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Abstract

Graphical models are often used “inappro-
priately,” with approximations in the topol-
ogy, inference, and prediction. Yet it is
still common to train their parameters to
approximately maximize training likelihood.
We argue that instead, one should seek
the parameters that minimize the empiri-
cal risk of the entire imperfect system. We
show how to locally optimize this risk us-
ing back-propagation and stochastic meta-
descent. Over a range of synthetic-data
problems, compared to the usual practice of
choosing approximate MAP parameters, our
approach significantly reduces loss on test
data, sometimes by an order of magnitude.

1 Introduction

Graphical models are widely used across AI. By model-
ing joint distributions, they permit structured predic-
tion with arbitrary patterns of missing data (including
latent variables and statistical relational learning). By
explicitly representing how distributions are factored,
they can expose problem-specific structure to be ex-
ploited by generic inference and learning algorithms.

However, several compromises are often made in prac-
tice. Predictive systems based on graphical models
typically suffer from multiple approximations:

Mis-specified model structure. Usually the model
structure is a guess or an oversimplification. We do
not know that the true distribution of the data can be
described by any setting of the model parameters θ.

MAP estimation. Even if the model structure is cor-
rect, we cannot infer the correct parameters θ from fi-
nite training data. A proper Bayesian approach would
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integrate over the posterior distribution of θ, but this
can be expensive. It is common to choose a single θ
vector via MAP estimation (i.e., empirical Bayes).

Approximate inference. Even if the model struc-
ture and parameters are both correct, we often cannot
afford exact inference (in the usual sense of efficiently
computing posterior marginals or partition functions).
For model structures of high treewidth, we must fall
back on approximations such as variational inference.
Inference also plays a key role in parameter estimation,
and Kulesza and Pereira (2008) show that approximate
inference here can lead to pathological learning.

Approximate decoding. Even if we can perform
exact inference, that is not the final goal. Ideally, a
system would follow decision theory and emit the pre-
diction, decision, or estimate that has lowest expected
loss under the posterior distribution, i.e., the lowest
Bayes risk. This is called a generalized Bayes rule,
or a minimum Bayes risk (MBR) decoder. Alas, in
structured prediction, global loss functions can make
MBR decoding intractable even when exact inference
is tractable.1 So various heuristic procedures are used
in place of MBR to extract structured predictions.

These approximations may have been forced by prac-
tical considerations—so we are stuck with some given
model structure, approximate inference algorithm, de-
coding procedure, and parameter vector θ to opti-
mize.2 The loss function is also given.

Solution: Direct Risk Minimization. Our main
observation is that at the end of the day, this is merely
a discriminative learning setting. Just as when train-

1E.g., in an HMM, exact inference is tractable, yet it is
intractable to predict the emission sequence (with nothing
observed) that minimizes expected global 0-1 loss. I.e.,
finding the most probable emission sequence (summing out
the states) is NP-hard (Casacuberta and Higuera, 2000).

2More generally, we may be willing to consider a family
of model structures or inference/decoding procedures. In
this case, θ will include extra parameters that select within
these families. We try to choose the best θ at training time.
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ing a linear classifier, we should simply set the model
parameters θ to make the system perform accurately
at test time. The entire system— approximations and
all—can be treated as a black-box decision rule to be
tuned via θ. The computation performed inside the
black box may have been motivated by probabilistic in-
ference (albeit with approximations). But ultimately
it is just some parametric function constructed to suit
the problem at hand, and one may accordingly train
its parameters θ to minimize risk (expected loss).

Minimizing risk is the proper goal of any training, since
it directly optimizes the evaluation measure. This is
not to say that traditional training methods are al-
ways misguided. If one is lucky enough to enjoy cor-
rect model structure, exact inference, and MBR de-
coding, one’s risk is minimized by choosing the true
model parameters, which is accomplished by tradi-
tional maximum-likelihood or MAP estimation—at
least in the limit of infinite training data. But try-
ing to identify the true parameters of an approximate
system makes no sense: no “true parameters” exist.

In this paper we focus on locally minimizing the em-
pirical risk, i.e., the observed error of the system on
supervised training data. (See section 10 for future
work that goes beyond this setting.)

Recall how a feed-forward neural network is trained.
One does not need to make any probabilistic inter-
pretation of the neural network. It is simply a para-
metric function of the input, y = fθ(x), that is used
to predict y from x. The training procedure directly
seeks a θ that works well in practice. In the termi-
nology of decision theory, fθ is a family of estimators.
Traditionally, the parameters θ (synaptic weights) are
tuned by gradient descent to minimize the empirical
risk R̃(θ) = 1

N

∑N
i=1 `(fθ(xi), yi), which is the average

loss ` of the chosen estimator fθ over the training set
{(xi, yi)}. The empirical risk is merely a differentiable
function of θ, determined by the structure of the neural
network, the inference method and the loss function.

Graphical models can be trained in the same way.
When a practitioner builds a system around some ap-
proximate Bayesian technique, she is constructing a
family of decision rules fθ. The empirical risk is a
function R̃(θ) (often differentiable) of the parameters
θ. We can use methods such as gradient descent to
tune θ to minimize the empirical risk. In general, it is
fast to find the gradient by automatic differentiation—
and we will show specifically how to do this when the
inference algorithm is loopy belief propagation.

