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Abstract

Much recent work in natural language processing treats linguistic analysis as an infer-
ence problem over graphs. This development opens up useful connections between ma-
chine learning, graph theory, and linguistics.

The first part of this dissertation formulates syntactic dependency parsing as a dynamic
Markov random field with the novel ingredient of global constraints. Global constraints are
enforced by calling combinatorial optimization algorithms as subroutines during message-
passing inference in the graphical model, and these global constraints greatly improve on
the accuracy of collections of local constraints. In particular, combinatorial subroutines en-
force the constraint that the parser’s output must form a tree. This is the first application that
uses efficient computation of marginals for combinatorial problems to improve the speed
and accuracy of belief propagation. If the dependency tree is projective, the tree constraint
exploits the inside-outside algorithm; if non-projective, with discontiguous constituents, it
exploits the directed matrix-tree theorem, here newly applied to NLP problems. Even with
second-order features or latent variables, which would make exact parsing asymptotically

slower or NP-hard, approximate inference with belief propagation is as efficient as a sim-

il
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ABSTRACT

ple edge-factored parser times a constant factor. Furthermore, such features significantly
improve parse accuracy over exact first-order methods. Incorporating additional features
increases the runtime additively rather than multiplicatively.

The second part extends these models to capture correspondences among non-
isomorphic structures. When bootstrapping a parser in a low-resource target language by
exploiting a parser in a high-resource source language, models that score the alignment
and the correspondence of divergent syntactic configurations in translational sentence pairs
achieve higher accuracy in parsing the target language. These noisy (quasi-synchronous)
mappings have further applications in adapting parsers across domains, in learning features
of the syntax-semantics interface, and in question answering, paraphrasing, and informa-

tion retrieval.

Primary Reader: Jason Eisner
Secondary Reader: David Yarowsky

Tertiary Reader: Sanjeev Khudanpur
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Chapter 1

Introduction

Computer science and related disciplines represent many of their core problems with
graphs. Graph algorithms form an important component in introductory CS courses and in
the development and teaching of complexity theory. Much recent work in natural language
processing has taken advantage of this legacy to formulate linguistic analysis as a graph
inference problem: dependency trees, word alignments, and coreference chains may all be
represented as graph structures, and, given an appropriate problem formulation, efficient
algorithms exist to search for optimal graphs.

In this introductory chapter, we work out some of the implications of this simple for-
mulation. In particular, we will see how a declarative specification of linguistic inference
problems, in terms of hard and soft constraints on solutions, unifies recent work in natural
language processing (§1.1) and linguistics (§1.2). Moreover, we will see how algorithmic

tools from graph theory and machine learning (§1.4) can make linguistic inference more ef-
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CHAPTER 1. INTRODUCTION

ficient and how approximation algorithms can find good solutions to intractable problems.

1.1 Linguistic Inference as Graph Inference

If, as in figure 1.1, we specify the words of a sentence as nodes, the task of finding a
dependency tree for those words can be formulated as a maximum directed spanning tree
problem (McDonald et al., 2005b). Figure 1.2 illustrates finding a word alignment between
German and English sentences by bipartite matching. If we want to allow a richer set of
alignments, e.g. with 2-to-1 correspondences among words, we can use the more general
technique of network flow (Taskar et al., 2005; Lacoste-Julien et al., 2006). Perhaps most
familiar in NLP, the Viterbi algorithm (Viterbi, 1967) for finding the best state sequence in
a hidden Markov model is equivalent to finding the shortest path in a directed graph known
as the trellis.

Casting NLP tasks as graph problems allows us to exploit many classical results
in graph theory and algorithms. Dependency parsers can use the cubic-time Chu-Liu-
Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967) or its trickier quadratic-time
variant (Tarjan, 1977) to find the best combination of edges that form a spanning tree.
Word alignment systems can use linear programming or specialized bipartite matching al-
gorithms such as Ford-Fulkerson or Edmonds-Karp. NLP researchers can draw on years of
experience in implementing these and similar algorithms to find efficient solutions to many

problems.
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CHAPTER 1. INTRODUCTION

These standard algorithms, however, only apply to graph inference problems under
certain conditions. To apply MST algorithms to parsing, the score of a tree must be edge
factored—the product of the scores of individual dependency edges in a tree. Likewise,
bipartite matching and network flow algorithms work with cost functions that factor into
scores on individual alignment links. These restrictions preclude natural expressions of
many linguistic constraints. In the sentence in figure 1.1, we would like to capture the
correlation between “answer” and “question” via the preposition “to”. That correlation,
however, is mediated by two separate dependency links, and an edge-factored model cannot
express our preference to have both links present in the final tree (McDonald and Satta,
2007).

Similarly, in the aligned sentences in figure 1.2, observe that the three-word phrase “Auf
diese Frage” at the beginning of the German sentence is translated, as a unit, by “to this
question” at the end of the English sentence. A model that scores the alignment of isolated
German-English word pairs cannot explicitly capture this useful notion of “monotonicity”,
i.e. the alignment of source word s; with target word t; makes the alignment of s;;; with
t;+1 more likely.!

Dijkstra’s dynamic programming algorithm to find the shortest (directed) path through
a graph has a long history of applications in computer science (Dijkstra, 1959). Viterbi
(1967) described a specialized version where the nodes are topologically sorted (as they

would be when corresponding to time steps in a hidden Markov model) and the graph is

1Tn conditional or discriminative edge-factored models of both dependencies and alignments, feature func-
tions may use arbitrary amounts of the observed input, such as relative word positions. Although less naturally
expressed, such features can recover some of the benefits of scoring large pieces of structure.

3
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K\/\/\/\

ROOT d1d not unfortunately receive answer to this question

Figure 1.1: A dependency graph: the words are nodes connected by a direct spanning tree,
or a spanning arborescence. A model that only considered the acceptability of individual
edges is unable to express generalizations about pairs of edges, such as the dependency

trigram answer — to — question.

Auf diese Frage habe ich leider keine Antwort bekommen

I did not unfortunately receive an answer to this question

Figure 1.2: A word alignment as a bipartite graph, whose edges connect German and En-
glish words. A model that only scored individual word-to-word alignments would be un-
able to ensure that the contiguous German phrase “Auf diese Frage” ought to correspond

to the contiguous English phrase “to this question”.
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CHAPTER 1. INTRODUCTION

acyclic. This Viterbi algorithm can then infer the most likely sequence of hidden states.
Consider a hidden Markov model of part-of-speech tags where successive tags have a first-
order Markov dependency—i.e., a bigram tagging model. With T tags, the Viterbi algo-
rithm decodes a sequence of length n in O(T?n) time. A trigram model’s state space has
cardinality O(T%), so with appropriate restrictions on legal transitions, the Viterbi algo-
rithm takes O(T3n) time. It is easy to show that additional dependencies among labels an
unbounded distance apart would require the state space of the Viterbi algorithm to grow ex-
ponentially in n. Despite their intractability, long-distance constraints on labels are useful
in, for example, expressing our intuitions about word-sense variation. A “one sense per dis-
course” constraint (Gale et al., 1992) has led to significant improvements in named-entity
classification systems since in the vast majority of documents, all instances of “Lincoln”
will be to the sixteenth U.S. president, or the senator from Arkansas, or the capital of
Nebraska, or the car model, but not some mixture of them (Sutton and McCallum, 2004;
Finkel et al., 2005).

Other theories of language formulated as graphs do not even admit polynomial-time in-
ference from input utterances to output structures in their simplest incarnations. Instead of
trees, for instance, some researchers have developed theories of syntax as directed acyclic
graphs (DAGs), a strict superset of directed trees (Chen-Main, 2006; Buch-Kromann, 2006;
Hudson, 2007). Even with edge-factored costs, a parser cannot exactly search the space of
DAGs in polynomial time (Karp, 1972).

Computational linguists working to express linguistic analysis as a graph inference task
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CHAPTER 1. INTRODUCTION

have increasingly, therefore, turned to approximation algorithms. In the past, NLP re-
searchers have commonly used heavy pruning, reranking n-best lists, or rescoring packed
representations, such as lattices and parse forests. Many are now turning to formulating
their inference problems in general-purpose frameworks such as integer linear programs
(ILP) or graphical models. Exact inference algorithms exist for ILP and graphical models,
but they are in general intractable. Some constraints may have to be relaxed in order to find
a solution quickly. NLP has thus benefited from machine learning methods such as Gibbs
sampling, rejection sampling; form certain variational approximations such as mean field;
and from work in linear programming relaxations. We can view many of these techniques
as performing constrained optimization: find a graph with an optimal score such that it
satisfies certain hard constraints such as being a tree, or DAG, or a matching.

In this thesis, we propose borrowing another variational approximation from machine
learning, namely, loopy belief propagation (BP). One advantage of this formulation is that,
unlike some other general-purpose approaches such as ILP, we can exploit the well-studied
combinatorial structure of the graph problems discussed above: our BP implementation can
call simple parsers, or aligners, or linear sequence labelers, as subroutines. We sketch the
BP algorithm in §1.4 below. But there are other reasons to prefer this setup of declarative
constraints plus general-purpose inference. We will now briefly step back from NLP and
trace some strands within linguistics that also lead to formulating language problems as

systems of constraints.
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1.2 Grammars and Constraints

Computer science inherited many of the graph algorithms described above from its
antecedents in applied mathematics and operations research. With computational linguis-
tics, computer science also shares the heritage of formal languages and complexity—in
particular, the Chomsky hierarchy of languages and their attendant recognition algorithms
(Hopcroft and Ullman, 1979). Formal grammars are perhaps most familiarly presented as
rewriting systems, with a generative story from the root symbol to terminal leaves. Work on
probabilistic context-free grammars in NLP takes the now-natural step of assigning proba-
bilities to each rewrite rule, conditioned on its left-hand-side nonterminal.

The Chomsky hierarchy also influenced a strain of work in theoretical linguistics that
aimed to put an upper bound on the complexity of natural language syntax. In the late
1970s and early 1980s, many researchers argued over whether English was context-free
(Pullum, 1984); others exhibited constructions in Dutch and Swiss German with produc-
tive non-context-freeness (Shieber, 1985). Several other formalisms, such as tree adjoin-
ing grammar and combinatory categorial grammar, were shown to have equivalent mildly
context-sensitive power (Joshi et al., 1991) and to facilitate accounts of various linguistic
cruces (Steedman, 2000; Frank, 2002).2

Many traditional and generative linguists, however, have highlighted declarative con-

straints on grammaticality, rather than a derivational approach. Head-Driven Phrase Struc-

2Investigations of the “context-freeness of natural language” focus on the complexity of syntax, but this
does not preclude proposals for tighter, finite-state bounds on subsystems such as phonology and morphology.
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ture Grammar, Lexical Functional Grammar, and Optimality Theory in particular are pre-
sented as systems of constraints.> The possibility of more precise formal specification and
computational implementation motivated many non-generative linguistic theories. Indeed,
several broad-coverage syntactic parsers have been built according to constraint-based the-
ories (e.g. Johnson et al., 1999; Riezler et al., 2000; Sagae et al., 2007).

Rather than focusing directly on the description of processes to generate syntactic struc-
tures, or to transform them, constraint-based formalisms aim at declarative descriptions of
grammatical structures. Since a formal grammar is not directly specified, these approaches
have been called “grammarless” (Rogers, 1997). The use of declarative representations,
however, does not imply an inability to reason about the complexity of language recog-
nition or parsing problems. The field of descriptive complexity concems the mapping of
problem descriptions in logic onto complexity classes (Immerman, 1999). This description
of computational objects, specifically languages, in logic has given rise to a characteriza-
tion of much of the constraint-based research program as “model-theoretic” (Rogers, 1996;
Potts and Pullum, 2002; Pullum, 2007).

The example of Optimality Theory (OT) is particularly instructive in light of the meth-
ods we will develop in this thesis. Some grammar formalisms only employ hard con-
straints: no structure that violates a hard constraint is grammatical. In OT, an underly-

ing input form is associated with a candidate set of possible output structures aligned to

3Sag et al. (2004) and Falk (2001) provides good introductions to HPSG and LFG, respectively. Optimal-
ity Theory (Prince and Smolensky, 2004) has exercised the greatest influence in phonology; for optimality-
theoretic syntax, see the papers in Legendre et al. (2001) and an OT encoding of LFG constraints in Kuhn
(2003).
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the input. OT posits that grammatical forms are selected from among the candidates by
systems of violable constraints in strict dominance. The grammatical, observed form’s
highest-ranked violated constraint will be the lowest ranked constraint violated by any of
the forms.

In an interesting further development, some recent work in OT has turned towards so-
called “log-linear grammar” or “maximum entropy grammar”: instead of being ranked,
OT’s violable constraints are assigned real-valued weights, and the candidate form with the
lowest sum of weighted violations is selected (Goldwater and Johnson, 2003; Hayes and
Wilson, 2008). With a change of sign, this is equivalent to the linear models, which are
now widely used in NLP and machine learning generally. In other words, for a given input
x the linear model selects from among the candidates ), the output y* with the highest

sum of real-valued features f weighted by real-valued weights w:

y* = argmaxw - f(x,y) (1.1
YEYVx

In OT, and in linear models generally, the features f are functions of the input and the
candidate output y. (In this thesis, we will also refer to features with finite values as soft
constraints.)

We can also define a probability distribution over outputs given inputs by exponentiat-

ing and renormalizing this sum (hence the name log-linear).

1
ply | x) = me‘"'“*’y) (1.2)
Z(x) =) ey (1.3)

yI

9
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An important advantage of linear and log-linear models with real-valued weights is the
ability to use standard algorithms from machine learning. In addition, the probabilistic
interpretation allows log-linear models to sum over hidden representations (e.g., in phonol-
ogy, Pater et al., 2010). For further background on log-linear models and their properties,
see appendix A.

In this spirit, we investigate log-linear models of syntactic structure that are
parametrized by constraints on substructures of linguistic analysis. The feature functions
f, in other words, will usually depend only on finite subsets of the input and output and
ask such questions as: how good is this dependency link? how compatible are these two
dependency links? how many children should this verb take? should this German com-
pound word align with this three-word English phrase? Constraints on substructures are
necessary to capture the basic insight of generative linguistics: grammars describe infinite

sets of strings with finite resources.

1.3 Probabilistic Structured Models

So far, we have mentioned one inference problem we wish to solve with linguistic
models: given an input, output space, feature functions, and weights, find the output with
the highest score (equation 1.1). But how, for instance, should we set the weight vector w
if we have labeled examples in the form of sentences and their true dependency trees? And

what other inference problems might be useful? Finally, should we make use of hidden (or

10
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latent) variables, i.e. random variables that are not in the input, and are not specified or
desired in the output, but that hopefully help us to relate the two?

A wide variety of approaches have been developed for training the weights of the linear
models described so far. Among the most popular are the perceptron and support vector
machine. Given certain conditions, these methods provide a training procedure guaranteed
to converge. Both are designed to minimize the number of errors made by the model on
training data—subject to constraints, in the case of the SVM, on the L, norm of the weight
vector that improve generalization performance.

Log-linear models, also known as maximum entropy or (multiclass) logistic regression
models, are a natural extension of linear models that turn output scores into probabilities.

There are several reasons to adopt this probabilistic framework:

e Maximum likelihood estimation provides a well-motivated training procedure for w
with or without hidden variables. When there are no hidden variables, the maximum

likelihood objective is convex.

e In addition to identifying the best tree, the model can also compute posterior proba-
bilities of output trees or subtrees. For example, we can determine the probability that
a certain noun is the subject of a certain verb, considering the model’s uncertainty

about other parsing decisions.

e The posterior distribution over outputs allows us to calculate the expected cost of

making decisions. These expectations enable minimum risk training and minimum

11
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Bayes risk decoding , which take a loss function into account and often lead to better

results. We can also calculate measures of uncertainty such as entropy.

e We can naturally model hidden variables. Most algorithms for error minimization,
however, assume that all structures are fully observed at training time. When mod-
eling syntax, for example, which depends on certain morphological properties such
as words, it is often helpful to take our uncertainty about the morphological analysis
into account. When evaluating whether one sentence is a good translation of another,
we would like to model our uncertainty about how individual words or phrases are

aligned.

e Probabilistic models facilitate well-founded system combination, €.g. noisy channel
models, mixtures, and products of experts. In addition to factored training of individ-
ual systems, we can train the pipeline jointly while integrating out the intermediate

-results.

The advantage is not all on one side, of course. Probabilistic models compare unfavorably

to error-driven training in other ways:

e Unlike some models such as SVMs, probabilistic models lack provable, distribution-

free bounds on generalization error.

e Learning is often more expensive for globally normalized probabilistic models—
indeed, asymptotically more expensive. For instance, we can solve maximum
weighted bipartite matching for an edge-factored word alignment model in cubic

12
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time, but the summation problem necessary for maximum likelihood training is
equivalent to computing the permanent of a matrix, a #P-complete problem (Taskar

et al., 2005).

e Training procedures that only consider the best output of the current model need
to examine the features only of the true output and the one-best output, rather than

features in all valid outputs (Roark et al., 2004).

We have hinted at a final consideration that is in practice somewhat correlated with the
probabilistic divide. The convexity of inference problems—and thus our ability to find the
globally optimal solution without brute force methods—weights heavily in many decisions
about machine learning methods. As noted above, when there are no hidden variables,
maximum likelihood training, shares with SVM and perceptron learning a guarantee of
convexity. The likelihood function of log-linear models with hidden variables is no longer
convex in its parameters, so gradient-based training is no longer guaranteed to find the
global optimum. The problem of local optima also affects error-driven training of neural
networks with hidden layers. Even without hidden variables, a loss-aware objective func-
tion such as risk has local optima, though in practice minimum risk training can be more
effective than maximum likelihood. Techniques such as deterministic annealing can help
us find better optima, though without formal guarantees (Rao and Rose, 2001; Smith and

Eisner, 2006a).

13
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1.4 Approximate Inference with Belief Propa-

gation

To solve the inference problems required by structured models, we propose the approx-
imation technique of loopy belief propagation (BP). In this thesis, we show that BP can be
used to train and decode complex models for monolingual and bilingual parsing.

Our BP approach introduces a new ingredient: the parser calls simpler algorithms
as subroutines, so it still exploits the useful, well-studied combinatorial structure of the
graph problems we reviewed in §1.1. Recently, decoders employing belief propagation
(Duchi et al., 2006), constraint relaxation (Tromble and Eisner, 2006), and forest rerank-
ing (Huang, 2008) have called simpler combinatorial solvers. In contrast, generic NP-hard
solution techniques like Integer Linear Programming (Riedel and Clarke, 2006) do not ex-
ploit combinatorial substructure. Ours is the first application, however, that uses efficient
computations of marginals for these subproblems to speed up belief propagation.

When applying our method to dependency parsing, we wish to make a tree’s score
depend on higher-order features, which consider arbitrary interactions among two or more
edges in the parse (and perhaps also other, latent variables such as part-of-speech tags or
edge labels). Such features can help accuracy—as we show. Alas, they raise the polynomial
runtime of projective parsing, and render non-projective parsing NP-hard (McDonald and
Satta, 2007). Hence we seek approximations.

We will show how BP’s “message-passing” discipline offers a principled way for

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION

higher-order features to incrementally adjust the numerical edge weights that are fed to
a fast first-order parser. Thus the first-order parser is influenced by higher-order interac-
tions among edges—but not asymptotically slowed down by considering the interactions
itself.

BP’s behavior in our setup can be understood intuitively as follows. Inasmuch as the
first-order parser finds that edge e is probable, the higher-order features will kick in and
discourage other edges e’ to the extent that they prefer not to coexist with e.* Thus, the
next call to the first-order parser assigns lower probabilities to parses that contain these €’.
(The method is approximate because a first-order parser must equally penalize all parses
containing €', even those that do not in fact contain e.)

This behavior is somewhat similar to parser stacking (Nivre and McDonald, 2008b;
Martins et al., 2008), in which a first-order parser derives some of its input features from
the full 1-best output of another parser.> In our method, a first-order parser derives such
input features from its own previous full output (but probabilistic output rather than just 1-
best). This circular process is iterated to convergence. Our method also permits the parse
to interact cheaply with other variables. Thus first-order parsing, part-of-speech tagging,
and other tasks on a common input could mutually influence one another.

Our approach to efficient inference requires an innovation to BP—the use of combina-
torial algorithms to enforce global constraints, e.g. that the parse is a tree. The tractability

of some such global constraints points the way toward applying BP to other computation-

4This may be reminiscent of adjusting a Lagrange multiplier on €’ until some (hard) constraint is satisfied.
5§2.3.4 elaborates the connections among BP and iterated methods such as stacking and reranking.
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ElF N\

Auf diese Frage habe ich leider keine Antwort bekommen

I did not unfortunately receive an answer to this question

- N

Figure 1.3: Multi-structure inference: Bilingual parsing. The extraposed German phrase
Auf diese Frage leads to a non-projective dependency link, labeled non-proj, that crosses
the link from habe to bekommen. Some treebanks and parsers prefer completely projective
trees and would reattach this link higher up—here, the link labeled proj whose parent is
bekommen. In this example, the nonprojective Auf < Antwort link reflects the answer —

to relationship from the English.

ally intensive NLP problems: in chapter 3, we extend our BP parser to handle nonprojective
trees, with crossing dependency links (figure 1.3) and discontinuous constituents; in chap-
ter 4, we present efficient inference for aligned trees; and in chapter 5, we sketch possible
future applications from morphology to semantics, and from machine translation to infor-
mation retrieval.

With the development of the BP machinery to coordinate a first-order parser with other

16
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constraints, it is easy to construct procedures for multi-structure inference.® Figure 1.3,
for example, depicts the output of a bilingual parser as a combination of two dependency
trees and an alignment. Figure 1.4 shows a version of the semantic role labeling task
for assigning argument structures, with a dependency tree above and a non-tree semantic
graph below (Hacioglu, 2004). Inference on some of these subgraphs can take advantage
of the combinatorial algorithms'mentioned in §1.1 above, and BP negotiates among these
subgraphs to find approximately optimal solutions.

