresponds to the oracle used for training.

alignments of words in the German side are to words in the English side, and vice
versa. The closer the alignments become to monotone, the more phrases satisfy this
requirement. Hence the more phrases, by token, Moses finds to extract.

The sizes of the tables as given, though, is in terms of types—the number of
distinct phrase pairs. To some extent, normalization of word order might be expected
to reduce the number of phrase types. It is not clear whether this happens as well.
Figure 3.5 shows phrase lengths for several reorderings.

Oracle 2 was intended to overcome the problem of null-aligned words faced by
Oracle 1. Table 3.3 shows that this oracle ordering is not as good as the original
oracle, across all three evaluation measures. This is probably related to the fact that
the alignments are only computed in one direction. However, the LOP model trained
using Oracle 2 rather than Oracle 1 performs better, again according to all three
measures. This suggests that though Oracle 1 is itself a better ordering, it is harder
to learn than Oracle 2, which is closer to the original German ordering, according to
monolingual BLEU.

The difference between the BLEU scores of Oracle 1 and Oracle 2 using the lexi-
calized reordering model, from 32.86 to 32.16, is significant at p < 0.01 according to
both the paired permutation test and the sign test. The difference between the LOP
models, from 26.25 to 26.35, is not significant at p < 0.05 according to either test.

Table 3.4 shows the five sentences that improve the BLEU score most when the
translated German is replaced by translated German′ from the LOP POS 2 model.
Table 3.6 shows the corresponding German, and the reordered German′. Similarly,
Table 3.7 shows the five with the largest negative effect, and Table 3.9 shows their
corresponding German.
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Figure 3.5: Count of phrases by length in phrase tables derived from different
reorderings.
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zu
to

VVINF

widerlegen
refute

$,

,
,

KOUS

daß
that

APPR

in
in

ART

der
the

NN

Mitgliedstaaten
member states

ART

das
the

ADJA

Schlechte
bad

APPR

aus
from

NE

Brüssel
brussels

VVFIN

kommt
comes

KON

und
and

ART

das
the

NN

Gute
good

ART

ein
an

NN

Werk
act

ART

der
of the

NN

Regierung
government

VAFIN

ist
is

$.

.
.

Table 3.5: The original German of the five best preprocessed sentences, with auto-
matically assigned parts of speech and English gloss.
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G
er

m
an

d
ie

ko
m

m
is

si
on

h
at

m
eh

re
re

ve
rs

u
ch

e
zu

r
ve

rb
es

se
ru

n
g

d
er

ko
or

d
in

ie
ru

n
g

d
er

eu
ro

p
äi

sc
h
en

u
n
io

n
u
n
d

d
er

w
äh

ru
n
gs

u
n
io

n
u
n
te

rn
om

m
en

,
u
m

d
as

p
ro

b
le

m
d
er

au
ße

n
ve

rt
re

tu
n
g

im
in

te
rn

at
io

n
al

en
w

äh
ru

n
gs

fo
n
d
s

zu
lö

se
n
.

G
er

m
an
′

d
ie

ko
m

m
is

si
on

h
at

m
eh

re
re

ve
rs

u
ch

e
zu

r
ve

rb
es

se
ru

n
g

d
er

ko
or

d
in

ie
ru

n
g

d
er

eu
ro

p
äi

sc
h
en

u
n
io

n
u
n
d

d
er

w
äh

ru
n
gs

u
n
io

n
u
n
te

rn
om

m
en

,
u
m

zu
lö

se
n

d
as

p
ro

b
le

m
d
er

au
ße

n
ve

rt
re

tu
n
g

im
in

te
rn

at
io

n
al

en
w

äh
ru

n
gs

fo
n
d
s.

G
er

m
an

h
er

r
p
rä

si
d
en

t,
ic

h
m

öc
h
te

zu
n

äc
h
st

m
ei

n
e

b
ef

ri
ed

ig
u
n
g

ü
b

er
d
en

b
er

ic
h
t

zu
d
en

st
ab

il
it

ät
s-

u
n
d

ko
n
ve

rg
en

-
zp

ro
gr

am
m

en
au

sd
rü

ck
en

,
d
en

h
er

r
ka

ti
fo

ri
s

au
f

in
it

ia
ti

ve
d
es

p
ar

la
m

en
ts

au
sg

ea
rb

ei
te

t
h
at

.
G

er
m

an
′

h
er

r
p
rä

si
d
en

t,
ic

h
m

öc
h
te

zu
n
äc

h
st

a
u
sd

rü
ck

e
n

m
ei

n
e

b
ef

ri
ed

ig
u
n
g

ü
b

er
d
en

b
er

ic
h
t

zu
d
en

st
ab

il
it

ät
s-

u
n
d

ko
n
ve

rg
en

zp
ro

gr
am

m
en

,
d
en

h
er

r
ka

ti
fo

ri
s

a
u
sg

e
a
rb

e
it

e
t

h
a
t

au
f

in
it

ia
ti

ve
d
es

p
ar

la
m

en
ts

.
G

er
m

an
(g

em
äß

ar
ti

ke
l

13
7

ab
sa

tz
1

go
ge

k
ü
rz

te
er

k
lä

ru
n
g

zu
r

ab
st

im
m

u
n
g)

G
er

m
an
′

(e
rk

lä
ru

n
g

zu
r

a
b

st
im

m
u
n
g

ge
m

äß
ar

ti
ke

l
13

7
go

ge
k
ü
rz

te
a
b
sa

tz
1

)
G

er
m

an
d
es

h
al

b
u
n
te

rs
tü

tz
en

u
n
d

b
eg

rü
ße

n
w

ir
d
ie

vo
m

h
au

sh
al

ts
au

ss
ch

u
ß

ei
n
ge

b
ra

ch
te

n
vo

rs
ch

lä
ge

fü
r

ei
n
e

au
fs

-
to

ck
u
n
g

d
es

h
au

sh
al

ts
fü

r
p
ri

n
ce

.
G

er
m

an
′

d
es

h
al

b
w

ir
u
n
te

rs
tü

tz
en

u
n
d

b
eg

rü
ße

n
d
ie

ei
n
ge

b
ra

ch
te

n
vo

rs
ch

lä
ge

v
o
m

h
a
u
sh

a
lt

sa
u
ss

ch
u
ß

fü
r

ei
n
e

au
fs

to
ck

u
n
g

d
es

h
au

sh
al

ts
fü

r
p
ri

n
ce

.
G

er
m

an
ic

h
gl

au
b

e,
h
er

r
p
rä

si
d
en

t,
d
aß

es
n
ic

h
t

n
u
r

d
ar

u
m

ge
h
t,

d
ie

vo
rs

te
ll
u
n
g

zu
w

id
er

le
ge

n
,

d
aß

in
d
en

m
it

gl
ie

d
-

st
aa

te
n

d
as

sc
h
le

ch
te

au
s

b
rü

ss
el

ko
m

m
t

u
n
d

d
as

gu
te

ei
n

w
er

k
d
er

re
gi

er
u
n
g

is
t.

G
er

m
an
′

ic
h

gl
au

b
e,

h
er

r
p
rä

si
d
en

t,
d
aß

es
n
ic

h
t

n
u
r

d
ar

u
m

ge
h
t,

zu
w

id
e
rl

e
g
e
n

d
ie

vo
rs

te
ll
u
n
g,

d
aß

in
d
en

m
it

-
gl

ie
d
st

aa
te

n
d
as

sc
h
le

ch
te

k
o
m

m
t

au
s

b
rü

ss
el

u
n
d

d
as

gu
te

is
t

ei
n

w
er

k
d
er

re
gi

er
u
n
g.

T
ab

le
3.

6:
T

h
e

G
er

m
an

si
d
e

of
th

e
fi
ve

b
es

t
p
re

p
ro

ce
ss

ed
se

n
te

n
ce

s.
B

ol
d

in
d
ic

at
es

re
or

d
er

ed
w

or
d
s.
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G
erm

an
.

(sv
)

w
e

h
ave

to
d
ay

voted
again

st
th

e
eu

rop
ean

p
arliam

en
t’s

rep
ort

on
th

e
ad

op
tion

of
a

n
ew

statu
te

for
m

em
b

ers
voted

in
favou

r,
h
ow

ever,
w

ith
294

votes
to

171
votes

again
st

an
d

ab
sten

tion
s

59.
G

erm
an
′

-
(sv

)
w

e
h
ave

voted
again

st
th

e
rep

ort
b
y

th
e

eu
rop

ean
p
arliam

en
t

voted
for

th
e

ad
op

tion
of

a
n
ew

statu
te

for
m

em
b

ers,
h
ow

ever,
w

ith
th

e
294

votes
to

171
votes

again
st

an
d

ab
sten

tion
s

59,
h
as

b
een

ad
op

ted
.

R
eferen

ce
.

(sv
)

w
e

h
ave

to
d
ay

voted
again

st
th

e
eu

rop
ean

p
arliam

en
t’s

rep
ort

on
a

n
ew

statu
te

for
m

em
b

ers,
w

h
ich

w
as

h
ow

ever
ap

p
roved

b
y

294
votes,

w
ith

171
again

st
an

d
59

ab
sten

tion
s.

G
erm

an
i

su
p
p

ort
th

e
com

m
ission

’s
fram

ew
ork

p
rogram

m
e

to
com

b
at

traffi
ck

in
g

in
h
u
m

an
b

ein
gs,

w
h
ose

ob
jective

in
th

e
con

stru
ction

of
an

eff
ective

ju
d
icial

co
op

eration
in

th
e

eu
rop

ean
u
n
ion

.
G

erm
an
′

i
su

p
p

ort
th

e
fram

ew
ork

p
rogram

m
e

th
e

com
m

ission
on

com
b
atin

g
traffi

ck
in

g
in

h
u
m

an
b

ein
gs,

w
h
ose

aim
is

to
b
u
ild

an
eff

ective
ju

d
icial

co
op

eration
in

th
e

eu
rop

ean
u
n
ion

.
R

eferen
ce

i
su

p
p

ort
th

e
com

m
ission

’s
fram

ew
ork

p
rogram

m
e

to
com

b
at

traffi
ck

in
g

in
h
u
m

an
b

ein
gs;

th
e

aim
is

to
d
evelop

eff
ective

ju
d
icial

co
op

eration
across

th
e

eu
rop

ean
u
n
ion

.
G

erm
an

let
m

e
com

e
to

a
fi
n
al

p
oin

t,
th

e
im

p
roved

co
ord

in
ation

b
etw

een
th

e
d
evelop

m
en

t
co

op
eration

p
olicy

an
d

th
e

ex
tern

al
asp

ects
of

th
e

com
m

on
fi
sh

eries
p

olicy
is

con
cern

ed
.

G
erm

an
′

let
m

e
tu

rn
to

a
last

p
oin

t,
th

e
im

p
roved

co
ord

in
ation

b
etw

een
th

e
p

olicy
of

co
op

eration
an

d
th

e
ex

tern
al

asp
ects

of
th

e
com

m
on

fi
sh

eries
p

olicy.
R

eferen
ce

let
m

e
com

e
to

a
fi
n
al

p
oin

t,
w

h
ich

con
cern

s
im

p
roved

co
ord

in
ation

b
etw

een
d
evelop

m
en

t
co

op
eration

p
olicy

an
d

th
e

ex
tern

al
asp

ects
of

th
e

com
m

on
fi
sh

eries
p

olicy.
G

erm
an

i
b

elieve
th

at
th

e
vast

m
a
jority

of
th

e
m

em
b

ers
of

th
is

p
arliam

en
t

also
w

an
ts

th
e

com
m

ission
to

ap
p

eal
again

st
th

is
sh

o
ck

in
g

d
ecision

.
G

erm
an
′

i
b

elieve
th

at
th

e
great

m
a
jority

of
th

e
m

em
b

ers
of

th
is

p
arliam

en
t

th
at

th
e

com
m

ission
ap

p
oin

tm
en

t
p
ro

ced
u
re

again
st

th
is

sh
o
ck

in
g

d
ecision

.
R

eferen
ce

i
b

elieve
th

at
th

e
vast

m
a

jority
of

m
em

b
ers

of
th

is
p
arliam

en
t

w
ou

ld
w

ish
th

e
com

m
ission

to
ap

p
eal

again
st

th
is

sh
o
ck

in
g

d
ecision

.
G

erm
an

w
h
at

eu
rob

on
d
s

is
con

cern
ed

,
w

e
agree

w
ith

th
e

rap
p

orteu
r’s

id
ea

to
ex

em
p
t

eu
rob

on
d
s

w
ith

a
h
igh

m
in

-
d
eststü

ckelu
n
g,

b
u
t

w
e

con
sid

er
th

e
p
rop

osed
valu

e
of

eu
r

50
000

is
to

o
low

.
G

erm
an
′

as
far

as
th

e
eu

rob
on

d
s

is
con

cern
ed

,
w

e
agree

w
ith

th
e

rap
p

orteu
r’s

id
ea

of
eu

rob
on

d
s,

w
ith

a
h
igh

m
in

-
d
eststü

ckelu
n
g

ex
clu

d
e,

b
u
t

w
e

feel
th

at
th

e
p
rop

osed
valu

e
of

eu
r

50
000

for
to

o
low

.
R

eferen
ce

as
regard

s
eu

rob
on

d
s

w
e

agree
w

ith
th

e
rap

p
orteu

r’s
id

ea
to

ex
em

p
t

eu
rob

on
d
s

w
ith

a
h
igh

m
in

im
u
m

d
en

om
in

ation
b
u
t

w
e

con
sid

er
th

at
th

e
level

p
rop

osed
-

eu
r

50,000
-

is
to

o
low

.

T
ab

le
3.7:

T
h
e

fi
ve

w
orst

p
rep

ro
cessed

sen
ten

ces.
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ART

.
.

$*LRB*

(
(

NN

SV
sv

$*LRB*

)
)

PPER

Wir
we

VAFIN

haben
have

ADV

heute
today

APPR

gegen
against

ART

den
the

NN

Bericht
report

ART

des
of the

ADJA

Europäischen
european

NN

Parlaments
parliament

APPRART

zur
on the

NN

Annahme
adoption

ART

eines
of a

ADJA

neuen
new

NN

Abgeordnetenstatuts
member statute

VVPP

gestimmt
voted

$,

,
,

PRELS

der
which

ADV

allerdings
however

APPR

mit
with

CARD

294
294

NN

Stimmen
votes

APPR

bei
with

CARD

171
171

XY

Gegenstimmen
against votes

KON

und
and

CARD

59
59

XY

Enthaltungen
abstentions

VVPP

angenommen
approved

VAFIN

wurde
was

$.

.
.

PPER

Ich
i

VVFIN

unterstütze
support

ART

das
the

NN

Rahmenprogramm
framework program

ART

der
of the

NN

Kommission
commision

APPRART

zur
on the

NN

Bekämpfung
combat

ART

des
of the

NN

Menschenhandels
human trafficking

$,

,
,

PRELAT

dessen
whose

NN

Ziel
aim

APPRART

im
in the

NN

Aufbau
development

ART

einer
a

ADJA

wirksamen
effective

ADJA

justiziellen
judicial

NN

Zusammenarbeit
cooperation

APPR

in
in

ART

der
the

ADJA

Europäischen
european

NN

Union
union

VVFIN

besteht
exists

$.

.
.