2 Modeling and Inference

An undirected graphical model, or Markov ran-
dom field (MRF), is defined by a triple (X ,F ,Ψ).

X = (X1, X2, . . . , Xn) is a sequence of n random vari-
ables; we use x = (x1, x2, . . . , xn) to denote a possible
assignment of values. F is a collection of subsets of
{1, 2, . . . , n}; for each α ∈ F , we write xα to denote a
sub-assignment to the subset of variables Xα.

Finally, Ψ = {ψα : α ∈ F} is a set of factors, where
each factor ψα is a function that maps each xα to
a potential value in [0,∞). Each of the factors ψα
depends implicitly on a parameter vector θ.

The probability of a given assignment x is given by

pθ(X = x) =
1

Z

∏
α∈F

ψα(xα) (1)

where Z is chosen to normalize the distribution.

2.1 Loopy Belief Propagation

Inference in general MRFs is intractable. We focus in
this paper on a popular approximate inference tech-
nique, loopy belief propagation (BP) (Pearl, 1988).
BP is efficient provided that the domains of the fac-
tors ψα are small (i.e., no ψα has to evaluate too many
local configurations xα) and exact for “non-loopy” Ψ.

BP uses the following iterative update equations to
solve for the messages µi→α and µα→i. Both kinds
of messages are unnormalized probability distributions
over the possible values of Xi (initialized to uniform):

µi→α(xi) ←
∏

β∈F : i∈β,β 6=α

µβ→i(xi) (2)

µα→i(xi) ←
∑

xα: (xα)i=xi

ψα(xα)
∏

j∈α: j 6=i

µj→α((xα)j) (3)

Provided that the messages (or rather, normalized ver-
sions of them) converge, we may then compute

bxi(xi) ←
1

Zbxi

∏
β∈F : i∈β

µβ→i(xi) (4)

bα(xα) ← 1

Zbα
ψα(xα)

∏
j∈α

µj→α((xα)j) (5)

where the beliefs bi and bα respectively approximate
the MRF’s marginal distributions over the variable Xi

and the set of variables Xα. Zbxi and Zbα are normal-
izing functions.

To approximate the posterior marginals given some ob-
servations, run BP over a modified MRF that enforces
those observations. (If Xi has been observed to equal
v, then set ψ{i}(xi) to be 1 or 0 according to whether
xi = v or not, first adding {i} to F if {i} 6∈ F .)

3 Training θ

We assume a supervised or semi-supervised learning
setting. Each training example {(xi, yi)} consists of a
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set xi of input random variables with observed values,
and a set yi of output random variables with observed
values. (We do not assume that the same sets are
designated as input and output in each example, and
there may be additional hidden variables.)

For purposes of this paper, our system’s goal is to pre-
dict yi. `(y, yi) defines the task-specific loss that the
system would incur by outputting y.

3.1 The Standard Learning Paradigm

MRFs are usually trained by maximizing the log-
likelihood given training data (xi, yi):

θ∗ = argmax
θ

LogL(θ) = argmax
θ

∑
i

log pθ(x
i, yi) (6)

The log-likelihood log pθ(x
i, yi), or the conditional log-

likelihood log pθ(y
i | xi), can be found by considering

two slightly different MRFs, one with (xi, yi) both ob-
served and one with only the conditioning events (if
any) observed. The desired result is the difference be-
tween the logZ values of the two MRFs.

To approximate the logZ of each MRF, one can run
belief propagation. The resulting beliefs can be com-
bined into a quantity called the Bethe free energy
that approximates − logZ (Yedidia et al., 2000). The
gradient of the Bethe free energy is very closely con-
nected to the beliefs, making it easy to follow the gradi-
ent of the approximate log-likelihood. Training MRFs
based on the Bethe free energy approximation has
been shown to work relatively well in practice (Vish-
wanathan et al., 2006; Sutton and McCallum, 2005).

3.2 Decoding

The log-likelihood training aims to produce θ∗ that
causes the MRF to predict good beliefs about the out-
put variables yi. A decoder is a decision rule that
converts these beliefs into a prediction. According to
the minimum Bayes risk (MBR) principle, the proce-
dure should pick the output that minimizes the ex-
pected risk under pθ:

y∗ = argmin
y

Epθ(y′|xi)[`(y, y
′)] (7)

The MBR decoding procedure depends on the loss
function ` and can be computed efficiently only in some
cases. The MBR decoders that we use are described
in more detail in Section 5.1.

3.3 Empirical Risk Minimization

The risk minimization principle says that if we have
fθ, a family of decision functions parameterized by θ,
we should select θ to minimize the expected loss under
the true data distribution over (x, y):

θ∗
def
= argmin

θ
E[`(fθ(x), y)] (8)

In practice, the true data distribution is unknown, but
we can do empirical risk minimization and take
the expectation over our sample of (xi, yi) pairs. In
our setting, we explicitly evaluate the loss of a given θ
on example (xi, yi) by computing from xi our beliefs b,
decoding the beliefs about yi to obtain the prediction
y∗, and returning `(y∗, yi).

4 Gradient of Empirical Risk

To carry out the above empirical risk minimization,
we propose to use a gradient-based optimizer. The
gradient indicates how slight changes to θ would affect
the loss `(y∗, yi) via the beliefs b and prediction y∗.