Loopy BP has occasionally been used before in NLP, with good results, to handle
non-local features (Sutton and McCallum, 2004) or joint decoding (Sutton et al., 2004).
There is also a line of work in syntactic parsing that relies on unweighted hard constraints
(Maruyama, 1990; Harper et al., 1995; Duchier and Debusmann, 2001; Duchier, 2003;
Wang, 2003; McCrae et al., 2008; Foth et al., 2006; Debusmann, 2006). For inference,
these systems use algorithms, related to belief propagation, for enforcing arc consistency
(Mackworth, 1977).7 Some of these constraint-based parsers have broad coverage; others
describe a fragment of a language in order to explore theories of human sentence process-
ing. The problem of learning a good model is, however, less elegantly handled when we
are restricted to hard constraints. Standard error-driven and probabilistic training methods,

such as the perceptron and maximum likelihood, cannot be applied when feature weights

5The term is due to Noah Smith, who helped clarify our thinking on this topic. In addition to provid-
ing a framework for many joint inference problems in NLP, multi-structure inference could be useful for
implementing theories of syntax that are explicitly presented as aligned hierarchical structures, e.g. LFG,
with c-structure and f-structure; Autolexical Grammar (Sadock, 1991); and, less formally, the multistratal
approach of Jackendoff (2002).

In a parallel to our work, Régin (1994) employed a bipartite matching algorithm within unweighted
constraint propagation; see §2.4.2.

17
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Iy P N

The banks badly want to break into the securities business

A N7 N~
Al Al Al

A0

A0

Figure 1.4: Multi-structure inference: Semantic role labeling. The dependency tree is
drawn above the sentence; the (non-tree) semantic graph is below. The banks fills the A0

(“agent”) argument of both the want and break predicates.

are constrained to be log 1 = 0 or log 0 = —oo. Instead, researchers either design a set of
hard constraints by hand or relax a set of possible constraints until the training data can be

parsed.

1.5 A Map of the Thesis

In chapter 2, we elaborate on the graph-based approach to dependency parsing and
frame it as variable assignment in a graphical model. We introduce a method to embed
simple parsers within a larger graphical model.

In chapter 3, we show how to extend these results for parsing non-projective languages,
where dependency edges may cross.

Chapter 4 applies the forgoing results on efficient inference to adapting syntactic mod-

els among different domains, within and between languages.

18
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Chapter 5 sketches applications of these techniques to problems in syntax, adaptation,
and other noisy mappings among combinatorial structures.
Chapter 6 summarizes the modeling and algorithmic contributions of this thesis and its

implications for further work in NLP.

19
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Chapter 2

Dependency Parsing by Belief

Propagation

In this chapter, we describe the application of loopy belief propagation to the structured

prediction problem of dependency parsing.'

2.1 Dependency Syntax

Dependency parsers are modern representatives of an old idea. Before the Ameri-
can structuralists pioneered constituency analysis, grammatical treatments of syntax of-
ten focused on the relations among words (as well as their linear order) (Tesniere, 1969;

Mel’¢uk, 1988; Sleator and Temperley, 1993; Hudson, 2007). In figure 1.1, the noun “ques-

1A condensed version of this material appeared in (Smith and Eisner, 2008, §§1-8.4). This chapter pro-
vides a more thorough exposition of the belief propagation algorithm and constraints and features for depen-
dency parsing. Our paper also discussed nonprojective parsing, which we take up in chapter 3.
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tion” (the head, or parent) is said to govern, or be modified by, the determiner “this” (the
child). Many theories and models in constituency syntax also take these relations between
heads and modifiers into account.

Recently, dependency parsing has received renewed interest, both in the parsing liter-
ature (Buchholz and Marsi, 2006; Nivre and McDonald, 2008a) and in applications like
translation (Alshawi et al., 2000; Quirk et al., 2005; Galley and Manning, 2009) and infor-
mation extraction (Culotta and Sorensen, 2004; Bunescu and Mooney, 2005). Dependency
parsing can be used to provide a “bare bones” syntactic structure that approximates se-
mantic argument structure, and it has the additional advantage of admitting fast parsing
algorithms while maintaining high accuracy (Eisner, 1996; McDonald et al., 2005a).

Many linguistic annotation projects are now creating dependency treebanks—e.g., the
long-running Prague Dependency Treebank project (Bshmova et al., 2003). Standard eval-
uation benchmarks such as CoNLL Shared Tasks have encouraged progress in automatic

dependency parsing (Buchholz and Marsi, 2006; Nivre et al., 2007).

2.1.1 Models of dependency trees

The latest state-of-the-art statistical dependency parsers are discriminative, meaning
that they are based on classifiers trained to score output trees, given an input sentence.

In one widely-used class of models, a tree is constructed by the output of local deci-
sions made in sequence, hence the names transition- or action-based parsers (Nivre, 2003;

Hall et al., 2006). These parsers are similar to the shift-reduce parsers for context-free

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. DEPENDENCY PARSING BY BELIEF PROPAGATION

grammars, which have been used in NLP for some time (e.g., Ratnaparkhi et al., 1994).
Transition-based models for sequence labeling are often called maximum-entropy, or con-
ditional, Markov models McCallum et al. (2000).

In this thesis, we are concerned with another major class of discriminative dependency
parsers, which treat syntactic analysis as graph optimization, in the manner we surveyed in
§1.1. Conceptually, these graph-based parsers assign a score to each possible output tree
and search for the output with the highest score. More specifically, we are interested in
the conditional, probabilistic versions of graph-based models, for reasons sketched in §1.3
above: maximum likelihood training and the natural handling of hidden variables.?

In addition to transition-based and graph-based models, generative models of depen-
dency trees (Eisner, 1996), the analogues of HMMs and PCFGs, have also been widely
used. While such models do not currently achieve state-of-the-art performance on depen-
dency parsing tasks, they are useful for language modeling in, e.g., speech recognition
(Wang and Harper, 2002) and machine translation (Shen et al., 2008). An interesting twist
on such models combines a simple generative component with multiple, overlapping hard

constraints (Wang, 2003).

2.1.2 Constraints on dependency trees

As noted above, global models of graph structure have produced state-of-the-art results

on many dependency parsing tasks. For a given input sentence x, these models define a set

2The analogous models for sequence labeling are known as linear-chain conditional random fields (CRFs)
(Lafferty et al., 2001).
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of possible output dependency trees and assign a score to each tree y with the real-valued
function s(x,y). Parsing is the task of finding the tree with the highest score.

More formally, let x = (z1, ..., Z,) be a sequence of words (possibly with POS tags,
lemmata, and morphological information) that are the input to a parser. The output y will
refer to a directed, unlabeled dependency tree, whichisamapy : {1,...,n} ={0,...,n}
from child indices to parent indices; xz is the invisible “root” or “wall” symbol.

Let ), be the set of valid dependency trees for x. We define a valid tree as a directed
graph over nodes x such that every word has in-degree 1, with the sole edge pointing from
the word’s parent, z,(;y — ;, except for the root zy, which has in-degree 0. In addition,
trees are acyclic. In other words, the graph is a directed spanning tree, or a spanning
arborescence, rooted at zg.

Much work on dependency parsing imposes a third condition on membership in V: the
tree must be projective. Projectivity is usually stated as a prohibition on descendants of
one node “intruding” on the span of the descendants of another node not its ancestor—in

short, as a prohibition on discontinuous constituents (Nivre, 2003). To be precise,
(Vi,j, k) ((fL‘l = z;VI; — .’L'Z) Ni<k< ]) = (Cl?z =¥V Z; —* .’L‘k) 2.1

where —* is the transitive closure of the child, i.e. the descendant, relation.

It is sometimes more convenient, as we shall see below (§3.4.2), to express projectivity
as a constraint on all pairs of edges rather than on arbitrarily long descendant chains. For
each of two dependency links z, — z. and zy — z, consider their linear order in the
sentence, according to the indices of the nodes in x. Let £ = min(p, ¢) and r = max(p, c);
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similarly, let # = min(p’, ¢’) and 7 = max(p/, ¢’). A projective tree is a tree such that:

S[(l<t'AN<TAT<T)VE <lAL<T AT <T) (2.2)

Both formulations of projectivity also apply to dependency links from the root node z,.

Many graph-based and transition-based dependency models use the projectivity con-
straint, both because it is often observed in natural languages and the treebanks that try
to reflect them and because efficient and effective greedy (Nivre, 2003) and dynamic pro-
gramming algorithms exist for many inference problems for projective trees (Eisner, 1996,
and appendix B below). But the projectivity constraint is not always observed—indeed, it
is violated quite often in treebanks for Czech, Dutch, and other languages with the loosely-
defined quality of “free word order”. In chapter 3, we will turn to algorithms for nonpro-
jective trees.

Many treebanks observe a final constraint: exactly one node in {zi,...,z,} should
have an in-edge from x,. Trees or treebanks that obey this constraint are single-rooted,
otherwise, they are multirooted.

Dependency structures extracted from constituency treebanks are usually projective
and single-rooted. Dependency treebanks often use multirooted structures to attach fi-
nal punctuation and clauses in parataxis (e.g., Arabic wa-consecutive) directly to the root
node. Some conversions from constituency to dependency structure, however, do introduce
nonprojectivity—for example, by reattaching an extraposed element to the parent of its

trace.
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2.1.3 Edge-factored models

Edge-factored models are a useful special case of the graph-based approach. Recall
that in a log-linear parsing model, the score of a tree (1.1) is the log of its unnormalized
probability (1.2). In an edge-factored model, the score of a tree is the sum of the scores of
its component dependency links. Let the real-valued score of a dependency link from z; to
z; be a real-valued function s(3, j) than depends (implicitly) on the input x and that single

edge. The score of an input-output pair is then

shy)= D (i) @3)

T;—IT; €Y

and the probability of output given input is

1 .
py =5 [ & 2.4)

T;—L; €Y

We define u(i, j) = 5@ for convenience.

Edge-factored models admit exact, efficient algorithms for finding the best tree, for
finding the total weight of all trees (the normalizer Z), and for finding the marginal proba-
bilities of individual edges are features. These inference problems can be solved by cubic-
time dynamic programming for projective parsing (see Eisner, 1996, and the algorithms in
appendix B). In addition, dependency parsers, which do not infer hidden structure beyond a
linear number of edges, can avoid the grammar constants that burden treebank-based con-
stituency parsers with a large number of rules. These advantages have led to widespread

use of edge-factored parsers (McDonald et al., 2005b).> While we will take up nonpro-

3For projective models, some scoring functions that consider pairs of edges also admit efficient algorithms
(Eisner, 2000; McDonald and Pereira, 2006).
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jective parsing in chapter 3, we confine ourselves to projective models for the rest of this

chapter.

2.2 Graphical Models of Dependency Trees

Having defined the constraints on the output graph of our parser (projective directed
trees), we now turn to the modeling architecture we will use to evaluate candidate outputs.
Our model is expressed as a factor graph, a particular class of graphical models that uses a
bipartite undirected graph to express the independence assumptions and computational re-
lations of different parts of the model. Since we are using graphs to model graphs, we will,
to avoid terminological confusion, use “links” to refer to edges in the output dependency

tree and reserve the term “edge” for describing the graphical model’s factor graph.

2.2.1 Factor graphs

We will model distributions over structures, including dependency graphs, in terms of
graphical models known as factor graphs (Kschischang et al., 2001). We first introduce
these objects informally by appealing to a familiar special case: linear-chain conditional
random fields. Later, in §2.2.3, we will provide more rigorous definitions.

Figure 2.1a depicts a linear-chain conditional random field (CRF) for tagging a simple
three-word sentence. The open nodes represent the hidden variables, which take on values

from the inventory of tags. For simplicity, let the available tags be a, n, and v for adjective,
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Fid prefrred tas Find preferred ts Find preferred tags

(a) Conditional random field (b) Factor graph (c) Observations absorbed by

factors

Figure 2.1: Graphical models for sequence labeling

noun, and verb. The closed nodes represent the observed words of the sentence. Edges
between an observed and a hidden variable represent the compatibility of a word with a tag;
edges between neighboring hidden variables represent the first-order Markov dependence
among tags (Lafferty et al., 2001).

A factor graph makes variable dependencies more explicit. Graphically, we express
dependencies among variables as square black nodes connected to variables (figure 2.1b).
Since variables depend on each other only through factors, the graph is now bipartite.

We have simplified the figures by linking each hidden tag variable to exactly one ob-
served word variable. This is by analogy to hidden Markov models with their tag-to-word
emission probabilities. Conditional random fields achieve much of their advantage over
HMMs in practice by allowing the model designer to condition each hidden variable on all
of the observed values. We implicitly indicate this relationship by suppressing observed
variables and absorbing their effects into the remaining factors in the factor graph (fig-

ure 2.1c).
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The semantics of the factor nodes are easily understood when we use the graphical
model to score an assignment to the tag variables. Each factor node will contribute a
multiplicative factor (its potential) to the score of the overall assignment. The potential
contributed by each factor depends only on the values of its neighboring variables, and this
functional dependence may be represented by a table whose dimensionality is the number
of those neighbors. If the three tags in our running example are v a n, the contribution of
the binary factor between the first two tags is the entry in row v and column a (figure 2.2).
If we multiply the highlighted potentials, we see that the unnormalized probability assigned
to the sequencevanis1-3-0.3-0.1-0.2=0.018.

The factor graph representation provides a useful framework for what follows, by sep-
arating the objects we wish to evaluate (variable assignments, §2.2.2) from how we will
evaluate them (factors, §§2.2.4-2.2.5). Factor graphs will also clarify the presentation of

our inference procedures with loopy belief propagation (§2.3).

2.2.2 Observed and hidden variables for parsing

To apply this machinery, we must formulate dependency parsing as a search for an
optimal assignment to the variables of a factor graph. We encode a dependency tree using

the following variables:

Sentence. For an n-word input sentence, let W = W,W,; ---W,, where W, is always
the special symbol ROOT. This representation allows confusion networks, where

we know the number of words but not their identity, but not general lattices. In all
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Figure 2.2: Potentials score variable assignments. Multiplying the highlighted entries in

the potential tables, which correspond to these particular variable values, yields 0.018 as

the unnormalized probability of the complete assignment.
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the experiments in this thesis, the words are observed, and these variables will be

absorbed into factors.

Tags. If desired, the variables T = T1T5 - - - T;, may specify tags on the n words, drawn
from some tagset 7 (e.g., parts of speech). These variables are needed iff the tags
are to be inferred jointly with the parse—a case we will analyze, since BP provides
considerable asymptotic speedups. In our experiments here, however, as in most
current work on data-driven dependency parsing, the input already has fixed parts
of speech; in other words, these variables are observed and will be absorbed into

factors.

Links. The O(n?) boolean variables {L;; : 0 <7 < n,1 < j < n,i # j} correspond to
the possible links in the dependency parse (figure 2.3). L;; = true is interpreted as
meaning that there exists a dependency link from parent ¢ — child j. We can omit

variables L;; corresponding to self loops.*

Link roles, etc. It would be straightforward to add other variables, such as a binary vari-
able L;; that is true iff there is a link 5 j labeled with role r (e.g., AGENT,

PATIENT, TEMPORAL ADJUNCT).

4We could have chosen a different representation with O(n) integer variables {P; : 1 < j < n}, writ-
ing P; = i for O(n) values instead of L;; = true. This representation can achieve the same asymptotic
runtime for BP by using sparse messages, but some constraints and algorithms would be harder to explain.
Briefly, a naive implementation of constraints on pairs of connected dependency links, such as the GRAND
factors in §2.2.5 below, would require O(n#) potential table entries, rather than the O(n?) potentials we need
for Boolean variables. The extra potentials are expended on pairs of dependency links that cannot be in a
grandparent relationship: 1 — 3,3 — 6 is a legal grandparent—parent—child chain, but 1 — 3,4 — 5 is not
because their middle terms differ. The integer-valued representation can still achieve O(n3) runtime if we
only consider potentials # 1 (cf. familiar sparse matrix operations that avoid storing zero-valued entries).
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Find preferred inks

Figure 2.3: O(n?) boolean variables indicate which dependency edges from the complete
graph (excluding self loops) are present. For clarity, we omit dependency links from the

ROOT node (and their variables) and variables for the observed words.

2.2.3 Markov random fields

We wish to define a probability distribution over all configurations, i.e., all joint assign-
ments A to these variables. Each assignment .A represents a parse—though often an illegal
parse in which the links with L;; = true do not form a valid tree. Without any constraints
to prohibit cycles, for instance, L, 5 and Ls » might both be true.

Our distribution is simply an undirected graphical model, or Markov random field
(MRF):

def 1
pA) = S [[FA) 2.5)

specified by the collection of factors F,, : A — R2° A hard factor returns values
in {0,1}, thus serving as a hard constraint that rules out some parses by forcing their

probability to 0. Other, soft factors merely raise or lower the score of some parses.
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Each factor is a function that consults only a subset of A. We say that the factor has
degree d if it depends on the values of d variables in A, and that it is unary, binary,
ternary, or global if d is respectively 1, 2, 3, or unbounded (grows with n).>

Our overall model is properly called a dynamic MREF, since we must construct different-
size MRFs for input sentences of different lengths (Sutton et al., 2004). Parameters are
shared both across and within these MRFs, so that only finitely many parameters are
needed.

Our model is a special case in another respect: it is a conditional random field, whose
factor functions F,,(.A) may depend freely on any of the observed variables—the input
sentence W. It also depends on a known (learned) parameter vector w. For notational sim-
plicity, we suppress these extra arguments when writing and drawing factor functions, and
when computing their degree. In this treatment, these observed variables are not specified
by A, but instead are absorbed into the very definition of F,, (represented graphically in
figure 2.1c).

§§2.2.4-2.2.5 lay out all of our parsing-specific factors; their details are not too impor-
tant. In defining a factor F,, we often state the circumstances under which it fires. These
are the only circumstances that allow F;,,(A) # 1. When F,, does not fire, F;,,(A) = 1 and

does not affect the product in (2.5).
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PTREE
FFFFFF | 0
FTFFTF | 1
TFFFFF | 0
LINK2,1
TTFFFF | 1
Fl2
T

e
-

N

Find

link

Figure 2.4: The PTREE constraint connects to all Link variables. It contributes a factor
of if the Link variables represent a valid, projective tree, and a factor of O if they do not,
thus ruling out that assignment. A potential table that explicitly, as here, represents all
assignments to all Link variables would have on? entries. In §2.4 below, we will see how to

apply this constraint in cubic-time.
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2.2.4 List of hard constraints

A hard factor F,, fires only on parses .A that violate some specified condition. It has
value 0 on those parses, acting as a hard constraint to rule them out.

For parsing, we will consider these:

PTREE. A hard global constraint on all the L;; variables at once. It requires that exactly n
of these variables be true, and that the corresponding links form a projective, directed
tree that is rooted at position 0 (§2.1.2). PTREE(.A) has value 1 or 0 according to

whether A satisfies these conditions (figure 2.4).

EXACTLY1. A family of O(n) hard global constraints, indexed by 1 < j < n.
EXACTLY 1, requires that j have exactly one parent, i.e., exactly one of the L;; vari-

ables must be true. Note that EXACTLY1 is implied by PTREE.
ATMOST1. A weaker version. ATMOST]1; requires j to have one or zero parents.

NAND. A family of hard binary constraints. NAND(L;;, Ly,) requires that L;; and Ly, may

not both be true. We will be interested in certain subfamilies.

NOT2. Shorthand for the family of O(n?®) binary constraints {NAND(L;;, Lx;)}. These
are collectively equivalent to ATMOST1, but expressed via a larger number of sim-
pler (lower-degree) constraints, which can make the BP approximation less effective

(footnote 12).

5In practice, we have used bounded factors up to degree 4, e.g. for the bilingual quasi-synchronous
grammar constraints in chapter 4.
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NO2CYCLE. Shorthand for the family of O(n?) binary constraints {NAND(L;;, L;;)}.

As noted above, not all languages and linguistic formalisms use the projectivity constraint.
In chapter 3, we will introduce techniques for nonprojective trees, including a TREE factor,
which link PTREE is a global factor that ensures that the link variables form a directed tree,

but not necessarily a projective one.

2.2.5 List of soft constraints

A soft factor F;, acts as a soft constraint that prefers some parses to others. In our

experiments, it is always a log-linear function returning positive values:

Fu(A) £ exp D Wafu(A,W,m) (2.6)

hefeatures(Fp)

where w is a learned, finite collection of weights and f is a corresponding collection of
feature functions, some of which are used by F,,. (Note that f, is permitted to consult the
observed input W. It also sees which factor Fy, it is scoring, to support reuse of a single
feature function f3, and its weight wj, by unboundedly many factors in a model.)

The soft factors start with the simplest scores on individual dependency links:

LINK. A family of unary soft factors that judge the links in a parse A individually. LINK;;
fires iff L;; = true, and then its value depends on (4, j), W, and w. The features

comprised by LINK are described in §2.8.1.

A first-order (or “edge-factored”) parsing model (McDonald et al., 2005a) contains only
LINK factors, along with a global TREE or PTREE factor. Though there are O(n?) link
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factors (one per L;;), only n of them fire on any particular parse, since the global factor
ensures that exactly n are true (cf. McAllester et al., 2004).

We now add our new ingredient that makes this a “second-order” model: soft binary
constraints on the links, most importantly PAIR constraints that penalize or reward two links
being simultaneously present.

These constraints have weight one unless the variables they constrain are both true;
otherwise, they have weight zero (for a “hard” NAND) or some other nonnegative value
(for a “soft” constraint). If we attach a weight greater than one to a candidate pair of
siblings, say PAIR(L4 ¢, Lgg) > 1, the model will prefer that both of these links be present
at the same time, for instance if the features of this binary factor indicate that word 4 is a
ditransitive verb and words 6 and 8 would make good objects for it. On the other hand,
it might be that PAIR(Lg 2, Ls4) < 1 if words 2 and 4 are nouns and the local context
indicates that word 6 is a verb that can only take a single noun argument on its left. We can

similarly constrain grandparent—parent—child triples, e.g., PAIR(Ly 5, L5 6) (figure 2.5).

PAIR. A binary factor PAIR(L;;, L) fires with some value iff L;; and Ly, are both true
(and both exist). Thus, it penalizes or rewards a pair of links for being simultaneously

present. This is a soft version of NAND from §2.2.4.

GRAND. Shorthand for the family of O(n®) binary factors {PAIR(L;;, L;x)}, which eval-
uate grandparent—parent—child configurations, ¢ — j — k. For example, whether
preposition j attaches vto noun ¢ might depend to some extent on its object &: in fig-
ure 1.1 the prepositional phrase headed by fo, with the object question, should be a
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good child for the noun answer.

S1B. Shorthand for the family of O(n®) binary factors {PAIR(L;j, L)}, which judge
whether two children of the same parent are compatible. For example, a given verb
may not like to have two noun children both to its left. The children do not need to

be adjacent.