VVIMP

Lassen
let

PPER

Sie
you

PRF

mich
me

APPR

zu
to

ART

einem
a

ADJA

letzten
final

NN

Punkt
point

VVINF

kommen
come

$,

,
,

PRELS

der
which

ART

die
the

ADJA

verbesserte
improved

NN

Koordinierung
coordination

APPR

zwischen
between

ART

der
the

NN

Politik
policy

ART

der
of the

NN

Entwicklungszusammenarbeit
development cooperation

KON

und
and

ART

den
the

ADJA

externen
external

NN

Aspekten
aspects

ART

der
of the

ADJA

gemeinsamen
common

NN

Fischereipolitik
fisheries policy

VVFIN

betrifft
concerns

$.

.
.

PPER

Ich
i

VVFIN

glaube
believe

$,

,
,

ART

die
the

ADJA

große
vast

NN

Mehrheit
majority

ART

der
of the

NN

Abgeordneten
members

PDAT

dieses
of this

NN

Parlaments
parliament

VVFIN

wünscht
wish

$,

,
,

KOUS

daß
that

ART

die
the

NN

Kommission
commission

NN

Berufung
appeal1

APPR

gegen
against

PDAT

diese
this

ADJA

schockierende
shocking

NN

Entscheidung
decision

VVFIN

einlegt
appeal2

$.

.
.

PWS

Was
what

ART

die
the

NN

Eurobonds
eurobonds

VVFIN

betrifft
regards

$,

,
,

ADV

so
VVFIN

stimmen
agree1

PPER

wir
we

ART

dem
the

NN

Gedanken
idea

ART

des
of the

NN

Berichterstatters
rapporteur

PTKVZ

zu
agree2

$,

,
,

ADJD

Eurobonds
eurobonds

APPR

mit
with

ART

einer
a

ADJA

hohen
high

NN

Mindeststückelung
minimum denomination

VVIZU

auszunehmen
exempt

$,

,
,

KON

aber
but

PPER

wir
we

VVFIN

halten
hold

ART

den
the

ADJA

vorgeschlagenen
proposed

NN

Wert
value

CARD

50
50

CARD

000
000

NN

Euro
euro

APPR

für
for

PTKA

zu
too

ADJD

gering
low

$.

.
.

Table 3.8: The original German of the five worst preprocessed sentences, with auto-
matically assigned parts of speech and English gloss.
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G
erm

an
.

(sv
)

w
ir

h
ab

en
h
eu

te
gegen

d
en

b
erich

t
d
es

eu
rop

äisch
en

p
arlam

en
ts

zu
r

an
n
ah

m
e

ein
es

n
eu

en
ab

ge-
ord

n
eten

statu
ts

gestim
m

t
,

d
er

allerd
in

gs
m

it
294

stim
m

en
b

ei
171

gegen
stim

m
en

u
n
d

59
en

th
altu

n
gen

an
gen

om
m

en
w

u
rd

e.
G

erm
an
′
w

ir
h

a
b

e
n

.
(sv

)
h
eu

te
gegen

d
en

b
erich

t
d
es

eu
rop

äisch
en

p
arlam

en
ts

g
e
stim

m
t

zu
r

an
n
ah

m
e

ein
es

n
eu

en
ab

geord
n
eten

statu
ts,

d
er

allerd
in

gs
m

it
294

stim
m

en
b

ei
171

gegen
stim

m
en

u
n
d

59
en

th
altu

n
gen

an
gen

om
m

en
w

u
rd

e.
G

erm
an

ich
u
n
terstü

tze
d
as

rah
m

en
p
rogram

m
d
er

kom
m

ission
zu

r
b

ek
äm

p
fu

n
g

d
es

m
en

sch
en

h
an

d
els,

d
essen

ziel
im

au
fb

au
ein

er
w

irk
sam

en
ju

stiziellen
zu

sam
m

en
arb

eit
in

d
er

eu
rop

äisch
en

u
n
ion

b
esteh

t.
G

erm
an
′

ich
u
n
terstü

tze
d
as

rah
m

en
p
rogram

m
d
er

kom
m

ission
zu

r
b

ek
äm

p
fu

n
g

d
es

m
en

sch
en

h
an

d
els,

d
essen

ziel
im

au
fb

au
b

e
ste

h
t

ein
er

w
irk

sam
en

ju
stiziellen

zu
sam

m
en

arb
eit

in
d
er

eu
rop

äisch
en

u
n
ion

.
G

erm
an

lassen
sie

m
ich

zu
ein

em
letzten

p
u
n
k
t

kom
m

en
,

d
er

d
ie

verb
esserte

ko
ord

in
ieru

n
g

zw
isch

en
d
er

p
olitik

d
er

en
tw

ick
lu

n
gszu

sam
m

en
arb

eit
u
n
d

d
en

ex
tern

en
asp

ek
ten

d
er

gem
ein

sam
en

fi
sch

ereip
olitik

b
etriff

t.
G

erm
an
′

lassen
sie

m
ich

k
o
m

m
e
n

zu
ein

em
letzten

p
u
n
k
t,

d
er

d
ie

verb
esserte
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ü
n
sch

t
d
er

ab
geord

n
eten

d
ieses

p
arlam

en
ts,

d
aß

d
ie

kom
m

ission
b

eru
fu

n
g

e
in

le
g
t

gegen
d
iese

sch
o
ck

ieren
d
e

en
tsch

eid
u
n
g.

G
erm

an
w

as
d
ie

eu
rob

on
d
s

b
etriff

t,
so

stim
m

en
w

ir
d
em

ged
an

ken
d
es

b
erich

terstatters
zu

,
eu

rob
on

d
s

m
it

ein
er

h
oh

en
m

in
d
eststü
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Some consistent patterns appear in the German′:

• wir moves to precede neighboring verbs, and

• verbs such as lösen, ausdrücken, etc., move from clause final position into an
appropriate SVO ordering, as does the separable prefix zu in the last sentence
of Table 3.9, although it would be better prefixed to stimmen.

In fact, some of the reorderings in Table 3.9 are appropriate, despite the fact that
they lead to lower BLEU.

This output suggests that, to a large extent, the models Chapter 4 is learning are
doing the right thing, even if that doesn’t always reflect in the automatic translation
measures. There are many possible reasons for this, related to what happens to the
reordered German once it is handed to Moses for translation.

• Short-distance reordering is unlikely to help, because the phrase table can han-
dle it directly, particularly for common phrases where alignments are likely to
be good.

• Reordering may lead to different lexical choice, which may sometimes inciden-
tally result in lower BLEU scores.

• Some reordering may move the right words to the wrong places, resulting in
better word order that is nonetheless incorrect.

The next section goes beyond preprocessing, proposing some methods for inte-
grating the linear ordering problem into the decoding process.

3.9 Exact Algorithms

Figure 3.6 gives a grammar in terms of states in the automaton A to adapt VLSN
search using permutation tree parsing to the ABC model of Section 3.6. B(π) +C(π)
can be handled using the grammars of Sections 2.8 and 3.7, but A(π) complicates
things. In addition to computing the score of the permutation, the grammar must
ensure that the score comes from a valid path through the automaton, beginning at
the distinguished initial state and ending at some final state.

Including A(π) requires only two changes to the grammar scores:

• Rules of the form S → S0,n,i f score F (f).

• Rules of the form Si−1,i,q r → πi score δ(q, r, πi).

Chapter 2 assumes that weights are added during parsing. This requires that the
semiring of the automaton has an extend operator ⊗ ≡ +. Further, the algo-
rithms perform score maximization, so it is appropriate for the semiring to be 〈R ∪
−∞,max,+,−∞, 0〉. This is the negation of the tropical semiring.
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S → S0,n,i f , ∀f ∈ Q, F (q) 6= 0̄

Si,k,q s → Si,j,q r Sj,k,r s

Si,k,q s → Sj,k,q r Si,j,r s, ∀(i, j, k) ∈
(
n+1

3

)
, q, r, s ∈ Q

Si−1,i,q r → πi, ∀i ∈ (0, n), δ(q, r, πi) 6= 0̄

Figure 3.6: A grammar for generating permutations as paths through an automaton.
S is the start symbol of the grammar. The WFSA is as in Definition 3.4. The
grammar as given does not account for arcs labeled with ε. Either ε-closure in the
pre-terminal rules or ε-removal for the whole acceptor solves this problem.

1 2 3 4 5 6
6 1 4 2 2 3 1 4 i 5 5 6

6 3

4 3

1 3

i 6

i 3

Figure 3.7: An example permutation tree augmented with automaton paths. The
automaton is a simple bigram model, so that any arc accepting symbol a leads to
a state numbered a. State i is a distinguished initial state with only outgoing arcs.
Note that, at reverse nodes, the right child’s path ends at the same state where the
left child’s path begins. The start nonterminal S can rewrite as i  3 (technically
S0,6,i 3) because i is the initial state and 3 is a final state.
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The number of rules in this grammar as written is Θ(n3 |Q|3). If A has the
structure of a bigram language model, then |Q| = Θ(n), and there are Θ(n6) rules,
while if it has the structure of a trigram language model, |Q| = Θ(n2) and there are
Θ(n9) rules.

Huang, Zhang, and Gildea (2005) showed how to speed up Inversion-Transduction
Grammar decoding with an integrated language model by adapting the so-called
“hook trick” of Eisner and Satta (1999). Eisner and Satta’s hook trick for bilexical
parsing converts a single maximization with five variables ranging over positions in
the sentence—O(n5)—into two maximizations with four variables each—O(n4). Both
tricks are examples of folding transformations (Eisner and Blatz, 2007).

Huang et al.’s adapted trick converts ITG decoding with a bigram language model
from O(n7) to O(n6) and with a trigram model from O(n11) to O(n9). Notice that
the grammar of Figure 3.6 already has this faster runtime. Careful inspection reveals
that this is because the grammar rules include the source state of the path through A
accepting their subpermutations. That source state carries the identity of the single
word adjacent to the subpermutation if A is a bigram language model, and the pair
of adjacent words if A is a trigram language model.

Several other innovations have improved the efficiency of decoding algorithms in-
tegrating language models with syntax-based machine translation systems, including
ITG. This chapter touches on some of those in later sections.

Using this grammar, it is possible to perform exact search in the BlockInsert∗

neighborhood of any starting permutation. However, asymptotic runtimes like Θ(n9)
are not very attractive, even for relatively small machine translation problems where n
averages about 25. Further, this analysis ignores the phrase table, which potentially
includes multiple translation candidates for each German word. Moses’ standard
settings allow up to twenty translations for each source phrase.

Section 3.9.1 provides a more careful asymptotic analysis. Section 3.9.2 proposes
an A* procedure to mitigate somewhat the effect of the A(π) model. Section 4.11.4,
in the next chapter, discusses a specialization of the A model that can be computed
efficiently in one neighborhood. Section 3.9.3 abandons the very large-scale neighbor-
hoods and searches using a modification of the Block LSf procedure.

These methods are called exact because they maximize A(π) +B(π) +C(π) over
some neighborhood of the current permutation. They are still subject to search error,
though, because the scope of the neighborhood is limited. Section 3.10 proposes
additional decoding algorithms with fewer search error guarantees.

3.9.1 Asymptotic Analysis

This section performs a more careful asymptotic analysis of the runtime of parsing
with the grammar of Figure 3.6, including the constants on the highest order terms, for
one particular A model—a bigram language model. For sentence lengths encountered
in practice, coarse asymptotic analysis doesn’t tell the whole story. The constants
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involved are sometimes larger than the average n, for example. On the other hand,
the bigram language model is not exactly the model of interest. However, it is easy
to analyze more precisely, and the results may have implications for more interesting
models as well.

A simple bigram model for a sentence of length n, ignoring the question of trans-
lation, has n states, each with n outgoing arcs, one to each state. Only the words in
the sentence are possible in the permutation, so other states and arcs in the language
model are eliminated.

For a single word span (i − 1, i), there are n arcs that could have generated it,
each of the form

q
πi/w−→ qπi .

For a two-word span (i− 1, i+ 1), the end state of the first arc must match the start
state of the second, so, when combined in-order, the second arc must be

qπi
πi+1/w

′

−→ qπi+1
.

There are therefore 2n path types, starting at any state and ending at either qπi or
qπi+1

, depending on the order.
In general, then, for a span of width k, there are kn path types, since a path can

start at any state, but must end with one of the states corresponding to the words in
the span.

When combining two spans (i, i+ k) and (i+ k, i+ k+ `) of widths k and `, there
are kn and `n paths to consider. For each ending state of the first span, there are `
paths in the second span, and for each ending state of the second span, there are k
paths in the first span. Therefore, the number of paths the span (i, i + k + `) must
consider when combining (i, i+ k) and (i+ k, i+ k + `) is (kn)`+ (`n)k = 2k`n.

So, to build (i, i+m), considering all k + ` = m, there are

m−1∑
k=1

2k(m− k)n = 2n

(
m−1∑
k=1

km− k2

)

= 2n

(
m

1

2
Θ(m2)− 1

3
Θ(m3)

)
= 2n

(
1

6
Θ(m3)

)
=

1

3
Θ(n4)

operations per built span.
For Insert∗n, which only combines spans (i, i+1), (i+1, i+m) or (i, i+m−1), (i+

m− 1, i+m), there are

2(1)(m− 1)n+ 2(m− 1)(1)n = 4n(m− 1) = 4 Θ(n2)
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operations per span.

In either case, there are a total of Θ(n2) spans to build, but they are not all the
same size. A tighter analysis is possible, taking the widths of the spans into account.
There are n− 1 width-2, n− 2 width-3, . . . , 1 width-n spans.

n∑
m=2

(n−m+ 1)
[n

3
Θ(m3)

]
=

n∑
m=2

n2

3
Θ(m3)− n

3
Θ(m4) +

n

3
Θ(m3)

=
n2 + n

3

n∑
m=2

Θ(m3)− n

3

n∑
m=2

Θ(m4)

=
n2 + n

3

1

4
Θ(n4)− n

3

1

5
Θ(n5)

=
1

60
Θ(n6).

For Insert∗n,

n∑
m=2

(n−m+ 1)4nΘ(m)

= 4n2

n∑
m=2

Θ(m)− 4n
n∑

m=2

Θ(m2)

= 4n2 1

2
Θ(n2)− 4n

1

3
Θ(n3)

=
2

3
Θ(n4).

The Insert≤2∗ neighborhood has the same 4n(m−1) operations and also 2(2)(m−
2)n+ 2(m− 2)(2)n = 8n(m− 2), for a total of 12 Θ(n2) instead of 4 Θ(n2). Insert≤3∗

adds 2(2(3)(m− 3)n) = 12 Θ(n2) for 24 Θ(n2) total.

Since the language model in practice will be composed with a transducer that
maps indices to words, there is no need to consider duplications—every index is
unique. For a given span (i, i+k), therefore, only k(n−k) paths are compatible with
the indices in (0, i)∪ (i+k, n). Could efficiently eliminating those incompatible paths
from consideration improve efficiency?

Simply change the n in 2k`n to n − m, where m = k + `. Therefore, there are
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4(m− 1)(n−m) operations per span = 4(n(m− 1)−m(m− 1)). So,

4
n∑

m=2

(n−m+ 1)(n−m)(m− 1)

= 4
n∑

m−2

Θ(m)(n−Θ(m))2

= 4
n∑

m=2

n2Θ(m)− 2nΘ(m2) + Θ(m3)

= 4n2 1

2
Θ(n2)− 8n

1

3
Θ(n3) + 4

1

4
Θ(n4)

=
1

3
Θ(n4).

