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Abstract

We are interested in speeding up approx-
imate inference in Markov Random Fields
(MRFs). We present a new method that uses
gates—binary random variables that deter-
mine which factors of the MRF to use. Which
gates are open depends on the observed evi-
dence; when many gates are closed, the MRF
takes on a sparser and faster structure that
omits “unnecessary” factors. We train pa-
rameters that control the gates, jointly with
the ordinary MRF parameters, in order to
locally minimize an objective that combines
loss and runtime.

1. Introduction

Markov Random Fields (MRFs) and Conditional Ran-
dom Fields (CRFs) have been used successfully for
structured prediction (Lafferty et al., 2001; Sha &
Pereira, 2003; Peng & McCallum, 2006; Stoyanov &
Eisner, 2012). Such graphical models support pre-
dictive inference by defining conditional distributions
P (Y |X), where X is a set of observed “input” vari-
ables, and Y is a set of unobserved “output” variables.

MRFs are traditionally used to model a joint distribu-
tion over all variables, so that X and Y may vary from
example to example. In a CRF, the set X is tradition-
ally fixed, and one trains discriminatively to maximize
the conditional likelihood p(Y |X) or to minimize the
loss of predicted Y values. Fixing X determines which
factors are computationally efficient to include, and
how to train them. In this paper, we aim to combine
the flexibility of the MRF approach with the improved
tractability and predictive accuracy of the CRF ap-
proach, by dynamically choosing which factors to use
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for each given X, and training all factors accordingly.

The runtime of exact inference in an MRF or CRF
is exponential in the tree-width of the factor graph
on the unobserved variables. Including a variety of
factors to capture known or suspected dependencies
among the variables may increase this tree-width, ne-
cessitating approximate inference. Previous work has
shown that this can be a worthwhile tradeoff (Sutton &
McCallum, 2005; Finley & Joachims, 2008; Stoyanov
& Eisner, 2012). However, even approximate inference
can be slow when the factor graph is dense. For ex-
ample, if one includes a binary factor between every
pair of random variables (Stoyanov & Eisner, 2012),
an approximate inference method such as loopy belief
propagation (BP) will take O(n2) time per iteration.

We propose to speed up approximate inference by ap-
proximating further. We can learn to make do with
only a subset of the factors—but a different subset on
each example. In our present study, this subset will
be kept fixed across all iterations on a given example.
So each iteration updates all BP messages, and these
updates are computed exactly and at full granularity.

We will train the model parameters (the factors) to
work as well as possible with this approximation. As
we have previously argued, when a model may have
incorrect structure or may be used with approximate
inference or decoding at test time, then its parameters
should be robustly chosen by minimizing the loss that
will be achieved in the presence of all approximations.
Most straightforwardly, one can minimize the average
loss on training data under the same approximations
as those under which the system will be tested. We
refer to this method as ERMA—“Empirical Risk Min-
imization under Approximations.”

In previous work (Stoyanov et al., 2011), we trained
CRF parameters in this way for the standard BP ap-
proximate inference method. We locally minimized
the output loss or cross-entropy on training data, com-
puting its gradient by back-propagation through time.
This not only led to more accurate predictions on test
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data, but also permitted speedups by running fewer it-
erations of BP. The performance of our ERMA-trained
models remained robust to this further approximation
(and to misspecified model structure), whereas tradi-
tionally trained models degraded more rapidly.

Subsequently, we proposed to include runtime as an
explicit term in the training objective, so that we learn
parameters that balance speed and accuracy (Stoy-
anov & Eisner, 2011).1 We learned sparse graphical
models, in which fewer messages have to be passed
per iteration. We also attempted to reduce the num-
ber of iterations, by learning when to terminate infer-
ence based on dynamic properties of the computation
state. Training all parameters jointly, we learned mod-
els that contained an order of magnitude fewer edges
(thus, speeding up inference by an order of magni-
tude), while suffering only modest decrease in accu-
racy. In our experiments, a dynamic termination con-
dition proved unnecessary because setting a hard limit
to only three iterations of BP resulted in accuracy sim-
ilar to running BP to convergence (provided that the
model parameters were trained for this condition).

The above papers assumed that each training or test
example has the same sets of input (X) and output (Y )
random variables. This may not always be the case—
after all, a virtue of MRFs is that they define the distri-
bution over any missing variables given any observed
variables. Of particular interest is the case of rela-
tional data, where we want to model interdependen-
cies between individuals, but we may observe different
properties of each individual. For instance, in a col-
laboration network, we may know that Alice, Bob and
Charlie have co-authored a paper and that Bob works
for Johns Hopkins University. If we want to predict Al-
ice’s employer, the connection from Bob’s employer is
probably valuable. By contrast, using the connection
from Charlie’s employer would have greater cost for less
benefit: computing an accurate distribution over that
unobserved variable is costly, and if this distribution
has high entropy or is redundant with the information
from Bob’s employer, it is unlikely to change our pre-
diction for Alice. We may therefore learn not to use
this connection on such a query.