CHILDSEQ. A family of O(n) global factors. CHILDSEQ; scores i’s sequence of children;
hence it consults all variables of the form L;;. If word 5 has children 2,7,9 under
A, then CHILDSEQ; uses bigram models to score the left sequence #2# and right

sequence #794# (where # is a boundary symbol).”

VALENCE. A family of O(n) global factors. VALENCEy; scores the number of ¢’s children
to its left (if d = L) or right (d = R). Counts could increase up to n, but for
better smoothing, counts over a certain amount will usually be binned. We will then,
for instance, score configurations where a head has zero, one, or two or more right

children.

§2.8.2 describes the features used to compute the values of these factors. Additional factors
might consider c-command, subjacency violations, etc.

The following are useful if tags are hidden:

6A similar binary factor could directly discourage giving the verb two SUBJECTS, if the model has vari-
ables for link roles.

"This follows the parametrization of a weighted split head-automaton grammar (Eisner and Satta, 1999).
The score in this case is a product of subfactors of that score bigrams in the child sequence, including the
boundary symbols.
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Figure 2.5: A fragment of a factor graph, illustrating a few of the unary, binary, and global

factors that affect variables Los and Lsg. The GRAND factor induces a loop.

TAG; is a unary factor that evaluates whether T;’s value is consistent with W (especially

Wi).

TAGLINK;; is a ternary version of the LINK;; factor whose value depends on L;;, T; and
T; (i.e., its feature functions consult the tag variables to decide whether a link is
likely). One could similarly enrich the other features above to depend on tags and/or

link roles; TAGLINK is just an illustrative example.

TRIGRAM is a global factor that evaluates the tag sequence T' according to a trigram
model. It is a product of subfactors, each of which scores a trigram of adjacent tags

Ti_o, T;_1, T}, possibly also considering the word sequence W (as in CRFs).8

8For efficiency, this constraint cannot simply comprise a family of O(n) ternary factors, each scoring
three adjacent tags. That setup would induce a loopy graph. Recall that to construct a trigram POS HMM
model, for instance, one needs to model transitions between tag pairs. In other words, we need a family of
O(n) binary constraints among O(n) variables whose values € T' x T, i.e. the “junction tree” of the naive
collection of trigram factors.
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2.3 A Sketch of Belief Propagation

MacKay (2003, chapters 16 and 26) provides an excellent introduction to belief prop-
agation, a generalization of the forward-backward algorithm that is deeply studied in the
graphical models literature (Yedidia et al., 2004, for example). We sketch the method in

terms of our parsing task.

2.3.1 Where BP comes from

The basic BP idea is simple. The boolean variable like L34 maintains a distribution over
values true and false—a “belief”—that is periodically recalculated based on the current
distributions at other variables.” Multinomial variables maintain distributions over their
domains.

Readers familiar with Gibbs sampling can regard this as a kind of deterministic approx-
imation. In Gibbs sampling, L34’s value is periodically resampled based on the current
values of other variables. Loopy BP works not with random samples but their expectations.

Hence it is approximate but tends to converge much faster than Gibbs sampling will mix.

90r, more precisely—this is the tricky part—based on versions of those other distributions that do not
factor in L34’s reciprocal influence on them. This prevents (e.g.) L34 and T3 from mutually reinforcing each
other’s existing beliefs.
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2.3.2 What BP accomplishes

Given an input sentence W and a parameter vector w, the collection of factors F;,
defines a probability distribution (2.5). The parser should determine the values of the indi-
vidual variables. In other words, we would like to marginalize equation (2.5) to obtain the
distribution p(Ls4) over La4 = true vs. false, the distribution p(T}) over tags, etc.

If the factor graph is acyclic, then BP computes these marginal distributions exactly.
Given an HMM or a linear-chain CREF, for example, BP reduces to the forward-backward
algorithm.

BP’s estimates of these distributions are called beliefs about the variables. BP also
computes beliefs about the factors, which are useful in learning w (see §2.7). For exam-
ple, if the model includes the factor TAGLINK;;, which is connected to variables L;;, T;,
T;, then BP will estimate the marginal joint distribution p(Lij, T;, T;) over (boolean, tag,
tag) triples.

When the factor graph has loops, BP’s beliefs are usually not the true marginals of
equation (2.5) (which are in general intractable to compute). Indeed, BP’s beliefs may not
be the true marginals of any distribution p(.A) over assignments, i.e., they may be globally
inconsistent. All BP does is to incrementally adjust the beliefs till they are at least locally
consistent: e.g., the beliefs at factors TAGLINK;; and TAGLINK;; must both imply® the

same belief about variable 7T}, their common neighbor.

101n the sense that marginalizing the belief p(L;;, T3, T;) at the factor yields the belief p(T;) at the variable.
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2.3.3 The BP algorithm

BP treats inference as an iterated negotiation among many constraints, each represented
by factors and each much simpler than the full model. This iterated negotiation among the
factors is handled by message passing along the edges of the factor graph. A message to
or from a variable is a (possibly unnormalized) probability distribution over the values of
that variable.

In the factor graph (e.g., the fragment in figure 2.5), many factors may connect to—and
hence influence—a given variable such as L34. If X is a variable or a factor, M/ (X) denotes
its set of neighbors.

The variable V' sends a message to factor F', saying “My other neighboring factors
G jointly suggest that I have posterior distribution qy_,r (assuming that they are sending
me independent evidence).” Meanwhile, factor F' sends messages to V, saying, “Based
on my factor function and the messages received from my other neighboring variables U
about their values (and assuming that those messages are independent), I suggest you have
posterior distribution rg_,y over your values.”

To be more precise, BP at each iteration k£ (until convergence) updates two kinds of
messages:!!

o) =k [[ v Q.7
GEN(V),G#£F

U This is literally true. We are not updating all messages in a particular order, but in parallel: all v-to-f,
then all f-to-v. This requires a bit of care for sequence constraints such as CHILDSEQ or TRIGRAM (§2.5.3),
where the propagator runs forward and then backward along the sequence in a single update.
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from variables to factors, and

ret @ = Y. FA) ][I ad2eAl 2.8)

A st. A[V]=v UeN(F),U#V

from factors to variables. Each message is a probability distribution over values v of V,
normalized by a scaling constant x. Alternatively, messages may be left as unnormalized
distributions, choosing x # 1 only as needed to keep beliefs from over- or underflow. Mes-
sages are initialized to uniform distributions. Algorithm 2.1 presents the “synchronous”
variant of BP, which we use here, where messages are sent from all the factors to all the
variables and then vice versa.

Whenever we wish, we may compute the beliefs at V' and F*:

W P £ & I r&v) 2.9)
GeN(V)
B4 € k) ] o rAD) (2.10)
UeN(F)

These beliefs do not truly characterize the expected behavior of Gibbs sampling
(§2.3.1), since the products in (2.9)—(2.10) make conditional independence assumptions
that are valid only if the factor graph is acyclic. Furthermore, on cyclic (“loopy”) graphs,
BP might only converge to a local optimum (Weiss and Freedman, 2001), or it might not
converge at all. Still, as we see in our experiments, BP often leads to good, fast approxi-
mations.

When the factor graph is a tree, BP correctly computes the marginal probability distri-
butions of all variables, and the expected values of all potential functions, with respect to
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Algorithm 2.1 Belief propagation

1: procedure BP(G) > Factor graph G

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

L A A

r, q < uniform distribution
repeat
for F € G s.t. Fis afactor do
if F' has a specialized propagator then
PROPAGATE(F) > Algorithm 2.2
else
for V € N(F) do
Tr-v (V) ¢ XAt A= F (A Tvenm)vav qu-r(A[U))
Renormalize messages by k = ), 7r_v ()
end for
end if
end for
for V € G s.t. V is a variable do
for F e N(V) do
av-r(v) < [eeny,oer v (v)
Renormalize messages by k = Y, gv—r(v)
end for
end for

until messages converge or max. iterations

21: end procedure
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the joint distribution p(x) (MacKay, 2003). The forward-backward algorithm for HMMs
is such an exact BP procedure.!? Many useful features, however, may induce loops in the
factor graph (figure 2.5).

Figure 2.6 presents the computation of factor-to-variable messages in the sum-product
algorithm as matrix multiplication. (For consistency, we transpose the outgoing message
vector.) The contributions of various assignments to the source variable (on the left) are
multiplied by the appropriate potentials and summed up in the message keyed to assign-
ments to the destination variable (on the right). In contrast, variable-to-factor messages
are computed by component-wise vector multiplication. When a factor has more than two
neighbors, its potential table will have correspondingly more dimensions and use higher-
dimensional analogues to matrix multiplication.'® Our implementation of message passing
uses this matrix formulation to make the code more compact. In future, moreover, we
should be able to exploit sparse matrix implementations to work with sparse messages,

where only a few values (and potentials) are non-zero.

2.3.4 Related iterative methods in structured prediction

Most implementations of belief propagation conserve space by replacing messages or

beliefs at time k if they change at time &k + 1. It is often helpful to analyze the system by

12The (weighted) CKY and inside-outside algorithms for PCFGs perform inference not on simple graphs
but on hypergraphs. McAllester et al. (2004) show how the constraints in a context-free grammar may be
represented by a case-factor diagram.

131f the arity of all of the neighboring variables is the same, we could use standard tensor notation, but that
condition is not always satisfied.
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Figure 2.6: Computing BP messages in the example factor graph from figure 2.2. In the
sum-product algorithm, factor-to-variable messages are computed by multiplying the mes-
sage vector incoming from the variable on the left by the matrix of potentials to produce
an outgoing message vector on the right. Variable-to-factor messages are computed by

component-wise vector multiplication.
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unrolling the computation. For instance, if we run BP for K steps, we can work with a
directed acyclic computation graph with K echelons.

This unrolled view clarifies some connections to related methods in structured predic-
tion and suggests some ways in which we might refine BP. When classifiers are stacked, for
example, the output of one level of classification is input to the next level. Some stacked
classification schemes use the marginal distributions of the previous level as input, but
more often it is the one-best output that is passed on. These two alternatives are analogous
to sum-product and max-product belief propagation. Two-level one-best stacking schemes
have recently proved effective in dependency parsing (Nivre and McDonald, 2008b; Mar-
tins et al., 2008). The second-level parser can achieve improved performance by treating
as observed larger substructures in the first-level output—in effect, by taking advantage of
second-order features without the need for expensive second-order inference. In a simi-
lar way, binary factors like GRAND compute their messages based on the beliefs of two
variables at the previous round of BP. In BP, however, a factor that propagations messages
multiple times during several iterations of BP will use the same potentials each time; in
stacking, the parameters of the first- and second-level models are not shared, which makes
it possible to learn the first-level parameters independently. We can thus view stacked clas-
sification as belief propagation on an unrolled computation graph with a fixed depth where

each factor appears exactly once.'*

UTransformation based learning (Brill, 1995), which has been popular for some sequence labeling tasks,
is a special case of stacking: the method learns a sequence of transformations that match a pattern in the
output of previous transformations and replaces a label at matching locations with another. While stacking in
general can use any method for each classifier, TBL specifically chooses the transformation that most reduces
the error in the output on training data.
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Reranking is another widely used method in structured prediction. Like stacking, it
is generally two-tiered, where the output of one level is input to a second. In this case,
however, the first level outputs a set of candidates (an n-best list) and their scores under
the first-level model; the second-level classifier then chooses its output from among those
candidates. (Iﬁ contrast, stacking generally assumes the same hypothesis space for the two
levels of classifiers.) Reranking allows the use of features that can be easily evaluated
for a single hypothesis but not for the full hypothesis space (Collins and Duffy, 2002;
Charniak and Johnson, 2005). When the hypotheses generated by the first level are encoded
in a packed representation—such as a lattice for finite-state methods, or a packed forest or
hypergraph for context-free grammars—this process is called rescoring (Roark, 2002).
As with stacking, inference in the first-level model proceeds without knowledge of (e.g.,
messages influenced by) later second-level inference. The method of pipeline iteration is
an extension of reranking that does allow later stages to exert such influence (Hollingshead

and Roark, 2007).1

2.4 Achieving Low Asymptotic Runtime

One iteration of standard BP simply updates all the messages as in equations (2.7)—

(2.8): one message per edge of the factor graph.

15¢Coarse-to-fine” describes a broad class of methods that expands the representation of the hypothesis
space in areas of high probability (Charniak et al., 2006). Unlabeled dependencies, for instance, could be a
coarse representation of which labeled dependencies are the refinement. This approach, therefore, compresses
the hypothesis space by changing representation rather than by selecting an n-best list of hypotheses.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. DEPENDENCY PARSING BY BELIEF PROPAGATION

Therefore, adding new factors to the model increases the runtime per iteration addi-
tively, by increasing the number of messages to update. We believe this is a compelling
advantage over dynamic programming—in which new factors usually increase the runtime
and space multiplicatively by exploding the number of distinct items in the chart.

For example, with unknown tags T, a model with PTREE+TAGLINK will take only
O(n®+n2g?) time for BP, compared to O(n®g?) time for dynamic programming (Eisner and
Satta, 1999). Adding TRIGRAM, which is string-local rather than tree-local, will increase
this only to O(n® 4+ n2g? + ng®), compared to O(n?¢®) for dynamic programming.

If there are g tags, then propagating through these O(n?) ternary soft constraints takes
time O(n2g?) per pass. Meanwhile, propagating through the global PTREE constraint takes
an additional O(n?) time per pass. It is therefore tolerable to have a moderately large g (say,
g = O(y/n)) before the former term begins to dominate.

By contrast, an exact method for this model, in the projective case, would take O(n3g?)
time (Eisner and Satta, 1999), where one pays a serious penalty for large g. The runtime
advantage to using the BP approximation is that it splits the second-order parsing problem
into a message-passing algorithm that alternately tries to find (1) links that are compatible
with one another and with the word tags, and (2) word tags that are compatible with the
links.

Even more dramatically, adding the S1B family of O(n3) PAIR;; ;x factors will add only
O(n?) to the runtime of BP (Table 2.1). By contrast, the runtime of dynamic programming

becomes exponential, because each item must record its headword’s full set of current
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children.

As the analogy to forward-backward, or inside-outside, suggests, there are optimal
orders (possibly not unique) for updating messages in tree-structured graphs. In loopy
graphs, we might still alternate between updating all variable-factor ¢ messages and all
factor-variable r messages; however, an alternative algorithm, known as asynchronous be-
lief propagation, prioritizes which messages get updated based on their weights, and can
lead to faster convergence (Elidan et al., 2006; Sutton and McCallum, 2007). These strate-
gies are similar to best-first parsing algorithms (Caraballo and Charniak, 1998).

Table 2.1 shows our asymptotic runtimes for all factors in §§2.2.4-2.2.5. Remember
that if several of these factors are included, the total runtime is additive. We may ignore
the cost of propagators at the variables. Each outgoing message from a variable can be
computed in time proportional to its cardinality, which may be amortized against the cost
of generating the corresponding incoming message. The message is at most equal in size to
the cardinality of the variable’s value set. If the incoming message is sparse, however, we
do not need to compute outgoing components that correspond to the zeroes in the incoming

vector. We now analyze the cost of propagating messages from particular factors.

2.4.1 Propagators for local constraints

How long does updating each factor message take? The runtime of summing over all
assignments Y , in equation (2.8) may appear prohibitive. Crucially, however, F'(A) only

depends on the values in A of F’s neighboring variables A/(F'). So this sum is proportional
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factor degree runtime count | runtime
family (each)  (each) (total)
PTREE O(n?) O(nd) 1| On®
EXACTLY]l | O(n)  O(n) n| O(n?)
ATMOSTI O(n)  O(n) n| O(n?
NoT2 2 0Q1) Oon®| O3
NO2CYCLE 2 Oo(1) On?* | O(n?
LINK 1 0(1) O(n?) | O(n?
GRAND 2 O(1) Om® | O(n3)
SI1B 2 0O) On® | On®
CHILDSEQ | O(n) O(n?) O(n)| O(n%)
VALENCE O(n) O(n) O(Mm)| O(n?
TAG 1 O(g) O(n)| O(ng)
TAGLINK 3 0(gYH) 0O(n? | O(n%g?
TRIGRAM O(n) O(ng®) 1| O(ng®)

Table 2.1: Asymptotic runtimes of the propagators for various factors (where n is the
sentence length and g is the size of the tag set 7). Global factors are those with non-
constant degree. An iteration of standard BP propagates through each factor once. Running
a factor’s propagator will update all of its outgoing messages, based on its current incoming

messages.
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to a sum over restricted assignments to just those variables.!
For example, computing a message from TAGLINK;; — T; only requires iterating over
all (boolean, tag, tag) triples.!” The runtime to update that message is therefore O(2 - | T -

7D

2.4.2 Propagators for global constraints

The above may be tolerable for a ternary factor. But how about global factors?
EXACTLY1, has n neighboring boolean variables: surely we cannot iterate over all 2"
assignments to these! PTREE is even worse, with on? assignments to consider. In §2.5, we
will present a new technique for deriving specialized algorithms to handle these summa-
tions more efficiently (algorithm 2.2).

A historical note is in order. Traditional constraint satisfaction corresponds to the spe-
cial case of (2.5) where all factors F, are hard constraints (with values in {0, 1}). In that
case, loopy BP reduces to an algorithm for generalized arc consistency (Mackworth, 1977,
Bessiere and Régin, 1997; Dechter, 2003), and updating a factor’s outgoing messages is
known as constraint propagation. Régin (1994) introduced an efficient propagator for
a global constraint, ALLDIFFERENT, by adapting combinatorial bipartite matching algo-
rithms.

Maruyama (1990) proposed using hard constraints to rule out certain parses and prun-

16The constant of proportionality may be folded into k; it is the number of assignments to the other

variables.
17Separately for each value v of T;, get v’s probability by summing over assignments to (L;;, T;, T;) s.t.
Ti = .
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ing the set of valid trees with constraint propagation. As later developed (Harper et al.,
1995; Wang, 2003; McCrae et al., 2008; Foth et al., 2006); these hard constraints could be
combined with generative models, for language modeling in speech recognition. Standard
methods for learning linear or log-linear models do not work for hard constraints; instead,
hard constraint sets are hand-designed, or greedy relaxation procedures drop constraints
until the training set can be parsed. In this work, we avoid the problem of learning hard
constraints by using them only for structural properties of the output, such as trees.

In spirit of global constraints for arc consistency, we will demonstrate efficient propa-
gators for our global constraints, e.g. by adapting combinatorial algorithms for weighted
parsing. We are unaware of any previous work on global factors in sum-product BP, al-
though for max-product BP,'® Duchi et al. (2006) independently showed that a global 1-to-1
alignment constraint—a kind of weighted ALLDIFFERENT—permits an efficient propaga-

tor based on weighted bipartite matching.

2.5 Combinatorial Constraint Propagators

Propagating the local factors is straightforward (§2.4.1): we enumerate all of the as-
signments of values to variables participating in a message. We now explain how to handle
the global factors: EXACTLY 1, PTREE, TRIGRAM, CHILDSEQ, and VALENCE.

When factors connect to more than O(1) variables, enumerating variable assignments

18Max-product replaces the sums in equations (2.7)—(2.8) with maximizations. For the special case of
linear chains, this replaces the forward-backward algorithm with its Viterbi approximation.
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becomes exponential. The EXACTLY1 factor in §2.2 above could be used to ensure that
a word had only one parent in the dependency tree. Since this factor is connected to n
variables, the naive r calculation would sum over 2" possible assignments. Although we
will use the stronger PTREE factor, which also forbids cycles in the graph and crossing
edges, it is useful to see how the messages work for this simpler combinatorial constraint.

Say that we have three variables A, B, and C connected to an EXACTLY1 factor. Let
(ga(1) = a,qa(0) = 1 — a) be the message sent by A to the EXACTLY1 factor; this is a
distribution that indicates how much the other factors would like A to be 1 vs. 0. We can
represent this distribution with the single probability a; similarly, B and C send q messages
b and ¢ to the EXACTLY1 factor.

The EXACTLY1 factor must then send a message back to A, indicating how much the
EXACTLY1 factor—together with the incoming messages from B and C—would like A to
be 1 or 0. The total probability of all configurations that satisfy the EXACTLY1 constraint
is

Z=a(1-b)(1—-c)+b1l—a)(1—c)+c(l—a)(l-0)

We may write this as

Z = ZA(].) + ZA(O)

= a-14(1)+ (1 —a)-ra(0)

where Z4(3) is the total probability of configurations in which A = i. We can simplify

these computations by normalizing all of the incoming gs by their zero-belief, i.e. making
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the messages an odds ratio. We then have a new normalizing constant

and the message from EXACTLY1 to the variable A is simply (r4(1) = 1,74(0) = Z —
=2-). For n variables, we now no longer need to iterate through 2" assignments; instead,

l—a

we compute Z in O(n) steps and then subtract the odds ratio.

2.5.1 Exploiting marginal beliefs

This example motivates a general procedure that works backwards from the marginal
beliefs. Let F be a factor and V' be one of its neighboring variables. At any time, F' has a

marginal belief about V' (see footnote 10),

v =v= S o) (2.11)
Ast. A[V]=v

a sum over (2.10)’s products of incoming messages. By the definition of 77,y in (2.8),
and distributivity, we can also express the marginal belief (2.11) as a pointwise product of
outgoing and incoming messages, each of which is a (possibly unnormalized) distribution
over values v of V.

WAV =) =it ) (v) - 6§, p(v) (2.12)

If we can quickly sum up the marginal belief (2.11), then (2.12) says we can divide out each

particular incoming message qgi F in turn to obtain its corresponding outgoing message

(k+1)
Tp v

19Thjs is the analogue of the familiar product of forward and backward messages that is used to extract
posterior marginals from an HMM.
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Algorithm 2.2 Calculate outgoing messages from factor F’
1: procedure PROPAGATE(F')

2: Normalize incoming messages gy (v)

3 b() < >4 b(A) _ > Partition function
4 for V « N(F) do

5: rv(v) « bV =v) / qv(v) > Marginal beliefs
6 end for

7: end procedure

Note that the marginal belief and both messages are unnormalized distributions over
values v of V. F and k are clear from context below, so we simplify the notation so that
(2.11)—(2.12) become

BV =0v) = > bA) = rv(v) qv)

Ast. A[V]=v

This equality leads to the schematic algorithm 2.2 for calculating a combinatorial fac-
tor’s outgoing messages. Clearly, a factor’s messages take at least O(|N(F)|) time to
compute. But how are the partition function b() and the marginals b(V = v) computed?
Different factors will employ different combinatorial algorithms to obtain these quantities.