This cuts the expected runtime in half, but does not change the order of magnitude.
For BlockInsert∗n:

m−1∑
k=1

2k(m− k)(n−m)

=
1

3
(n−m)Θ(m3)

per built span.

1

3

n∑
m=2

Θ(m3)(n−Θ(m))2

=
n2

3

1

4
Θ(n4)− 2n

3

1

5
Θ(n5) +

1

3

1

6
Θ(n6)

=
1

180
Θ(n6),

one-third of before. This constant is small enough to significantly affect the runtime
for sentences of length less than forty words. Unfortunately, the factor of n6 remains
problematic—n6 > 2n for n < 30.

3.9.2 A* Search

The source of the runtime problems for decoding is the size of the state set of
the automaton A, |Q|. Reducing the number of states leads to faster decoding.
However, reducing the number of states also defeats the purpose of higher-order
language models.

A compromise is to perform a first decode using an approximation to A—call it
A′—with fewer states, and then to use the results of that decode to prune efforts with
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the full A model. If A′(π) > A(π), which is easy to arrange, then A′ is an admissible
heuristic for A, and A* search is applicable.

The simplest approximation to A, and the one with the best runtime, is a one-
state automaton A′. Ignoring the issue of ε transitions, the weight of the transition

0
a/w∗−→ 0 in A′ is the one from the best arc accepting a in A:

w∗ = max
q,r∈Q

δ(q, r, a).

The resulting A* search procedure is an adaptation of the method of Klein and
Manning (2003). Recall from Section 2.8.6 that β(N) indicates the best derivation
starting from non-terminal N . Call this the inside score of N . Now, let α(N) be
the best derivation starting from the start symbol S and stopping at N . Call this
the outside score of N .14 α(S) = 0, and α(N) is computed as follows, assuming the
grammar is binary:

α(N) = max

(
max

N1→N N2

α(N1) + γ(N1 → N N2) + β(N2),

max
N1→N2 N

α(N1) + γ(N1 → N2 N) + β(N2)

)
. (3.20)

Let α′ and β′ refer to the same quantities computed using the simplified grammar
that results from replacing A with A′. Then the A* search procedure is

1. Compute β′(N), ∀N ∈ G bottom up.

2. Compute α′(N), ∀N ∈ G top down, using β′(N).

3. Compute β(N) in best-first order, using β(N) + α′(N) as the value of N . Stop
as soon as β(S) pops.

If A′(π) > A(π) then α′(N) > α(N) is admissible, and the result is A* search. An
alternative is to use an approximation A′ that is not a bound. The resulting best-
first procedure is not guaranteed to find the best permutation in the neighborhood.
However, this may still be acceptable, especially as part of an iterated local search.

Unfortunately, the one-state bound on A failed to help runtimes significantly in
experiments on machine translation decoding. Probably, a better tradeoff between
the number of states and the tightness of the approximation is warranted.

Felzenszwalb and McAllester (2007) introduced an architecture into which this for-
mulation of A* permutation parsing fits. Successive approximations of the A model,
ultimately arriving at the one-state A′ model described above, would be an instance
of their HA*LD algorithm.

14As Klein and Manning observe, these scores are reminiscent of the Inside-Outside algorithm
(Baker, 1979), but they differ—the scores of the same name in the Inside-Outside algorithm sum
over derivations, while here α and β are maximum scores.
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One way to reduce the number of states in a finite-state automaton is to merge
existing states. For example, Stolcke and Omohundro (1993) used state-merging to
generalize strings for unsupervised learning of HMMs. This has the effect of changing
the language accepted by the FSA, in general, but that is not a problem in this
setting. The choice of which states to merge is not trivial, though. The closely
related minimum-cost set cover problem is NP-hard, so many objective functions will
result in NP-hard optimization problems as well. Stolcke and Omohundro used greedy
search to choose which pair of states to merge next. In the permutation setting, it
is not clear how to evaluate the quality of the approximation, since the language the
automaton has to score is all possible permutations.

HA*LD is an attractive possibility for potentially rendering decoding under these
models much faster, but it remains future work.

3.9.3 Block Insertion

The best performing search method for B(π) alone, as described in Chapter 2,
was not the VLSN search but the Block LSf method of Section 2.5.4. This section
resurrects that search procedure and augments it with the A(π) scores.

Automaton scores complicate Block LSf significantly. This is because moving
even a small subsequence of the permutation results, in general, in a completely
different path through the automaton.

In order to compute the score, under A(π) of the permutation that results from
transposing the blocks (i, j) and (j, k), the algorithm must know all the paths com-
patible with the spans (0, i), (i, j), (j, k), and (k, n). Since i, j, and k range over
the entire sequence, this ultimately implies knowing all the paths compatible with all(
n+1

2

)
subsequences of the permutation.

The A score for the transposition of (i, j) and (j, k) is the best path matching
(0, i) (j, k) (i, j) (k, n). Computing this requires matching the end states of the paths
matching (0, i) with the start states of the paths matching (j, k), the end states of
the paths matching (j, k) with the start states of the paths matching (i, j), and so on.
(0, i) might be empty, in which case the path matching (j, k) must also start at the
distinguished initial state. Likewise (k, n) might be empty, in which case the path
matching (i, j) must end at a final state.

Block LSf with A scores is reminiscent of the decoders described in Germann,
Jahr, Knight, Marcu, and Yamada (2001); Germann (2003), the latter of which used
five update operations:

CHANGE the translation of a source word,

INSERT a zero-fertility target word not aligned to any source word,

ERASE a zero-fertility target word,
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JOIN two target words, erasing one and transfering its source language alignments
to the other, or

SWAP two non-overlapping target regions.

The transducer (projected to an acceptor) obviates the first four operations for
Block LSf . A(π) computes the score of the best possible monotone translation, under
the model, of π. The JOIN operation is an artifact of the noisy-channel model, where
the target language words “generate” the source language. Germann’s search cannot
simply delete a target language word, because that target word might be responsible
for generating one or more source words. Therefore those source words must be
assigned to some other target word in order to perform the deletion.

Germann’s SWAP operation is slightly more general than Block LSf ’s transpo-
sitions, because SWAP’s argument regions need not be adjacent. There are

(
n+1

4

)
possible SWAP operations. Germann ultimately limits the set of swaps for efficiency.

Computing the cost of such a move is barely more complex than a block trans-
position under the A model. The B cost of a SWAP of (i, j) and (k, `), with (j, k)

remaining between them, is
←
γ i,j,` +

←
γ j,k,` or, equivalently,

←
γ i,k,` +

←
γ i,j,k.

15 However,
repeating the argument from Section 2.5.3, where it applied to interchanges versus
insertions, SWAP provides no advantage over block transpositions in terms of local
maxima. If there exists an improving SWAP, then there necessarily exists an improv-
ing block transposition as well: if

←
γ i,j,` +

←
γ j,k,`> 0 then at least one of the terms is

positive.
Decoding with Block LSf in practice unfortunately suffers from the same efficiency

issues as all of the other procedures of this section. These are exacerbated by the fact
that it has to compete with the 5-gram language model that Moses uses. The next
section describes possible approximate decoding procedures.

3.10 Approximate Algorithms

This section introduces possible alternatives to the decoding procedures of Sec-
tion 3.9. Each of the methods described here involves some inherent approximation
that makes it qualitatively different from the methods there. This thesis reports no
experiments using the algorithms described in this section.

3.10.1 Beam Search

The B and C models are compatible with standard beam-search decoding methods
for phrase-based statistical MT systems. In this scheme, the phrase-based model

15There is a schedule for computing these that preserves the relative efficiency of Block LSf . Once
a wider span’s transposition costs have been computed, it can be exchanged with narrower spans
anywhere or with as-wide spans to its left.
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Figure 3.8: A small portion of a permutation automaton for a six-word sentence.
Bold arcs indicate part of the path 1 4 2 5 6 3.

replaces the A model of Section 3.6. Beam search decoders, such as Moses (Koehn
et al., 2007), are approximate because they prune the state space of their implicit
automaton (see Figure 3.8) using inadmissible heuristics.

Continuing in terms of automata, the “states” of the beam search decoder are
indexed by the subsets of the source words that paths ending at them cover,16 and
the “arcs” cover some new words by selecting phrases for translation. Figure 3.8
simplifies this by assuming word-based translation.

In any case, the partial score of each path leading up to a given state q ∈ Q can
take into account the B score of both

• the partial permutation, implied by the path, of the words covered by q and

• putting all the words covered by q before all the uncovered words.

The contribution of the B model to the “arc” weight in order to achieve this is just
the internal B score of the possibly multiple words in the chosen phrase—zero if it is
one word—plus the score for putting all the words in the chosen phrase before all the
remaining uncovered words.

A reasonable contribution to the inadmissible heuristic for the B model is the
B score of the best permutation in the BlockInsert∗ neighborhood of some default
ordering of the uncovered words.

Incorporating the C model in beam search is only slightly more complicated. It is
also not subject to the same cyclicity constraint as the dynamic programming search
of Section 3.7—it works with an unconstrained C model. Any word on the current
“arc” comes after the words already covered, and before the words not yet covered.

16There are 2n such states. These are then implicitly composed with the Θ(nN−1) states of the
language model, where N is the maximum n-gram size, assuming a constant number of possible
translations for each word.
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Additionally, if the “arc” adds multiple words, then phrase-internal C scores may be
incurred, as well as scores involving two words on the “arc” and one either already
covered, or yet to be.

3.10.2 Forest Rescoring

This section adapts the forest rescoring method of Huang and Chiang (2007),
which uses n-gram language models, to the general automaton case.

As previous sections have shown, integrating the finite-state automaton scores
into the neighborhood search is the most expensive part. Searching the BlockInsert∗n
neighborhood with linear ordering problem scores is Θ(n3), but integrating a bigram
or trigram language model, even without the translation model involved, increases
the complexity to Θ(n6) and Θ(n9), respectively.

There is an alternative, however, which is to build a parse forest using only the
linear ordering problem scores, in cubic time, and then rescore the permutations using
the additional finite-state model. This type of approach was introduced in Huang and
Chiang (2007). Instead of allowing the automaton to essentially explode the grammar
constant of parsing, this approach would limit computation of scores from the finite-
state automaton to K-best lists at each node in the hypergraph forming the parse
forest.

The tricky part is that A is a general finite-state automaton. Here, the path
assigned to each permutation must traverse from the distinguished initial state to a
final state, whereas in the case of an n-gram language model, given sufficient local
context, the states can be inferred deterministically. Specifically, each ordering of
a subsequence of the input may correspond to multiple possible subpaths in the
automaton. The modified algorithm must keep track of all the possible paths, and
can only use their weights as estimates of the true cost of the subsequence.

A potentially problematic alternative is to put paths into the K-best list rather
than permutations. That is, in the previous formulation, the K-best list for a given
span holds just K possible permutations of the items in the span, while each permu-
tation matches possibly many automaton paths. In the new formulation, those many
matching paths compete for slots in the K-best list. The potential problem arises
if paths capable of connecting fall below those that cannot connect, ultimately lead-
ing to no successful paths matching the entire permutation. This is also a potential
problem for the earlier K-best lists, because it is possible that the automaton only
accepts particular permutations, but this formulation exacerbates that potential.

An obvious solution to this problem is iterative deepening. Start with a small
manageable K and repeat the process with increasingly large Ks if smaller Ks fail to
produce any paths.
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3.11 Summary

The first contribution of this chapter is the representation of IBM Model 4 using
a cascade of weighted finite-state transducers. It is not clear that this representation
is of any use for translation, but it may well serve as a tutorial example of encoding
a complex model with WFSTs. This is certainly a useful practice in general.

The second, and primary, contribution of the chapter is the ABC model of transla-
tion. This model cleanly divides translation into two components, namely reordering
and monotonic word or phrase translation. At the same time, it pushes both com-
ponents together to form a single model of source-language ordering. This is also a
novel combinatorial optimization problem.

The C scores, a component of the translation model, constitute a third novel
contribution. As yet, they have not been applied to any problem, but this chapter
clearly lays out algorithms for working with them, including a dynamic program for
block transposition scores, assuming a cyclicity constraint. The proposed approaches
to decoding with the ABC model provide numerous opportunities for future research.

Preprocessing German for translation to English using search for the Linear Or-
dering Problem constitutes the dissertation’s primary empirical result. This demon-
strates both that fully automatic methods based on machine learning and combi-
natorial optimization can rival hand-written reordering rules, and that the Linear
Ordering Problem is a legitimate approach to reordering for translation.
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Chapter 4

Learning LOP Matrices for MT

Recall (2.3), which defined each matrix entry for the linear ordering problem as
a dot product of a weight vector θ with a feature function φ that mapped a word
sequence with a pair of distinguished positions to a vector of feature counts:

B[i, j] = θ · φ(w, i, j).

This chapter explores both φ and θ. Section 4.4 describes possibile feature functions,
including those used in experiments, and the rest of the chapter applies machine
learning to the problem of finding a good setting of the weight vector.

This is admittedly controversial. It is natural to ask why linear ordering problems
should have anything to do with machine translation whatsoever. The first answer is
that there is some correspondence between the LOP and approaches that have proven
successful for dependency parsing. This is the topic of Section 4.4.1. The second
answer is that the model is in some ways of lesser importance than the features.
Sections 4.4.2, 4.4.3, and 4.4.4 will inspect many properties of the sentence, including
the words themselves, their parts of speech, and dependency parses, in order to build a
sentence-specific reordering model. Hypothetically, that model could be a total order,
specifying exactly the right permutation, were the features sufficiently sophisticated.

Before addressing these questions, Section 4.1 reviews the topic of machine learn-
ing from a high level, Section 4.2 describes one instance of prior work on learning an
ordering function, and Section 4.3 lists resources used in the rest of the chapter.

4.1 Machine Learning

The aim of machine learning, given a model such as the linear model above, is to
propose an optimization criterion for the weights θ that will lead to good performance
on unseen data, and to find optimal weights under that criterion.

An important consideration is the tradeoff between observable good performance
on the training data and good performance on unseen data. Optimization criteria
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are subject to potential overfitting—learning details of the training data that do not
generalize to unseen instances. Introducing some form of parameter regularization
into the optimization criterion addresses this tradeoff explicitly.

Sometimes, as in the case of log-linear models with no hidden variables, the opti-
mization criterion is convex, in which case simple optimization methods are guaran-
teed to find the desired model. For other procedures, e.g., famously, the Expectation
Maximization (EM) algorithm, local optima are the norm—as with search using the
neighborhoods of Chapter 2—and the quality of the resulting model depends heavily
on initialization and other properties of the search.

The parameter optimization problem has much in common with the hard opti-
mization problems of Chapter 2, but it also has one crucial difference. For the linear
ordering problem, the optimization criterion is fixed—that’s what makes it the linear
ordering problem. But for parameter optimization, there are many possible crite-
ria, each of which will lead to different performance on unseen data, even when it is
possible to set θ optimally for the criterion.