4.1 Back-Propagation

To determine this gradient on example (xi, yi), we
employ automatic differentiation in the reverse mode
(Griewank and Corliss, 1991), a general technique
for sensitivity analysis in computations. The intu-
ition behind automatic differentiation is that our en-
tire “black-box” predictor is nothing but a sequence
of elementary differentiable operations. If intermedi-
ate results are recorded during the computation of the
function (the forward pass), we can then compute the
partial derivative of the loss with respect to each inter-
mediate quantity, in the reverse order (the backward
pass). At the end, we have accumulated the partials
of the loss with respect to each parameter θ.

A well-known special case of this algorithm is back-
propagation in feed-forward neural networks. Its ex-
tension to recurrent neural networks (Williams and
Zipser, 1989) involves cyclic updates like those in BP.
In this case we must consider an “unrolled” version of
the forward pass, in which “snapshots” of a variable
at times t and t + 1 are treated as distinct variables,
with one perhaps influencing the other.

In our case the forward pass constitutes of running
BP (equations (2) and (3)) until convergence is “good
enough.” Beliefs b are computed from the final mes-
sages using equations (4) and (5). The beliefs are then
converted to a decision y∗ = d(b(y|x)) using a decoder
function d. Finally, the loss relative to the truth yi is
computed as `(y∗, yi). The forward pass includes in-
ference in the model, but we record the messages that
are sent and their order, as detailed in our Appendix.3

The backward pass computes the partials of loss with
respect to the decision (differentiating the loss func-
tion) and next with respect to the marginal beliefs
(differentiating the decoder). Subsequently, BP is re-
played backwards in time, computing the partials with

3We do not assume that BP is run to convergence, so we
must record what the forward pass actually accomplished.
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respect to each message that was sent on the forward
pass, and eventually with respect to the input param-
eters θ. The total time required by this algorithm is
roughly twice the time of the forward pass, so its com-
plexity is equivalent to approximate inference. The
complete equations can be found in our Appendix.

4.2 Numerical Optimization

The above gradient could be used directly to optimize
θ. While the objective function is locally rather bumpy
(see below), stochastic gradient descent has some abil-
ity to escape small local optima.

However, we find that we obtain better optima when
we collect second-order information about the opti-
mization surface. Instead of stochastic gradient de-
scent, we use the Stochastic Meta-Descent (SMD)
method of Schraudolph (1999). SMD maintains a sep-
arate positive gain adaptation ηi for each optimiza-
tion dimension θi. Parameter updates are scaled by
ηi. Updates for the ηi themselves are computed using
the product of the Hessian matrix with a vector. For
this, we apply more automatic differentiation magic.
It is not necessary to compute the full Hessian—as
our Appendix explains, a Hessian-vector product can
be computed by forward-mode automatic differentia-
tion of the back-propagation pass (Pearlmutter, 1994;
Griewank and Walther, 2008), without increasing the
asymptotic complexity.

5 Experiments

To allow a proper factorial experimental design with a
range of controlled and well-understood conditions, we
experiment on artificially generated data. A compan-
ion paper shows improvements on 3 natural language
tasks using real data (Stoyanov and Eisner, in review).

We randomly generate graphical models with known
structure and parameters (the true model). We use 12
models consisting of a varying number of random vari-
ables and varying degree of connectivity in the model
(shown in Table 1). We use binary random variables
and functions ψ over pairs of random variables. Model
structure is generated by picking edges at random.
The true parameters θi are sampled IID from the stan-
dard normal, and each potential value ψα(xα) is set to
exp θi for a different i. 1 lists all models used in the ex-
periments. We generate training and test sets of 1000
examples from the true model by Gibbs sampling. Our
experiments perform conditional training (i.e. we are
training Conditional Random Fields). We select a ran-
dom third of the random variables of the true model
and designate them as input variables, another ran-
domly selected third we designate as hidden variables
and the rest we consider output variables. We then

num. vars (n) 50 100 150 200
num. 2n 50·100 100·200 150·300 200·400
edges 4n 50·200 100·400 150·600 200·800

n ln(n) 50·195 100·461 150·752 200·1051

Table 1: A listing of all models used in the experiments.
50·100 denotes a MRF with 50 binary variables and 100
binary edges.

learn a function of the input variables with the goal
of minimizing loss on the output variables. Hidden
variables are not observed even in training.

5.1 Test Settings

We experiment with different settings for the type of
output the decoder is expected to produce and differ-
ent loss functions.

Type of output:
• Integer: The algorithm is required to output a

complete assignment for the output random vari-
ables (i.e., it has to commit to a specific value for
each output random variable).

• Fractional (soft): The algorithm can output a
fractional assignment for the output random vari-
ables. For example, it may hedge its bets by pre-
dicting 0.6 for a variable X with domain {0, 1}.

• Distributional: The output is a distribution
over the output random variables. The algorithm
outputs probability for a joint assignment of the
input and output variables. In our work, this set-
ting is used only for the appr-logl loss function.

Loss functions (to be averaged over examples):

• L1 loss: L1 loss L1 = 1
k

∑
i |yi − y∗i |, where k

is the number of output nodes. For integer out-
puts on our binary variables, it is proportional to
Hamming loss or accuracy.

• MSE: Mean squared error mse = 1
k

∑
i(yi−y∗i )2.

Equivalent to Hamming loss for integer outputs.

• F-measure: The harmonic average of precision
and recall, F = (2 ∗ prec ∗ rec)/(prec + rec). F-
measure is defined for integer outputs.