In deriving algorithms for the marginals, it is helpful to observe that factor beliefs are
(unnormalized) joint distributions over the values of their neighboring variables. (If the
distribution is normalized, the partition function b() = 1.) The belief b(V = v) is therefore

also an expectation Ey(4)[V = v].2

201f the algorithm for computing b() uses the appropriate operations, we can use an expectation semir-
ing (Eisner, 2002) to get b(V = v). Alternately, if we can derive the gradient of b() with respect to the
incoming messages gy (v), we can exploit the equivalence of feature expectations and gradients in log-linear
models. We use this approach when we derive the message computations for PTREE in §2.5.4.
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2.5.2 Propagating EXACTLY1 and ATMOST1

We can now return to EXACTLY1;. Observe that it is a sparse hard constraint: even
though there are 2" assignments to its n neighboring variables {L;;}, the factor function
returns 1 on only n satisfying assignments and O on the rest. In fact, for a given 4, b(L;; =
true) in (2.11) is defined by (2.10) to have exactly one non-zero summand, in which A
puts L;; = true and all other L;; = false. Fleshing out algorithm 2.2, we compute the
outgoing messages (2.11) to all parent variables ¢ in O(n) total time (algorithm 2.3).4

The ATMOST]1 constraint is very similar: the partition function b() needs an additional

term 7 to account for the event that all of the variables are false.

2.5.3 Propagating sequence constraints

TRIGRAM must sum over assignments to the tag sequence 7". The belief (2.10) in a
given assignment is a product of trigram scores (which play the role of transition weights)
and incoming messages gz, (playing the role of emission weights). The marginal belief
(2.11) needed above, b(T; = t), is found by summing over assignments where T; = .
All marginal beliefs are computed together in O(ng?) total time by the forward-backward

algorithm.??

21Taking m = 1, as in our implementation, gives the same results, up to a constant. We present the
normalized version for clarity. When modeling Boolean variables, the odds ratio §z,; € R can be used
to represent the incoming message qr,; everywhere, although we do not use this optimization for general
two-value messages.

22Which is itself an exact BP algorithm, but on a different graph—a junction tree formed from the graph
of TRIGRAM subfactors. Each variable in the junction tree is a bigram. If we had simply replaced the global
TRIGRAM factor with its subfactors in the full factor graph, we would have had to resort to Generalized BP
Yedidia et al. (2004) to obtain the same exact results.
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Algorithm 2.3 Calculate EXACTLY1’s outgoing messages

1: procedure PROPAGATEEXACTLY1(j,n) > Child index j, sentence length n
2: 1 > Normalizing constant
3: fori < 0..n,7 # jdo

4: dry; < qu,;(true) / g, (false) > Cf. algorithm 2.2, line 2
5: T+ 7 - q,;(false)

6: end for

7: b() «+ 0

8: fori < 0..n,i# jdo

9: b(Li; = true) « 7 - qr,;
10: b() « b() + b(L;; = true) > Cf. algorithm 2.2, line 3
11: end for

12: fori < 0..n,¢ # j do

13: b(L;; = false) « b() — b(Li; = true)
14: r1;(true) < b(L;; = true) / qr;(true) b Cf. algorithm 2.2, line 5
15: r1,;(false) < b(L;; = false) / qr,;(false)

16: end for

17: end procedure
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CHILDSEQ;, like TRIGRAM, is propagated by a forward-backward algorithm. In this
case, the algorithm is easiest to describe by replacing CHILDSEQ); in the factor graph by a
collection of local subfactors, which pass messages in the ordinary way. Roughly speak-
ing,? at each j € [1,n], we introduce a new variable C;;—a hidden state whose value
is the position of 4’s previous child, if any (so 0 < Cj; < 7). So the ternary subfactor
on (Cij, Lij, C; j+1) has value 1 if L;; = false and C; ;41 = C;;; a sibling-bigram score
(PAIR;c,; ic; ;4,) if Lij = true and C;; ;11 = j; and O otherwise. The sparsity of this factor,
which is 0 almost everywhere, is what gives CHILDSEQ; a total runtime of O(n?) rather
than O(n3). It is equivalent to forward-backward on an HMM with n observations (the L)
and n states per observation (the C}), with a deterministic (thus sparse) transition function.

We treat VALENCE,; similarly as a collection of local factors in a Markov chain. The
values of intermediate variables By;; range over the count of the number of children of 7 on
side d that we have observed between ¢ and j.

How do these sequence factors differ from collections of local factors? As noted above,
the forward-backward algorithm is a special case of belief propagation but with a partic-
ular ordering of messages. To get the optimal linear runtime, we need to interleave factor
and variables messages forward along the chain and then back. We can thus treat CHILD-
SEQ;, €.g., as a global factor and compute all its correct outgoing messages on a single BP

iteration. Handling the subfactors in parallel, (2.7)—(2.8), would need O(n) iterations.

Z1gnoring the treatment of boundary symbols “#” (see §2.2.5).
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2.5.4 Constraint propagation by parsing

PTREE must sum over assignments to the O(n?) neighboring variables {L;;}. Al-
though we avoided summing over all assignments to variables adjacent to the EXACTLY1
factor, we still simply listed all n satisfying assignments. This approach is intractable for
PTREE because there are now exponentially many non-zero summands in (2.11), viz. the
set P of assignments in which the values of { L;; } correspond to a valid projective tree.* As
with the sequence constraints above, we will use dynamic programming, but instead of the
forward-backward algorithm, which is a special case of BP, we will use the inside-outside
algorithm on hypergraphs.

The inside-outside algorithm was developed for probabilistic context-free grammars
(Baker, 1979) but can be extended to grammars with positive, real-valued weights (Smith
and Johnson, 2007). The quantities computed by the inside-outside algorithm are: the
inside weight 3,4(%, j), which is the sum of the weight of all trees with root non-terminal
A that span words 4 to j; and the outside weight o4 (7, j), which is the sum of the weights
of all structures that complete a tree rooted at A and spanning ¢ to j. For start symbol
S, the special inside weight 55(0,n) is the weight of all trees rooted at S that span the
entire input. (This is the partition function Z for globally normalized models of trees.) The

posterior probability that constituent A spans i to j is thus B4 (3, j) - @a(s,5)/Bs(0,n).5

24The number of projective trees is related to the Catalan number, q.v. §3.1 below.

25The normalizing constant may be 0 if no valid trees can be constructed. We may see this condition
if two incompatible constituents each have probability numerically equal to one. We have not observed
this sort of numerical problem with projective dynamic programming, though it does occur sometimes with
nonprojective parsing.
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This posterior may also be written in terms of the gradient of the sum over all trees: thus,
Ba(i,7) - 0Bs(0,n)/0Ba(4, 5) (Li and Eisner, 2009).

Inference for projective edge-factored dependency trees is performed by specialized
versions of the dynamic programs for general CFGs (Eisner, 1996). In appendix B, we give
pseudocode for, e.g., finding the best tree (algorithm B.1), computing the inside weights
(algorithm B.2), and computing the gradient (algorithm B.3) for edge-factored models. As
in §2.1.3 above, u(%, j) is the exponentiated weight of a dependency link from z; to x;;
we define g(i,j) = Olog Z/0u(i, 7). The posterior probability of z; — z; is therefore
u(4, ) - g(3, 7). Importantly, this is precisely the marginal belief that the link is true b(L;; =
true). The dynamic programming algorithms for computing the u(z, j) and g(7, 7) run in
cubic time.

What values serve as the u(z, j) input rule probabilities in inside and outside passes?
As in §2.5.1, we use the odds ratio of the incoming true-over-false message values for that
edge:

u(Z,j) = (jLij ={qL; (true)/qLij (false) (2.13)

We can thus divide the marginal belief about an edge by the corresponding (3, j) to get
the true component of the outgoing message. Since the posterior probability is already

normalized, the normalizing constant is 1. The messages are thus:

TLi; (true) = g(i7 .7) (214)

ri,;(false) = 1~ u(i, ) - g(i, 5) 2.15)
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Algorithm 2.4 Calculate PTREE’s outgoing messages
1: procedure PROPAGATEPTREE(n) > Sentence length n

2 fori < 0..n,7 < 1.n,i # jdo

u(i, j) « qu;(true) / qr,,(false)
end for
C + EFINSIDE(y, n) > Algorithm B.2, O(n?)
g +— EFGRADIENT(u, C,n) > Algorithm B.3, O(n?)

fori < 0..n,j < 1.n,72+# jdo

1, (true) < g(i, )

r1;(false) « 1 —u(i,5) - 9(4, 5)
10: end for

A - O

11: end procedure

up to the constant 7 = [1;; a,; (false), as above.

Algorithm 2.4 shows the full procedure, which calls two O(n3?) subroutines to compute
the inside weights and the gradients (outside weights divided by Z), with a total O(n?)
runtime. Thus, as outlined in the introduction (§1.4), a first-order parser is called each
time we propagate through the global PTREE constraint, using edge weights that include
the first-order LINK factors but also multiply in any current messages from higher-order
factors. The parsing algorithm simultaneously computes the partition function b() and
all O(n?) marginal beliefs b(L;; = true). In both cases, we thereby compute all O(n?)
outgoing messages in O(n?) total time.

This propagation procedure could be sped up further by using a faster first-order parser
with pruning or by prohibiting non-root attachments beyond a given length. Eisner and

Smith (2005) showed that such a length restriction yields linear-time parsing with little loss
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in accuracy. The O(n®) PTREE propagator, however, does not asymptotically dominate
propagation of the cubic number of second-order soft constraints, and we find that PTREE
does not dominate runtime in practice.

The hard tree constraint weights all valid trees equally. Could we use a weighted parser
in lieu of the PTREE factor? Clearly, there is no advantage in a weighted edge-factored
parser: we could simply multiply any link weights into the LINK factors (or add extra
unary factors). A dynamic-programming parser with weights for, e.g., child sequences,
head valence, and grandparent relationships could use outside weights to calculate exact
marginals for dependency links as with the edge-factored parser above.

If we had a parser already trained, a weighted tree factor could be used as a prior over
trees. We could also incorporate some of the second-order constraints into the dynamic
programming. For example, Eisner (2000) and McDonald and Pereira (2006) show how
to incorporate CHILDSEQ features into a dependency parser while maintaining O(n?) run-
time. As in generalized belief propagation (Yedidia et al., 2004), this technique could
reduce search error, perhaps at the cost of runtime (depending on which extra features were

included).

2.6 Decoding Trees

BP computes local beliefs, e.g. the conditional probability that a link L;; is present.

But if we wish to output a single well-formed dependency tree, we need to find a single
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assignment to all the {L;;} that satisfies the PTREE constraint.

Our final belief about the PTREE factor is a distribution over such assignments, in
which a tree’s probability is proportional to the probability of its edge weights u(i, 7) (in-
coming messages). We could simply return the mode of this distribution (found by using a
1-best first-order parser) or the k-best trees, or take samples.

In our experiments, we actually take the edge weights to be not the messages u(s, j)
from the links, but the full beliefs b;,, at the links (where b, = log bz, (true) /by, (false)).
These are passed into a fast algorithm for maximum projective spanning tree (Eisner, 1996)
(or, in the next chapter, for maximum spanning tree). This procedure is equivalent to min-
imum Bayes risk (MBR) parsing (Goodman, 1996; Smith and Smith, 2007) with a depen-
dency accuracy loss function (see §A.9).

Notice that the foregoing decoding approaches do not enforce any hard constraints other
than PTREE in the final output. In addition, they only recover values of the L;; variables.
They marginalize over other variables such as tags and link roles. This solves the problem
of “nuisance” variables (which merely fragment probability mass among refinements of a
parse). On the other hand, it may be undesirable for variables whose values we desire to
recover.

An alternative is to attempt to find the most probable assignment to all variables—
using the max-product algorithm (footnote 18) or one of its recent variants. The estimated
marginal beliefs become “max marginals,” which assess the 1-best assignment consistent

with each value of the variable.
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We can indeed build max-product propagators for our global constraints. PTREE still
propagates in O(n?) time: simply change the first-order parser’s semiring (Goodman, 1999)
to use max instead of sum. The 1-best parsing edge-factored algorithm (appendix B, al-
gorithm B.1) finds the “Viterbi” inside weights; the maximizing version of the gradient
computation finds the outside weights (appendix B, algorithm B.4).

If max-product BP converges, we may simply output each variable’s favorite value (ac-
cording to its belief), if unique. However, max-product BP tends to be unstable on loopy
graphs, and we may not wish to wait for full convergence in any case. A more robust tech-
nique for extracting an assignment is to mimic Viterbi decoding, and “follow backpointers”
of the max-product computation along some spanning subtree of the factor graph. A sub-
tler approach is a greedy or branch-and-bound procedure where we fix the values of some
variables and run inference recursively in hopes that this will help BP converge on other
variables—much as propagation and backtracking search are interleaved in constraint sat-
isfaction (Dechter, 2003).

A slower but potentially more stable alternative is deterministic annealing. Replace
each factor F,,(A) with F,,(A)Y/T, where T > 0 is a temperature. As T — 0 (“cooling”),
the distribution (2.5) retains the same mode (the MAP assignment), but becomes more
sharply peaked at the mode, and sum-product BP approaches max-product BP. Determin-
istic annealing runs sum-product BP while gradually reducing T toward O as it iterates. By
starting at a high T" and reducing 7T slowly, it often manages in practice to find a good local

optimum. We may then extract an assignment just as we do for max-product.
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Finally, if we step outside the semantics of the factor graph, we can use general-purpose
techniques such as integer linear programming (ILP) to search for an optimal assignment
to all the variables. The score of a parse is a linear function since it is simply the inner prod-
uct of features and weights. The values of the link variables, for instance, are constrained
to be integers—a fortiori, since as booleans they are in {0, 1}. The condition that the link
variables form a tree can also be enforced by linear constraints. But how many constraints
are needed? Riedel and Clarke (2006) performed 1-best dependency parsing using ILP with
cutting-plane relaxation so that they only need to consider a few of the exponentially many
constraints prohibiting cycles. Martins et al. (2009a) expressed the tree constraint with
only a quadratic number of constraints in the ILP: instead of directly prohibiting cycles,
they used the encoding of single-commodity flow as an ILP to ensure that each word had
a single parent and that the graph was connected, which implies that there are no cycles.
In practice, Martins et al. find that solving the LP relaxation of the ILP is, unsurprisingly,
much faster. When the LP returns fractional solutions, instead of rounding each variable
independently, they pass the values to a first-order parser, just as we do with the variable

beliefs. This gives them an end-to-end polynomial runtime.

2.7 Training

With access to a procedure for finding the best assignment to all variables under the

model, we can train the model parameters using non-probabilistic methods such as the
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perceptron (Collins, 2002) or MIRA (Crammer et al., 2006). Linear programming relax-
ation methods would allow us to employ other large-margin training procedures (Taskar,
2004; Martins et al., 2009b). Instead, we will model a probability distribution over struc-
tured outputs—trees, in the case of a dependency parser. Our training method uses beliefs
computed by BP. Instead of the beliefs at the variables we used for decoding the previous
section, we will require the beliefs at the factors.

We choose the weight vector w to maximize the log-probability under (2.5) of train-
ing data, regularized by early stopping or by a quadratic penalty (see §§A.3-A.6). If all
variables are observed in training, this objective function is convex (as for any log-linear
model). Let a fully observed training tree y* correspond to the variable assignment A*.

The objective to be maximized is then the following log-likelihood derived from (2.5):
L=logp(A*) =) Fn(A") —logZ (2.16)
m

where the partition function Z = ), , p(A). See §A.3 and following for more on maximum
conditional likelihood and the derivation of the gradient.

We employ stochastic gradient descent (§A.4 and Bottou, 2003), for its efficient conver-
gence to good models and ease of implementation (algorithm 2.5). In addition, SGD does
not require us to compute the objective function itself but only to (approximately) estimate

its gradient. (But see §2.7.2 for approximating the objective function, as well.)
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2.7.1 Approximating the gradient

The gradient of our objective function is:
VwL = log Fn(A*) — Vi log Z (2.17)

The first term is just the score of a particular variable assignment A*, which is a constant
with respect to w; the difficult step in computing this gradient is finding V, log Z. (Recall

that Z, like each F;,, depends implicitly on W and w.) As usual for log-linear models,
Vwlog Z = Eyu[VaFn(A)] (2.18)
m

Since V F;,,(.A) only depends on the assignment .A’s values for variables that are con-
nected to F,,, in the factor graph, its expectation under p(.A) depends only on the marginal-
ization of p(A) to those variables jointly. Fortunately, BP provides an estimate of that
marginal distribution, namely, its belief (2.10) about the factor F;,, given W and w
(§2.3.2).%6

The BP framework makes it tempting to extend an MRF model with various sorts of
latent variables, whose values are not specified in training data. It is straightforward to train
under these conditions. When counting which features fire on a training parse or (for error-
driven training) on an current erroneous parse, we can find expected counts if these parses
are not fully observed, by using BP to sum over latent variables. In either case, we adjust

the parameters to increase ., E [V Fin(A)], where p is the distribution conditioned on a

26This approximates the estimate that would be built up more slowly by Gibbs sampling. One could use
coarser estimates at earlier stages of training, by running fewer iterations of BP. Note that the hard constraints
like the tree factor do not depend on w at all; so their summands in equation (2.18) will be 0.
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Algorithm 2.5 Stochastic gradient descent learning with BP

1: function SGD(X,y) > Vector of sentences x and true labels y
2: w0
3: t<0 > Timesteps used to tune learning rate
4: repeat
5: for (x € X,y €y) do
6: G « factor graph constructed from w, x, and y
7: A* < variable assignment induced by y
8: BP(G) > Algorithm 2.1
9. Vol ¢ 3, log Fn(AY) = 3, S 4 br - (A) Ve Frs (A)
10: w<+w—n(t)- VgL > Learning rate  may decay with ¢
11: t—t+1
12: end for
13: until w converges or max. iterations
14: return w

15: end function

training parse, and to decrease it where p is the current distribution conditioned on nothing
or on an erroneous parse. (See appendix A for more on training log-linear models with

latent variables.)

2.7.2 Approximating the partition function

For other training procedures, and to evaluate the likelihood of the training data (e.g., on
aheld-out set), we need to approximate the partition function itself. Quasi-Newton methods
such as L-BFGS (Liu and Nocedal, 1989), which are popular for batch-training conditional

random fields, also require the value of the objective function to scale the update. When
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sum-product belief propagation converges, it does so at a fixed point of the Bethe free

energy approximation to the true likelihood (Yedidia et al., 2000, 2004):

Fp=>" bm(A)log ;m((“j)) Z Z b;(v) log b (v (2.19)
m A m

where g; is the degree of variable node ¢. It is of course intractable to compute the first,
divergence term for combinatorial factors by brute-force summing over all assignments A.
Instead, for PTREE, we can compute the edge-factored tree entropy in cubic time using
the formulation from §A.10. We use these factors as hard constraints, so the potentials F;,
simply multiply in 1 for all valid trees. As we noted above, however, there is no bar to

using a weighted parser as a factor.

2.8 Features and Feature Selection

Although BP makes it cheap to incorporate many non-local features and latent variables

at once, we kept our models relatively simple for the monolingual parsers in this thesis.

2.8.1 Edge-factored features

Our first-order LINK;; factors replicate McDonald et al. (2005a). Following equa-
tion (2.6), they are defined using binary features that look at words ¢ and j, the distance

j — 1, and the tags (provided in W) of words at, around, and between 7 and j.
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At first, it may seem surprising that a parser that only predicts local parent-child at-
tachments with a linear model, and relies on fairly weak global graph constraints such as
arborescence and projectivity, performs as well as it does. Clearly, an intelligent choice of
features is necessary to make these models work.

The LINK factors adopt the three categories of features from the edge-factored model

of McDonald et al. (2005a):

1. Edge features are functions of the candidate parent and child words, their absolute
sentence positions, and any of their attributes from earlier stages of processing. These
features consider, for instance, whether the candidate child is to the left or right or the
head and whether it is one word or twenty words away from the head. (In McDon-
ald’s model, distance is binned into 1, 2, 3, 4, and 5+.) The literal and case-folded
form of the child and/or head are considered, as well as their first five characters, to
approximate lemmatization. If, as here, a part-of-speech tagger is run before parsing,

the tags of parent and child can be treated as observed and used by feature functions.

Many edge features are of course highly informative: determiners are very likely to
be left children of nouns, and nouns are very unlikely to be children of determiners;
prepositions prefer to take nouns as right children. The edge-factored assumption,
however, keeps us from stipulating that a preposition govern only one noun on its
right or that a noun take only one determiner. For these and similar reasons, edge-
factored parsers cannot achieve state-of-the-art performance with edge-factored fea-
tures alone.
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2. Adjacency features are functions of the sequence of POS tags on either side of the
parent and child, as well as the tags of the parent and child themselves. From this
space of O(T®) features, McDonald’s model only uses features that consider at most

four tags at a time.

Adjacency features can approximate some of the properties of models that can score
substructures with more than one dependency link at a time, while looking only at a
single link and the input observations in z. A feature could fire, for instance, when a
determiner attaches to a noun that occurs right after a comma, which would indicate
that the noun is in a different phrase from the determiner. One would hope that this
feature would have a negative weight. A verb that occurs right after a modal is likely

to be a main verb and an attractive landing spot for sentence adverbials.

3. Between features are functions of the POS tags of the parent, child, and of some
word between the parent and child positions. These features thus consider if a candi-
date link from a determiner to a noun, say, had to jump over a verb and thus become

less likely.

When using this style of edge-factored model, it is important to note that it is less
conveniently extended to parsing lattices than some other models whose inference uses
dynamic programming. The adjacency features would require keeping O(T?) states for
each word when making attachment decisions. The between features would require a dy-

namic programming computation between pairs of nodes in the lattice to collect statistics
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on which tags might occur between them. Similar computations would also be necessary if
we wished to forgo running an independent POS tagging step in favor of joint morpholog-

ical and syntactic inference.

2.8.2 Higher-order features

Our second-order features consider similar properties of the input and context. The
feature templates for GRAND look at triples of tags and of coarse tags (as defined in the
CoNLL data). A feature also fires if the grandparent falls between the child and parent,
inducing crossing dependency links. The CHILDSEQ factors included features for tags,
and likewise coarse tags, on adjacent sibling pairs and parent-sibling-sibling triples. Each
of these features also have versions that were conjoined with link direction—pairs of di-
rections in the grandparent case—or with signed link length of the child or farther sibling.

Lengths were binned per McDonald et al. (2005a).