The work of this chapter has an additional quirk that distinguishes it from much
other work in machine learning. This work attempts to find good weights for the
linear ordering problem, which is itself computationally intractable. Most machine
learning, on the other hand, works in a setting, for example, where it is possible, given
a weight vector θ and a question, to compute the answer that is optimal under the
model. This issue arises throughout this chapter, starting with the simple perceptron
learning algorithm in Section 4.7.

This work fits in with a general trend in natural language processing to tackle
more sophisticated models in spite of their computational intractability. Methods
such as Markov-Chain Monte Carlo (MCMC) and variational approximation have
become increasingly popular. This chapter, especially Section 4.8, discusses some
instances of prior work of this sort.

4.2 Prior Work

The particular problem of learning a score matrix for the linear ordering problem
is unusual. The usual treatment of the LOP takes the matrix as given, derived directly
from some quantitative data for the problem at hand.

One precedent for learning precedence relations as in the LOP is Cohen et al.
(1999), which combined opinions from multiple ranking systems in the context of
information retrieval. Their problem is an instance of the linear ordering problem,
though they didn’t explicitly acknowledge it as such.

They proposed an algorithm based on “Hedge” (Freund and Schapire, 1997), for
learning a linear combination of experts, which in their setting meant search engines
or, equivalently, retrieval results (in their experiments they used results from multiple
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related queries to the same search engine). They used a multiplicative update rule:

wt+1
i =

wti · βLoss(Rti ,F
t)

Zt
(4.1)

that depends on a rate parameter β and the loss of each expert Ri with respect to
the true precedence information F t on the current query t:

Loss(R,F ) = 1− 1

|F |
∑

(u,v)∈F

R(u, v). (4.2)

In their setting, the feedback F t depends on the ordering proposed by the combi-
nation of experts, but if F t is a total order then that dependence is vacuous. The
update rule (4.1) for a given expert Ri depends on the other experts only through the
normalization factor Zt, which ensures that the weights of the experts sum to one.1

Whereas Cohen et al. had a relatively small set of experts, each of which con-
structed a relatively dense LOP matrix on its own, the setting of this chapter in-
volves thousands or millions of very sparse features. Cohen et al. proved performance
bounds relative to the single best expert, but those are useless in this setting, where
each feature expresses an opinion for only a small subset of the matrix entries.

The problem with applying this approach to the machine translation reordering
setting, besides the qualitative fact that it doesn’t consider feature interactions, is that
here “experts” are binary feature functions, which don’t inherently express ordering
preferences. Factored MIRA (Section 4.9) is a qualitatively similar approach.

A possible, related, approach to learning would be to treat each LOP matrix entry
as a separate classification problem and try to give it the correct sign—positive for
pairs of words that should stay in order, and negative for pairs that should reverse
order. Were the problem separable, the result would be a matrix of the sort from
Section 2.11.1 that unambiguously specified a total order, and the LOP would be
trivial. Logistic regression, support vector machines, and other binary classifiers
would be applicable. Even if the problem is not separable—which it likely isn’t given
a reasonable feature set—the LOP search may be able to find the correct ordering
even in the presence of a few classification errors among the

(
n
2

)
scores.

The problem with this approach is similar to the problem of converting the output
of the model learned via support vector machines into a probability. If the classifier
makes the correct prediction for all

(
n
2

)
pairs of words, then the matrix is a total

order and the resulting linear ordering problem is trivial. But if the classifier makes
mistakes, as is inevitable, there is no mechanism in such a learning procedure for
encouraging it to make the kind of mistakes from which the LOP search can recover.

The learning algorithms this chapter proposes and applies all take the linear or-
dering problem into account during parameter estimation, trying to find weights that

1Note that their update rule does not allow the weight of an expert to be negative. This ignores
the possiblity that the expert might be negatively correlated with the feedback.
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lead to good orderings during search. In theory, this allows the learner to deliberately
ignore some matrix entries that would be hard to get right consistently, as long as
other entries involving the same words can succeed at putting them in the right order.

4.3 Resources

Most of the tools that this chapter uses consist only of published algorithms,
rather than software. However, data preparation and feature extraction made use of
the following:

• The TIGER Treebank, a corpus of German news stories annotated with parts
of speech and syntactic parses. Appendix B details this corpus, including its
tag set and dependency labels derived from its grammatical functions.

• TreeTagger (Schmid, 1994, 1999) is a probabilistic part-of-speech tagger based
on decision trees. It was used to tag the entire German Europarl data.

• MSTParser (McDonald, Crammer, and Pereira, 2005a; McDonald, Pereira, Rib-
arov, and Hajic, 2005c) is a dependency parser based on minimum-spanning
tree algorithms. Unlike many traditional parsers, it can produce non-projective
trees, which are appropriate for German.

Many of the tools from Chapter 3 are in use here as well: the Europarl corpus,
the oracle English orderings described in Section 3.8.1, and the BLEU translation
evaluation measure.

4.4 Features

In many ways, features are the most essential aspect of machine learning. To a
large extent, any reasonable learning algorithm can achieve good performance given
an adequate representation of the data. On the other hand, no learning algorithm, no
matter how sophisticated, can be expected to overcome an inadequate representation.

Feature functions are a primary means of injecting human linguistic knowledge
into machine learning for natural language applications. Although it is possible in
principle to automatically discover features, cf. Della Pietra, Della Pietra, and Lafferty
(1997); McCallum (2003), this remains an elusive goal for most applications. Far more
common is to propose a large number of possible features, and use feature selection,
cf. Guyon and Elisseeff (2003), if need be, to reduce them to a manageable set.

This section proposes a large number of potential features, and uses a very simple
selection heuristic, namely to eliminate any features that occur less than some fixed
number of times in the training data. This threshold is sometimes set to 5, and other
times more conservatively to 100. This serves two largely orthogonal purposes:
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I cannot say anything at this stage .

Figure 4.1: An example German-English sentence pair, with automatically generated
part of speech tags and a human-generated alignment. The matrix verb kann occurs
in second position, but the negative particle nicht and the infinitive sagen are at the
end, requiring long-distance reordering for translation to English cannot say. A good
reordering would be Das so ich kann nicht sagen aus dem Stand . The placement
of Das and so is of little importance since they don’t appear in this translation.

1. it makes the feature set smaller, reducing the threat of overflowing the memory
of the computer, and

2. it reduces the susceptibility of the model to overfitting—features that occur only
a few times are likely to have chance correlations that would not generalize.

The feature functions used here consider both lexical and syntactic properties:

• Many of the characteristics of German from Section 3.4 are described in terms
of simple parts of speech. It is reasonable, therefore, to use features that look
only at those tags. These features are far more frequent than those involving
particular word tokens.

• Much reordering may be related to the syntactic structure of the sentence.
There are features derived from dependency parses that try to account for this
possibility.

• Finally, it may be impossible to detect idiomatic constructions and some other
phenomena without looking directly at the words themselves. Such features are
included as well.

4.4.1 An Analogy to Dependency Parsing

At first glance, the linear ordering problem may seem a poor fit for a natural
language application, where the use of n-gram language models and other compu-
tationally convenient local models assigns paramount importance to adjacency. If
the LOP is appropriate at all for this task, its propriety can probably be understood
through an analogy with the natural language task of dependency parsing.

In unlabeled non-projective dependency parsing, the task consists of assigning a
parent to each word in a sentence. One word, and usually only one, is allowed to
choose a distinguished root node as its parent, not corresponding to any word in
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Das kann ich so aus dem Stand nicht sagen .

OAROOT

OC

MO
MO

NK
NK

NG
OC

PUNC

Figure 4.2: An automatic labeled dependency parse of the example sentence from
Figure 4.1. The verb kann is the root, and its direct children are the modifiers so
and aus dem Stand, the negative particle nicht, the verb sagen, and the period. The
subject ich is mislabeled a clausal object.

the sentence. In the example from Figure 4.1, the verb kann would choose the root
node, and the subject ich would choose kann, as its parent. Figure 4.2 shows the
dependency parse that MSTParser produced for this sentence.

High-performing systems for this task have been built using features that look
only at individual edges in the dependency tree (McDonald et al., 2005c). That is,
the features that decide the parent of a given word never consider what words have
been chosen as the parents or children of other words in the sentence. Instead, the
features consider only properties of the sentence that can be derived independent of
the dependency tree.

In this setting, every word i has a most preferred parent p̂i:

p̂i
def
= arg min

j 6=i
Cj→i, (4.3)

where Cj→i is the total cost of all features pertaining to the link from j to i. (Directed
edges go from parents to children.) The complexity in this task comes from the
constraint that the set of chosen edges must form a tree.

Similarly, the LOP cost matrix is an assignment of precedence costs to all pairs
of words in the sentence independent of those words’ interactions with other words.
For every pair of words (a, b), the matrix assigns a cost to a ≺ b and a separate cost
to b ≺ a, neither of which depend on where other words, such as c, are placed relative
to a and b. Every pair of words thus has a preferred order (unless the costs of a ≺ b
and b ≺ a are equal).

The difference between the two tasks is that dependency parsing ultimately only
incurs n costs. Notably, if the parser chooses k → j → i, it doesn’t matter, in
dependency parsing, if k → i costs more than i → k. The greater complexity of
the LOP comes from trying to maximize the sum of all

(
n
2

)
preferences. The lack

of an optimal substructure property means dynamic programming cannot solve the
problem exactly.
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4.4.2 Parts of speech

Each word in the German sentence is automatically labeled with a part of speech.
German part of speech tags are from the set used in the TIGER corpus (Brants,
Dipper, Hansen, Lezius, and Smith, 2002)—Appendix B details this corpus, and
Table B.1 describes the tag set. Properties for the features of the pair (i, j) consider
not only the parts of speech of words i and j, but also those of surrounding words:

pi−1 returns the part of speech of the word to the left of word i, or a special start of
sentence tag if i = 1.

pi returns the part of speech of word i.

pi+1 returns the part of speech of the word to the right of word i, which might be
identically pj−1 or pj.

pb returns the part of speech of each word at a position b, i < b < j. This template
therefore doesn’t fire at all if j = i+ 1, and fires multiple times if j > i+ 1.

pj−1 returns the part of speech of the word to the left of word j, which might be
identically pi or pi+1.

pj returns the part of speech of word j.

pj+1 returns the part of speech of the word to the right of word j, or a special end of
sentence tag if j = n.

Feature templates comprised of conjunctions of one or more of these properties are
shown in Table 4.1. These are the same templates used for dependency parsing by
McDonald, Crammer, and Pereira (2005b).

4.4.3 Words

The words themselves act as properties as well. These are far sparser than the
parts of speech because the parts of speech are drawn from a relatively small fixed
set, while the set of words is practically unbounded, and in the hundreds of thousands
for the corpora used in this dissertation.

A compromise between the two, used by McDonald et al. (2005b), is the five-
character prefix of the word. (For words five characters or fewer, the prefix is the
entire word.) Combined with the words, there are the following properties:

wi returns word i.

wj returns word j.

prefixi returns the five-character prefix of word i.
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pi−1 wi pi pi+1 pb pj−1 wj pj pj+1√ √ √ √
√ √ √
√ √ √
√ √ √
√ √ √

√ √
√ √

√ √
√ √

√
√

√
√

√ √ √
√ √ √ √
√ √ √
√ √ √ √
√ √ √

√ √ √ √
√ √ √
√ √ √ √

√ √ √

Table 4.1: LOP feature templates for B[i, j] (wi is the ith word, pi its part of speech,
and b matches any index such that i < b < j). Each of the above is also conjoined
with the distance between the words, j − i, to form an additional feature template.
Distances are binned into 1, 2, 3, 4, 5, > 5, and > 10.

prefixj returns the five-character prefix of word j.

Table 4.1 shows combined feature templates, using properties returning both
words and parts of speech.

4.4.4 Dependencies

Each German sentence has also been labeled with a dependency parse, following
McDonald, Lerman, and Pereira (2006), using non-projective minimum spanning tree
algorithms.

The properties of the previous two sections—parts of speech and words—apply to
single positions in the sentence to be reordered. Properties derived from dependency
parses, on the other hand, apply to pairs of positions. A dependency parse consists
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left parent right parent left sibling right sibling√
√

√
√

√ √

Table 4.2: Dependency feature templates. Each templates is also conjoined with the
distance between the words, as with the templates in Table 4.1. Note that only the
sibling properties can occur in combination. Any of these templates could additionally
be combined with part-of-speech and word features.

of a set of labeled directed edges between pairs of words.
It is therefore quite natural to have properties that return the label of a depen-

dency, if one exists, between the pair of words implied by a LOP matrix entry. Two
properties of this type naturally exist, corresponding to the two possible directions of
the dependency. The same labels can be returned by different properties if the two
words in question are siblings. Table 4.2 shows feature templates using the following
properties:

left parent returns the dependency label when word j is word i’s parent.

right parent returns the dependency label when word i is word j’s parent.

left sibling returns the dependency label of p → i when i and j have the same
parent p.

right sibling returns the dependency label of p → j when i and j have the same
parent p.

4.5 Baseline

A simple baseline reordering model, and the one used for initialization of the
learning procedures the rest of this chapter describes, is a näıve Bayes model. This
model pretends that the features are all independent of one another and sets the
weight of each one using a smoothed maximum likelihood criterion.

Let Φm = {(w, i, j) | φm(w, i, j) = 1} be the set of word pairs in the training data
for which feature m fires. Let Φ+

m be the subset of Φm for which the words stay in
order, and Φ−m the subset for which the words reverse order. Then this model sets

θm = log

(∣∣Φ+
m

∣∣+
1

2

)
− log

(∣∣Φ−m∣∣+
1

2

)
. (4.4)
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Measure Correlation
Oracle 1 BLEU 0.58∗

Symmetric difference distance 0.42
Oracle 2 BLEU 0.38
Adjacencies 0.24

Table 4.3: Correlations of convergence criteria with English BLEU. BLEU score is
measured using the preprocessing approach described in Section 3.8. Correlation is
measured using Kendall’s τ rank correlation of twelve different reorderings. Because
of the small sample size, only the first is significantly non-zero at 95%.

This requires a bit of explanation. Because B(π) is additive, it is appropriate to
use log probabilities. If φm(w, i, j) = 1 then the contribution of feature m to B[i, j]
should be

log Pr(i ≺ j | φm = 1) = log
|Φ+

m|
|Φm|

,

and its contribution to B[j, i] should be

log Pr(j ≺ i | φm = 1) = log
|Φ−m|
|Φm|

.

Because one of B[i, j] and B[j, i] must accrue to every permutation, both the maxi-
mum and the probability under a log-linear model (Section 4.11) are unchanged by
setting B′[j, i] = 0 for i < j and B′[i, j] = B[i, j] − B[j, i]. That is what (4.4) does.
The denominators cancel, and the 1

2
terms come from adding a pseudocount to both

subsets in order to mitigate overfitting, particularly when one of the subsets is empty.

4.6 Convergence Criteria

A key component of the learning methods described in the following sections is
the stopping criterion. The procedure that most of the learning methods use is to
measure performance on a held-out set after each iteration through the training data.
When performance on the held-out set starts to degrade, the procedure stops and
reverts to the highest-scoring model. Experiments running additional iterations of
learning with several models showed no further improvement, so stopping after the
first degradation seems reliable.

