
Learning Cost-Aware, Loss-Aware Approximate
Inference Policies for Probabilistic Graphical Models

Veselin Stoyanov
Johns Hopkins University

Baltimore, MD
ves@cs.jhu.edu

Jason Eisner
Johns Hopkins University

Baltimore, MD
jason@cs.jhu.edu

Abstract
Probabilistic graphical models are typically trained to maximize the likelihood
of the training data and evaluated on some measure of accuracy on the test data.
However, we are also interested in learning to produce predictions quickly. For
example, one can speed up loopy belief propagation by choosing sparser models
and by stopping at some point before convergence. We manage the speed-accuracy
tradeoff by explicitly optimizing for a linear combination of speed and accuracy.
Although this objective is not differentiable, we can compute the gradient of a
smoothed version.

1 Introduction
Probabilistic graphical models (PGMs), such as Bayesian networks (BNs) and Markov random fields
(MRFs), are commonly used for structured prediction. However, inference in PGMs is often slow.
One can speed it up by approximation, but this can degrade accuracy.

We are interested in learning model structures and parameters that support fast approximate in-
ference that remains (fairly) accurate. This is a test-time speed-up that requires an investment at
training time.

In previous work [6], we were concerned with training for approximate inference. We argued that
when PGMs may have incorrect model structure or will be used with approximate inference or de-
coding at test time, then their parameters should be robustly estimated by optimizing the training loss
that is achieved in the presence of all approximations. In other words, one should perform empirical
risk minimization (ERM) under the same approximations as those under which the system will be
tested. We chose loopy belief propagation (BP) as our approximate inference strategy. To tune the
graphical model parameters, we used back-propagation to compute the gradient of the output loss.
We found that this mode of training indeed led to more accurate models than traditional maximiza-
tion of the approximated log-likelihood. It also permitted speedups by running fewer iterations of
BP. The performance of our ERM-trained models remained robust to this further approximation (and
to misspecified model structure), whereas log-likelihood trained models degraded more rapidly.

In this paper we extend this work by including speed as an explicit term in our training objective,
so that we learn parameters that balance speed and accuracy. In our BP setting, training choices can
affect speed in two ways. First, we can accelerate inference by structure learning: e.g., in a sparse
graphical model, fewer messages have to be passed. Second, we now expand our training-time
optimization problem and introduce additional parameters that select an inference strategy; these
policy parameters are tuned jointly with the model parameters. Our present experiments consider
only a modest policy space, focusing on learning a dynamic stopping criterion for belief propagation.

In previous work we showed that in the computationally-sensistive setting, it is important to match
the training and test conditions, including training to minimize the loss rather than to maximize
the likelihood. In this work, we extend our experimental evaluation with more learning settings
and by introducing mismatch in the order of the model. Our experimental results confirm previous
observations. We then learn a sparse model and a dynamic stopping criterion. Unfortunately, it
turned out that our current synthetic dataset did not need a dynamic stopping criterion, since it was

1



possible to learn to perform accurate predictions even under a hard limit of two iterations. However,
experiments show that including our sparsity-inducing technique reduces the number of edges by an
order of magnitude while affecting the corresponding accuracy only modestly.

2 Preliminaries
Training Objective. We assume a supervised or semi-supervised learning setting. Each training
example (xi, yi) consists of an input xi and a desired output yi. For purposes of this paper, our
system’s goal is to predict yi from xi. `(y, yi) defines the task-specific loss that the system would
incur by outputting y. For the computationally-limited setting, we consider a speed-augmented loss
function such as `(y, yi) + λtrun(xi), where trun(xi) is the time that the model required to come
up with the prediction. Here λ > 0 defines the tradeoff between speed and accuracy, making this a
multi-objective optimization. By varying λ, we can sweep out the Pareto frontier.

Markov Random Field. An undirected graphical model, or Markov random field (MRF), is
defined as a triple (X ,F ,Ψ). X = (X1, . . . , Xn) is a sequence of n random variables; we use x =
(x1, . . . , xn) to denote a possible assignment of values. F is a collection of subsets of {1, 2, . . . , n};
for each α ∈ F , we will write xα to denote an assignment to the subset of variables Xα = {Xj :
j ∈ α}.
Finally, Ψ = {ψα : α ∈ F} is a set of factors, where each factor ψα is some function that maps
each xα to a potential value in [0,∞). This function depends implicitly on the global parameter
vector θ. The probability of a given assignment x is given by

pθ(X = x) =
1

Z

∏
α∈F

ψα(xα) (1)

where Z is chosen to normalize the distribution.

Each of our training inputs xi is a set of “input” random variables with observed values, and the
corresponding training output yi is a set of “output” random variables, also observed. There may be
additional hidden variables.