2.8.3 Feature selection

The feature functions described above can lead to a large set of features, particularly
when we include lexicalization, and the feature space grows with the training data. As
with most cases of structured prediction, we need to prune this feature growth to achieve
acceptable runtime and memory usage without unduly hurting accuracy. While the problem

of feature selection is not, of course, unique to dependency models, a judicious design of
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the feature space is very important for implementing a practical parser.

While a sentence of length n may be scored with O(n) features, there are O(n?) candi-
date dependency links and thus a quadratic number of possible features. This observation
leads to a common feature selection technique for supervised learning: use only the sup-
ported features, i.e. those features that fire on the links that form the correct tree in each
training sentence. This criterion does not imply that no features fire on the incorrect links;
rather, a link that is incorrect in one context may share features with a correct link from
elsewhere in the training set. When a large number of the candidates are sparse features
such as words and pairs of words, using only supported features often greatly reduces the
size of the model; also, the supported-feature criterion often leads to parsers with better
generalization, due to a lack of many nearly irrelevant features.

Unfortunately, when training on unlabeled or very small labeled sets (as in chapter 4),
the set of supported features is unknown or highly variable. Several alternate feature-
selection criteria are available, though none of them balance accuracy and model size as

attractively as supported features.

e Select features that fire in at least some number of candidate dependency links, or
some number of sentences. The latter criterion, with a threshold of 10 sentences, was

used by Smith and Eisner (2007) and Druck et al. (2009).

e Since most dependencies are short (Eisner and Smith, 2005), select features that fire
on short candidate links. Since some features in the original McDonald model bin
all dependency lengths greater than five together, we can examine candidate links of
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length up to five without cutting of vast swaths of features.

e When we seek to improve a base parser by exploiting unlabeled data, via stan-
dard semi-supervised learning or other techniques (e.g., cross-language projection
in chapter 4), we can use links “supported” by the predictions of the base parser to
augment our feature set. A related technique, sometimes used for supervised learn-
ing, involves training the base model on-line with sparse, e.g. perceptron, updates

(Roark et al., 2004).

e When the set of POS tags is small enough, we may extract unlexicalized features
from all candidate links (as in the experiments in §4.7.3). In order to get some of the
benefits of lexicalization, we can select features that reference common lexical items.
An alternative is to use random or learned projections to reduce the dimensionality

of lexicalized features (Ganchev and Dredze, 2008; Weinberger et al., 2009).

The feature selection techniques described above are generally applicable to various
learning methods—batch and on-line, supervised and unsupervised. It usually takes one
or two passes through the data to produce a new, sparser featurization, which the training
code can save for more efficient future passes. An alternative approach is to use an on-
line learning method and consider all candidate features for each example, but perform
sparse updates via methods such as perceptron (Roark et al., 2004) or MIRA (Crammer and
Singer, 2003; Crammer et al., 2006) or stochastic gradient descent with L1 regularization

(Tsuruoka et al., 2009).
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2.9 Experiments

How good is the approximation that BP produces by local message passing? For certain
factors, we can use slow but exact dynamic programming (DP) to search for MAP trees and

compute expectations in polynomial time. How does BP compare in speed and accuracy?

2.9.1 Experimental procedures

We trained and tested on the English data from the 2007 CoNLL Dependency Parsing
Shared Task (Nivre et al., 2007). The CoNLL organizers converted the English data from
the Penn Treebank to dependencies using a trace-recovery algorithm that induced some
very slight non-projectivity—about 1% of links crossed other links. We removed sentences
with nonprojective links from both training and test data. The input to training and test
procedures W consisted of part-of-speech-tagged words (bearing both “coarse” and “fine”
tags), so 7' variables were not used.

We trained all models using stochastic gradient descent (§2.7). SGD initialized w = 0
and ran for 10 consecutive passes over the data; we picked the stopping point that performed
best on held-out data.

When comparing runtimes for parsers, we took care to produce comparable implemen-
tations. All beliefs and dynamic programming items were stored and indexed using the

high-level Dyna language,?’ while all inference and propagation was written in C++. The

#This dominates runtime, and probably slows down all our parsers by a factor of 411 owing to known
inefficiencies in the Dyna prototype we used Eisner et al. (2005).
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Figure 2.7: Runtime of BP parser on various sentence lengths compared to O(n*) dynamic

programming
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Figure 2.8: Runtime of BP parser on various sentence lengths compared to O(n°) dynamic

programming. DP is so slow for length > 45 that we do not even show it.
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BP parser averaged 1.8 seconds per sentence for non-projective parsing and 1.5 seconds
per sentence for projective parsing (1.2 and 0.9 seconds/sentence for < 40 words), using
our standard setup, which included five iterations of BP and the final MBR tree decoding
pass. For experiments with BP in later chapters, we stored beliefs and messages in native
C++ data structures and achieved higher absolute speeds.

In our tables, we boldface the best result in each column along with any results that are

not significantly worse (paired permutation test, p < .05).

2.9.2 Faster higher-order projective parsing

We built a first-order projective parser—one that uses only factors PTREE and LINK—
and then compared the cost of incorporating second-order factors, GRAND and CHILDSEQ,
by BP versus DP. We trained these parsers using exact DP, using the inside-outside algo-
rithm to compute equation (2.18).

Under DP, the first-order runtime of O(n?) is increased to O(n*) with GRAND, and to
O(n®) when we add CHILDSEQ as well. BP keeps runtime down to O(n?)—although with
a higher constant factor, since it takes several rounds to converge, and since it computes
more than just the best parse.?

Figures 2.7-2.8 compare the empirical runtimes for various input sentence lengths.

With only the GRAND factor, exact DP can still find the Viterbi parse (though not the

MBR parse?®) faster than ten iterations of the asymptotically better BP (Fig. 2.7), at least

28Viterbi parsing in the log domain only needs the (max, +) semiring, whereas both BP and any MBR
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for sentences with n < 75. However, once we add the CHILDSEQ factor, BP is always
faster—dramatically so for longer sentences (Fig. 2.8). More complex models would widen
BP’s advantage.

Fig. 2.9 shows the tradeoff between runtime and search error of BP in the former case
(GRAND only). To determine BP’s search error at finding the MBR parse, we measured
its dependency accuracy not against the gold standard, but against the optimal MBR parse
under the model, which DP is able to find. We measure the proportion of dependency
links in the true MAP parse that BP is able to recover. After 10 iterations, the overall
macro-averaged search error compared to O(n*) DP MBR is 0.4%; compared to O(n®)
(not shown), 2.4%. More BP iterations may help accuracy. In future work, we plan to
compare BP’s speed-accuracy curve on more complex projective models with the speed-

accuracy curve of pruned or reranked DP.

2.10 Conclusions

In this chapter, we showed how to coordinate a fast first-order parser with higher-order
features, by “hiding” it within one step of a general approximate inference algorithm for
graphical models—loopy belief propagation. For projective parsing, it greatly speeds up
dynamic programming—in theory and in practice—at the cost of small amounts of search

€ITor.

parsing must use the slower (+, log+) so that they can compute marginals (Goodman, 1999). DP does become
empirically slower than BP, even in Fig. 2.7, if we ask it to find the MBR parse as BP does.
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In the next chapter, we present another application of combinatorial optimization to
propagating BP messages. The projectivity constraint on dependency trees is violated by
many constructions in the world’s languages (§3.1). Fortunately, we can replace the dy-
namic programs used in this chapter, such as the inside-outside algorithm, with other algo-
rithms for directed spanning trees.

We are interested in extending the ideas in this chapter to phrase-structure and lattice
parsing, and in trying other higher-order features, such as those used in parse reranking
(Charniak and Johnson, 2005; Huang, 2008) and history-based parsing (Nivre and Mc-
Donald, 2008b). We could also introduce new variables, e.g., edge labels, nonterminal
refinements (Matsuzaki et al., 2005), or secondary links M;; (not constrained by the tree
factor) that augment the parse with representations of control, binding, etc. (Sleator and
Temperley, 1993; Buch-Kromann, 2006). For further discussion of extensions to our pars-
ing models, see §5.1. Finally, we are interested in the further application of combinatorial

algorithms within more generalized and efficient graphical model inference (§5.6).
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Chapter 3

Algorithms for Nonprojective

Dependency Parsing

The PTREE constraint for projective dependency trees presented in chapter 2 (and
elaborated in appendix B) employs dynamic programming. DP methods are familiar to
NLP researchers in applications of Dijkstra’s shortest-path algorithm, Viterbi decoding for
HMMs, and CKY parsing. In order to build up subtrees of increasing sizes, we exploited
the projectivity constraint—the span of words descended from a particular head could not
be interrupted by a word not so descended.

In this chapter, we will see that syntactic phenomena in several languages are more nat-
urally handled if we relax this projectivity constraint (§3.1). We show how classical results
from graph theory, which have only recently been applied in NLP, lead to O(n®) inference

algorithms for edge-factored, nonprojective models—in particular, the Chu-Liu-Edmonds
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algorithm for the maximum weighted directed spanning tree and Tutte’s directed matrix-
tree theorem for the weighted sum. The matrix-tree theorem also enables efficient algo-
rithms for computing the first- and second-order gradients of likelihood (§§3.2.3-3.2.4).
We present experiments with maximum-likelihood learning of edge-factored nonprojective
models and with minimum Bayes-risk decoding (§3.3.1).

Results from graph theory also show, however, the intractability of exact inference for
models of nonprojective trees that score combinations of two or more dependency links.
As in the previous chapter, we adapt exact inference algorithms for edge-factored parsing
into O(n?) time propagators for a nonprojective TREE constraint in a factor graph. In §3.4,
we present experiments on nonprojective parsing with loopy BP that outperform previous

approximate inference procedures in accuracy and in asymptotic and empirical runtime.

3.1 Nonprojective Syntax

In §2.1.2, we enumerated three constraints on directed graphs that dependency parsers
are designed to enforce: every node in the graph must have in-degree 1 except for an
in-degree 0 root node, the graph must be acyclic, and the graph must be projective with
respect to the linear order of the words. (An optional constraint that the root have exactly
one child might also be enforced.) This chapter explores models and methods for nonpro-
jective trees, which relax the projectivity constraint.

Once the projectivity constraint is removed, dependency trees over n words become
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10

Figure 3.1: Valid edge pairs in projective and nonprojective trees for a ten-word sentence.
Both the horizontal and vertical axes enumerate all possible edges, with the numbered
blocks grouping children and their potential parents; a point in the graph is filled in if
those edges can coexist in a tree. Wide white horizontal and vertical lines correspond to
forbidden self-loops. Isolated white squares correspond to forbidden 2-cycles. Black cells
(about 75% of the total) are allowed in both projective and nonprojective trees; grey cells

indicate crossing edge pairs that are only allowed in nonprojective trees.
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isomorphic to directed spanning trees over a graph of n + 1 nodes (including the root). (In
contrast to trees with undirected edges, directed spanning trees are often called spanning
arborescences.) When we look at the space of possible trees, the projectivity constraint has
quite a large effect. Consider the sequence of Catalan numbers, which count the number of
balanced binary bracketings of a sequence and thus related by a constant factor to the num-
ber of projective dependency trees. The nth Catalan number is C,, = ;_lﬁ > o () 2, which
by Stirling’s approximation is C,, =~ ﬁ. How many nonprojective trees are there? By
Cayley’s formula, there are n" 2 undirected spanning trees over n nodes; iterating over
choice of root gives n"~! directed spanning trees. Thus for an n-word sentence, there are
0(2\/77(%)"“/ 2) times as many nonprojective as projective trees. Figure 3.1 shows the
contrast in an alternate way: the crossing edge pairs allowed in nonprojective trees are
shown in gray, against non-crossing edge pairs in black.

Such a strong constraint is thus not often given up lightly. In figure 3.2, we see an
English sentence where the verb’s adverbial child intrudes inside the object noun phrase.
Since such nonprojective phenomena are quite rare in English, parsers can often achieve
higher accuracy by being willing to get such attachments wrong than by allowing complete
nonprojective freedom. The empirical tradeoff is different for languages with extensive
scrambling phenomena (figures 3.3-3.4), such as Czech, Dutch, and Latin (Kuhlmann and
Mohl, 2007; Gildea, 2010).

Among the languages included in the 2007 CoNLL Dependency Parsing Shared Task

(Nivre et al., 2007), which we used for our experiments, there is a wide range of occur-
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AN D SN

I heard a talk today on parsing

Figure 3.2: Mild nonprojectivity in English

Auf diese Frage habe ich leider keine Antwort bekommen

Figure 3.3: Extraposed prepositional phrase inducing nonprojectivity in German. The al-

ternate attachment of Auf via the proj is used by some annotators.

T

ista meam norit gloria canitiem
that-NOM my-ACC may-know glory-NOM  going-gray-ACC

That glory may last until my going gray.

Figure 3.4: Wild nonprojectivity in Latin
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rence of nonprojectivity. The English data for that task were converted from the Penn
Treebank to dependencies using a trace-recovery algorithm that induced some very slight
nonprojectivity—the approximately 1% of links that cross other links are the lowest among
these languages. Danish represents a slightly more nonprojective language (3% crossing

links). Dutch is the most nonprojective language in the corpus (11%).

3.2 Edge-Factored Models of Nonprojective

Trees

Recall from §1.2 that we can take the score for an input-output pair s(x,y), ex-
ponentiate it to get an unnormalized probability u(x,y), and then renormalize it by
Zy = Y pu(xy ) to get p(y | x) (1.2). In §2.1.3, furthermore, we considered edge-
factored tree models where a tree’s score is measured by the sum of edge scores or, equiv-
alently, the product of exponentiated edges scores. For a particular input sentence x, we
will write for a dependency link z; — z; that u(i, j) = e*(4).

As in §2.1.2, we define a weighted directed graph G over the vertices V =
{Zo, 1, - .., Zn}, corresponding to the ROOT symbol and the n words in the sentence. The
edges of G are defined as E = {z; — z; : ¢ # j,j # 0}. With the weight of z; — z;
defined, as above, as s(, j), we define the maximum (directed) spanning tree (MST) as
the directed tree y that maximizes 3, ,, o, s(i,7) and that contains all G’s vertices. A

spanning tree, whether it is the maximum or not, is a subgraph of G that must satisfy all of
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the constraints on directed trees enumerated in §2.1.2, except for projectivity, to wit: ROOT
must have no in-arcs, every other node must have in-degree 1, and the subgraph must be
acyclic. To distinguish the MST problem for directed graphs from the more familiar one
for undirected graphs, the terms maximum (spanning) arborescence are sometimes used.

Without the projectivity restriction, we cannot use the dynamic programs from chapter 2
to find the tree with the highest score or the sum of all trees. These algorithms (e.g.,
algorithm B.1) build spans of the left and right descendants of a headword. It can be
shown by induction that these spans will be contiguous since the dynamic program starts
by building dependencies where the parent and child are adjacent. But the projectivity
constraint can be stated as a prohibition on discontinuous constituents (2.1), and so these
dynamic programs cannot recover nonprojective trees.!

In this section, we discuss other algorithms from the graph-theory literature for efficient
edge-factored inference on nonprojective trees. Solving the maximization problem allows
us, among other things, to find the maximum a posteriori parse tree under an edge-factored
model (§3.2.1); solving the summation problem allows us to compute the normalizing con-
stant Z, and its gradient (§3.2.2). The algorithms we will discuss run in O(n?) time and are
thus efficient nonprojective analogues to the Eisner algorithm for projective edge-factored

parsing (algorithm B.1) and its inside-outside variant for summing and marginalization

1 Although the cubic-time parsing algorithm of Eisner (1996) and its extensions for computing inside and
outside weights no longer applies, that does not mean that polynomial-time dynamic programming for non-
projective parsing is impossible in all cases. Gildea (2010) shows that nonprojective trees can be recovered by
a linear context-free rewriting system parser that runs in time exponential in the number of “gaps” in a con-
stituent. The number of such gaps necessary for parsing several existing treebanks is much smaller than the
average sentence length. In this chapter, however, we demonstrate fully cubic-time parsing for nonprojective
trees, which is thus strictly faster than O(n8) LCFRS parsing with only one gap allowed.
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(algorithms B.2 and B.3).

3.2.1 Maximum spanning tree parsing

As we saw above, edge-factored nonprojective parsing searches the space of spanning
trees of a directed graph over the words of a sentence. Prim’s, Kruskal’s, and Bortivka’s
algorithms for finding the highest-weighted undirected spanning tree are widespread in
introductory courses and textbooks (e.g., Cormen et al., 1990). Less widely known are
algorithms for finding directed spanning trees: we will follow McDonald et al. (2005b),
who first pointed out the connection of the MST problem to nonprojective parsing, and use
the Chu-Liu-Edmonds (CLE) algorithm (Chu and Liu, 1965; Edmonds, 1967).

Like Bortvka’s algorithm, CLE starts by attaching each node to its parent via the in-
edge with the highest weight. This is a spanning subgraph, since it covers all nodes, and
if it is acyclic, it is the MST. If there is a cycle, it is “contracted” into a single vertex: the
new vertex has the union of the sets of in- and out-edges of members of the cycle. It can
be shown that the MST of the contracted graph has edges equivalent to the MST on the full
graph (Georgiadis, 2003). CLE can thus recursively call itself on the contracted graph and
then break the cycle in the full graph: the node in the full graph that is the destination for
the edge into the contracted node must no longer have an in-edge from another member of
the cycle. We can see that attaching each node to its best parent and checking for cycles
takes O(n?) time; furthermore, it can be shown that no more than O(n) cycles need to be

contracted. The Chu-Liu-Edmonds algorithm therefore runs in O(n?) time.
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Tarjan (1977) achieved an even better O(n?) runtime for dense graphs (as we have here)
by efficient data structures for disjoint union. We are not aware of MST implementations
in NLP that use this more involved algorithm. At any rate, the relatively small graphs used
in parsing, with node counts in the low hundreds, may not repay the necessary constant
overhead of Tarjan’s algorithm.

Algorithms also exist for finding the k-best spanning trees in time proportional to k,
e.g. in O(kn2) time on a dense graph using Tarjan’s speedups (Camerini et al., 1980). Hall
(2007) used this approach to find the k-best trees from an edge-factored model and then

applied full-tree reranking.

3.2.2 The matrix-tree theorem and the partition function

The Chu-Liu-Edmonds algorithm enables maximum a posteriori decoding for edge-
factored nonprojective models; likewise, error-driven training with the perceptron (Koo
et al., 2007) and large-margin methods such as MIRA (McDonald et al., 2005b) require
only the maximum over spanning trees. (MIRA can also take advantage of k-best lists.)

Training to maximize conditional likelihood—as well as computing likelihood, entropy,
and other quantities—requires the partition function Z (the sum of the scores of all trees
licensed by x) and/or its gradient.? For a sufficiently skewed distribution, where a large
amount of the probability mass is concentrated in a small number of trees, we might be

able to approximate the sum of scores of all trees adequately by enumerating the top &

2See §A.3 in the appendices for background on conditional likelihood training.
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trees. In this subsection, however, we will discuss a more direct and efficient solution to
summing over exponentially many spanning trees in cubic time.?
Define the Kirchhoff matrix K € R(+)x("+1) 4]50 known as the graph Laplacian,

by

—u(mom, kid) if mom # kid

[K]mom,kid = n
Zu(i, kid)  if mom = kid.

1=0

where mom indexes a parent node and kid a child node. For simplicity in notation, we
make the dependence of the Kirchhoff matrix on the input x and parameters w implicit.
K (Figure 3.5) can be regarded as a special weighted adjacency matrix in which the jth
diagonal entry is the sum of edge-scores directed into vertex j (i.e., z; is the child). Note
that the sum includes the score of attaching z; to the root z.

In our notation and in one specific form, the Directed Matrix Tree Theorem (Tutte,

1948, 1984) states:*

Theorem 1 The determinant of the submatrix X(r; r) obtained by removing row and col-

umn 7 from the Kirchhoff matrix K is equal to the sum of scores of all directed spanning

3We first published these results in Smith and Smith (2007). Two independent papers, published concur-
rently with that one, report closely related results to ours. Koo et al. (2007) and McDonald and Satta (2007)
both describe how the Matrix Tree Theorem can be applied to computing the sum of scores of edge-factored
dependency trees and the edge marginals. Koo et al. compare conditional likelihood training (as here) to
the averaged perceptron and a maximum margin model trained using exponentiated-gradient (Bartlett et al.,
2004); the latter requires the same marginalization calculations as conditional log-linear estimation. McDon-
ald and Satta discuss a variety of applications (including minimum Bayes-risk decoding) and give complexity
results for non-edge-factored models. Interested readers are referred to those papers for further discussion.

4There are proven generalizations of this theorem (Chen, 1965; Chaiken, 1982; Minoux, 1999); we give
the most specific form that applies to our case, originally proved by Tutte in 1948. The undirected matrix-
tree theorem was exploited by Jaakkola et al. (1999) for inference in graphical models. As usual, the reader
should take care not to confuse the tree structure represented by the graphical model with the tree structure
(or lack thereof due to loops) of the factor graph representation.
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0 -—u(0,1) —u(0,2) --- —u(0,n)
0 Zu(z’,l) —u(1,2) -+ —u(l,n)
K=|0 -u?21) Zu(i,Z) s —u(2,n)

n

0 -—un,1l) —-un,2) --- Zu(z,n)

i=0

Figure 3.5: The Kirchhoff matrix for an n-word sentence. Children run across the columns
and parents run down the rows. Since the root note does not have a parent, the first column

is zero. Since we define u(i, i) = 0, there are only n terms in the sums in the diagonal cells.

trees in Yy rooted at ... Formally, |[K(0;0)| = Z.

See Tutte (1984) for a proof, which involves decomposing the Kirchhoff matrix by minors.
In §3.2.3 below, we exploit this decomposition to derive its gradient.

For brevity, let Ko = K(0;0). To compute Z,, we need only take the determinant of
K, which can be done in O(n?) time using the standard LU factorization used to compute
the matrix inverse. Since all of the edge weights used to construct the Kirchhoff matrix are

positive, it is diagonally dominant and therefore non-singular (i.e., invertible).
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3.2.3 The gradient of the partition function

The first derivative of log Z with respect to a single weight wy, is equal to the /th fea-

ture’s expected value (see §A.5):

dlogZ
8’(1)(

= E[fe(x,")] 3.1)

This is one reason that marginals are so important in maximum likelihood estimation
(§A.4): they provide a gradient (vector of first derivatives) to tell an optimization algorithm
which direction to move the current estimate of w at each round. Many likelihood-based
training algorithms exploit this identity by computing expectations (e.g., by sampling); oth-
ers use symbolic differentiation of the partition function computation (e.g., algorithm B.3
for projective parsing). We will instead use some facts from linear algebra and the chain
rule to derive the gradient/expectation values.