Table 4.3 shows four different possible performance measures, and their corre-
lations with the resulting BLEU score on the German-English translation task, as
described in Section 3.8:

Oracle BLEU measures the BLEU of the candidate German ordering against a ref-
erence German ordering. Because the two orderings contain the same words, the
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unigram precision of this score is always 100%, and only higher-order precisions
vary.

Symmetric difference distance counts the number of pairs of words in the candi-
date ordering that are in order according to the reference ordering. The score
is between 0 and

(
n
2

)
for a sentence of length n. Section 2.11.2 discussed this

score in detail.

Adjacencies counts the number of pairs of words adjacent in the reference ordering
that are also adjacent in the candidate ordering. This score is between 0 and
n− 1 for a sentence of length n, and is identical to the bigram precision count
of BLEU.

4.7 Perceptrons

The perceptron algorithm (Rosenblatt, 1958) is a simple supervised procedure for
learning model weights. It considers labeled training examples one at a time, and
updates the current parameters to increase the weight of the correct labeling and
decrease the weight of the labeling that was optimal according to the current model.
The perceptron, and a variation that the next section introduces, proves to be the
most reliable learning method for the dissertation’s task, as Section 4.12 describes.
The performance of the two variations is quite similar.

Let x represent a given input, y∗ the corresponding correct label, φ(·, ·) a function
from inputs and labels to features, and θ the corresponding feature weights. Let

ŷ
def
= arg max

y
θ(t) · φ(x, y) (4.5)

be the best label according to the model at time t. Then the update is as follows:

θ(t+1) = θ(t) + α [φ(x, y∗)− φ(x, ŷ)] , (4.6)

where α is a hyper-parameter called the learning rate. These updates proceed to form
a sequence of models, from the initial parameters θ(0) to some final parameters θ(T ),
where T is determined by some convergence criterion, as in Section 4.6.

The perceptron has no explicit objective function. However, its update is a step
along the gradient of the following objective:

max
θ

[θ · φ(x, y∗)− θ · φ(x, ŷ)] , (4.7)

which attempts to maximize the difference between the score of the true labeling and
the score of the labeling the model prefers. This maximum occurs at zero, when the
model prefers the true label. If the data are separable and the algorithm achieves a
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setting of θ such that the classifier no longer makes any mistakes, then no further
learning will occur.

It is also possible to characterize the loss function that the perceptron uses. It
is a {0, 1} loss function—the loss of the true labeling is zero, and the loss of any
other labeling is one. The perceptron thus does not distinguish between good and
bad wrong answers. This coarse granularity is especially inappropriate for structured
labeling problems, where y∗ is complex, and partial credit may be meaningful.

The perceptron algorithm as given in (4.6) is not exactly applicable to the setting
of this chapter. Here, a “labeling” is a permutation. Efficiently computing ŷ, the best
permutation according to the model, is intractable. However, replacing the model’s
true optimum, ŷ, with the local optimum achieved during search allows the perceptron
updates to proceed in spite of possible search error. In a sense, this replaces the exact
linear ordering problem model with a black box—a heuristic procedure whose inner
workings are inscrutable to the learning procedure. One particular attraction of the
perceptron algorithm is that it can work with such black boxes unaltered.

The voted perceptron and the averaged perceptron (Freund and Schapire, 1998)
are two alternatives to the standard perceptron as described above, both intended
to prevent overfitting. The updates remain the same in both cases, but the final
models differ. In the case of the voted perceptron, the final model is a vote among
all instances of the model {θ(0),θ(1), . . . ,θ(T )}. This alternative is not obviously
applicable to the LOP setting, because possible labels are the set of permutations of
the input. However, the averaged perceptron, which uses a single model,

θ̄ =

T∑
i=0

θ(i)

T + 1
, (4.8)

does apply.
Averaging the model after the fact bears a close resemblance to a method com-

monly used for stochastic gradient descent (Bottou, 2004) (see Section 4.11)—that
of setting the learning rate α proportional to 1

t0+t
, where t counts the training exam-

ples. In a sense, the SGD approach computes a running average, while the averaged
perceptron approach waits until the end.

Freund and Schapire (1998) prove a generalization bound for the voted percep-
tron. Collins (2002) discusses justification for the averaged perceptron. Averaged
perceptron can be interpreted as a cheaper alternative to the voted perceptron.

4.8 Search-based methods

Learning as Search Optimization (LaSO) (Daumé III and Marcu, 2005) and Searn
(Daumé III, Langford, and Marcu, 2007) are two parameter optimization methods
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that apply search in the context of computationally hard problems. This approach
has much appeal, but the methods don’t transfer directly to the VLSN search for the
linear ordering problem. LaSO and Searn both use constructive search, rather than
local search—see Section 2.5 for a discussion of the difference.

Nevertheless, the basic idea of taking the search into account in the learning
algorithm does transfer. This section describes a “search perceptron”, which may
make multiple updates to the parameter vector for a given sentence at several stages
in the search.

Definition 4.1 A search trajectory is the sequence of permutations that a greedy
local search procedure visits, starting with the initial permutation π(0) and ending with
the local maximum π(T ), for some T .

There are two possible trajectories that search can follow:

1. the model trajectory,

π(t+1) = max
π∈N (π(t))

B(π), or (4.9)

2. the loss trajectory,

π(t+1) = max
π∈N (π(t))

Bτ
π∗(π). (4.10)

In either case, the search perceptron update is the same:

θ′ = θ + α

[
φ

(
w, arg max

π∈N (π(t))
Bτ
π∗(π)

)
− φ

(
w, arg max

π∈N (π(t))
B(π)

)]
, (4.11)

where θ are the current parameters and θ′ the new ones. The index is suppressed
because it depends on the number of updates that occur for each example, and is
therefore unnecessarily complicated to write down.

The idea behind this procedure is to find parameters that encourage the search
to go in the right direction at each step. Using the model trajectory lets the model
decide how to proceed, but tells it at each step where it really ought to go, while
using the loss trajectory pulls the search straight to the target permutation.

The search perceptron bears a resemblance to the local updating strategy intro-
duced by Liang, Bouchard-Côté, Klein, and Taskar (2006a) and further successfully
applied by Watanabe, Suzuki, Tsukada, and Isozaki (2007) and Arun and Koehn
(2007). This update rule finds the best candidate in a K-best list according to some
variant of the BLEU score.2

2Recall that sentence-level BLEU is problematic because of potential zeroes—see Section 4.11.4.
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4.9 MIRA

This section describes large-margin alternatives to the perceptron update rule.
These methods have not undergone empirical validation.

The margin-infused relaxed algorithm (Crammer and Singer, 2003) uses the same
basic procedure as the perceptron but replaces the simple perceptron update rule (4.6)
with an explicit large-margin update. As a result of the similarity to perceptron, voted
and averaged variants are possible here as well. The new update rule is a quadratic
program, which seeks:

• the minimum change in the norm of the parameters

• subject to the constraint that the correct label is preferred to other labels by
some margin.

An important difference between MIRA and the perceptron is that MIRA has no
learning rate hyper-parameter α. The loss function, which will determine the margin
for each incorrect label, is a hyperparameter of sorts, but there is usually an obvious
one available to use, and its scale is not important.

In practice, the aforementioned constraint can take on many different forms. The
closest variant to the perceptron would use3

θ(t+1) · [φ(x, y∗)− φ(x, ŷ)] ≥ 1 (4.12)

to constrain the standard MIRA objective function,

min
1

2

∣∣∣∣∣∣θ(t+1) − θ(t)
∣∣∣∣∣∣2 . (4.13)

Notice that (4.12) uses the current model θ(t) to compute the model’s preferred label
ŷ as in (4.5), but constrains the dot product of the new model θ(t+1).

As long as there is at least one difference between φ(x, y∗) and φ(x, ŷ) when ŷ 6= y∗,
the single constraint (4.12) is achievable. This separability is a consequence of the
on-line algorithm: MIRA only looks at one sentence at a time. However, the following
sections introduce more complex sets of contraints that may not always be separable.
In that case, it is necessary to introduce slack variables into the optimization criterion
(4.13) and the constraints. This is a standard procedure, familiar in the literature on
support vector machines. The constraints are given here as though the slack variables
are unnecessary, however.

3Note that no update is necessary if ŷ = y∗.
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4.9.1 K-best MIRA

Rather than just the one best permutation, it is possible to compute the K best
permutations, according to the current model, in some neighborhood. An especially
efficient method is to adapt the lazy algorithm of Huang and Chiang (2005) to the
normal-form grammars of Section 2.9. It is essential to use normal form in order to
avoid multiple spurious derivations of the same permutation in the K-best list.

Let {ŷ1, . . . , ŷKt} be the K-best list. Kt ≤ K is the size of the K-best list for
sentence t, which is limited by the size of the neighborhood and may be less than K
especially if K is very large or n is small for sentence t. Let L(y∗, y) measure the loss
of y with respect to y∗. Then an alternative to the constraint of (4.12) is the set of
constraints

θ(t+1) · [φ(x, y∗)− φ(x, ŷi)] ≥ L(y∗, ŷi), ∀i : 1 ≤ i ≤ Kt. (4.14)

This is called K-best MIRA. Any loss function, such as the convergence criteria of
Section 4.6, can be applied, because theK-best list is an enumeration of permutations.

Section 4.10 discusses a different situation, where the requirements on the loss
function are necessarily more strict. Section 4.11.3 addresses the related question of
minimizing the expected loss, with similar requirements.

4.9.2 Factored MIRA

McDonald et al. (2005c) used a variant of the training procedure described above
called “Factored MIRA”. Instead of constraining the weights of features of an entire
parse, they factored the features according to the edges used to construct the parse.
The contraints then required, for each word, that the difference between the weight of
the true parent and the weight of each other possible parent be larger than a margin
of one.

A similar approach is possible for the linear ordering problem. The constraints
can simply require that

B[`, r]−B[r, `] ≥ 1, ∀` ≺ r ∈ π∗. (4.15)

Were it possible to learn such weights, the resulting linear ordering problems would
be total orders (Section 2.11.1) and search would be trivial. The drawbacks of this
approach are discussed earlier in this chapter, in Section 4.2.

4.10 Max-Margin Parsing

An even more sophisticated application of MIRA would use the marginals from
Taskar, Klein, Collins, Koller, and Manning (2004) to collapse an exponential number
of constraints to a polynomial number and ensure that the correct permutation was
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better than any other permutation in its neighborhood by an amount proportional
to some loss function. A simple measure of loss can be derived from a LOP matrix
with entries in {0, 1} that assigns a loss of 0 to the correct ordering and

(
n
2

)
to its

reverse—the same matrix from Section 2.11.1. This loss function counts the number
of pairs out of order with respect to the correct permutation. This section explores
this possibility in detail.

First, recall (2.3), and let

φ (w, π)
def
=

n−1∑
i=1

n∑
j=i+1

φ (w, πi, πj) , (4.16)

such that B(π) ≡ θ · φ (w, π).
Adapting the method of Taskar et al. (2004) to the setting of MIRA for the linear

ordering problem leads to the following update:

min
1

2

∣∣∣∣∣∣θ(t+1) − θ(t)
∣∣∣∣∣∣2 subject to (4.17)

θ(t+1) · [φ (w, π∗)− φ (w, π)] ≥ L(π∗, π), ∀π ∈ N ,

given the current pair (w, π∗) of an input sentence and its target permutation, and
some neighborhood N . For now, the permutation from which that neighborhood
derives will remain unspecified.

Introduce a Lagrange multiplier λπ for each π ∈ N . For the VLSNs, there are
an exponential number of these. The following section will take care of this problem.
Rewrite (4.17) as a Lagrangian,

min
1

2

∣∣∣∣∣∣θ(t+1) − θ(t)
∣∣∣∣∣∣2 −∑

π∈N

λπ

[
θ(t+1) · [φ (w, π∗)− φ (w, π)]− L(π∗, π)

]
, (4.18)

subject to λπ ≥ 0, ∀π ∈ N , and solve

0 = ∇θ(t+1) =
[
θ(t+1) − θ(t)

]
−
∑
π∈N

λπ [φ (w, π∗)− φ (w, π)] . (4.19)

This leads to the update rule

θ(t+1) = θ(t) +
∑
π∈N

λπ [φ (w, π∗)− φ (w, π)] , (4.20)

which is reminiscent of the perceptron update, except now each π ∈ N may con-
tribute, instead of just π̂.

The substitution of (4.20) into the Lagrangian (4.18) results in the dual problem,

max
λ

∑
π∈N

λπ

[
L(π∗, π)− θ(t) · [φ (w, π∗)− φ (w, π)]

]
(4.21)

−1

2

∣∣∣∣∣
∣∣∣∣∣∑
π∈N

λπ [φ (w, π∗)− φ (w, π)]

∣∣∣∣∣
∣∣∣∣∣
2

.
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The first term forces λπ to zero for any π that already satisifes the margin constraint,
and otherwise encourages λπ to be large. The second term, on the other hand,
encourages all λπ to be small. Intuitively, this captures the tradeoff between getting
the answers right and keeping the update small.

4.10.1 Factored Dual

The insight of Taskar et al. (2004) was that the exponential number of variables
λπ could be reduced to a polynomial number if the loss function was well-behaved.
The symmetric difference distance δ(π∗, π), defined in (2.58), Section 2.11.2, is well

behaved, because it decomposes in the same way that any B matrix does. Let
→
δ i,j,k

and
←
δ i,j,k play the role of

→
γ i,j,k and

←
γ i,j,k from (2.24) and (2.25) for the loss function

δ(π∗, π), and let
→
φi,j,k

def
=

∑
`∈(i,j)

∑
r∈(j,k)

φ (w, `, r) , (4.22)

←
φi,j,k

def
=

∑
`∈(i,j)

∑
r∈(j,k)

φ (w, r, `) , (4.23)

such that
→
γ i,j,k= θ(t)·

→
φi,j,k and

←
γ i,j,k= θ(t)·

←
φi,j,k. Now, let

→
µi,j,k =

∑
π∈N

λπI((i, k)→ (i, j) (j, k) ∈ π), (4.24)

←
µi,j,k =

∑
π∈N

λπI((i, k)→ (j, k) (i, j) ∈ π),

where I(·) is an indicator function. Note that normal form will be necessary to enforce
a one-to-one mapping between permutations and derivation trees. Finally, let S be
the set of all four-tuples (i, j, k,→ /←), for convenience, such that each of δ, φ, and
µ can be indexed by elements s ∈ S. Then the factored dual is

max
µ

∑
s∈S

µs

[
δs − θ(t) ·

[
φ (w, π∗)

n− 1
− φs

]]
− 1

2

∣∣∣∣∣
∣∣∣∣∣∑
s∈S

µs

[
φ (w, π∗)

n− 1
− φs

]∣∣∣∣∣
∣∣∣∣∣
2

, (4.25)

subject to the following marginal constraint for each span (i, k):

k−1∑
j=i+1

[
→
µi,j,k +

←
µi,j,k

]
=

i−1∑
o=0

[
→
µo,i,k +

←
µo,i,k

]
+

n∑
o=k+1

[
→
µi,k,o +

←
µi,k,o

]
, (4.26)

which ensures that µ corresponds to some λ. This is a quadratic program in 2
(
n+1

3

)
variables. The factor of n− 1 on the features of the target permutation comes from
the fact that ∑

s∈S

µs = (n− 1)
∑
π∈N

λπ,
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since there are n− 1 nodes in every permutation tree.