• Conditional log-likelihood: The negative of
the conditional log-likelihood of the test data un-
der the predicted distribution of the model. Ap-
proximated in our case, since we use loopy MRFs.

As noted previously in the paper, the MBR decoder
depends on the loss. It also depend on the type of
output that the system is allowed to predict (i.e., in-
teger vs. fractional). The MBR decoders for the loss
functions that we will be using are discussed below and
listed in Table 2:

L1 loss: Expected loss in both the integer and frac-
tional case is minimized by placing all probability mass
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Output Loss Decoder Setting

integer
L1 max int-L1

MSE max int-L1
F apprF int-F

fractional
L1 max int-L1

MSE ident frac-MSE
F apprF int-F

distributional LogL distr appr-logl

Table 2: Experimental settings and their corresponding
shortcut names. Some names appear in more than one
cell in the table indicating that the particular conditions
lead to equivalent settings of the algorithm. In total, we
experiment with four unique settings.

on the most probable assignment for each output vari-
able. In other words, the MBR decoder is the argmax
function. The argmax is not differentiable, so when
training, we enable back-propagation by using a soft
version of the argmax function parameterized by tem-
perature t: softargmax(x, t) = x

1
t /

∑
x′ x′

1
t .

MSE: In the integer case this loss is equivalent to
the L1 loss, so the same MBR decoder applies. If
fractional outputs are allowed, the MBR decode of a
binary-valued variable is its marginal probability. In
other words, the MBR decoder is the identity function.

F-measure: This loss does not factorize over the
output variables, making MBR decoding intractable
(computing the expected loss includes summing over
exponentially many settings for the random vari-
ables). Our approximate MBR decoder simply picks
the threshold that would assign an equal number of
variables to 0 and 1.4 In preliminary experiments, the
two approximations performed identically, so we chose
the simple one in the interest of time. When minimiz-
ing F-score we again use softargmax during training.

log-likelihood: This loss requires no decoding.

Standard learning setting. Our baseline train-
ing setting (labeled appr-logl below) follows Vish-
wanathan et al. (2006). It uses SMD to maximize the
conditional log-likelihood of the training data (log p(yi |
xi), as in CRFs) as approximated by loopy BP. (At test
time, we do decode the beliefs using the proper MBR
decoder matched to the evaluation loss function.)

Error Back-Propagation. Here we take the loss
into account during training, using SMD this time to
minimize the empirical risk. The gradient is computed
as in Section 4.1. We implemented our algorithm in

4We also tried sampling from the posterior distribu-
tion and selecting the threshold value that minimizes the
expected loss according to the samples. This is better-
motivated but slower, and performed identically in prelim-
inary experiments.

the libDAI framework (Mooij, 2010) extending the im-
plementation of Eaton and Ghahramani (2009) (see
Related Work Section).

6 The Optimization Landscape

The advantage of using ERM is that it properly sim-
ulates test conditions. While it is not a convex objec-
tive, neither is the conventional choice of approximate
log-likelihood—nor even exact log-likelihood in semi-
supervised cases like ours.

To visualize the landscape of objective functions, we
show in Figure 1 plots of the different losses in a par-
ticular direction. Plots show the continuum of loss on
a line through the true parameters θ∗ (α = 0) and the
parameters θ′ found by some method (α = 1). Each
point shows the loss from an interpolated parameter
vector (1 − α)θ∗ + αθ′. The plots are computed for a
single model and are along only one dimension—the
true optimization surface is high-dimensional.

Plots in Figure 1 show that approximate log-likelihood
appears to be smoother than the other three loss func-
tions. It is also clear, however, that the approximate
log-likelihood function has a global minimum that does
not occur at point θ∗ (the true parameters), and the
other three loss functions have other minima. Of the
other loss functions, MSE appears smoothest and ap-
pears to closely resemble F and L1 loss.

7 Dealing with Non-Convexity

The previous section suggests that loss functions that
we want to optimize can be non-convex and bumpy. In
fact, initial experiments showed that the optimizing F-
score and L1 loss was prone to getting stuck in local
optima. We propose two continuation methods to deal
with the non-convexity of the optimization function.

Interpolated Objective. We observed that MSE
is smoother than F-score and L1 loss and the three
losses have similar shapes. This motivates the use of
a hybrid optimization function, which is a mix of the
smoother loss and the function that ultimately needs
to be optimized. By changing the balance between the
two functions we can rely on the smooth function to get
us to a good region and switch to optimizing the test
loss. More formally, we define a hybrid loss function
`1,2(y, y′) = λ`1(y, y′) + (1− λ)`2(y, y′) between losses
`1 and `2. The coefficient λ changes from 0 to 1 during
training. Preliminary experiments on external models
found that using a three value schedule λ ∈ {0, .5, 1}
and changing the value upon convergence works well
in practice. In our experiments we use hybrids with
MSE for F and L1 losses and label the corresponding
runs with -hyb.
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Figure 1: Plots of loss (objective) functions (on the 50 · 200 model) starting at the true generating parameters (θ∗) and
moving toward: a random initialization (top left); the model found by one iteration of appr-logl training (top right);
appr-logl training upon termination (bottom left); and, MSE training upon termination (bottom right). Note that the
y axes have different scales.