First, for any weight w,, and by Theorem 1 and the edge-factoring assumption (2.3):

dlog Z 0log |Ko|
ng ng

1 0|Kol
|K0| 8we

_ 9|Ko| Ou(i,7)
B |K0|Z§aw B,

3|K0|
= E E 32

We let u(4,%) = 0 for simplicity of notation. The last line follows from the definition of

u(i, j) as exp[w - f(x, 1, j)]. Now, since u(i, j) affects the Kirchhoff matrix in at most two
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cells—(i, ¢) and (%, j), the latter only when ¢ > 0—we know that

OKol _ OlKol O[Kolj; , OKol 9[Koli
du(i, ) 0[Kol;; Ouli,j)  O[Ko; Ou(i, 5)
Kol 9Kl

3.3
0[Kolj;  O[Koli; G-

We have now reduced the problem of the gradient to a linear function of V|Kj| with respect
to the cells of the matrix itself.

At this point, we simplify notation and consider an arbitrary matrix A. The minor
m; ; of a matrix A is the determinant of the submatrix obtained by striking out row ¢ and
column 5 of A. The cofactor c; ; of A is given by (—1)"*/m; ;. Laplace’s formula defines

the determinant as a linear combination of matrix cofactors of an arbitrary row <:

A= [Ali e (34
j=1
It should be clear that any c; ; is constant with respect to the cell [A]; ;, since it is formed

by removing row ¢ of A. It should also be clear that other entries of A are constant with

respect to the cell [A]; ;. Therefore:

5%:3—1'3 = Ci; 3.5)
The inverse matrix A~! can also be defined in terms of cofactors:
A= 3 (3.6)
A
Combining (3.5) and (3.6), we have:
B?EJJ = |A|[ATY; (3.7
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Plugging back in through (3.3) to (3.2), we have:

Olog Z
5’ Wy

= Z u(é, ) fe(e, 1, 5) ([ - [Kgl]jﬂ.) (3.8)

E[fs; w]

where [Kg'] . is taken to be 0. Note that the cofactors do not need to be computed directly.
We proposed in §3.2.2 to get Z, by computing the LU factorization of the Kirchhoff matrix.
We can then start from this factorization and backsolve to get the inverse matrix, which as
we pointed out is known to exist since K is diagonally dominant. This process gives us

all O(n?) entries of K5' in O(n?) time.

3.2.4 The second derivative and minimizing risk

In addition to providing the gradient for the partition function, and thus the likelihood
objective function, feature expectations form the basis for other objective functions. In
particular, minimum risk training for dependency parsers seeks to minimize the expected
number of erroneous dependency links according to the model (Smith and Eisner, 2006a).
Information-theoretic measures such as entropy and Kullback-Leibler divergence, which
are optimized in some semi-supervised learning methods, require similar computations
(see Smith and Eisner, 2007; Druck et al., 2009, and §8A.8, A.10 in the appendix). To
perform gradient-based optimization on these quantities, we need to differentiate again:
in the most general terms, we need the matrix of second partial derivatives of all pairs of

parameters (the Hessian). For many problems, however, we simply need the gradient of the
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appropriate objective function with respect to the parameters w.

In this subsection, we derive the gradient of the inverse Kirchhoff matrix and, from it,
the gradient of the risk function for dependency trees.> Second-derivative computations
are also necessary for backpropagation through an unrolled BP computation containing a
combinatorial tree factor (§5.3.2).

We wish to calculate the expected number of correct (or incorrect) dependency attach-
ments made by a model. This is very simple given the ability to marginalize over edge-
factoréd features. Suppose for a given example x we know its true parse y*. For a given

candidate tree y, the attachment loss is

10 ify=yf
Ly (y) ) 3.9)
=11 1 otherwise

It should be clear that minimizing this loss is equivalent to maximizing the number of

correct attachments, which will provide a more convenient form for computational ends:

woh | 1 ifyi=yf
Dy-(y) £ (3.10)
=1 | 0 otherwise
Crucially, D can be treated as an edge-factored feature function. It happens to depend on

the true tree as well as x and y, so it is not a feature function we could use within the model,

but during training, when each y; is available, this is a perfectly reasonable feature whose

5We have applied some of the material in this section in a technical report on efficient generalized expec-
tation training (Druck and Smith, 2009). Previous work on generalized expectation training for dependency
parsing had relied on a brute-force O(n%) gradient computation (Druck et al., 2009).
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expectation can be calculated using the results of §3.2.3. Using (3.8), we have

Izl

E[Dysw] = > u(y},4) (K3, - [Kal]j,y;) (3.11)

1=1

where y} is the index of the correct parent of the ith word, z;. To perform efficient numeri-
cal optimization of this function, we require its gradient with respect to the weights w. The

partial derivative of an inverse matrix A~ cell (k, £) with respect to cell (7, j) of A is:

O[A™y, _ _
3[A]m -~ [A 1] k,i [A l]j,e (3.12)
Exploiting the same properties of the Kirchhoff matrix used in (3.3), we have
0 [K5'] ) ) i )
au(i,j;c’e - [KO l]k,i [KO 1] et [Ko 1] k,j [Ko 1] il (3.13)

Using the chain rule, this gives:

OE[D; w] oy (K= 0!
“Ou(i,j) = 4(y;, J) ([Ko Jii = (Ko ]w')

||

+ ; u(ye, ¢) [([Kal]i,c - [Kal]i,yé)

([, - K3, (3.14)

Another application of the chain rule yields OE[D; w]/0w,, for the mth weight. The total

gradient would sum over such terms across the entire corpus, of course.

3.2.5 Hidden variables

Another application of probability distributions over trees is hidden-variable learning.
Recently, EM has been used to learn hidden variables in parse trees; these can be head-
child annotations (Chiang and Bikel, 2002), latent head features (Matsuzaki et al., 2005;
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Prescher, 2005; Dreyer and Eisner, 2006), or hierarchically-split nonterminal states (Petrov
et al., 2006).

To date, we know of no successful attempts to apply hidden variables to supervised
dependency tree models. If the trees are constrained to be projective, EM is easily applied
using the inside-outside variant of the parsing algorithm described by Eisner (1996) to com-
pute the marginal probability. Moving to the nonprojective case, there are two difficulties:
(a) we must marginalize over nonprojective trees and (b) we must define a generative model
over (x,Y).

We have already shown in §3.2.2 how to solve (a); here we could avoid (b) by maxi-

mizing conditional likelihood, marginalizing out the hidden variable, denoted z:

max y 5(x,y)log ) pw(y,z | x) (3.15)
X,y z

This sort of conditional training with hidden variables was carried out by Koo and Collins
(2005), for example, in reranking; it is related to the information bottleneck method (Tishby
et al., 1999) and contrastive estimation (Smith and Eisner, 2005a).

In Smith and Smith (2007), we performed experiments learning hidden labels for an
edge-factored parser, but performance was no better than a parser without hidden labels.
While relatively simple clustering methods have been shown to help CFG parsing, the la-
tent features there are on nonterminal states, which are the structural “bridge” between
context-free rules. Adding features to those states is a way of pushing information—
encoded indirectly, perhaps—farther around the tree, and therefore circumventing the strict
independence assumptions of probabilistic CFGs.
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decode train Arabic Czech Danish Dutch

MAP MIRA 799 814 86.6 90.0

CL 804  80.2 875 90.0 | (83.2.2)

MBR MIRA 794 803 85.0 87.2|(§33.1)

CL 80.5 804 875 90.0 | (§§3.22&33.1)

Table 3.1: Unlabeled dependency parsing accuracy (on test data) for two training methods
(MIRA, as in McDonald et al. (2005b), and conditional likelihood estimation) and with
maximum a posteriori (MAP) and minimum Bayes-risk (MBR) decoding. Boldface scores

are best in their column on a permutation test at the .05 level.

In an edge-factored dependency model, on the other hand, latent features on the edges
are locally “summed out” when we compute the scores of possible attachments; it should be
clear that the edge clusters do not circumvent any independence assumptions. We might at-

tempt to learn clusters in tandem with estimating a richer, non-edge-factored model (§3.4).6

3.3 Experiments with Edge-Factored Training

Now that we have developed the machinery for probabilistic edge-factored models of
nonprojective trees, we compare conditional-likelihood training to the online MIRA train-

ing used by McDonald et al. (2005b). Four languages with relatively common nonprojec-

6See §5.1.1 for further discussion of hidden variables for monolingual parsing. In chapter 4, we discuss
bilingual parsing models where we sum out source-language and alignment variables when inferring target-
language trees.
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tive phenomena were tested: Arabic (Haji¢ et al., 2004), Czech (Béhmova et al., 2003),
Danish (Kromann, 2003), and Dutch (van der Beek et al., 2002). The Danish and Dutch
datasets were prepared for the CoNLL 2006 shared task (Buchholz and Marsi, 2006); Ara-
bic and Czech are from the 2007 shared task. We used the same edge-factored features as
in the projective parsing experiments in the last chapter (§2.8.1).

Also as in the projective experiments, our conditional training used the online gradient-
based method of stochastic gradient descent. Training with MIRA and conditional estima-
tion take about the same amount of time: approximately 50 sentences per second. Training
proceeded as long as an improvement on held-out data was evident. The accuracy of the
hypothesized parses for the two models, on each language, are shown in the top two rows
of Table 3.1 (labeled “MAP” for maximum a posteriori, meaning that the highest-weighted
tree is hypothesized).

The two methods are, not surprisingly, close in performance; conditional likelihood
outperformed MIRA on Arabic and Danish, underperformed MIRA on Czech, and the two
tied on Dutch. Results are significant at the .05 level on a permutation test. Conditional
estimation is in practice more prone to over-fitting than maximum margin methods, though
we did not see any improvement using zero-mean Gaussian priors (variance 1 or 10).

These experiments serve to validate conditional estimation as a competitive learning
algorithm for nonprojective parsing models, and the key contribution of the summing algo-

rithm from the last section that permits conditional estimation.
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3.3.1 Minimum Bayes-risk decoding

A second application of probability distributions over trees is the alternative decoding
algorithm known as minimum Bayes-risk (MBR) decoding. The more commonly used
maximum a posteriori decoding (also known as “Viterbi” decoding) that we applied in

§3.3 sought to minimize the expected whole-tree loss:
¥ = argmax py (y | x) = argmin B, (vjx) [-0(y, Y)) (3.16)
y Yy

Minimum Bayes-risk decoding generalizes this idea to an arbitrary loss function £ on the

proposed tree:

y = argminE,_ (yx) [£(y,Y)] (3.17)
y

This technique was originally applied in speech recognition (Goel and Byrne, 2000)
and translation (Kumar and Byrme, 2004). Goodman (1996) proposed a similar idea in
probabilistic context-free parsing, seeking to maximize expected recall, and later applied it
to finding the best derived tree in “data-oriented” tree-substitution grammar parsing (Good-
man, 2003). In the recent parsing literature, MBR has been widely used for decoding with
hidden variables (Matsuzaki et al., 2005; Dreyer and Eisner, 2006; Petrov and Klein, 2007,
Cohen and Smith, 2007).

The most common loss function used to evaluate dependency parsers is the number of
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attachment errors, so we seek to decode using:

y = al‘g}I,ninEpwmx) [Z—Cs(Y(i),Y(i))]

=1

= argmax ¥ pw(Y(5) = y(d) | ) (3.18)

Y=l
To apply this decoding method, we make use of (3.8), which gives us the posterior prob-
abilities of edges under the model, and the same Chu-Liu-Edmonds maximum directed
spanning tree algorithm used for maximum a posteriori decoding (§3.2.1). Note that this
decoding method can be applied regardless of how the model is trained. It merely requires
assuming that the tree scores under the trained model (probabilistic or not) can be treated
as unnormalized log-probabilities over trees given the sentence X.

We applied minimum Bayes-risk decoding to the models trained using MIRA and us-
ing conditional estimation (see §3.3). Table 3.1 shows that, across languages, minimum
Bayes-risk decodiﬁg hurts slightly the performance of a MIRA-trained model, but helps
slightly or does not affect the performance of a conditionally-trained model. Since MIRA
does not attempt to model the distribution over trees, this result is not surprising; interpret-
ing weights as defining a conditional log-linear distribution is questionable under MIRA’s
training criterion.

One option, which we do not test here, is to use minimum Bayes-risk decoding inside of
MIRA training, to propose a hypothesis tree (or k-best trees) at each training step. Doing
this would more closely match the training conditions with the testing conditions; however,

it is unclear whether there is a formal interpretation of such a combination, for example its
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relationship to the “factored MIRA” in McDonald et al. (2005a).

In other dependency parsing scenarios (Smith and Eisner, 2007), minimum Bayes-risk
decoding has been found to offer significant advantages—why not here? Minimum Bayes-
risk makes use of global statistical dependencies in the posterior when making local deci-
sions. But in an edge-factored model, the edges are all conditionally independent, given
that y is a spanning tree.

As a post hoc experiment, we compared purely greedy attachment (attach each word
to its maximum-weighted parent, without any tree constraints). Edge scores as defined
in the model were compared to minimum Bayes-risk posterior scores, and the latter were
consistently better (though this always under-performed optimal spanning-tree decoding,
unsurprisingly). This comparison serves only to confirm that minimum Bayes-risk decod-
ing is a way to circumvent independence assumptions (here made by a decoder), but only
when the trained model does not make those particular assumptions. As we showed in
§2.6 above, we can also apply minimum Bayes-risk decoding to the approximate marginals
computed by loopy belief propagation. When we adapt loopy BP to approximate higher-

order nonprojective parsing (§3.4), we will thus use MBR to produce final output trees.

3.4 Higher-Order Nonprojective Parsing

In the foregoing sections, we developed methods for nonprojective inference in edge-

factored models. In particular, applying the matrix-tree theorem allowed us to experiment
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with probabilistic models of nonprojective trees. But what about higher-order constraints,
such as the features from chapter 2 that considered grandparents and siblings? Those fea-
tures increased the degree of the polynomial runtime for projective parsers, though we
managed to speed up inference with BP at a small cost in accuracy; unfortunately, exact
nonprojective inference with grandparent, sibling, valence, and similar features has been
shown to be NP-hard (McDonald and Pereira, 2006; McDonald and Satta, 2007).”7 We can
still, however, apply the BP formulation—with one small change: we can no longer use
the projective PTREE factor. Once we handle that requirement, we will be able to perform

higher-order nonprojective parsing in cubic time.

3.4.1 A nonprojective tree constraint

To use loopy BP for nonprojective parsing, we need to modify the hard PTREE con-
straint from chapter 2 to allow nonprojective trees as well. As in the projective case, this
new TREE factor will run an edge-factored, cubic-time parser to calculate the messages
to send back to the link variables L;;. In this case, we will use the nonprojective parsers
developed in the first part of this chapter.

In §2.5.4, we derived the messages from the parsing factor to the link variables as:

r1;(true) = g(i,5) (3.19)

rr,(false) = 1 —wu(i, j) - (3, 5) (3.20)

7For example, if the valence constraint forced each parent to have a single child and TREE, as usual,
forced each child to have a single parent, we could solve the Hamilton path problem.
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where we defined:

(i, 5) = Olog Z _ 1 07
ST =506, 7) ~ Z ouli, j)

(3.21)

Importantly, the message derivation depended only on the existence of the gradient and not
on any property of the parser such as projectivity (or edge-factored-ness). We can derive

this gradient for the nonprojective case by combining (3.3) with (3.7):

9(i,5) = [Kg'],, — [Ka'],, (322)

Using the matrix-tree machinery, the TREE factor can enforce a nonprojective tree con-
straint in O(n3) time per iteration during sum-product belief propagation.®? As we pointed
out in chapter 2, this runtime is added to that of the other factors in the factor graph. Since,
as before, the runtime of the total non-tree factors is cubic, the overall runtime is still O(n?)
per iteration.

What about max-product BP? With PTREE, this is simply a matter of changing semir-
ings in the dynamic program: compare the outside weights from algorithm B.3 to the
Viterbi outside weights from algorithm B.4 in appendix B. While it is convenient to com-
pute the messages for TREE in closed form with the inverse Kirchhoff matrix, this approach
does not allow such a simple change for max-product. Note also that the greedy Chu-Liu-
Edmonds algorithm and its k-best extensions do not store the intermediate quantities of a

dynamic programming approach. It would thus appear that computing the max-marginals

8 A dynamic algorithm could incrementally update the outgoing messages if only a few incoming messages
have changed (as in asynchronous BP). In the case of TREE, dynamic matrix inverse allows us to update any
row or column (i.e., messages from all parents or children of a given word) and find the new inverse in O(n?)
time (Sherman and Morrison, 1950).
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for TREE must take at least O(n*) time—in other words, we would be forced to compute

O(n?) max-marginals each with a O(n?) run of Tarjan’s MST algorithm.’

3.4.2 Penalizing crossing links

Even in languages that all nonprojective links, most dependencies are projective
(Kuhlmann and Nivre, 2006; Kuhlmann and Méhl, 2007; Gildea, 2010). We would thus
like to enforce a soft constraint on crossing links in conjunction with the hard TREE con-
straint. NOCROSS is a family of O(n?) global constraints. If the parent-to-j link crosses the
parent-to-£ link, then NOCROSS j; fires with a value that depends only on j and £. (If j and
£ do not each have exactly one parent, NOCROSS; fires with value 0; i.e., it incorporates
EXACTLY1; and EXACTLY1,.)!°

NOCROSS;; must sum over assignments to O(n) neighboring variables {L;;} and
{Lys}. The non-zero summands are assignments where j and £ each have exactly one
parent. Atstep 1, 7 = [, qr;(false) - []; qr,.(false). At step 2, the marginal be-
lief b(L;; = true) sums over the n non-zero assignments containing ¢ — j. It is
T qQry; © 2ok Qiye - PAIR(Lij, Lie), where PAIR(Lij, Lie) is zje if ¢ — j crosses k — £

and is 1 otherwise. x, is some factor value defined by equation (2.6) to penalize or reward

9The procedure we use to compute the LU factorization is not amenable to a change to the (max, x)
semiring since it uses division. In both sum-product and max-product BP, outgoing messages do not need to
be computed for values that the incoming message assigns zero probability. We can thus get an asymptotic
speedup if we restrict the number of possible parents for a node by, €.g., a length restriction (as in the Vine
Grammar of Eisner and Smith, 2005), or by using a simple model’s posteriors to prune.

101y effect, we have combined the O(n*) binary factors PAIR(L;;, L) into O(n?) groups, and made them
more precise by multiplying in EXACTLYONE constraints (see footnote 12). This will permit O(n?) total
computation if we are willing to sacrifice the ability of the PAIR weights to depend on % and k.
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the crossing. Steps 3—4 are just as in EXACTLY;.
The question is how to compute b(L;; = true) for each i in only O(1) time,!! so that
we can propagate each of the O(n?) NOCROSS,, in O(n) time. This is why we allowed x

to depend only on j, £. We can rewrite the sum b(L;; = true) as

TGy (@e Y Qo + 1) Qi) (3.23)
crossing k noncrossing k

To find this in O(1) time, we precompute for each £ an array of partial sums Q[s, t] =

> s<h<t i Since Qefs,t] = Qqls,t — 1] + qz,,, we can compute each entry in O(1)
time. The total precomputation time over all £, s, ¢ is then O(n?3), with the array @, shared
across all factors NOCROSS ;. The crossing sum is respectively Q¢[0, 7 — 1} + Q¢[j +1,7],
Qefi + 1,7 — 1], or 0 according to whether £ € (4,5), £ & [i,5], or £ = i. (There are no
NOCROSS; factors with £ = j.) The non-crossing sum is Q) [0, n] minus the crossing sum.

For their features, the NOCROSS , factors consider the tag and coarse tag attributes of

the two child words j and ¢, separately or jointly.

3.4.3 Experiments

In addition to speeding up projective parsing (§2.9.2), the BP approximation can be
used to improve the accuracy of non-projective parsing by adding higher-order features.
These would be NP-hard to incorporate exactly, and DP cannot be used.

We used sum-product BP with a nonprojective TREE factor to train conditional log-

linear parsing models of two highly nonprojective languages, Danish and Dutch, as well as

11§ymmetrically, we compute b(Ly, = true) for each k.
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Danish Dutch English

(@) | TREE+LINK | 85.5 87.3 88.6
+NOCROSS 86.1 88.3 89.1
+GRAND 86.1 88.6 894

+CHILDSEQ 86.5 88.5 90.1

(b) | Proj. DP 86.0 84.5 90.2

+hill-climbing | 86.1 87.6 90.2

Table 3.2: (a) Percent unlabeled dependency accuracy for various nonprojective BP parsers
(5 iterations only), showing the cumulative contribution of different features. (b) Accuracy
for an projective DP parser with all features. For relatively nonprojective languages (Dan-
ish and especially Dutch), the exact projective parses can be improved by nonprojective
hill-climbing—but in those cases, just running our nonprojective BP is better and faster
(asymptotically and empirically). Dutch, the most nonprojective language, shows the most
gain from nonprojective parsing. English, even though slightly nonprojective here, fares

better with projective parsing and is not improved by hill-climbing.
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slightly nonprojective English (§3.1). In all three languages, the first-order nonprojective
parser greatly overpredicts the number of crossing links. We thus added NOCROSS factors,
as well as GRAND and CHILDSEQ as before. All of these significantly improve the first-
order baseline, though not necessarily cumulatively (Table 3.2).

Finally, Table 3.2 compares loopy BP to a previously proposed “hill-climbing” method
for approximate inference in nonprojective parsing (McDonald and Pereira, 2006). Hill-
climbing decodes our richest nonprojective model by finding the best projective parse under
that model—using slow, higher-order DP—and then greedily modifies words’ parents until
the parse score (2.5) stops improving.

BP for nonprojective languages is much faster and more accurate than the hill-climbing
method. Also, hill-climbing only produces an (approximate) 1-best parse, but BP also

obtains (approximate) marginals of the distribution over all parses.

3.4.4 Importance of global hard constraints

Given the BP architecture, do we even need the hard TREE constraint? Or would it
suffice for more local hard constraints to negotiate locally via BP?