4.11 Likelihood

It is possible to interpret LOP matrix scores as probabilities by introducing the
following transformation:

Pr(π;B) =
exp (B(π))∑

π′∈Πn

exp(B(π′))
(4.27)

The exponential function ensures that the numerator is positive, and the denominator,
Z(B), provides normalization onto the interval [0, 1]. The probability could also
include a scaling factor on each B(π) to sharpen or flatten the distribution. This
section ignores that factor in derivations for simplicity.

Define the training data D = {(π(1), B(1)), (π(2), B(2)), . . . , (π(D), B(D))} as ordered
pairs consisting of a target permutation and a LOP matrix derived from features of
a sentence according to the linear model (2.3). Then the log likelihood of the data is

L =
∑

(π∗,B)∈D

log Pr(π∗;B), (4.28)

and the gradient of the log likelihood with respect to the matrix entry B(t)[i, j] is

∇t,i,jL =
∂L

∂B(t)[i, j]
=

∑
(π∗,B)∈D

∂

∂B(t)[i, j]
log Pr(π∗;B) =

∂

∂B(t)[i, j]
log Pr(π(t);B(t)).

(4.29)
Because B(t)[i, j] is computed according to a linear model, it is trivial to convert this
gradient into a gradient of each entry in the weight vector θ.

∂ log Pr(π∗;B)

∂B[i, j]
=

∂

∂B[i, j]

(
B(π∗)− log

∑
π∈Πn

exp(B(π))

)

= I(i ≺ j ∈ π∗)−

∑
π∈Πn

exp(B(π))I(i ≺ j ∈ π)∑
π∈Πn

exp(B(π))

= I(i ≺ j ∈ π∗)− E [I(i ≺ j ∈ π);B] , (4.30)

where I is an indicator function that returns 1 if its argument is true, and 0 otherwise.
Unfortunately, it is intractable to compute these expectations over all n! permu-

tations π ∈ Πn, so using the likelihood of the true permuation π∗ directly as an opti-
mization criterion is out of the question. One potential alternative is to use sampling
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to compute approximate expectations. Section 4.11.1 explores this possibility, which
is closest to the exact likelihood objective. Section 4.11.2 uses a different approxima-
tion, replacing the sum over all n! permutations with just those in a neighborhood of
π∗. Finally, Section 4.11.3 proposes an alternative neighborhood-based optimization
criterion that can be tailored to specific loss functions.

4.11.1 Sampling

This section presents another possible approach to learning that has not yet seen
empirical validation. This particular method, while attractive because of its arbitrar-
ily close approximation of the true objective function, is likely to require far more
computation time than the other methods this chapter proposes.

The Metropolis-Hastings algorithm (Hastings, 1970) is a Markov Chain Monte
Carlo sampling method that generalizes the simpler Metropolis algorithm (Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller, 1953). This section proposes application
of the Metropolis-Hastings algorithm to the neighborhoods computed by the normal-
form grammars of Section 2.9. As with K-best MIRA in Section 4.9.1, normal form
is crucial. Here it is necessary to compute the distribution over permutations rather
than the possibly multiple derivations of those permutations under the grammar.

The Metropolis-Hastings algorithm is instantiated with a proposal distribution
Q(π | π(t);B), where π(t) is the current permutation at the tth step. Given a neighbor-
hoodN and a normal-form grammar for parsing it, the available proposal distribution
is

Q(π | π(t);B) = Pr
(
π | N (π(t));B

)
=

exp(B(π))∑
π′∈N (π(t))

exp(B(π′))
. (4.31)

This differs from the full distribution (4.27) in that the sum in the denominator is
limited to the permutations in the neighborhood.

The algorithm computes a sample π′ from this proposal distribution and accepts
it with probability

min

(
1,

Pr(π′;B)Q(π(t) | π′;B)

Pr(π(t);B)Q(π′ | π(t);B)

)
. (4.32)

If accepted, π′ becomes π(t+1), otherwise π(t+1) is another sample of π(t). The prob-
abilities Pr(π′;B) and Pr(π(t);B) both have the same normalization factor, Z(B),
which cancels, so they can be replaced by the numerator of (4.27), exp(B(π′)) and
exp(B(π(t))).

The acceptance probability requires computation of two neighborhood conditional
probabilities. However, the parse forests can be reused from step to step. If π′ is
accepted, then its parse forest—needed to compute the denominator of Q(π(t) | π′;B)
from (4.31) in the current step—can be reused to compute a new sample at the next
step. If π′ is rejected, though, its parse forest is wasted in this respect.
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Each sample contributes a count to either i ≺ j or j ≺ i. In the limit, these
are guaranteed to converge to the true expectations under the full distribution. In
practice, deciding when the approximation is good enough is a field of study unto
itself, beyond the scope of this dissertation.

Popping back up one level to the parameter estimation problem, the procedure is
as follows:

1. Run Metropolis-Hastings on each instance (π∗, B) ∈ D, computing expectations
of B[i, j] for each pair of words (i, j). Subtract the approximate expectation
from the first term of (4.30) to compute each gradient.

2. Propagate the gradients from each B[i, j] to the entries in θ.

This procedure goes into an outer loop of parameter optimization, which generally
requires many evaluations of the gradients from many settings of the parameter vector
in order to arrive at the optimum.

An alternative is to replace the outer loop with an on-line update, the leading
candidate being stochastic gradient descent (SGD), which updates the parameters
by some learning rate times their gradient on the current problem instance—see
Section 4.7.

4.11.2 Contrastive Likelihood

Rather than maximize the likelihood of the true permutations, it may suffice
to maximize their likelihood given their own neighborhoods—Pr (π∗ | N (π∗);B) as
defined in (4.31). This is a sort of contrastive likelihood, inspired in part by the
unsupervised learning of Smith and Eisner (2005).

This can be considered an approximation to the “true” objective function, or it
can be thought of as an alternate objective. In the latter case, it is interesting to
observe the following property of the very large-scale neighborhoods.

Theorem 4.1 Exactly half the permutations in BlockInsert∗n(π) have ` ≺ r and half
r ≺ `, for any 1 ≤ ` < r ≤ n.

Even though the neighborhood of π∗ is a relatively small subset (though itself expo-
nentially large) of the entire set of permutations, each matrix entry is equally well
represented. This, along with computational tractability, is a strong point in favor of
contrastive likelihood.

In contrast, the arrangement of other items may conspire to drastically change
the expectation of some orderings as compared to the full distribution. This is a
constant danger with this objective. Ultimately, it is an empirical question whether
it is appropriate, and performance probably depends on the problem.
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Proof of Theorem 4.1: Let T be a normal-form permutation tree in GNF
B (π) from

Section 2.9.2 for which ` ≺ r. This proof introduces a transformation R`,r with these
three essential properties:

• R`,r(T ) is in GNF
B (π),

• the yield of R`,r(T ) reverses ` ≺ r to r ≺ `, and

• R`,r(R`,r(T )) = T .

The first and second properties prove that there exists a permutation in the neigh-
borhood with r ≺ ` for every one that has ` ≺ r. The third property proves that
correspondence to be one-to-one, which suffices to prove the theorem. The transfor-
mation R`,r has the following steps:

1. Let N be the smallest node in T that governs both ` and r, i.e. N determines
the relative order of ` and r. N has some span (i, k).

2. Let Bk, for “branch”, be the set of nodes, including N , whose spans end at k.

3. Reverse the orientation of each node in Bk—in-order nodes become reverse
nodes, and reverse nodes become in-order.

It suffices to show that this transformation has the three properties indicated above.
The second property is clear—reversing N changes the order of ` and r. The

third property is also straightforward. The transformation changes orientations of
nodes only, it doesn’t change the structure of the tree. The same node N is still
the smallest to govern both ` and r, and the set Bk also hasn’t changed. Therefore
the outer transformation of R`,r(R`,r(T )) reverses the same set of nodes as the inner
transformation, and results in T again.

In order to prove that R`,r satisfies the first necessary property, consult GNF
B . Left

children in the grammar are always unconstrained. Let M be the topmost node in
Bk. M must either be a left child or span (0, n), because were it a right child, its
parent would be in Bk as well. Therefore, reversing the orientation of M does not
affect normality of the (possibly empty) tree outside it.

Changing M requires changing its right child in order to preserve normality. Be-
cause its right child’s span ends at k, that right child is also in Bk and does also
change. The left child of M is irrelevant, because it is unconstrained by normal form.

Now that the tree outside M ’s right child is normal, apply the argument of the
previous paragraph recursively to M ’s right child. The base case of the recursion
is the leaf πk, which can have its label—either

→
Sk−1,k or

←
Sk−1,k—changed arbitrarily

without affecting its normality. The conclusion is that R`,r(T ) ∈ GNF
B . �

Figure 4.3 shows an example transformation R3,6 applied to an example permuation
tree.
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1 2 3 4 5 6 7 8 9

M

N

πk

1 2 3 4 5 6 7 8 9

Figure 4.3: An example permutation tree transformation reversing the order of two
items. The yield of the first tree is 2 1 4 5 7 6 3 8 9, which puts 6 ≺ 3. To generate the
corresponding tree with 3 ≺ 6, find the smallest node governing both 3 and 6—the
node labeled N in the tree—and reverse the orientation of all nodes along the right
“branch”—the thick red line from M to πk—that contains that node. The result is
the second tree, which is also normal, and whose yield is 3 6 7 4 5 2 1 8 9. Performing
the same transformation on the second tree produces the original tree.

150



1 2 3 4 5 6 7

R

N

πk

1 2 3 4 5 6 7

Figure 4.4: An example permutation tree transformation for GNF
B≤2. The yield of the

first tree is 4 3 6 7 5 1 2, which puts 7 ≺ 5. To generate the corresponding tree with
5 ≺ 7, find N governing 5 and 7 and reverse the orientation along the right “branch”,
stopping at the red node R. Also, reverse the orientation of R’s left child and the
right “branch” down from there. The result is the second tree, which is also normal,
and whose yield is 5 7 6 3 4 1 2. Again, performing the same transformation on the
second tree produces the original tree.

Corollary 4.2 Exactly half the permutations in L(GNF
B≤w(π)) have ` ≺ r and half

r ≺ `, for any 1 ≤ ` < r ≤ n, and for any w ≥ 1.

Proof: This grammar has red nodes in addition to those of GNF
B . Modify the tree

transformation R`,r to ignore nodes in Bk above the first red node. Because red nodes
can have either orientation, there is no effect on the normalcy of the tree above it.
However, red nodes require their left children, which are always narrow and therefore
never also red, to have the opposite type. Node swapping must therefore propagate
to the left child as well, unless it is a leaf. In any case, the structure of the tree again
doesn’t change, and applying the same procedure again reverses the swaps, so the
three properties from the proof of Theorem 4.1 are retained. �

Figure 4.4 shows an example of this modified tranformation, R5,7 applied to another
example permutation tree.

Section 4.12.1 applies stochastic gradient descent to maximization of this objective
function.

4.11.3 Expected Loss Minimization

A more significant departure from the intractable likelihood maximization objec-
tive is minimization of the expectation of some loss function, where the expectation
is taken only over the conditional distribution of permutations under the model given
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some neighborhood. Let L(π∗, π) measure the loss of π with respect to π∗, as in
Section 4.9.1.4 Then the objective is

θ∗ = arg min
θ

∑
(π∗,B)∈D

Eπ∈N (π∗) [L(π∗, π);B], (4.33)

where

Eπ∈N (π∗) [L(π∗, π);B] =
∑

π∈N (π∗)

L(π∗, π) Pr (π | N (π∗);B) . (4.34)

This objective is reminiscent of minimum Bayes risk (MBR) decoding (Goel and
Byrne, 2000; Kumar and Byrne, 2004). Whereas MBR chooses a single minimum
expected loss output given the model parameters, this objective attempts to choose
model parameters that minimize expected loss over all possible outputs.

In order to compute the expected loss of the exponentially many permutations in
the very large-scale neighborhoods, it is useful to introduce the expectation semiring
of Eisner (2002).

Definition 4.2 The expectation semiring is 〈R × R,⊕,⊗, (0, 0), (1, 0)〉.5 The
weight of an event E is the ordered pair (Pr(E),Pr(E) E [f | E ]) representing probabil-
ity and expectation of some function f , respectively. The operators on these ordered
pair weights are defined as follows:

(p1, v1)⊕ (p2, v2)
def
= (p1 + p2, v1 + v2), and

(p1, v1)⊗ (p2, v2)
def
= (p1p2, p1v2 + p2v1).

If w is an element of this semiring, then let p(w) return the first element of the ordered
pair, and let v(w) return the second.

In the setting of this section, the events are instances of grammar rules, which may
or may not occur in any given derivation from the grammar. The weights compute
the probabilities of those grammar rules occurring, and the expectation of the loss
function.

Because computation of the expected loss uses dynamic programming with a
normal-form neighborhood grammar, the loss function must decompose nicely. It
is most convenient if the loss can itself be expressed as a linear ordering problem, as
is the case with the symmetric difference distance δ of Section 2.11.2. This is certainly
not true of BLEU score. However, the adjacencies measure of Section 4.6 can work
with a slight modification of the grammar GNF

B .

4Apologies for the double use of L.
5In practice, it may be necessary to replace R × R with ordered pairs from the log semiring of

Section 3.5 to avoid underflow. In that case, the expectation semiring operators multiply using +
and add using log+.
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The gradient of the expected loss (4.34) with respect to a single matrix entry
B[`, r] is

∂Eπ∈N (π∗) [L(π∗, π);B]

∂B[`, r]
=

∑
π∈N (π∗)

L(π∗, π)
∂

∂B[`, r]

exp(B(π))∑
π′∈N (π∗)

exp(B(π′))

Abstracting this for the moment, let Z =
∑

f e
f . Then,

d

dx

ef

Z
=

f ′ef

Z
−
ef
∑

g g
′eg

Z2

=
ef

Z

(
f ′ −

∑
g

g′
eg

Z

)
,

leads to the following expression for the partial derivative of interest:∑
π∈N (π∗)

L(π∗, π) Pr (π | N (π∗);B)
(
I(` ≺ r ∈ π)− Eπ′∈N (π∗) [I(` ≺ r ∈ π′);B]

)
.

The expectation term inside parentheses is constant with respect to the variable π of
the outermost sum, so this refactors to

Eπ∈N (π∗) [L(π∗, π)I(` ≺ r ∈ π)]− Eπ∈N (π∗) [L(π∗, π)] Eπ∈N (π∗) [I(` ≺ r ∈ π)] ,

the difference between the expected loss when ` ≺ r and the total expected loss times
the probability that ` ≺ r.

Computation of these gradients runs the Inside-Outside algorithm (Baker, 1979)—
see Section 3.9.2—using the expectation semiring to compute both the total (un-
normalized) probability inside and outside each constituent, and the corresponding
expected losses.