Staged Training. The second strategy is motivated
by the observation that the approximate log-likelihood
is smooth and generally gets in the right region of pa-
rameter values. Thus, we can run a few iterations
of appr-logl (we use three) and use the learned pa-
rameters to initialize further tuning for loss, much as
(Hinton et al., 2006) follow a unsupervised learning in
a deep belief network with supervised tuning.

8 Results and Discussion

Results are averaged over the 12 models that we use
in testing. We report the average of the difference
between the loss of the training run and the loss of the
corresponding true model using MBR decoding. Score
of 0 indicates performance identical to the optimal.

All models were trained for 25 iterations of SMD with
the exception of the hybrid models, which were trained
until convergence of the optimization (in all cases con-
vergence took < 25 iterations). We used 5 random
restarts for each run with the exception of the -in runs
where we used a single run. Parameters for the SMD
algorithm (η0, µ and λ) were tuned using grid search
on supplemental models not used in the evaluation.

8.1 Overall Results

Table 3 lists the overall results of our experiments un-
der “ideal” conditions—the exact model structure is

known, there is sufficient amount of training data and
BP is run to convergence. The table shows results
for the four testing settings and for training runs that
use hybrids (-hyb), staged training (-in) or both (-in-
hyb) when applicable. Error back-propagation always
outperforms the traditional appr-logl setting on av-
erage. Both strategies for overcoming non-convexity
appear to work, but improvements using only the hy-
brid loss are smaller and not statistically significant,
while improvements using staged training are statisti-
cally significant (p < 0.05). Best results are obtained
by combining the two strategies: staged training with
a few iterations of appr-logl followed by learning
with hybrid loss. In the rest of the results, we only
report this learning setting omitting the -in-hyb suffix.

Improvements are greatest when the loss function is
MSE, which we empirically found to be relatively
smooth. Error back-propagation is also very beneficial
in the case of F-score where the MBR decoder is only
approximate. By keeping the decoder fixed and learn-
ing parameters that minimize the loss of the decoder,
EMR training can help the model learn parameters
that optimize the particular approximate decoder.

Finally, we observe that the models trained on
appr-logl exhibit smaller approximate negative log-
likelihood than the true model, which confirms our
observation that the approximation induces a different
global minimum of the log-likelihood function that is



Veselin Stoyanov, Alexander Ropson, Jason Eisner

test setting train setting ∆loss wins

frac-MSE
(.04610)

appr-logl .00710
frac-MSE .00482 5·0·7

frac-MSE-in .00057 12·0·0

int-F
(.06425)

appr-logl .01170
int-F-hyb .00411 7·0·5
int-F-in .00115 10·1·1

int-F-hyb-in .00081 11·0·1

int-L1
(.06385)

appr-logl .00751
int-L1-hyb .00398 5·1·6
int-L1-in .00137 10·2·0

int-L1-hyb-in .00079 10·2·0
appr-logl appr-logl -.31618

Table 3: Average loss for the different training settings.
∆loss lists the difference between the performance of the
trained and the true model (negative loss indicates smaller
loss than the true model). The average loss of the true
model in a setting is shown in parentheses below the set-
ting name. The wins column shows on how many mod-
els the setting wins/ties/loses vs. appr-logl training. A
bold number indicates a statistically significant improve-
ment over appr-logl (p < 0.05, paired permutation test).

not a minimum for the other loss functions.

Table 6 in Appendix B lists additional results for all
pairs of test settings and training runs and shows that
the smallest loss is achieved when training and test
conditions are matched in all of our settings.

8.2 Model Structure Mismatch

In real problems, model structure matches the true
structure of the process generating data only approxi-
mately. To represent this condition, we introduce mis-
match between the structure of the true model and
the structure of the model that we train by removing
and adding at random a pre-specified percentage of
the links of the graphical model.

Table 4 shows the results of the mismatched condition.
Again, error back-propagation beats appr-logl at all
levels of structure noise, except for L1 loss, where it
performs worse at the 30% level (not statistically sig-
nificant) and improvement is statistically insignificant
at the 40% level. Performance degradation in the error
back-propagation runs is gradual. Interestingly, per-
formance of the appr-logl training slightly improves
with a low level of structure noise. We speculate that
the noise acts as a regularizer to prevent appr-log
from overfitting to the approximate criterion.

8.3 Approximation quality

Finally, to emulate the case in which the approximate
algorithms may be forced to terminate early, we limit
the run of BP to a fixed number of iterations. Table
5 shows the results of our experiments for different

test train Perturbation
setting setting 10% 20% 30% 40%

frac-MSE
appr-logl .00352 .00642 .00622 .01118

frac-MSE
.00101 .00316 .00312 .00534
12·0·0 11·0·1 11·0·1 10·0·2

int-F
appr-logl .01042 .01928 .01026 .02123

int-F
.00095 .00472 .00473 .00969
11·0·1 10·1·1 11·0·1 9·0·3

int-L1
appr-logl .00452 .00748 .00569 .01173

int-L1
.00147 .00442 .00602 .00945

9·2·1 9·0·3 9·0·3 9·0·3
appr-loglappr-logl -.3096 -.0180 -.0373 -.1169

Table 4: Results on varying degree of structure mismatch.

test train Num. of BP iterations
setting setting 100 30 20 10

frac-MSE
appr-logl .00710 .00301 .00816 .02461

frac-MSE
.00057 .00072 .00063 .00064
12·0·0 11·0·1 12·0·0 12·0·0

int-F
appr-logl .01170 .00476 .01276 .03085

int-F
.00081 .00126 .00058 .00091
11·0·1 12·0·0 10·1·1 11·0·1

int-L1
appr-logl .00751 .00344 .01087 .02984

int-L1
.00079 .00101 .00078 .00096
10·2·0 10·0·2 10·2·0 12·0·0

appr-loglappr-logl -.3161 -.1823 -.2422 -.1104

Table 5: Results for different BP approximation quality.

number of BP iterations. We use 100 iterations as our
base case as most of the runs converge in that limit.