We investigated this for nonprojective first-order parsing. Table 3.3 shows that global
constraints are indeed important, and that it is essential to use TREE during training. At
test time, the weaker but still global EXACTLY1 may suffice (followed by MBR decoding
to eliminate cycles), for total time O(n?). Using only EXACTLY1 in edge-factored parsing

is tantamount to predicting each word’s parent independently (Hall, 2007). Note also that
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Decoding Danish Dutch English
Not2 81.8 (76.7) 83.3(75.0) 87.5(66.4)
ATMoOST1 85.4(82.2) 87.3(86.3) 88.5(84.6)
EXACTLY1 85.7 85.00 87.0(86.7) 88.6(86.0)
+ NO2CYCLE | 85.0(85.2) 86.2(86.7) 88.5(86.2)
TREE 85.5 855 87.3(87.3) 88.6(88.6)
PTREE 85.8 83.9 88.8

Table 3.3: After training a nonprojective first-order model with TREE, decoding it with
weaker constraints is asymptotically faster (except for NOT2) but usually harmful. (Paren-
thetical numbers show that the harm is compounded if the weaker constraints are used
in training as well; even though this matches training to test conditions, it may suffer
more from BP’s approximate gradients.) Decoding the TREE model with the even stronger
PTREE constraint can actually be helpful for a more projective language. All results use 5

iterations of BP.
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for first-order parsing, none of these constraint families except for NOT2 and NO2CYCLE
induce any loops in the graph, so approximation error does not explain their performance
differences.

Table 3.3 includes NOT2, which takes O(n®) time, merely to demonstrate how the
BP approximation becomes more accurate for training and decoding when we join the
simple NOT2 constraints into more global ATMOSTI constraints. This does not change
the distribution (2.5), but makes BP enforce stronger local consistency requirements at
the factors, relying less on independence assumptions. In general, one can get better BP
approximations by replacing a group of factors F,,(.A) with their product.'?

The above experiments concern gold-standard accuracy under a given first-order,
nonprojective model. Flipping all three of these parameters for Danish, we confirmed
the pattern by instead measuring search error under a higher-order, projective model
(PTREE+LINK+GRAND), when PTREE was weakened during decoding. Compared to
the MBR parse under that model, the search errors from decoding with weaker hard con-

straints were 2.2% for NOT2, 2.1% for EXACTLY1, 1.7% for EXACTLY1 + NO2CYCLE,

and 0.0% for PTREE.

121n the limit, one could replace the product (2.5) with a single all-purpose factor; then BP would be
exact—but slow. (In constraint satisfaction, joining constraints similarly makes arc consistency slower but
better at eliminating impossible values.)
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3.5 Conclusion

We have shown how to carry out exact marginalization under an edge-factored, condi-
tional log-linear model over nonprojective dependency trees. The method has cubic run-
time in the length of the sequence and is very fast in practice. It can be used in conditional
training of such a model, in minimum Bayes-risk decoding (regardless of how the model
is trained), and in training with hidden variables. By incorporating this edge-factored, non-
projective parser into a TREE constraint within BP, we demonstrated results competitive

with state-of-the-art dependency parsers for several languages.
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Chapter 4

Quasi-Synchronous Models

for Adaptation

Many problems in natural language processing operate on several structures simultane-
ously. These correlated structures may represent different linguistic layers: to infer syntac-
tic structure, we need to know the morphology; to infer semantic roles, we need the syntax.
We may also be interested in the correlations between parallel structures from different
sources: texts and translations, questions and answers, documents and queries, or articles
and abstracts. We may want to align textual narratives with database records or with visual
scenes.

In this chapter, we exploit the generality of factor-graph modeling and BP inference to
model aligned linguistic structures. In particular, we explore the problem of adaptation,

where we have an accurate classifier for one kind of structure and want to make predictions
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about another, related kind of structure. We start simply, by discussing mapping between
annotation schemes in the same language (§4.1) but then generalize the model to account
for noisy correspondences between dependency trees in different languages (§4.2).

The models in this chapter are based on quasi-synchronous grammar (Smith and
Eisner, 2006b). Unlike synchronous grammars commonly used in machine translation
(Shieber and Schabes, 1990), quasi-synchronous grammars do not require source and tar-
get trees to be isomorphic at either the level of derived trees or some underlying derivation
tree level. This flexibility supports convenient modeling of a wide range of syntactic diver-
gences between languages (§4.5).

The features of the models in this chapter are broadly divided into “monolingual” fea-
tures, which consider only target-language phenomena, and “bilingual” features, which
consider the syntax of source and target and the alignment between them. Given this gen-
eral framework (§4.3), we present models for adaptation between different dependency
styles (§4.4), for unsupervised parser projection between languages (§4.6), and for efficient
bilingual parsing to improve dependency accuracy in the target language (§4.7).

The additive runtime effect of adding new factors to BP inference allows significant
efficiency gains: the bilingual parsing models do joint inference over two trees and their
alignment in O(m?n?) time (for sentences of lengths m and n in two languages) instead of

at least O(m?®n3) time for synchronous parsing.
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4.1 Parser Adaptation

Consider the problem of learning a dependency parser, which must produce a directed
tree whose vertices are the words of a given sentence. There are many differing conventions
for representing syntactic relations in dependency trees. Say that we wish to output parses
in the Prague style (see figure 4.1) and so have annotated a small target corpus—e.g.,
100 sentences—with those conventions. A parser trained on those hundred sentences will
achieve mediocre dependency accuracy (the proportion of words that attach to their correct
parent).

But what if we also had a large number of trees in the CoNLL style (the source cor-
pus)? Ideally they should help train our parser. But unfortunately, a parser that learned to
produce perfect CoNLL-style trees would, for example, get both links “wrong” when its
coordination constructions were evaluated against a Prague-style gold standard.

If it were just a matter of this one construction, the obvious solution would be to write
a few rules by hand to transform the large source training corpus into the target style.
Suppose, however, that there were many more ways that our corpora differed. Then we
would like to learn a statistical model to transform one style of tree into another.

We may not possess hand-annotated training data for this tree-to-tree transformation
task. That would require the two corpora to annotate some of the same sentences in differ-
ent styles.

But fortunately, we can automatically obtain a noisy form of the necessary paired-tree

training data. A parser trained on the source corpus can parse the sentences in our target
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U [T

now Or never now or never

Prague Mel’ €uk

IR

now or never now or never

CoNLL MALT

Figure 4.1: Four of the five logically possible schemes for annotating coordination show
up in human-produced dependency treebanks. (The other possibility is a reverse Mel’¢uk

scheme.) These treebanks also differ on other conventions.

corpus, yielding trees (or more generally, probability distributions over trees) in the source
style. We will then learn a tree transformation model relating these noisy source trees to
our known trees in the target style. This model should enable us to convert the original

large source corpus to target style, giving us additional training data in the target style.

4.2 Parser Projection

For many target languages, however, we do not have the luxury of a large parsed “source
corpus” in the language, even one in a different style or domain as above. Thus, we may

seek other forms of data to augment our small target corpus. One option would be to
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leverage unannotated text (McClosky et al., 2006; Smith and Eisner, 2007). But we can
also try to transfer syntactic information from a parsed source corpus in another language.
This is an extreme case of out-of-domain data. This leads to the second task of this chapter:
learning a statistical model to transform a syntactic analysis of a sentence in one language
into an analysis of its translation.

Tree transformations are often modeled with synchronous grammars. Suppose we are
given a sentence W* in the “source” language and its translation W7 into the “target”
language. Their syntactic parses 7° and 77 are presumably not independent, but will
tend to have some parallel or at least correlated structure. So we could jointly model the
parses 75, TT and the alignment A between them, with a model of the form p(T7, A, T |
WT W9).

Such a joint model captures how T7, A, TS mutually constrain each other, so that even
partial knowledge of some of these three variables can help us to recover the others when
training or decoding on bilingual text. This idea underlies a number of recent papers on
syntax-based alignment (using 77 and T to better recover A), grammar induction from
bitext (using A to better recover T and T°), parser projection (using 7 and A to better
recover 1'T), as well as full joint parsing (Smith and Smith, 2004; Burkett and Klein, 2008).

So far, this is very similar to the monolingual parser adaptation scenario, but there are
a few key differences. Since the source and target sentences in the bitext are in different
languages, there is no longer a trivial alignment between the words of the source and target

trees. Given word alignments, we could simply try to project dependency links in the
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<~ N ¥\

In the area of infrastructure construction , China has begun ...

7 N\ o

Figure 4.2: With the English tree and alignment provided by a parser and aligner at test
time, the Chinese parser finds the correct dependencies (see §4.7). A monolingual Chinese

parser’s incorrect links are shown with dashed lines.

source tree onto the target text. A link-by-link projection, however, could result in invalid
trees on the target side, with cycles or disconnected words. Instead, our models learn the
necessary transformations that align and transform a source tree into a target tree by means
of quasi-synchronous grammar (QG) features.

Figure 4.2 shows an example of bitext helping disambiguation: in this case, the parser
is trained with a large number of English trees but only a small number of Chinese trees and

some unannotated Chinese-English sentence pairs. With the help of the English tree and
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alignment, the parser is able to recover the correct Chinese dependencies using QG features.
Incorrect edges from the monolingual parser are shown with dashed lines. (The bilingual
parser corrects additional errors in the second half of this sentence, which has been removed
to improve legibility.) The parser is able to recover the long-distance dependency from the
first Chinese word (China) to the last (begun), while skipping over the intervening noun
phrase that confused the undertrained monolingual parser. Although, due to the auxiliary
verb, “China” and “begun” are siblings in English and not in direct dependency, the QG

features still leverage this indirect projection.

4.3 Quasi-Synchronous Models

Such examples inspire the key novel features of the “quasi-synchronous” models (Smith
and Eisner, 2006b) that we will now present: A does not have to be a “well-behaved”
syntactic alignment. Any portion of 77 can align to any portion of T%, or to NULL. Nodes
that are syntactically related in 7° do not have to translate into nodes that are syntactically
related in 7 —although the model score is usually higher if they do.

This property makes our approach especially promising for aligning freely (figure 4.3),
or erroneously, translated sentences, and for coping with syntactic divergences observed
between even closely related languages (Dorr, 1994; Fox, 2002). We can patch together an
alignment without accounting for all the details of the translation process.

What should our model of source and target trees look like? In our view, traditional
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TN N m

Tschernobyl konnte dann etwas spiter die Reihe kommen

e

Then we could deal with Chemobyl some time  later

‘\j\/ ' NS NS

Figure 4.3: German and English dependency parses and their alignments from our system
where German is the target language. Tschernobyl depends on konnte even though their
English analogues are not in a dependency relationship.

German: Tschernobyl kinnte dann etwas spdter an die Reihe kommen .

Literally: Chernobyl could then somewhat later on the queue come.

English: Then we could deal with Chernobyl some time later .
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approaches based on synchronous grammar are problematic both computationally and lin-
guistically. Full inference takes O(n®) time or worse (depending on the grammar formal-
ism). Yet synchronous models only consider a limited hypothesis space: e.g., parses must
be projective, and alignments must decompose according to the recursive parse structure.
(For example, two nodes can be aligned only if their respective parents are also aligned.)
The synchronous model’s probability mass function is also restricted to decompose in this
way, so it makes certain conditional independence assumptions; put another way, it can
evaluate only certain properties of the triple (77, A, T'%).

We instead model (T7, A, T) as an arbitrary graph that includes dependency links
among the words of each sentence as well as arbitrary alignment links between the words
of the two sentences. This permits non-synchronous and many-to-many alignments. The
only hard constraint we impose is that the dependency links within each sentence must
constitute a valid monolingual parse—a directed (projective or nonprojective) spanning
tree.

Given the two sentences W<, W7, our probability distribution over possible graphs
considers local features of the parses, the alignment, and both jointly. Thus, we learn what
local syntactic configurations tend to occur in each language and how they correspond
across languages. As a result, we might learn that parses are “mostly synchronous,” but that
there are some systematic cross-linguistic divergences and some instances of sloppy (non-
parallel or inexact) translation. Our model is thus a form of quasi-synchronous grammar

(QG) (Smith and Eisner, 2006b). In that paper, QG was applied to word alignment and has
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since found applications in question answering (Wang et al., 2007), paraphrase detection
(Das and Smith, 2009), machine translation (Gimpel and Smith, 2009), and summarization
(Woodsend et al., 2010).

The score s of a given tuple of trees, words, and alignment can thus be written as a dot

product of weights w with features f and g:

s(TT,T5, A, WT, W9 = " w, f,(TT, W) 4.1)
+ ) wig(TT,T%, A, WT, W) (4.2)

J
+ 5" wehi(T5, W) 4.3)

k

The features f look only at target words and dependencies. In the conditional models of
§4.4 and §4.7, these features are those of an edge-factored dependency parser (McDonald
et al., 2005a). In the generative models of §4.6, f has the form of a dependency model with
valence (Klein and Manning, 2004). All models, for instance, have a feature template that
considers the parts of speech of a potential parent-child relation.

In order to benefit from the source language, we also need to include bilingual features
g. When scoring a candidate target dependency link from word z — v, these features con-
sider the relationship of their corresponding source words z’ and 4. (The correspondences
are determined by the alignment A.) For instance, the source tree 7' may contain the link
z’ — 1/, which would cause a feature for monotonic projection to fire for the z — y edge.
If, on the other hand, ' — z’' € T", a head-swapping feature fires. If 2’ = ¢/, i.e. z and
y align to the same word, the same-word feature fires. Similar features fire when z’ and 3’
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are in grandparent-grandchild, sibling, c-command, or none-of-the above relationships, or
when y aligns to NULL. These alignment classes are called configurations (figure 4.4 and
Smith and Eisner, 2006b). When training is conditioned on the target words (see §4.4 and
§4.7 below), we conjoin these configuration features with the part of speech and coarse part
of speech of one or both of the source and target words, i.e. the feature template has from
one to four tags.

The source features h look only at the source words and dependencies. In the sections
on monolingual adaptation (§4.4) and unsupervised projection (§4.6), we only use the one-
best source tree for each sentence, so these features are ignored. In the experiments with
learning bilingual parsers (§4.7), these features are used to score different source trees in a
joint model. Even there, however, their weights w;, are learned on monolingual source data
and held fixed while training and testing on bitext.

In conditional training, the exponentiated scores s are normalized by a constant:
Z = Y, expl[s(TT,T5, A,WT,W9)]. For the generative model, the locally normalized
generative process is explained in §4.6.3.4.

Previous researchers have written fix-up rules to massage the projected links after the
fact and learned a parser from the resulting trees (Hwa et al., 2005). Instead, our models
learn the necessary transformations that align and transform a source tree into a target tree.
Other researchers have tackled the interesting task of learning parsers from unparsed bitext
alone (Kuhn, 2004; Snyder et al., 2009); our methods take advantage of investments in

high-resource languages such as English. In work most closely related to this, Ganchev
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et al. (2009) constrain the posterior diétribution over target-language dependencies to align
to source dependencies some “reasonable” proportion of the time (= 70%, cf. table 4.2
below). This approach performs well but cannot directly learn regular cross-language non-
isomorphisms; for instance, some fixup rules for auxiliary verbs need to be introduced.
Finally, Huang et al. (2009) use features, somewhat like QG configurations, on the shift-

reduce actions in a monolingual, target-language parser.

4.4 Experiments with Monolingual Adaptation

As discussed in §4.2, the adaptation scenario is a special case of parser projection where
the word alignments are one-to-one and observed. To test our handling of QG features, we
performed experiments in which training saw the correct parse trees in both source and
target domains, and the mapping between them was simple and regular. We also performed
experiments where the source trees were replaced by the noisy output of a trained parser,
making the mapping more complex and harder to learn.

We used the subset of the Penn Treebank from the CoNLL 2007 shared task and
converted it to dependency representation while varying two parameters: (1) CoNLL vs.
Prague coordination style (figure 4.1), and (2) preposition the head vs. the child of its nom-
inal object.

We trained an edge-factored dependency parser (McDonald et al., 20052) on “source”

domain data that followed one set of dependency conventions. We then trained an edge-
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(a) parent-child

(d) siblings

bekommen

auf Antwort

answer

R

to

(b) child-parent (c) same node
schwimmt likes Voelkerrecht -+ law
" gern . swimming international
(e) grandparent-grandchild (f) c-command
Wahlkampf - campaign sagte bought
i~ 2003 Was  dass what
2003 Kaufte

Figure 4.4: When a head h aligned to &’ generates a new child a aligned to a’ under the

QCFG, K’ and o’ may be related in the source tree as, among other things, (a) parent—
p

child, (b) child—parent, (c) identical nodes, (d) siblings, () grandparent—grandchild, (f) c-

commander—c-commandee, (g) none of the above. Here German is the source and English

is the target. Case (g), not pictured above, can be seen in figure 4.3, in English-German

order, where the child-parent pair Tschernobyl konnte correspond to the words Chernobyl

and could, respectively. Since could dominates Chernobyl, they are not in a c-command

relationship.
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CHAPTER 4. QUASI-SYNCHRONOUS MODELS FOR ADAPTATION

factored parser with QG features on a small amount of “target” domain data. The source
parser outputs were produced for all target data, both training and test, so that features for
the target parser could refer to them.

In this task, we know what the gold-standard source language parses are for any given
text, since we can produce them from the original Penn Treebank. We can thus measure the
contribution of adaptation loss alone, and the combined loss of imperfect source-domain
parsing with adaptation (table 4.1).

When no target domain trees are available, we simply have the performance of the
source domain parser on this out-of-domain data. Training a target-domain parser on as
few as 10 sentences shows substantial improvements in accuracy. In the “gold” condi-
tions, where the target parser starts with perfect source trees, accuracy approaches 100%;
in the realistic “parse” conditions, where the target-domain parser gets noisy source-domain
parses, the improvements are quite significant but approach a lower ceiling imposed by the
performance of the source parser. In the diagonal cells, source and target styles match, so
training the QG parser amounts to a “stacking” technique (Nivre and McDonald, 2008a;
Martins et al., 2008). The small training size and over-regularization of the QG parser
mildly hurts in-domain parsing performance.

The adaptation problem in this section is a simple proof of concept of the QG approach;
however, more complex and realistic adaptation problems exist. Monolingual adaptation is
perhaps most obviously useful when the source parser is a black-box or rule-based system

or is trained on unavailable data. One might still want to use such a parser in some new
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context, which might require new data or a new annotation standard.

We are also interested in scenarios where we want to avoid expensive retraining on
large reannotated treebanks. We would like a linguist to be able to annotate a few trees
according to a hypothesized theory and then quickly use QG adaptation to get a parser for
that theory. One example would be adapting a dependency parser to produce constituency
parses. The Hindi-Urdu Treebank Project, for example, has developed an automated pro-
cedure to convert the dependency annotations of linguists in India into a constituency style
more convenient for many analyses Xia et al. (2009). We have concentrated here on adapt-
ing between two dependency parse styles, in order to line up with the cross-lingual tasks to

which we now turn.

4.5 Cross-Lingual Projection: Background

As in the adaptation scenario above, many syntactic structures can be transferred from
one language to another. In this section, we evaluate the extent of this direct projection on
a small hand-annotated corpus. In §4.6, we will use a QG generative model to learn depen-
dency parsers from bitext when there are no annotations in the target language. Finally, in
§4.7, we show how QG features can augment a target-language parser trained on a small
set of labeled trees.

For syntactic annotation projection to work at all, we must hypothesize, or observe, that

at least some syntactic structures are preserved in translation. Hwa et al. (2005) have called
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this intuition the Direct Correspondence Assumption (DCA). With the notation changed

to match ours, they formulate the DCA as follows:

Given a pair of sentences W7 and W that are translations of each other with
syntactic structure 77 and T°5, if nodes 2’ and y’ of T are aligned with nodes
z and y of T7, respectively, and if syntactic relationship R(z’,’) holds in 75,
then R(z,y) holds in T7.

The validity of this assumption clearly depends on the node-to-node alignment of the two
trees. We again work in a dependency framework, where syntactic nodes are simply lexical
items. This allows us to use existing work on word alignment.

Hwa et al. (2005) tested the DCA under idealized conditions by obtaining hand-
corrected dependency parse trees of a few hundred sentences of Spanish-English and
Chinese-English bitext. They also used human-produced word alignments. Since their
word alignments could be many-to-many, they introduced a heuristic Direct Projection
Algorithm (DPA) for resolving them into component dependency relations. It should be
noted that this process introduced empty words into the projected target language tree and
left words that are unaligned to English detached from the tree; as a result, they measured
performance in dependency F-score rather than accuracy. With manual English parses and
word alignments, this DPA achieved 36.8% F-score in Spanish and 38.1% in Chinese. With
Collins-model English parses and GIZA++ word alignments, F-score was 33.9% for Span-
ish and 26.3% for Chinese. Compare this to the Spanish attach-left baseline of 31.0% and
the Chinese attach-right baselines of 35.9%. These discouragingly low numbers led them
to write language-specific transformation rules to fix up the projected trees. After these
rules were applied to the projections of automatic English parses, F-score was 65.7% for
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Corpus Prec.[%] Rec.[%]
Spanish 64.3 28.4
(no punc.) 72.0 30.8
Chinese 65.1 11.1
(no punc.) 68.2 11.5

Table 4.2: Precision and recall of direct dependency projection via one-to-one links alone.

English and 52.4% for Chinese.

While these F-scores were low, it is useful to look at a subset of the alignment: de-
pendencies projected across one-to-one alignments before the heuristic fix-ups had a much
higher precision, if lower recall, than Hwa et al.’s final results. Using Hwa et al.’s data,
we calculated that the precision of projection to Spanish and Chinese via these one-to-one
links was =~ 65% (table 4.2). There is clearly more information in these direct links than
one would think from the F-scores. To exploit this information, however, we need to over-
come the problems of (1) learning from partial trees, when not all target words are attached,
and (2) learning in the presence of the still considerable noise in the projected one-to-one
dependencies—e.g., at least 28% error for Spanish non-punctuation dependencies.

What does this noise consist of? Some errors reflect fairly arbitrary annotation con-
ventions in treebanks, e.g. should the auxiliary verb govern the main verb or vice versa.
(Examples like this remind us that the projection problem contains the adaptation problem
above.) Other errors arise from divergences in the complements required of certain head
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words. In the German-English translation pair, with co-indexed words aligned,
[an [den Libanon,; ]} denken, <> remember; Lebanon;

we would prefer that the preposition an attach to denken, even though the preposition’s
object Libanon aligns to a direct child of remember. In other words, we would like the
grandparent-parent-child chain of denken — an — Libanon to align to the parent-child
pair of remember — Lebanon. Finally, naturally occurring bitexts contain some number
of free or erroneous translations. Machine translation researchers often seek to strike these
examples from their training corpora; “free” translations are not usually welcome from an

MT system.