In every permutation tree, there is a single node that decides whether ` ≺ r.
There are many such nodes in the parse forest, but only one per tree. Consider each
such node N , and let it combine the spans (i, j) and (j, k). N either puts ` ≺ r and
updates B[`, r] or puts r ≺ ` and updates B[r, `]. Either way, the amount of the
update is the same. First, let

w = α(N)⊗ γ(N → L R)⊗ β(L)⊗ β(R),

be the sum, in the semiring, of the weights of all trees in the forest that use the
particular grammar rule N → L R. Then the update is

v(w)

p(β(S))
− v(β(S))

p(β(S))

p(w)

p(β(S))
,
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n 1000 Random 100,000 Best 1000 Best
5 0.991 0.985 0.985

10 0.990 0.929 0.857
15 0.992 0.800 0.787
20 0.990 0.763 0.796
25 0.988 0.774 0.828
30 0.993 0.806 0.799
35 0.995 0.790 0.817
40 0.994 0.805 0.752

Table 4.4: Kendall’s τ rank correlation of adjacencies with BLEU score. Random
permutations include all of Πn, but 1000 and 100,000 Best include only those in
LGNF

B (π∗). Best is according to adjacency, rather than BLEU. The n = 5 case
includes fewer permutations because 5! = 120 and the neighborhood contains only 90
of those. See the text for discussion of BLEU score for single permutations.

where S is the start symbol of the grammar. The first term is the portion of the
expected loss contributed by node N , and the second term is the product of the total
expected loss (β(S) is the semiring sum of all trees in the forest) and the probability
of N → L R.

This correctly computes the gradients even though many ∆s sum to the gradient
of each matrix entry. The left-hand term accumulates the total expectation as the
sum of node expectations, and the right-hand term accumulates the total probability
times a constant expectation as the sum of node probabilities times that constant.

4.11.4 Preserved Adjacencies

Table 4.4 shows the correlation between BLEU score6 and the number of preserved
adjacent pairs introduced in Section 4.6. The correlation is very high, though it is
lower among the best permutations than among random ones. Due to this high
correlation, it is not unreasonable to use the adjacency count as a substitute for or
approximation to BLEU score during optimization of minimum expected loss.

Computing the number of preserved adjacent pairs has two special requirements.

1. Parsing must use the neighborhood of the true permutation π∗ against which the
loss function measures other permutations. Parsing cannot handle the neigh-
borhood of any other permutation efficiently.

6BLEU score measured on single permutations is problematic, because especially higher-order
n-grams often have zero precisions. Therefore these scores are measured as though the single per-
mutation had been added to a corpus of 100 other permutations with baseline 1–4-gram precisions
of 1.00, 0.57, 0.38, and 0.28. The sign test described in Section A.2 uses a similar procedure.
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)
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→
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→
S
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→
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i,k or
←
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)
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B
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i,k−1 Sk−1,k

→
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i,k → S−Ri,k−1 Sk−1,k

←
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(
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)
, k − i ≥ 2
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←
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→
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)
, j < k − 1

Figure 4.5: A normal-form grammar for block insertions accounting for adjacent pairs.
→
S

+R

i,k generates subpermutations that end with πk, while
→
S
−R

i,k generates subpermuta-

tions that do not end with πk.
←
Si,k likewise cannot end with πk. Only the rule marked

B results in a preserved adjacent pair—its left child ends with πk−1 and its right child
is πk.
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n 1000 Random 100,000 Best 1000 Best
5 0.154 0.162 0.162

10 0.037 0.089 0.269
15 0.053 0.195 0.317
20 0.077 0.294 0.433
25 0.032 0.293 0.440
30 0.021 0.335 0.390
35 0.020 0.223 0.424
40 0.043 0.344 0.161

Table 4.5: Kendall’s τ rank correlation of Bτ
π∗(π) with BLEU score. See Table 4.4

for a description of columns. Best is according to Bτ
π∗(π), rather than BLEU. The

correlations less than 0.05 in the Random column are not significant at 95%.

2. The grammar GNF
B (π∗) from Figure 2.35 requires modifications, shown in Fig-

ure 4.5. Only one rule in the new grammar results in a preserved adjacent
pair.

Section 4.12.1 experiments with learning parameters to optimize this criterion
using stochastic gradient descent, as well.

4.11.5 Rank Correlation

Table 4.5 shows the correlation between BLEU score and the count Bτ
π∗(π), in-

troduced in Section 2.11.2, of correctly ordered pairs in π. The correlation is very
small, though positive, over random permutations, but improves somewhat over the
best permutations according to Bτ

π∗ . This is the opposite pattern from the adjacency
measure of Section 4.11.4.

This measure, related to rank correlation, is clearly not a good approximation
to BLEU score for minimization of expected loss. However, it is an interesting loss
function in its own right, particularly because of its similarity to the linear ordering
problem. It is the correct loss function if the relative order of every pair of words is
equally important.

4.12 Results

4.12.1 Learnability

This section reports the performance of several algorithms using the development
set for both training and testing. This serves two purposes:

1. it validates learning algorithms, avoiding the expense of running on the much
larger training set for algorithms that show poor potential, and
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2. it validates feature sets, ensuring that it is possible to learn good orderings at
all.

Both of these purposes are somewhat confounded by the problem of overfitting. In the
first case, an algorithm that performs worse on its own training data may still perform
better on unseen data, because of the issue of generalization. These experiments
therefore do not attempt to decide the best learning algorithm. Rather, they attempt
to distinguish between algorithms that are viable and those that are moribund.

In order to mitigate the effect of overfitting on the second purpose, the features
used are still selected on the training set, so that training and testing on the devel-
opment set use reasonable feature sets. Still, with a relatively small development set,
many features may occur only a single time. Those will prove quite useful to the
learning algorithms, though they will obviously overfit.

Figure 4.6 shows performance of two models each trained with averaged perceptron
and averaged search perceptron. These results are a strong validation of both the
feature sets and the learning algorithms. The models with POS-only features reached
a monolingual BLEU score of 73.16 at iteration 80, while the POS+Word features
achieved BLEU 82.53 with the search perceptron after 60 iterations.

Figure 4.7 shows a plot of log likelihood and BLEU score of models trained us-
ing stochastic gradient descent to maximize contrastive likelihood, with two different
learning rates. Increasing the log likelihood of the target permutation given its neigh-
borhood does not lead to improved decoding performance as measured by BLEU
score. In fact, the curves show approximately opposite trends. This does not appear
to be a viable learning criterion for this task.

Figure 4.8 shows a plot of expected adjacencies and BLEU score of models trained
using SGD to maximize expected adjacencies, again with two different learning rates.
Increasing the number of expected adjacencies does also increase decoding perfor-
mance as measured by BLEU. However, it doesn’t increase BLEU by very much,
as compared to the perceptron methods. Strangely, the perceptron-trained models
also have more expected adjacencies. The experiments in the following section use
perceptrons exclusively.

4.12.2 Learning and Generalization

This section experiments with the entire Europarl training set of 747,088 sentence
pairs, measuring performance on the held-out development set of 2,000 sentences.
There are three variables:

1. the feature set, including the selection threshold,

2. the learning procedure, which has parameters of its own, and

3. the oracle ordering, the possibilities each described in Section 3.8.1.

157



●

●
●●

●
●
●
●
●
●
●
●●●

●
●
●
●
●●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

50
60

70
80

Iteration

B
LE

U

POS
POS Search
Word
Word Search

Figure 4.6: BLEU score for models trained with perceptrons. The models labeled
“POS” use only part-of-speech features, while the models labeled “Word” also in-
clude word features. The models labeled “Search” use the guided search procedure
of Section 4.8 along the model trajectory, while the others are the single-update per-
ceptrons of Section 4.7. Search perceptrons learn faster as counted by iterations, but
undergo more model updates per iteration.
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Figure 4.8: Expected adjacencies vs. BLEU score for three different learning rates.
In each case, expected adjacencies in the target neighborhood is a good predictor
of BLEU score. However, eventually, improving expected adjacencies fails to also
improve BLEU. BLEU also improves more slowly with this learning method than
with perceptrons.
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Features Learning Oracle CPUs BLEU 1 BLEU 2 BLEU 3
German unreordered 44.53 49.65 41.38
POS:5 Baseline 1 44.15 48.62 40.96
POS:100 Baseline 1 44.36 49.21 41.14
POS:5 Search:0.0625 1 1 47.10 49.77 42.75
POS:5 Perceptron:0.0625 2 1 46.43 50.22 42.45
POS:5 Search:0.0625 2 4 46.22 50.21 42.42
POS:5 Search:0.0625 2 10 45.93 49.89 42.06
POS:5 Search:0.125 2 10 46.41 50.40 42.42
POS:5 Search:0.25 2 10 46.51 50.70 42.36
POS:100 Search:0.125 2 10 46.37 50.55 42.46
POS:5 Baseline 2 44.33 49.21 41.09
POS:5 Search:0.0625 2 10 46.01 50.05 42.12
POS+Word:100 Baseline 2 44.60 49.75 41.44
POS+Word:100 Perceptron:0.0625 2 1 46.92 51.51 43.31
POS+Word:100 Search:0.0625 2 10 46.76 51.30 43.13
+Dep:5 Search:0.0625 2 10 46.87 51.45 43.22
POS:5 Baseline 3 42.43 46.43 40.03
POS+Word:100 Baseline 3 43.32 47.68 40.56
POS+Word:100 Search:0.0625 3 10 45.44 48.08 43.39

Table 4.6: Performance of various models on held-out development data. All search
perceptrons used the model trajectory. BLEU 1, 2, and 3 are measured against
Oracles 1, 2, and 3, respectively. The two models reported with identical parameters
have different initialization. The first started from the baseline model trained on
Oracle 1, while the second started from the baseline model trained on Oracle 2—see
Section 4.5 on page 137.

In addition, because iterative training over three quarters of a million sentences
can require a great deal of time, many of the experiments split the training data into
several smaller parts and trained multiple models simultaneously, combining them at
the end by averaging. This is yet another variable with implications for performance.

The performance of several models at reordering the held-out development data is
indicated in Table 4.6. There are a number of observations to make about this data:

• As expected, the two models trained on Oracles 1 and 3 have the best perfor-
mance measured against their own oracles, but the worst performance on Oracle
2. Models trained on Oracle 2 have the best performance on the translation
task of Section 3.8.

• There does not appear to be much difference between the quality of the models
trained with search perceptrons and the one trained with standard perceptron.
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This may be in part because of the restrictions made during decoding, which
the next section discusses.

• Parallelization appears to be harmful. The benefit of parallelization is much
faster training, but the cost is a small reduction in generalization performance.

• More features help. The model that includes word features scores 51.30 on
BLEU 2, significantly higher than the best model with POS features—50.70—
according to the paired permutation test. (This difference is not significant
according to the sign test.) The model that includes dependency features further
improves this to 51.45, though this is too small to be significant—it is only at the
79th percentile on the paired permutation test. Unfortunately, neither of these
models result in better performance on the full translation task—perceptron
models have the highest performance there. See Table 3.3 on page 109 for
details.

4.12.3 Search Error

Traditional reordering models (cf. Och and Ney (2004)) rely on search error (in the
form of a limited window) for performance (Al-Onaizan and Papineni, 2006). That
is, the translation candidate that is best according to the evaluation metric (namely,
BLEU score) is often different from the one that has the lowest cost according to the
model. The translation systems restrict the distance that words can move away from
their position in the source sentence, introducing “errors” according to the model,
but producing better translations according to BLEU.

The models learned in this chapter also suffer from a reliance on search error—not
in the same way as traditional models, however. Limiting search to the neighborhood
of the identity permutation (exactly the set of rearrangements allowed by ITG) im-
proves performance relative to iterated local search—which potentially considers any
of the n! permutations—for window widths larger than eight. This constitutes sys-
tematic introduction of search error. However, limiting LOP reordering models to re-
arranging words within a maximum window size, given the neighborhood constraint,
always degrades performance relative to the unlimited system (see Figure 4.9).7 The
model error is not such that long-distance movement needs to be prohibited com-
pletely.

This reliance on the ITG neighborhood for performance is mysterious, particularly
considering the result, illustrated in Figure 2.50 on page 80, that fewer than half of
the “gold standard” reorderings implied by the alignments are in the neighborhood of
the initial German sentences. Understanding this limitation, and perhaps correcting
it, is an elusive goal.

7For this reason, all of the results reported in this dissertation decode under the LOP models
without leaving the neighborhood of the identity permutation. Given the neighborhood constraint,
the reordering is exact.
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Figure 4.9: Search error vs. model error for one reordering model. Monolingual BLEU
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responds to the baseline system—no reordering—, while width 30 is indistinguishable
from the unrestricted system to four decimal places.
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While the constraint is helpful during decoding, early experiments limiting search
to the neighborhood of the identity permutation during training did not lead to
improvements over unconstrained hillclimbining.

4.13 Other Work

Boyan and Moore (2000) describe an algorithm they call Stage. They let V π

be a function that gives the value of the objective function achievable if local search
begins at a given configuration. They use machine learning to estimate Ṽ π, a linear
or quadratic function of features of configurations.

It might be possible to learn C costs or adjacency costs (which would turn LOP
into TSP) using Stage. Then search using the augmented evaluation function would
lead to a good restart for LOP-only search.

4.14 Summary

This chapter makes the first application of full-scale machine learning for con-
structing Linear Ordering Problems from data. The prior work of Cohen et al. (1999)
that Section 4.2 describes is more akin to classifier combination. It requires that
several candidate orderings of the items already exist.

The possibility of learning the ordering function, which this chapter introduces,
may prove more generally useful than its application here to machine translation.
Ranking and ordering problems are quite common, and they don’t always come ac-
companied by an obvious scoring function. The information retrieval application is
one example, but there are many others. Ranking competitors based on their head-
to-head performance, such as in college football, might be another.

In addition to this major contribution, this chapter adapts a number of previous
machine learning methods to the problem at hand. It also introduces new variations
on these algorithms, including the search-based perceptron, contrastive likelihood,
and maximization of preserved adjacencies. This last requires its own new variation
on the grammars of Chapter 2. The adaptation of loss minimization to the very
large-scale neighborhood requires adaptation of existing algorithms for computing
the expected loss, and makes use of the expectation semiring.

Finally, the chapter uses training over the development set to demonstrate that
it is possible to learn Linear Ordering Problems from data with perceptrons, and
uses a standard training/development arrangement to further demonstrate that this
learning generalizes to unseen data, producing significant improvements in German
sentence reordering, as measured by monolingual BLEU.
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Chapter 5

Conclusion

This dissertation has explored three hard problems in three chapters—the lin-
ear ordering problem, machine translation, and parameter estimation. Each chapter
contributes some novel ideas or techniques.

One primary goal of the dissertation as a whole is to explore the ways in which
these problems are related, and to bring them closer together, in some sense. Chap-
ter 2 applies ideas from natural language processing, particularly grammars and pars-
ing, to the linear ordering problem. Chapter 3 introduces the linear ordering problem
as a new model for rearranging words. Chapter 4 introduces parameter estimation
to the general linear ordering problem. Each chapter applies search in one form or
another to a computationally intractable problem.

The novel contributions of the dissertation are numerous. Chapter 2 includes:

• a dynamic program for computing the costs of block insertions in constant time
per neighbor,

• a short-cut local search procedure using block insertions, with state-of-the art
performance on the XLOLIB benchmarks,

• the first application of very-large scale neighborhoods to search for the linear
ordering problem,

• normal forms and neighborhood sizes for GB≤w and special cases, and

• neighborhood graph diameter using analogies to sorting.