The case for evidence-specific CRF structures is made
by Chechetka and Guestrin (2010). They propose a
two-stage method. The first stage uses the Chow-Liu
(1968) algorithm to compute a suitable tree structure
for each example, using models of mutual information
between each pair of Y variables, conditioned on the
evidence X. The second stage trains and tests the

1Such an objective was also used by (Oliver & Horvitz,
2003; Eisner & Daumé III, 2011).

CRF parameters, using each example’s tree structure.
The CRF parameters are shared across trees and are
separate from those of the mutual information model.

Inspired by Chechetka and Guestrin (2010), we extend
our previous work to dynamically determine MRF
structure based on which variables X are observed
(and with what values), and which variables Y are be-
ing queried. Our approach uses gates (Minka & Winn,
2008)—additional random variables that can switch
factors in the MRF on or off based on features of the
evidence X. We train all weights jointly to optimize
a linear combination of differentiable approximations
to loss and runtime, as in (Stoyanov & Eisner, 2011).
The training method uses back-propagation to com-
pute the exact gradient of the training objective.

Unlike Chechetka and Guestrin, we

• allow heterogeneous patterns of missing data;

• seek to minimize loss on specified output vari-
ables, rather than maximize likelihood over all Y ;

• perform approximate inference over an arbitrary
(possibly very sparse) subgraph of the original fac-
tor graph, rather than exact inference over a tree;

• select the subgraph using fast approximate infer-
ence over gates;

• train structure selection (gate parameters) jointly
with the model parameters, rather than serially.

In our current pilot experiments, the gates do not
yet communicate with one another, so the evidence-
specific structure is selected locally rather than glob-
ally. Even this simple method gives good results.

2. Background

Markov Random Field. A Markov Random
Field (MRF) is defined as a triple (V,F ,Ψ). V =
(V1, . . . , Vn) is a collection of n random variables; we
write v to denote a joint assignment of values to these
variables. F is a collection of subsets of {1, 2, . . . , n};
for α ∈ F , we write vα for the restriction of v to the
variables Vα = {Vj : j ∈ α}. Finally, Ψ = {ψα : α ∈
F} is a set of factors, where each factor ψα is some
function that maps a partial assignment vα to a po-
tential value in [0,∞). This function depends implic-
itly on the global parameter vector θ. The probability
of an assignment v is given by

pθ(V = v) =
1

Z

∏
α∈F

ψα(vα) (1)

where Z =
∑

v

∏
α∈F ψα(vα) serves to normalize the

distribution. We write Zx for the sum over just those
assignments v that extend the partial assignment x.
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Each training input xi is a partial assignment to some
set of “input” variables Xi ⊆ V. The corresponding
training output yi is a partial assignment to some set
of “output” variables Y i ⊆ V that must be predicted.
V may include additional “hidden” variables.

Loopy Belief Propagation. Inference in general
MRFs is intractable. In this paper we use a popular
approximate inference technique, loopy belief prop-
agation (BP) (Pearl, 1988). BP iteratively updates
“messages” between the variables and factors. It ter-
minates when the messages converge (i.e., only tiny
updates remain) or a maximum number of iterations
is reached. Approximate marginal probabilities called
beliefs are computed from the final messages. Beliefs
can be used to compute gradients of the log-likelihood
for training, and to produce predictions during testing.

A desired conditional probability pθ(Y
i = yi | Xi =

xi) can be found as Zxi,yi/Zxi . Each of these Z···
values can be approximated by running BP and com-
bining the beliefs into an approximation of − logZ···,
the Bethe free energy (Yedidia et al., 2000).

Log-Likelihood Maximization. An MRF or CRF
is typically trained by maximizing the (conditional)
log-likelihood of a given training set {(xi,yi)}. When
BP is used to estimate this objective, the beliefs suffice
to compute not only the Bethe free energy but also its
gradient. Training CRFs using this approximation has
been shown to work relatively well in practice (Vish-
wanathan et al., 2006; Sutton & McCallum, 2005).