As the quality of the approximation decreases, we see
that back-propagation training remains quite robust,
while the performance gap with appr-logl widens.
When using only 10 iterations, back-propagation train-
ing reduces the error by a factor of more than 30
in all testing settings. This shows that using back-
propagation and ERM is very important when work-
ing with poor approximations. In general appr-logl
training appears to find parameters that require more
iterations of BP to converge.

9 Related Work

ERM has been used with appropriate loss functions in
speech recognition (Bahl et al., 1988), machine trans-
lation (Och, 2003), and energy-based models gener-
ally (LeCun et al., 2006). Our own contributions to
this area included general algorithms for computing
the gradient of annealed risk when dynamic program-
ming is involved (Li and Eisner, 2009). In graphical
models, methods have been proposed to directly min-
imize loss in tree-shaped or linear chain MRFs and
CRFs (Kakade et al., 2002; Suzuki et al., 2006; Gross
et al., 2007). All of these focus on exact inference.
Our present paper can be seen as generalizing these
methods to arbitrary graph structures, arbitrary loss
functions and approximate inference.
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Kulesza and Pereira (2008) show that within a fixed
training method—the perceptron—substituting ap-
proximate inference may or may not allow the method
to achieve low risk, depending on the inference
method. In particular, loopy BP within a perceptron
learner may lead to pathological results. They remark
that that the empirical risk under loopy BP could be
directly minimized by using grid search. Our gradient-
based method is an improvement over grid search.

Guided by the intuition that the errors of approximate
methods in the estimation and prediction phases may
cancel one another, Wainwright (2006) provides theo-
retical analysis to show that it is beneficial with respect
to end-to-end performance to learn the “wrong” model
by using inconsistent methods for parameter estima-
tion. This holds even in the infinite data limit.

Lacoste-Julien et al. (2011) also consider the effects of
approximate inference on loss. Unlike us, they assume
the parameters are given but propose an approximate
inference algorithm that considers the loss function.

Simultaneous to us, Domke (2010) propose a finite-
difference method that can compute the gradient of
any loss that is a function of marginal inference re-
sults. His method relies on running the inference (for-
ward) procedure three times, and, like our method,
can be used with approximate inference. Compared
to Domke’s algorithm, our method has several advan-
tages: it does not suffer from the numerical instabil-
ities inherent in finite-difference methods; it does not
require that inference runs to convergence; it can be
used to compute gradients of additional parameters
that are used in the inference algorithm (initial con-
ditions, termination parameters, etc.). Furthermore,
his algorithm imposes some additional (albeit mild)
technical conditions on the choice of inference algo-
rithm. The advantage of Domke’s algorithm is that
it is very easy to implement: in addition to comput-
ing the derivative of the loss function with respect to
the marginals, it requires running inference two more
times with perturbed parameters.

We are not aware of prior work that uses back-
propagation to cope with approximate inference, ap-
proximate decoding, or arbitrary differentiable loss
functions. Eaton and Ghahramani (2009) did inde-
pendently apply back-propagation to BP for a quite
different purpose: sensitivity analysis to find the “im-
portant” random variables in an MRF. They then con-
ditioned the MRF on the important variables for sub-
sequent runs of BP in the hope of finding better ap-
proximations. Their back-propagation algorithm is re-
lated to ours, but considers only the state where BP
has converged, without saving intermediate messages;
it could not handle our early stopping in section 8.3.

Many other learning methods have been proposed
for when exact inference is intractable. Those in-
clude pseudolikelihood (Besag, 1975, 1977),5, piece-
wise training (Sutton and McCallum, 2005), and many
variational approaches. These training methods focus
on approximately maximizing log-likelihood. They do
not take into account the loss function or the choice of
approximate inference or decoding procedure, nor do
they try to compensate for model error.

10 Conclusions and Future Work

We have presented a new and well-motivated train-
ing objective for graphical models. Because the objec-
tive directly minimizes the empirical risk, it is robust
to approximations in modeling, inference, and decod-
ing. We show that this in fact leads to significant and
substantial practical gains across a variety of distribu-
tions, models, inference procedures, and decoding pro-
cedures when evaluated on a range of synthetic data.
Separately, we have found that the method also works
well on real data (Stoyanov and Eisner, in review).

To optimize the objective, we have shown how to com-
pute its gradient using automatic differentiation (see
Appendix), and how to use a second-order optimiza-
tion method. We have also experimented with two
methods that mitigate the local optimum problem.