Loopy Belief Propagation. Inference in general MRFs is intractable. We focus in this paper on
a popular approximate inference technique, loopy belief propagation (BP) [4]. BP uses iterative
updates of messages and terminates when it either converges (i.e., the maximum message change,
or residual, falls under a threshold) or a maximum number of iterations is reached. Sets of variable
and factor marginals called beliefs are computed from the final messages. Beliefs can be used to
compute gradients of the log-likelihood for training and used to produce predictions during testing.

Log-Likelihood Maximization. MRFs are typically trained instead by maximizing the log-
likelihood of a given training set {(xi, yi)}. The log-likelihood log pθ(x

i, yi), or the conditional
log-likelihood log pθ(y

i | xi), can be found by considering two slightly different MRFs, one with
(xi, yi) both observed and one with only the conditioning events (if any) observed. An approxi-
mation of the logZ of each MRF can be computed by running BP and combining the beliefs into
a quantity called the Bethe free energy that approximates − logZ [9] The gradient of the Bethe
free energy is closely connected to the beliefs. Training MRFs based on the Bethe free energy
approximation has been shown to work relatively well in practice [8, 7].

Empirical Risk Minimization. Maximizing log-likelihood is appropriate when it gives a good
estimate of the true distribution (e.g., the model structure and training data are adequate), and fur-
thermore that distribution will be used for exact inference and decoding (i.e., the system will actually
make the minimum-risk decision given its input data). Under other conditions, we have argued that
one should train to minimize risk for the actual inference and decoding procedures that will be used
at test time [6]. Suppose we have fθ, a family of decision functions parameterized by θ. In our
case, θ gives the feature weights, and fθ computes the result of y∗ of approximate BP inference
followed by some decoding procedure. We then use the loss function `(y∗, yi) to evaluate whether
the decoder’s output y∗ was good. We should select θ to minimize the expected loss under the true
data distribution over (x, y). In practice, we do not know the true data distribution, but we can do
empirical risk minimization, taking the expectation over our sample of (xi, yi) pairs.

To determine the gradient of `(fθ(xi), yi) with respect to θ, we employ automatic differentiation in
the reverse mode [2]. The intuition is that our entire test-time system, regardless of how its con-

2



structed or the approximations that it uses, is nothing but a sequence of elementary differentiable
operations. If intermediate results are recorded during the computation of the function (the forward
pass), we can then compute the partial derivative of the loss with respect to each intermediate quan-
tity, in the reverse order (the backward pass). At the end, we have accumulated the partials of the
loss with respect to each parameter θ. A detailed explantation of our back-propagation algorithm as
well as complete equations can be found in [6] .

Gradient information from the above procedure can be used in a local optimization method to mini-
mize training test loss. In this paper we use stochastic meta descent (SMD) [5].

3 Learning Computationally Aware Models
We are interested in learning models that run fast during testing, even at some cost to accuracy. In
the context of BP for PGMs, we can achieve speed-up by stopping approximate inference early (i.e.,
computing a cruder approximation) and by learning sparser models (i.e., models with fewer edges).1

Learning Through ERM. In previous work, we argued that one should learn through minimizing
training loss under the same approximations as those that will be used during training. We hypothe-
sise this is a particularly effective way to train when the quality of the approximation during testing
degrades due to computational limitations.
Learning a Dynamic Stopping Policy. In BP, early stopping can be achieved by either imposing a
limit on the number of BP iterations or terminating when the change of maximum message residual
is below a certain threshold value. We propose a way for the model to decide to stop dynamically
as a function of the computation state after each BP iteration. At test time, the system relies on a
parameterized function of the computation state to decide when to stop the computation. During
training we learn the parameters of the termination function together with the parameters of the
model. More precisely, after each iteration, we compute a feature vector φ of the computation state
including features such as the maximum residual value and how many BP iterations have been run.
During testing, we terminate as soon as w · φ > 0, where w is a parameter vector. During training,
we seek MRF parameters θ and policy parameters w to minimize speed-augmented loss.

To make the training objective differentiable, we replace the threshold 0 with the random threshold
Θ ∼ Logistic(0, s), where Logistic(0, s) is the logistic distribution with cumulative density function
given by F (x; s) = 1/(1 + e−x/s). Our output y depends on the number of BP iterations. Let yt be
the output if we stop after t iterations. The stopping probability then is p(stt) = p(w · φt > Θ) =
F (w · φt; s). The expected speed-augmented loss of our output y on the training example (xi, yi)

is then ET [`(y, yi) + trun(xi)] =
∑tmax
t=1

(∏t−1
t′=1(1− p(stt′))

)
p(stt)(`(yt, y

iλt). The parameter s
controls the variance of the logistic distribution and is gradually decreased during training.
Learning Sparse Models to Speed up Computation. We wish to reward our learner for dropping
factors from the MRF (rather like group lasso). The runtime per iteration of BP is proportional to
the number of factors in the graph. We therefore wish to prune “weak” factors that will have little
influence on the result. We measure the strength of the factor ψα as Sα =

∑
xα

(logψα(xα))2,
where the sum is over all assignments xα to Xα. At training time, we prune “softly” by considering
α to be fractionally present to the degree τ(Sα) ∈ (0, 1), where τ is the sigmoid-like function
τ(x) = 2

1+exp(1/x)s ∈ (0, 1).2 This fractional presence means that the runtime of an iteration is
measured as

∑
α∈F τ(Sα), and that we redefine equation (1) as

pθ(X = x) =
1

Z

∏
α∈F

ψα(xα)τ(Sα) (2)

This keeps our training objective differentiable, but gives it an incentive to learn weaker factors
because they are considered to be faster. At test time, we do hard pruning of weak factors, dropping
α from the MRF iff τ(Sα) < 1/2.