Empirical Risk Minimization. Maximizing con-
ditional log-likelihood is appropriate when it gives a
good estimate of the true conditional distribution (e.g.,
the model structure and training data are adequate),
and when that distribution will be used for exact infer-
ence and decoding (i.e., the system will actually make
the minimum-risk decision given its input). Under
other conditions, we have argued that one should train
to minimize risk for the actual inference and decoding
procedures that will be used at test time (Stoyanov
et al., 2011). Suppose we have fθ, a family of decision
functions parameterized by θ. In our case, θ para-
metrically specifies the factor functions, and fθ(x

i)
computes the result y∗ of approximate BP inference
followed by some decoding procedure that makes a
prediction from the beliefs. We then use a given loss
function `(y∗,yi) to evaluate whether the final output
y∗ was good. We should select θ to minimize the ex-
pected loss under the true data distribution over (x,y).
In practice, we do not know the true data distribution,
but we can do empirical risk minimization, taking
the expectation over our sample of (xi,yi) pairs.

To determine the gradient of `(fθ(x
i),yi) with respect

to θ, we employ automatic differentiation in the re-
verse mode (Griewank & Corliss, 1991). The intuition
is that our entire test-time system, regardless of how
its constructed or the approximations that it uses, is
nothing but a sequence of elementary differentiable op-
erations. If intermediate results are recorded during
the computation of the function (the forward pass),
we can then compute the partial derivative of the loss
with respect to each intermediate quantity, in the re-
verse order (the backward pass). At the end, we have
accumulated the partials of the loss with respect to
each parameter θ. A detailed explanation of our back-
propagation algorithm as well as complete equations
can be found in (Stoyanov et al., 2011).

Gradient information from the above procedure can be
used in a local optimization method to minimize train-
ing loss. We will use stochastic meta descent (SMD)
(Schraudolph, 1999), a second-order online method.

Gates. Gates are a notation for representing context-
sensitive dependencies in directed graphical models
(Minka & Winn, 2008). A gate is a hidden random
variable that controls one or more factors of the graph-
ical model, switching them off or on according to the
value of the gate.

Gates are naturally used to specify certain models such
as mixture models. We adapt them to instead improve
the speed and/or accuracy of approximate inference.
Turning off factors improves speed. It can also in prin-
ciple improve accuracy—e.g., by breaking short cycles
among unobserved variables in the factor graph (which
can harm the BP approximation). The point is that al-
though having many factors may make the model more
expressive, it may degrade approximate inference.

If the MRF factor α is controlled by a gate whose value
is gα ∈ {0, 1}, then we raise α to the power gα. If
the gate value is unobserved, Minka and Winn would
marginalize it out (trying both values 0 and 1, which
is expensive). In our architecture, however, we choose
to use a “soft gate” by setting the exponent to our
estimated probability that the gate is open.. Thus,
equation (1) for the probability of an MRF configura-
tion becomes:

pθ(V = v | Xi = xi) =
1

Z

∏
α∈F

(ψα(vα))
p(gα=1|xi)

(2)

Of course, we train for this “soft gate” architecture.
Where does p(gα = 1 | xi) come from? We will de-
fine a simple CRF that predicts the gates from the
evidence xi, allowing us to first compute exact or ap-
proximate marginal beliefs over the gates. In a second
step, our gated MRF (2) uses these gate marginals as
fixed exponents, and we run BP over that MRF (with
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Xi specialized to xi as usual).2 We will jointly train
these two models’ parameters, collectively denoted θ.

3. Speed-Aware Training

To incorporate runtime into our training objective, we
will now seek θ to minimize

∑
i `(fθ(x

i),yi)+λ·tθ(xi),
where tθ(x

i) is the time that the system fθ needs to
make its prediction. Here λ ≥ 0 defines the trade-
off between speed and accuracy, making this a multi-
objective optimization. By varying λ, we can sweep
out the Pareto frontier of this tradeoff.

With or without soft gates, each factor’s runtime cost
remains proportional to its size (times the number of
BP iterations, which is constant at 3 in our current
experiments). To achieve speedups, we must partially
return to “hard gates.” We ignore factors α for which
p(gα = 1 | xi) < τα. We currently set the training
threshold τα to 0.5. We observed that in practice we
benefit from using a slightly lower test-time threshold
as many of the gates have values close to our thresh-
old. In our experiments we use a test-time threshold
of .3.3). Our runtime on example i, tθ(x

i), is improved
when the system learns to ignore factors—similarly to
the group lasso objective (Schmidt et al., 2008).

Soft training. The previous paragraph says to mul-
tiply both the exponent and the runtime of the fac-
tor φα by a step function σα(p), which is 0 when
p < τα (the factor is ignored) and 1 when p >
τα (the factor is softly gated). Unfortunately, this
hard threshold makes both speed and accuracy non-
differentiable. At training time we therefore use a dif-

ferentiable surrogate, σα(p) = ((1−τα)p)β
((1−τα)p)β+(τα(1−p))β =

1/(1 + exp(−β log (1−τα)p
τα(1−p) )), which is a sigmoid func-

tion that maps [0,1] to [0,1] with a soft threshold at
τα. The parameter β > 0 controls the steepness of the
threshold. As an outer loop of training, we “anneal”
by gradually decreasing the “temperature” 1/β toward
0, which makes σα approach the step function we will
use at test time.