This line of work opens up many opportunities. Our
sequel paper (in progress) will consider extensions

• to select also a graphical model topology (along
with parameters) that gets good results despite
loopy BP inference, still using back-propagation
but on a modified objective (Lee et al., 2006);

• to re-incorporate a Bayesian prior (the need for
which was pointed out by Minka (2000)—the
present paper eliminates any role for a prior, and
does not even regularize θ);

• to handle more complex patterns of missing data
at training and test time; and

• to reparameterize the system to allow convex
training (while the present paper copes with many
approximations, it does not yet solve the signifi-
cant approximation of local optimization).
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A Back-Propagating the Error over the Belief Propagation Run

In this appendix, we will use a version of belief propagation where the messages and beliefs are normalized at
every step. (Normalization is optional but is usually required for convergence testing and for decoding.)

In the main paper, µ (messages) and b (beliefs) refer to unnormalized probability distributions, but here they
refer to the normalized versions. We use µ̃ and b̃ to refer to the unnormalized versions, which are computed by
the update equations below. The normalized versions are then constructed via

q(x) =
q̃(x)∑

x′

q̃(x′)
(9)

A.1 Belief Propagation

The recurrence equations (2)–(5) for belief propagation are repeated below with normalization. To update a
single message, the distribution µi→α or µα→i, we compute the unnormalized distribution µ̃, using equation (A.3)
or (11) (respectively) for each value xi in the domain of random variable Xi:

µ̃i→α(xi) ←
∏

β∈F : i∈β,β 6=α

µβ→i(xi) (10)

µ̃α→i(xi) ←
∑

xα: (xα)i=xi

ψα(xα)
∏

j∈α: j 6=i

µj→α((xα)j) (11)

We then compute the normalized version µ using equation (9). Upon convergence of the normalized messages
or when another stopping criterion is reached (i.e., maximum number of iterations), beliefs are computed as:

b̃xi(xi) ←
∏

β∈F : i∈β

µ
(T )
β→i(xi) (12)

b̃α(xα) ← ψα(xα)
∏
j∈α

µ
(T )
j→α((xα)j) (13)

The normalized beliefs b are used by a decoder d to produce a decode of the output variables. Finally, a loss
function ` computes the “badness” of the decoded output as compared to the gold standard: V = `(d(b), y∗). In
this paper we work with decoders that are function of beliefs at the variables, but the method would also work
with decoders that consider beliefs at the factors (e.g., variants of the Viterbi decoder).

The only requirement is that the decoder and loss function are differentiable functions of their inputs. Hence we
replace non-differentiable functions, in particular max, with differentiable approximations such as softargmax, as
described in the main paper.

A.2 Back-propagation

Let V be the loss of the system on a given example. We will use the notation ðy to represent ∂V/∂y, called the
adjoint of y. An adjoint is defined for each intermediate quantity that was computed during evaluation of V .
If different quantities were assigned to the variable y at different times, then ðy will likewise take on different
values during the algorithm, representing the various partials of V with respect to those various quantities.

Ultimately we are able to compute the adjoint ðθj for each parameter θj , which gives us the gradient ∇θV .

We first compute V (the forward pass). This begins with belief propagation as described above. The only
difference from standard loopy belief propagation is that we record an “undo list” (known as the tape) of the
message values that are overwritten at each time step t ∈ {1, ..., T}. That is, if at time t the message µα→i was

updated, then we save the old value as µ
(t−1)
α→i

1. We then run the decoder over the resulting beliefs to obtain a
prediction y, and compute the loss V with respect to the supervised answer y∗.

1In reality, the normalized version of the message µ
(t−1)
α→i alone is not sufficient for the backward pass because the



The backward pass begins by setting ðV = 1. We then differentiate the loss function to obtain the adjoints
of the decoded output: ðd(xi) = ðV · ∂V

∂d(xi)
. (The actual formulas depend on the choice of loss function: if the

decoded output for xi were to change by an infinitesimal ε, how much would V change?) We use the chain rule

again to propagate backward through the decoder to obtain the adjoints of the beliefs: ðb(xj) =
∑
i ðd(xi)· ∂d(xi)∂b(xj)

.

(Again, the actual formula for this partial derivative depends on the decoder.)

From the belief adjoints, we can initialize the adjoints of the belief propagation messages by applying the chain
rule to equations (12)–(13):

ðµi→α(xi) ←
∑

k∈α:k 6=i

ψα((x′α)k)
∏

j∈α:j 6=i

µj→α(xj)ðb̃xi(xi) (14)

ðµα→i(xi) ←
∏

β∈F : i∈β,β 6=α

µβ→i(xi)ðb̃α(xα) (15)

ðψ(T )
α (xα) ←

∏
i∈α

µi→α((xα)i)ðb̃α(xα) (16)

Starting with these message adjoints, the algorithm proceeds to run the belief propagation computation back-
wards as follows. Loop for t← {T, T −1, ..., 1}. If the message update at time t was to a message µi→α according
to equation (A.3), we increment the adjoint for every β occurring in the right-hand side of equation (A.3), for
each value xi in the domain of Xi:

ðµβ→i(xi) ← ðµβ→i(xi) +

 ∏
i∈γ:γ 6=α,β

µγ→i(xi)

ðµ̃i→α(xi) (17)

We then undo the update, restoring the old message (and initializing the adjoints of its components to 0):

µi→α ← µ
(t−1)
i→α (18)

ðµi→α(xi) ← 0 (19)

Otherwise, the message update at time t was µα→i(xi) according to equation (11). We increment the adjoints
for all j and ψα occurring on the right-hand side of equation (11):

ðµj→α(xj) ← ðµj→α(xj) +
∑
xi

 ∑
xα: (xα)i=xi∧(xα)j=xj

ψα(xα)
∏

k∈α:k 6=i,j

µk→α(xk)

 ðµ̃α→i(xi) (20)

ðψα(xα) ← ðψα(xα) +
∑
i∈α

 ∏
j∈α:j 6=i

µj→α(xj)

 ðµ̃α→i(xi) (21)

And again, we undo the update:

µα→i ← µ
(t−1)
α→i (22)

ðµα→i(xi) ← 0 (23)

unnormalized message µ̃
(t−1)
α→i is also needed. There are two possible solutions: to save the unnormalized version of the

message µ̃
(t−1)
α→i and compute the normalized value as needed or to save the normalizing constant together with the message.