4 Experiments
We perform experiments on synthetic data. We generate a random MRF with 50 binary random
variables (RVs) and 200 factors each of which includes interactions between four random variables.

1An extension that we leave for future work is to achieve speed up by learning prioritization and pruning
heuristics for message updates. Fixed prioritization heuristics have been shown to be useful to speed up BP [1].

2One should gradually increase s during training, but for present experiments we simply fix s = 1.

3



0.16 

0.17 

0.18 

0.19 

0.2 

0.21 

0.22 

0.23 

0.24 

0.25 

0.26 

0 500 1000 1500 2000 2500 3000 

L1 regularized 

Our method 

Number of messages per iteration 

M
SE

 

Figure 1: Accuracy for different levels of speed (number of messages sent per BP iteration per test
example). Speed-up is achieved by increasing the strength of the L1-regularizer for the baseline
method and by increasing the value of λ for our method.

We randomly sample factor weights from a normal distribution and then exponentiate them. We
randomly designate 1/3 of the RVs as input, 1/3 as hidden and 1/3 as output. We use Gibbs sampling
to generate 1000 training and 1000 test data points. For evaluation we use mean squared error (MSE)
on the output marginals.

During training we pretend that the true model structure is unknown, so training starts with a com-
plete graph of binary factors (only) as a reasonable and fairly expressive guess.

4.1 Learning a Stopping Condition.

Our experiments showed that, when using ERM to train the model, limiting BP to only two iterations
achieves maximum accuracy. This was true for several random MRFs that we generated using our
procedure. Therefore, we did not experiment with a dynamic stopping condition on this synthetic
dataset.

4.2 Explicitly Achieving Speed through Sparsity.

Finally, we experiment with our extension that learns an accurate sparse graph. We employ the
following learning procedure: we first learn a model to optimize MSE without including the sparsity
term. Starting with this model, we then learn a model including the sparsity term.

Figure 1 shows the speed vs accuracy curve for our method as compared to a models trained through
ERM, but using L1-regularization to induce sparsity. In the former case we achieve different levels
of sparsity (speed) by varying the parameter λ, which controls how much weight is given to the
speed term in the loss function. In the case of L1-regularization, different levels of sparsity are
achieved by varying the strength of the regularizer.

Our method achieves better accuracy of all levels of speed, with the exception of λ being close to 0
when no edges are excluded from the model.

5 Conclusions and Future Work
We showed that ERM is a good way to learn models when runtime is a consideration. We proposed
two ways to speed-up computation: by including a dynamic stopping condition and by directly
controlling the model sparsity. Experiments with the latter show that we are able to learn much
sparser (and quicker) models at a modest accuracy cost.

4



We plan to also explore learning sparse models by gradually adding edges, as in [3] but using our
speed-augmented objective. We also intend to devise methods for learning prioritization and pruning
heuristics for message updates.

References

[1] G. Elidan, I. McGraw, and D. Koller. Residual belief propagation: Informed scheduling for
asynchronous message passing. In Proceedings of the Twenty-second Conference on Uncer-
tainty in AI (UAI), 2006.

[2] A. Griewank and G. Corliss. Automatic differentiation of algorithms: theory, implementation,
and application. Society for Industrial and Applied Mathematics, 1991.

[3] Su-In Lee, Varun Ganapathi, and Daphne Koller. Efficient structure learning of Markov net-
works using L1-regularization. In Proceedings of NIPS, pages 817–824, 2006.

[4] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, 1988.

[5] N.N. Schraudolph. Local gain adaptation in stochastic gradient descent. In Proceedings of ANN,
pages 569–574, 1999.

[6] V. Stoyanov, A. Ropson, and J. Eisner. Empirical risk minimization of graphical model pa-
rameters given approximate inference, decoding, and model structure. In Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15, 2011.

[7] C. Sutton and A. McCallum. Piecewise training of undirected models. In Proceedings of UAI,
pages 568–575, 2005.

[8] S.V.N. Vishwanathan, N.N. Schraudolph, M.W. Schmidt, and K.P. Murphy. Accelerated training
of conditional random fields with stochastic gradient methods. In Proceedings of ICML, pages
969–976, 2006.

[9] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Bethe free energy, Kikuchi approx-
imations and belief propagation algorithms. Technical Report TR2001-16, Mitsubishi Electric
Research Laboratories, 2000.

5