Back-propagation. To train, we perform ERMA on
the full model including MRF parameters and the pa-
rameters for the gate variables. We follow the pro-
cedure from (Stoyanov et al., 2011), which relies on
back-propagation to efficiently compute the gradient
of the objective for use by stochastic meta-descent
(Schraudolph, 1999). First, we back-propagate gradi-

2In principle, one could iterate these two steps, allowing
inference on the MRF to feed back and affect the gates.

3We speculate that this disparity between train-time
and test-time condition may be aliviated by the use of bet-
ter annealing schedules.
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Figure 1. Loss (MSE) vs. runtime (total number of BP
messages sent). Speed-up is achieved by increasing the
strength of the L1-regularizer for the baseline method and
by increasing the value of λ for our method.

ents through the MRF model to obtain partial deriva-
tives with respect to the MRF parameters and the
output values of the gate variables. We then back-
propagate through the gate model to obtain partial
derivatives with respect to the gate-CRF parameters.

4. Experiments

Synthetic data. We generate a random MRF with 50
binary random variables (RVs) and 200 factors each of
which includes interactions between four random vari-
ables. We randomly sample factor weights from a nor-
mal distribution and then exponentiate them. We use
Gibbs sampling to generate 1000 training and 1000 test
data points. For each example, we randomly designate
each random variable as input, output, or hidden with
equal probability. Our loss function is mean squared
error (MSE) on the output marginals.

We pretend that the true model structure is unknown,
so training uses a complete graph of (only) binary fac-
tors as a reasonable and fairly expressive guess.

Gate-CRF topology. In this paper, each factor α
has a dedicated binary gate gα.4 Each gate will be
conditioned on the input evidence xi. Our gate-CRF
could also model the dependencies between gate vari-
ables, so gates could cooperate (to ensure the presence
of useful paths to Y i from Xi) and compete (to avoid
including redundant paths). The runtime tθ(x

i) would
include the runtime of approximate inference in the
gate-CRF. To avoid such complications, in our present
experiments we will assume no connections among the
gate random variables. In other words, each gate vari-
able independently decides whether (or how much) its
factor will be used. Fortunately, these independent

4One could achieve further speedup by letting a single
gate control a group of related factors.
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classifiers are jointly trained to interact well on typi-
cal patterns x of observed variables (if any).

Gate-CRF features. A training example xi will
specify the status of each variable Vk as 0, 1, unob-
served output, or unobserved hidden. If α = {5, 9},
then the gate gα will make its prediction based on a
single feature, namely the conjunction of the statuses
of V5 and V9. However, we do not need features of the
form (V5 = 1, V9 = 0), since a factor α has no effect on
inference when all its variables are observed, so we au-
tomatically ignore it in this case (in both our method
and the baseline method). Thus we have 4·4−2·2 = 12
features per gate.

Training. Our true objective is highly non-convex,
so we first find good initial parameters by optimiz-
ing smoother, related functions. Like Stoyanov et al.
(2011), we increase the BP approximation to condi-
tional log-likelihood for three passes through the train-
ing data, before switching to our true objective. For
annealing during this second stage, we use a simple,
two-step schedule with temperatures (1/β) of 1 and
0.5.

Results. Figure 1 shows the speed vs. accuracy curve
for our method as compared to models that are still
trained through ERMA, but using L1-regularization
to induce sparsity. In the former case we achieve dif-
ferent levels of sparsity (speed) by varying the param-
eter λ, which controls how much weight is given to the
speed term in the loss function. In the case of L1-
regularization, different levels of sparsity are achieved
by varying the strength of the regularizer.

Our method achieves better accuracy at all levels of
speed. We note that our results are preliminary—this
is just one setting, without statistical significance tests.
We also have not experimented with hyperparameters
such as τα and the annealing schedule.

5. Conclusions and Future Work

We showed a new way to induce evidence-specific
structure in MRFs through the use of gate random
variables. We presented an approach for jointly learn-
ing parameters of the MRF and parameters control-
ling the gates, based on ERMA and back-propagation.
Preliminary experiments showed that compared to us-
ing L1-regularization to induce non-evidence-specific
sparsity, our method achieves better accuracy at all
levels of speed.

We plan to also explore learning sparse models by
gradually adding edges, as in (Lee et al., 2006) but
using our speed-augmented objective. We also intend

to devise methods for learning prioritization and prun-
ing heuristics for message updates.
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