We use the latter option in our implementation for efficiency. Given the normalization constants, and µ
(t−1)
α→i , it is trivial

to reconstruct the values for µ̃
(t−1)
α→i in the backward pass, so this computation is omitted from the rest of the discussion

for brevity.



In either case, for each normalized distribution q whose adjoint was updated on the left-hand side of the above
rules, we then update the adjoint of the corresponding normalized distribution q̃:

ðq̃(x) =
1∑

x′ q̃(x′)

(
ðq(x)−

∑
x′

q(x′)ðq(x′)

)
(24)

Finally, we compute the adjoints of the parameters θ (i.e., the desired gradient for optimization). Remember
that each real-valued potential ψα(xα) (where xα represents a specific assigment to variables Xα) is derived from
θ by some function: ψα(xα) = f(θ). Adjoints of θ are computed from the final ψ adjoints as:

ðθi =
∑
α,xα

ðψα(xα) · ∂f(ψα(xα))

ðθi
(25)

A.3 Complexity

For nodes of high degree in the factor graph, the computations in the forward pass can be sped up using the
“division trick.” For example, the various messages

∏
β∈F : i∈β,β 6=α µβ→i(xi) in (10) for different α can be found

by found by first computing the belief (12) and then dividing out the respective factors µα→i(xi).

To perform the backward pass, we must save all updated values during the forward pass, requiring space of
O(runtime).

The runtime of the backward pass is asymptotically the same as that of the forward pass (about three to four
times as long). This is not the case for a straightforward implementation, since a single update µ̃i→α in the
forward pass results in ni updates in the backward pass, where ni is the number of functions (features) in which
node i participates (see equation (17)). Similarly, a single update µ̃α→i in the forward pass results in 2nα updates,
where nα is the number of nodes in the domain of ψα (from the updates in equations (20) and (21)). However, the

computations can again be sped up using the division trick—for example,
∏

i∈γ:γ 6=α,β

µγ→i(xi) can be computed

as

 ∏
i∈γ:γ 6=α

µγ→i(xi)

 /µβ→i(xi). Note from equation (10) that µ̃i→α(xi)←
∏

i∈β,β 6=α

µβ→i(xi), so this quantity

is already available and the whole product can be computed using a single division as µ̃i→α(xi)/µβ→i(xi). This
optimization saves considerable amount of computation when nodes participate in many functions. The same
optimization trick can be used for the updates in equations (20) and (21) and will lead to savings when domains
of potential functions contain multiple nodes. This is not the case for the experiments in this paper as we work
only with potential functions defined over pairs of nodes. In general, running inference in MRFs with functions
over domains with large cardinalities is computationally expensive. Thus, MRFs used in practice can be expected
to either have limited size potential function domains or use specialized computations for the µα→i messages.
Therefore, speeding up the computation in equations (20) and (21) is less of a concern. Our implementation
runs approximately three times slower than the forward pass.



A.4 Hessian-Vector Product

Section 4.2 of the main paper notes that for our Stochastic Meta-Descent optimization, we must repeatedly
compute not only the gradient of the loss (with respect to the current parameters θ), but also the product of the
Hessian of the loss (again computed with respect to the current θ) with a given vector v.

This requires a small adjustment to the algorithms above, using “dual numbers.” Every quantity x computed
by the forward or backward pass above should be replaced by an ordered pair of scalars (x,R{x}), where R{x}
measures the instantaneous rate of change of x as θ is moved along the direction v.

As the base case, each θi is replaced by (θi, vi). For other quantities, if x is computed from y and z by some
differentiable function, then it is possible to compute R{x} from y, z, R{y}, and R{z}. Thus, operations such
as addition and multiplication can be defined on the dual numbers.

In practice, therefore, code for the forward and backward passes can be left nearly unchanged, using operator
overloading to make them run on dual numbers. See Pearlmutter (1994) for details.

B Supplementary Results

test setting train setting
frac-MSE int-F int-L1 appr-logl

frac-MSE .00057 .00122 .00115 .0071
int-F .00109 .00081 .00106 .0117
int-L1 .00069 .00096 .00079 .00751

appr-logl .11141 .16153 .1508 -0.31618

Table 6: Results for all pairs of settings

As suggested by an anonymous reviewer, Table 6 lists the results (the ∆loss as in all previous tables) for all pairs
of train and test settings. More specifically, the training loss is the option including staged training and hybrid
loss where applicable (i.e., the -in and -hyb settings).

The results show that matching training and test conditions (the bolded diagonal of the table) leads to the
best results in all settings. Only the last column was achievable with previously published algorithms, so our
contribution is to provide the diagonal elements, which in each row do better than the last column.