Chapter 3 introduces:

• formulation of IBM Model 4 as a cascade of finite-state transducers,

• the ABC model of reordering for translation, itself a novel combinatorial opti-
mization problem,
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• a generalization of the linear ordering problem to triples, rather than pairs,

• preprocessing for translation using the linear ordering problem, and

• several prospective decoding methods for use with the ABC model.

Finally, Chapter 4’s contributions include:

• the first full-scale application of machine learning for constructing linear order-
ing problems,

• an adaptation of max-margin parsing to the linear ordering problem,

• the search perceptron,

• contrastive likelihood using a very large-scale neighborhood as the contrast set,

• an algorithm for computing expected loss over all permutations in the very
large-scale neighborhoods, and

• demonstration that linear ordering problems can be learned for sentence order-
ing.

Although the experiments of this dissertation apply the search and learning algo-
rithms only to the linear ordering problem, they are more widely applicable. Search
methods based on grammars apply to the general ABC model, which subsumes the
traveling salesman problem. The constant time per neighbor property applies to
the BlockInsertn neighborhood for the three-dimensional C model, if it satisfies the
cyclicity constraint, and the VLSN BlockInsert∗n can also be searched in Θ(n3) time
for constrained C. There are no known natural applications of this model, but it
could certainly be applied to machine translation, at least. It is no more outlandish
than the linear ordering problem. Many of the learning algorithms applied here to
the LOP should also transfer to the ABC model.

5.1 Future Work

The work of this dissertation constitutes only a small contribution to each of the
fields that it touches upon—namely combinatorial optimization, natural language
processing, and machine learning. However extensive the work, it cannot even aspire
to exhaustivity. More important, though, the connections it makes between these
fields open up numerous opportunities for further research. The space of ideas that
remain for exploration is vast, but there are some clear directions for future work:
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• The linear ordering problem has already seen wide application across a variety
of disciplines, but ordering is ubiquitous and the LOP will no doubt find other
applications. Advanced techniques for search in the LOP seem to be applied
almost exclusively to the economics application. There is no reason why other
applications should not make use of the best tools available for solving this
problem.

• The poor performance of exact decoding algorithms for the ABC model of
machine translation is disappointing. Finding an appropriate approximate al-
gorithm to use for integrating the linear ordering problem into the decoder is
an important future step. The model has proven useful for preprocessing, but
has not yet been tested in conjunction with the target language model.

• Features often make or break a model. The features applied to learning for the
linear ordering problem are derived directly from the task of dependency parsing
which, while somewhat analogous, is certainly not an exact match. Designing
features especially for the LOP may lead to substantial improvements in learning
for this task.

In addition to these major directions, there are possibilities that the dissertation
already suggests, either explicitly or implicitly. Section 2.7.3 proposed evaluating
Block LSf in the context of memetic algorithms, as well as learning which neighbor-
hood to apply when. Section 2.7.4 proposed simulating annealing as another way of
avoiding the local maximum problem.

Moving on to machine translation, Section 3.3.3 mentioned both segment choice
models and the BTG constituent reordering model, which reorder phrases rather than
single words. The linear ordering problem model could be applied in this way as well,
with features computed over phrases instead of words. A single phrase segmentation,
or possibly a lattice of them, could serve as the input.

An alternative to this fixed phrase segmentation is the addition of phrase brackets
symbols to the input sequence. Section 3.6.1 discussed a few possibilities for their
use.

An especially attractive possibility is to adapt the grammar from Figure 4.5 in
Section 4.11.4, accounting for preservation of adjacent items in the original permu-
tation. This could make a very lightweight alternative to the A model—it doesn’t
change the attractive runtime of BlockInsert∗n for the LOP at all. This would mean
introduction of additional features and parameters to the model. It would also require
constraint of search to the neighborhood of the identity permutation. Fortunately,
that constraint already leads to better translation performance.

Finally, the untested learning algorithms from Chapter 4, namely the several in-
stances of MIRA in Sections 4.9 and 4.10, and sampling for computing the true
partition function in Section 4.11.1, would make interesting further work. The MIRA
methods are close enough to the perceptrons that they should have good performance,
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and the fact that they take more information into account at each update might lead
to improvements. The attempted likelihood-based methods all led to disappointing
results, but the Metropolis-Hastings algorithms has the important virtue that it at-
tempts to compute expectations under the true probability distribution, rather than
crude approximations.

For Future Reference

The latest version of this dissertation, including the inevitable errata, can be found
at http://nlp.cs.jhu.edu/~royt/. This will also serve as the home for software
implementing the algorithms described herein.
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Appendix A

MT Evaluation and Significance
Tests

A.1 The BLEU Score

The BLEU score, introduced by Papineni et al. (2002), is an automatic evaluation
measure for machine translation. It is compatible with one or more reference trans-
lations. It is basically a geometric mean of n-gram precisions, but has an additional
term to control recall.

Definition A.1 Let c be the total candidate word length, r the effective reference
word length, N a maximum n-gram length, wn an arbitrary weight, and pn the total
modified n-gram precision of the candidate output. The BLEU score of the candidate
output is

log Bleu = min(1− r

c
, 0) +

N∑
n=1

wn log pn. (A.1)

This definition requires some explanation.

• The “effective reference length” r is the sum of best-match reference lengths
for each sentence. In this dissertation, there is only one reference translation or
ordering, so r is trivially the total length of the references.

• N = 4 is standard.

• The weights wn must sum to one. 1
N

is standard.

• The modified precision pn is the fraction of n-grams in the candidate that occur
in at least one of the reference translations, with the following limitation: if
an n-gram occurs more than once in a candidate sentence, clipping limits the
number that count as correct to the maximum number that occur in a single
reference sentence.
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This dissertation uses the standard N = 4 and wn = 1
4
.

Clipping is not an issue for permutations, because all of the items are unique.
However, except for the correlations in Sections 4.11.4 and 4.11.5, BLEU scores of
reorderings are measured with respect to words rather than word positions. This
means that when a word appears more than once in a sentence, the “wrong” one may
be used in an n-gram and still count as correct.

Machine translation evaluation is an important and difficult task in its own right.
Some of the methods of this dissertation might even be adapted to this task. The
BLEU score is still widely used, in spite of many criticisms.

A.2 Significance Tests

This dissertation reports many results using BLEU score. An important question
for these results is whether observed differences are statistically significant, or whether
they are likely to have happened by chance. The null hypothesis H0 is always that
two translation systems are equally good. The purpose of significance testing is to
reject the null hypothesis when sufficient evidence is available.

BLEU score is a little problematic for significance testing because it is an aggregate
measure. As Section 4.11.4 mentions, BLEU score on a single sentence is frequently
meaningless because high-order n-grams have low precision that is often zero. As a
result, there is frequently only a single sample of the BLEU score of two competing
systems—that of their respective outputs on some test corpus. Statistical significance
testing from a single sample is hopeless in the absence of very strong distributional
assumptions.

A.2.1 Bootstrap Resampling

Several authors (Germann, 2003; Koehn, 2004; Zhang and Vogel, 2004), have
proposed bootstrap resampling (Efron and Tibshirani, 1993) as a solution to this
problem. (Koehn, 2004) described the procedure in detail:

1. Translate a corpus of N sentences with both system 1 and system 2.

2. S times, sample N sentences, with replacement, from the corpus.

3. Measure the BLEU scores of systems 1 and 2 on each of the size-N sample
corpora.

4. The confidence that system 2 is better than system 1 is the fraction of the S
samples on which it has higher BLEU score.

What is the alternative hypothesis Ha that this procedure tests? Each boostrap
sample tests whether system 2 scores better than system 1, but disregards the amount
of the difference.
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A.2.2 Sign Test

Collins et al. (2005) proposed a clever sign test construction as an alternative to
the paired bootstrap resampling test just described. This new test has the alternative
hypothesis Ha that the probability that system 2 translates a given sentence better
than system 1 is greater than 1

2
.

1. Translate a corpus of N sentences with both system 1 and system 2.

2. For each i ∈ {1, 2, . . . , N}, replace system 1’s translation of sentence i with
system 2’s translation, and measure the resulting BLEU score.

3. Record the sign of the difference between the new BLEU score, and system 1’s
BLEU score on the corpus.

4. Perform a standard sign test on the results of the previous step.

The problem with this procedure is that Ha is not exactly the right criterion. It
ignores the amount of the difference between the BLEU scores of the two systems,
which may even be negative. It is possible for system 2 to satisfy Ha but nonetheless
have worse expected corpus BLEU score than system 1. This would be the case, for
example, if system 2 made small improvements over system 1 on a significant majority
of sentences, but made even larger degradations on the rest.

The next section argues for a paired permutation test, which has a more attractive
alternative hypothesis.

A.2.3 Paired Permutation Test

A paired permutation test is a bootstrapping procedure similar to the paired
resampling described above, but uses all of the available data for each sample. Rather
than sample pairs with replacement, permute pairs between the systems according
to the flip of a coin. The resulting sample has, in expectation, half of its outputs
from the first translation system, and half from the second. Computing the difference
between the BLEU scores that result for many such samples leads to an estimate of
the percentile of the true system BLEU difference with respect to the distribution of
the samples. This procedure is not new to this dissertation—Smith and Eisner (2006)
mentioned using a paired-sample permutation test without offering a description, for
example.

1. Translate a corpus of N sentences with both system 1 and system 2.

2. S times, for each i ∈ {1, 2, . . . , N}, swap the translations of sentence i with
probability 1

2
.
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3. Measure the difference betweeen the BLEU scores of the two sets of N transla-
tions.

4. The confidence that system 1 improves on system 2 is the fraction of samples
for which the true difference is larger than the absolute value of the sample
difference.

What is the alternative hypothesis Ha of this procedure? It is that the amount
of the difference between the true scores of systems 1 and 2 is greater than zero.
If H0 is true, then the outputs of the systems should be interchangeable. The test
interchanges outputs at random and measures the results. If the observed difference is
greater than the differences that occur during the random interchanges, that suggests
that the true difference is not zero.

The results reported in this dissertation use both the sign test and the paired
permutation test. The two tests usually agree, though confidences often differ by
several orders of magnitude. The paired permutation test is usually more confident.

A.3 METEOR

METEOR (Lavie et al., 2004; Banerjee and Lavie, 2005; Lavie and Agarwal, 2007)
is a recall-focused translation evaluation measure that uses stemming and synonymy
in addition to exact matching. It has been shown to significantly outperform BLEU
in terms of correlation with human judgments. Stemming uses Porter’s stemmer.
Synonymy and alternate stemmings come from WordNet.

For a given sentence, METEOR first computes an alignment between the candi-
date and the reference translation. This alignment is one-to-one, with some words
on both sides left unmatched. Given the alignment, METEOR computes precision
P and recall R in the standard way—precision is the ratio of matched words to the
length of the candidate, and recall the ratio of matched words to the length of the
reference. The basis for the score is then

Fmean
def
=

1
α
R

+ 1−α
P

=
PR

αP + (1− α)R
, (A.2)

a weighted harmonic mean. The remainder of the score is a chunk penalty, which
rewards monotone alignments. A chunk is a sequence of word alignments that is
consecutive in both the candidate and the reference—a higher-order n-gram match.
Let c be the number of such chunks and a the total number of word alignments. Then
the penalty is

Penalty
def
= γ

( c
a

)β
. (A.3)

Finally,
Meteor

def
= Fmean · (1− Penalty). (A.4)
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In Banerjee and Lavie (2005), the parameters were heuristically set to (α, β, γ) =
(0.9, 3, 0.5). The METEOR scores reported in this dissertation use (0.80, 0.83, 0.28),
the default values of the scorer for translation into English, tuned by Lavie and
Agarwal (2007) to maximize the sum of adequacy and fluency. Results also use
all four matching criteria: exact, Porter stemmer, WordNet stemmer, and WordNet
synonymy.

A.4 TER

The Translation Edit Rate (TER) of Snover et al. (2006) is another automatic
evaluation measure, intended to capture the amount of editing necessary to postpro-
cess a candidate translation in order to arrive at the reference translation. Possible
edits come in four types, each with identical cost:

• Insertion

• Deletion

• Substitution

• Shift

The first three are standard edit distance operations. Shift means moving a subse-
quence of the candidate to a new location—a block insertion as used in Chapter 2.

Let E be the smallest set of edits needed to produce one of the reference transla-
tions, and let r̄ be the average length of the reference translations. Then the TER is
simply

TER
def
=
|E|
r̄
. (A.5)

TER, unlike BLEU and METEOR, is an error rate, meaning a lower score corresponds
to a better translation.

Snover et al. note that the problem of finding optimal edit distance with movement
is NP-complete, citing Shapira and Storer (2002). They therefore rely on greedy
search to find good move operations, interspersed with computation of traditional
edit distance, using only insertion, deletion, and substitution.

This problem itself is a potential application of the methods of this dissertation.
This would make use of the A model of Chapter 3 and a modification of the grammars
from Chapter 2.

• Implement edit distance as a finite-state transducer with cost 1 for every edit.
Compose the transducer with the reference translation(s) and project to the
input to get the language of possible candidates.

• Replace the grammar weights with
→
γ i,j,k= 0 and

←
γ i,j,k= 1.
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Because both METEOR and TER’s statistics can be broken down sentence by
sentence, it is possible to use the same sign and permutation tests for these measures
as for BLEU score.
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Appendix B

The TIGER Treebank

This dissertation uses annotations from the TIGER treebank (Brants et al., 2002)
for both part-of-speech and dependency features, as described in Section 4.4.

This chapter describes the annotations used in the TIGER treebank. Section B.1
describes the part-of-speech tag set, and Section B.2 describes dependency labels.

B.1 Part of Speech Tags

TIGER uses the Stuttgart-Tübingen tagset, described in Schiller, Teufel, and
Thielen (1995), for parts of speech. Table B.1 shows the tag set. The descriptions
there are taken directly from the English version of a table provided by the authors.1

TreeTagger uses a slightly different version of the tags, which replaces PAV with
PROAV and $( with $*LRB*.

B.2 Dependency Labels

Amit Dubey converted the phrase-structure trees of the TIGER treebank to
dependency structures for the CoNLL-X shared task (Buchholz and Marsi, 2006).
The labels are the grammatical functions used in the NEGRA corpus (Skut, Krenn,
Brants, and Uszkoreit, 1997). Table B.2 shows the label set. The descriptions there
come directly from the NEGRA website.2 In addition, PUNC is used for all punctu-
ation.

1http://www.cl.cam.ac.uk/~sht25/papers/stts.pdf
2http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/kanten.html
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AC adpositional case marker MW way (directional modifier)
ADC adjective component NG negation
AMS measure argument of adj NK noun kernel modifier
APP apposition NMC numerical component
AVC adverbial phrase component OA accusative object
CC comparative complement OA2 second accusative object
CD coordinating conjunction OC clausal object
CJ conjunct OG genitive object
CM comparative conjunction PD predicate
CP complementizer PG pseudo-genitive
DA dative PH placeholder
DH discourse-level head PM morphological particle
DM discourse marker PNC proper noun component
GL prenominal genitive RC relative clause
GR postnominal genitive RE repeated element
HD head RS reported speech
JU junctor SB subject
MC comitative SBP passivized subject (PP)
MI instrumental SP subject or predicate
ML locative SVP separable verb prefix
MNR postnominal modifier UC (idiosyncratic) unit component
MO modifier VO vocative
MR rhetorical modifier

Table B.2: The NEGRA grammatical function labels.
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