4.6 Unsupervised Cross-Lingual Projection

First, we consider the problem of parser projection when there are zero target-language
trees available. As in much other work on unsupervised parsing, we try to learn a generative
model that can predict target-language sentences. Our novel contribution is to condition
the probabilities of the generative actions on the dependency parse of a source-language
translation. Thus, our generative model is a quasi-synchronous grammar, exactly as in
(Smith and Eisner, 2006b).!

When training on target sentences W7, therefore, we tune the model parameters

to maximize not >, p(TF,W7T) as in ordinary EM for monolingual CFGs, but rather

1Our task here is new; they used it for alignment.
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> p(TT,WT, A | T5,WS). We hope that this conditional EM training will drive the
model to posit appropriate syntactic relationships in the latent variable 77, because—
thanks to the structure of the QG model—that is the easiest way for it to exploit the extra
information in 7%, W* to help predict W7.

The contrastive estimation of Smith and Eisner (2005b) also used a form of conditional
EM, with similar motivation. They suggested that EM grammar induction, which learns
to predict W7, unfortunately learns mostly to predict lexical topic or other properties of
the training sentences that do not strongly require syntactic latent variables. To focus EM
on modeling the syntactic relationships, they conditioned the prediction of W7 on almost
complete knowledge of the lexical items. Similarly, we condition on W%, a translation of
WT. Furthermore, our QG model structure makes it easy for EM to learn to exploit the
(explicitly represented) syntactic properties of that translation when predicting W7.

At test time, T, W¥ are not made available, so we just use the trained model to find
argmax, p(TT | WT), backing off from the conditioning on 7°°, W5 and summing over A.

Below, we present the specific generative model (§4.6.1) and some details of training

(84.6.2). We will then compare three approaches (§4.6.3):
§4.6.3.2 a straight EM baseline (which does not condition on 7%, W¥ at all)

§4.6.3.3 a “hard” projection baseline (which naively projects T'5, W¥ to derive direct su-

pervision in the target language)

§4.6.3.4 our conditional EM approach above (which makes 7'°, W* available to the learner
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for “soft” indirect supervision via QG)

4.6.1 Generative Models

Our base models of target-language syntax are generative dependency models that
have achieved state-of-the art results in unsupervised dependency structure induction. The
simplest version, called Dependency Model with Valence (DMV), has been used in isola-
tion and in combination with other models (Klein and Manning, 2004; Smith and Eisner,
2006c). The DMV generates the right children, and then independently the left children,
for each node in the dependency tree. Nodes correspond to words, which are represented
by their part-of-speech tags. At each step of generation, the DMV stochastically chooses
whether to stop generating, conditioned on the currently generating head; whether it is gen-
erating to the right or left; and whether it has yet generated any children on that side. If it
chooses to continue, it then stochastically generates the tag of a new child, conditioned on

the head. The parameters of the model are thus of the form
p(stop | head, dir, ady) 4.4
p(child | head, dir) 4.5)
where head and child are part-of-speech tags, dir € {left,right}, and adj, stop €
{true, false}. ROOT is stipulated to generate a single right child.

Bilingual configurations that condition on 7', W* (§4.3) are incorporated into the gen-

erative process as in Smith and Eisner (2006b). When the model is generating a new child
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for word z, aligned to z’, it first chooses a configuration and then chooses a source word
¢ in that configuration. The child y is then generated, conditioned on its parent x, most

recent sibling a, and its source analogue ¥/’

4.6.2 Details of EM Training

As in previous work on grammar induction, we learn the DMV from part-of-speech-
tagged target-language text. We use expectation maximization (EM) to maximize the like-
lihood of the data. Since the likelihood function is non-convex in the unsupervised case,
our choice of initial parameters can have a significant effect on the outcome. Although we
could also try many random starting points, the initializer in Klein and Manning (2004)
performs quite well: it sets the probability of two tags’ being in a dependency relationship
to their co-occurrence count in the training corpus, weighted by the distance between them
at each co-occurrence.

The base dependency parser generates the right dependents of a head separately from
the left dependents, which allows O(n®) dynamic programming for an n-word target sen-
tence. Since the QG annotates nonterminals of the grammar with single nodes of T, and
we consider two nodes of 7'° when evaluating the above dependency configurations, QG
parsing runs in O(n®m?) for an m-word source sentence. If, however, we restrict candidate
senses for a target child ¢ to come from links in an IBM Model 4 Viterbi alignment, we
achieve O(n®k?), where k is the maximum number of possible words aligned to a given

target language word. In practice, ¥ < m, and parsing is not appreciably slower than in

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. QUASI-SYNCHRONOUS MODELS FOR ADAPTATION

the monolingual setting.

If all configurations were equiprobable, the source sentence would provide no informa-
tion to the target. In our QG experiments, therefore, we started with a bias towards direct
parent—child links and a very small probability for breakages of locality. The values of
other configuration parameters seem, experimentally, less important for insuring accurate

learning.

4.6.3 Experiments

Our experiments compare learning on target language text to learning on parallel text.
In the latter case, we compare learning from high-precision one-to-one alignments alone,

to learning from all alignments using a QG.

4.6.3.1 Corpora

Our development and test data were drawn from the German TIGER and Spanish
Cast3LB treebanks as converted to projective dependencies for the CoNLL 2007 Shared
Task (Brants et al., 2002; Civit Torruella and Marti Antonin, 2002). We made one change
to the annotation conventions in German: in the dependencies provided, words in a noun
phrase governed by a preposition were all attached to that preposition. This meant that in
the phrase das Kind (“the child™) in, say, subject position, das was the child of Kind; but,
in fiir das Kind (“for the child”), das was the child of fiir. This seems to be a strange choice

in converting from the TIGER constituency format, which does in fact annotate NPs inside
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PPs; we have standardized prepositions to govern only the head of the noun phrase. We
did not change any other annotation conventions to make them more like English. In the
Spanish treebank, for instance, control verbs are the children of their verbal complements:
in quiero decir (“I want to say”="1 mean”), quiero is the child of decir. In German coor-
dinations, the coordinands all attach to the first, but in English, they all attach to the last.
These particular divergences in annotation style hurt all of our models equally (since none
of them have access to labeled trees). These annotation divergences are one motivation for
experiments below that include some target trees.

Our training data were subsets of the 2006 Statistical Machine Translation Workshop
Shared Task, in particular from the German-English and Spanish-English Europarl paral-
lel corpora (Koehn, 2002). The Shared Task provided pre-built automatic GizA++ word
alignments, which we used to facilitate replicability. Since these word alignments do not
contain posterior probabilities or null links, nor do they distinguish which links are in the
IBM Model intersection, we treated all links as equally likely when learning the QG. Target
language words unaligned to any source language words were the only nodes allowed to
align to NULL in QG derivations.

We parsed the English side of the bitext with the projective dependency parser described
by McDonald et al. (2005a) trained on the Penn Treebank §§2-20. Much previous work
on unsupervised grammar induction has used gold-standard part-of-speech tags (Smith and

Eisner, 2006¢; Klein and Manning, 2004, 2002). While there are no gold-standard tags

for the Europarl bitext, we did train a conditional Markov model tagger on a few thousand
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Dependency accuracy [%]
Baselines German Spanish
Modify prev. 18.2 28.5
Modify next 27.5 214
EM 302 25.6
Hard proj. 66.2 59.1
Hard proj. w/EM 58.6 53.0
QG w/EM 68.5 64.8

Table 4.3: Test accuracy with unsupervised training methods

tagged sentences. This is the only supervised data we used in the target. We created
versions of each training corpus with the first thousand, ten thousand, and hundred thousand
sentence pairs, each a prefix of the next. Since the target-language-only baseline converged
much more slowly, we used a version of the corpora with sentences 15 target words or

fewer.

4.6.3.2 Fully Unsupervised EM

Using the target side of the bitext as training data, we initialized our model parameters
as described in §4.6.2 and ran monolingual EM. We checked convergence on a development

set and measured unlabeled dependency accuracy on held-out test data. We compare per-
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formance to simple attach-right and attach left baselines (Table 4.3). For mostly head-final
German, the “modify next” baseline is better; for mostly head-initial Spanish, “modify
previous” wins. Even after several hundred iterations, performance was slightly, but not
significantly better than the baseline for German. EM training did not beat the baseline for

Spanish.?

4.6.3.3 Hard Projection, Semi-Supervised EM

The simplest approach to using the high-precision one-to-one word alignments is la-
beled “hard projection” in the table. We filtered the training corpus to find sentences where
enough links were projected to completely determine a target language tree. Of course,
we needed to filter more than 1000 sentences of bitext to output 1000 training sentences in
this way. We simply perform supervised training with this subset, which is still quite noisy
(84.5), and performance quickly plateaus. Still, this method substantially improves over
the baselines and unsupervised EM.

Restricting ourselves to fully projected trees seems a waste of information. We can
also simply take all one-to-one projected links, impute expected counts for the remaining
dependencies with EM, and update our models iteratively. This approach (“hard projection
with EM”), however, performed worse than using only the fully projected trees. In fact,

only the first iteration of EM with this method made any improvement; afterwards, EM

2While these results are worse than those obtained previously for this model, the experiments in Klein
and Manning (2004) only used sentences of 10 words or fewer, without punctuation, and with gold-standard
tags. Punctuation in particular seems to trip up the initializer: since a sentence-final period appears in most
sentences, EM often decides to make it the head.
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degraded accuracy further from the numbers in Table 4.3.

4.6.3.4 Soft Projection: QG & Conditional EM

The quasi-synchronous model used all of the alignments in re-estimating its param-
eters and performed significantly better than hard projection. Unlike EM on the target
language alone, the QG’s performance does not depend on a clever initializer for initial
model weights—all parameters of the generative model except for the QG configuration
features were initialized to zero. Setting the prior to prefer direct correspondence provides
the necessary bias to initialize learning.?

Error analysis showed that certain types of dependencies eluded the QG’s ability to
learn from bitext. The Spanish treebank treats some verbal complements as the heads of
main verbs and auxiliary verbs as the children of participles; the QG, following the English,
learned the opposite dependency direction. Spanish treebank conventions for punctuation
were also a common source of errors. In both German and Spanish, coordinations (a com-
mon bugbear for dependency grammars) were often mishandled: both treebanks attach the
later coordinands and any conjunctions to the first coordinand; the reverse is true in English.
Finally, in both German and Spanish, preposition attachments often led to errors, which is
not surprising given the unlexicalized target-language grammars. Rather than trying to ad-
judicate which dependencies are “mere” annotation conventions, it would be useful to test

learned dependency models on some extrinsic task such as relation extraction or machine

3The learner could also gradually dampen the bilingual features g as it became more confident in mono-
lingual f. Annealing has been successful in other grammar induction settings (Smith and Eisner, 2006c).
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translation.

4.7 Learning Bilingual Parsers

We now consider the problem of parser projection when some target language trees
are available. As in the monolingual adaptation case (§4.4), we train a conditional model
(not a generative DMV plus QG alignments as in the previous section) of the alignment
and source and target trees given the source and target sentences, using monolingual and
bilingual features. Unlike the setup there, however, we now represent the source as well
as the target tree with random variables, so that we can perform joint inference of both of
them. There is a final important difference: in the monolingual case, the alignment between
identical source and target word strings was trivial; here, we need to model alignments as
well. Just as the factor-graph model of syntax presented in §2.2.2 mapped dependency trees
to variable assignments, we model a traditional word alignment with variables in a factor

graph.

4.7.1 Graphical models of word alignment

In many generative alignment models, the source words are observed and generate the
target words. The alignments are inferred from the identity of the generated words. Su-
pervised training of alignment models, in contrast, usually condition on the source and

target words and infer the alignments alone. In this section, we formulate this latter class
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of models as a factor graph.

4.7.1.1 Variables

Of the several ways we might represent an alignment of two sentences of lengths m
(source) and n (target), we choose the most straightforward: a set of Boolean variables
that record which words corres_pond. To avoid confusion, note that there are no variables
here for the event of “aligning to null”, which plays a large part in, for instance, the IBM
translation models. To test for a null alignment, one can query whether the fertility variable
(see below) for a word has the value 0.

The variables in our alignment model are thus:

Word alignments The O(mn) Boolean variables {4;; : 1 < ¢ < m,1 < j < n} corre-
spond to possible alignments between source and target words. Note that for aligned
sentence pairs, the ROOT nodes of their parse trees are assumed to align, and we may

add an always-true variable Agg as necessary.

Fertility The O(m) variables {F° : 1 < i < m} and O(n) variables {F : 1 < j < n}
correspond to the number of target words aligned to each source word and vice versa.
In other words, they indicate the “fertility” of source and target words. The arity of
these variables depends on the number of bins into which we want to divide the

fertility. In experiments below, F; € {0,1,2,3+}.

We could also introduce variable for alternative representations that have appeared in
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the literature, including aligning contiguous spans—a natural approach when aligning con-
stituency trees—and the generalized hidden “cepts” proposed in the original IBM transla-
tion papers (Brown et al., 1990). If an alignment is constrained to have a small arity in one
or both directions, one could efficiently replace the Boolean variables with multinomials.
In that case, the fertility constraint in one direction could be simplified to a unary factor

attached to multinomial alignment variables.

4.7.1.2 Alignment constraints

ALIGN A family of O(mn) unary soft constraints. ALIGN;; fires if source word 7 and

target word j are aligned.

SOURCEFERT A family of O(m) soft constraints, each of which is a linear chain of length

O(n).

TARGETFERT A family of O(n) soft constraints, each of which is a linear chain of length

o(m).

Further constraints which might be included in an alignment model are:

ALIGNHMM Either of two global constraints that enforce an HMM alignment from

source to target or vice versa (Vogel et al., 1996).

ALIGNITG A global hard constraint that with degree O(m?n?) and runtime O(m®n?)

that enforces an ITG alignment constraint (Burkett et al., 2010).
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Matching methods are also popular for discriminative alignment models. While en-
forcing the constraint during marginal inference that an alignment be a matching is a # P-
complete problem, if the bipartite graph of possible alignmehts is Pfaffian (a superset of
planar), we can find the weighted sum of all matchings in O(n?) time by the determinant
of the Pfaffian matrix of the graph. We could ensure that the alignment graph is planar if
and only if it had no minors K3 3. Restricting the number of possible alignment candidates
to two per word (on one side), would be overly restrictive in most cases. We will not,

therefore, employ such global matching constraints in this chapter.

4.7.2 Graphical models of parallel trees

To this alignment model, we now add variables and factors to represent source and

target trees.

4.7.2.1 Variables

In section 2.2, we defined dependency parsing as a search for optimal assignment on
link variables L;;. In a similar vein, we define bilingual dependency parsing of a sentence

pair with m source words and n target words as an assignment to the following variables:

Source links The O(m?) Boolean variables {Lf; : 0 < i

VAN

m,1 < j < myi # j}

correspond to possible links in the dependency parse of the source sentence.
Target links The O(n?) Boolean variables {L], : 0 < i < n,1 < j < n,i # j} corre-
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spond to possible links in the dependency parse of the target sentence.

For various training and testing scenarios, some of the above variables may be hidden or
observed.

An assignment to the above variables allows us to read off dependency trees for both
sides of a bitext and an alignment between them. In order to support other constraints in

the model, we introduce auxiliary variables:

Grandparents The O(n?) Boolean variables {G], : 0 < ¢ < n,1 < j < n,i # j}

correspond to possible grandparent relations between pairs of words in the target

sentence; O(m?) Boolean variables may be introduced for the source sentence.

Siblings The O(n?) Boolean variables {S7 : 1 < i < n,1 < j < n,i # j} correspond
to possible sibling relations between pairs of words in the target sentence; O(m?)

Boolean variables may be introduced for the source sentence.

Our graphical modeling framework is flexible enough to accommodate other choices in
linguistic representation. Trees on one or both sides of the bitext could be represented by
O(n?) constituency variables; to align two constituency trees, we would, before pruning,

need O(m?n?) constituent alignment variables.

4.7.2.2 Monolingual constraints

The model regulates language-internal behavior using the hard (§2.2.4) and soft (§2.2.5)

constraints described previously for monolingual parsing. These constraints may differ for

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. QUASI-SYNCHRONOUS MODELS FOR ADAPTATION

each side of the bitext: the source language might be projective, and use a PTREE hard
constraint to prohibit crossing edges, while the target language might be nonprojective and
use TREE. Features on the target and source trees correspond to the first and third terms,
respectively, in the joint scoring function (4.1).

The source or target models might also include higher-order constraints outlined in
§2.2.5, such as GRAND or SIB. But even without those constraints, we might still want
factors that simply indicate whether three source words, for instance, are in a grandparent-
parent-child relationship. As we saw in the last chapter, divergent constructions might
lead to siblings in one language aligning to parent and child in the other. These indicator
variables, such as G;; and S;; must be backed by machinery that sums over all the possible

intermediate parent nodes.

4.7.2.3 Quasi-synchronous constraints

Quasi-synchronous factors express soft constraints on the relationship of source and
target trees—i.e., the second term in the joint scoring function (4.1). These constraints
consider pairs of alignment variables and at most two other variables that characterize the

syntactic relationships of the aligned words.

MONO fires if the parent and child in a target dependency align to the parent and child in

a source dependency, respectively.

SWAP fires if the parent and child in a target dependency align to the child and parent in a
source dependency, respectively.
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SDOUBLE fires if the parent and child word in a source dependency align to the same

target word.

TDOUBLE fires if the parent and child word in a target dependency align to the same

source word.

SGRAND fires if the parent and child in a target dependency align to the grandparent and

grandchild in the source tree.

SSIB fires if the parent and child in a target dependency align to two siblings in the source

tree.

TGRAND fires if the parent and child in a source dependency align to the grandparent and

grandchild in the target tree.

TSi1B fires if the parent and child in a source dependency align to two siblings in the target

tree.

4.7.2.4 A synchronous hard constraint

Although, as we have discussed above, a constraint on synchronous trees seems to re-
strictive for many translation alignment problems, it is interesting to note that we can easily
implement a hard, synchronous grammar constraint on the alignment and dependency vari-
ables. In synchronous derivations, we must ensure that if the children in a source and a
target dependency link are aligned, their parents are aligned also. The converse, however,
is not required: the child of an aligned target word need not itself be aligned.
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Let m and k indicate target words and m’ and &’ indicate source words. We attach the

factor SYNCHyy k7. m i to the variables Aprm, Agrk, Ly, and Ly, We must ensure that

Ly N Awi A Link = A
Lm’k’ A Ak’k A Am’m :>Lmk:

Lmk A Ak’k A Am'm éLm'k’

Each of the SYNCH constraints is thus a quaternary factor whose potentials are 0 only when

one of following is true

Ly N A N Linp A = Ay
Lm’k:' A Ak’k A Am’m A _‘Lmk

L A Ak’k A Am’m Ay Y

and 1 otherwise.

Note that this family of constraints is more relaxed than parsing both sentences with
a commonly-used synchronous grammar such as an ITG. For instance, SYNCH does not
require that either the source or target tree be projective, and it allows arbitrary scrambling

of the children of each head.
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4.7.2.5 Pruning the search space

In previous sections (§§4.4, 4.6), we considered models of target syntax conditioned on
a single source tree. Models of aligned trees that follow the recipe in this section can be
more general, at the cost of runtimes that, while polynomial, may be impractical. If we
are interested in inference over target trees, one option is to fall back to a single source
tree at both training and test time. In addition to reducing the quadratic number of L°
variables to a linear number of dependency links, we see even bigger savings with higher-
order structures such as grandparents and siblings—a reduction from O(n?) to O(n) factors
necessary to infer these relationships. Relations such as c-command are also much more
tractable to compute, on the source side only, of course.

Pegging a single source tree, however, leaves us open to érrors in a monolingual source
parser, which may be exacerbated if the bitext we wish to parse is outside of the source-
parser’s training distribution. Cues from the target structure ought to be able to disam-
biguate some structures on the source side. To strike a happy medium between the full
source model and a single parse, we first run an edge-factored source parser by itself to
calculate the posterior probability of the L° variables. We retain only the variables for each
child with the top K posteriors, pegging the rest to false. On monolingual source develop-
ment data, setting K = 20 achieves 99% recall of correct edges, and K = 10 gets 98% of

the correct links.*

4 Alternate pruning schemes could select links whose posteriors were within a multiplicative or additive
factor of the link with the highest posteriors. These schemes did not appear to have significantly different
tradeoffs on the WSJ English data. Pruning dependencies before full inference using a simpler model appears
in, e.g., Martins et al. (2009a). Their simpler model was a parent-prediction model; our edge-factored parser

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. QUASI-SYNCHRONOUS MODELS FOR ADAPTATION

On both the source and target sides, there are a cubic number of factors required to de-
termine whether a pair of words are in a grandparent or sibling relationship and a quadratic
number of variables to indicate those relationships. In other work, we have investigated
methods to reduce by orders of magnitude the number of second-order factors required to
improve a first-order parser (Riedel and Smith, 2010; Riedel et al., 2010). The goal here is
not to add factors solely to pick the best monolingual parse or to minimize the divergence
between the pruned model are the full model. Rather, our goal is to add grandparent and
sibling variables that are likely to be true, and avoid adding variables that are likely to be
false. When constructing the graphical model for the source or target side, therefore, we
only add GRAND or SIB factors between to L variables when the sum of those variables’
log odds is greater than zero. Note that this pruning decision should be made once for both
the denominator and the numerator of our objective function. Otherwise, the grandparent
relations among links in the true target tree will be weighted too highly.

Finally, we restrict the set of alignment variables A that can be true to those that appear
in the union alignment of a base word-alignment model (Liang et al., 2006). We also add
the intersection alignments of the base model as additional features for the unary ALIGN

factors.

was efficient enough to avoid training a separate model just for pruning.
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4.7.3 Bilingual parsing setup

For these experiments, we used the LDC’s English-Chinese Parallel Treebank (ECTB).
Since manual word alignments also exist for a part of this corpus, we were able to measure
the loss in accuracy (if any) from the use of our English parser and word aligner. The
source-language English dependency parser was trained on the Wall Street Journal, where
it achieved 91% dependency accuracy on development data; however, it was only 80.3%
accurate when applied to our task, the English side of the ECTB.’

Both the monolingual target-language parser and the projected parsers are trained to
optimize conditional likelihood of the target trees T7 with twenty iterations of stochastic
gradient ascent. At both training and test time, BP ran for 40 iterations or until convergence
on each example. We trained all models on differing amounts of bitext from the ECTB.
The target-language baselines only looked at the target side of the bitext, but the bilingual-
parsing models saw observed target trees 77 at training time. Except in the experiments in
§4.7.6 to tease out the effect of gold-standard alignments source trees, neither alignments
nor source trees were observed at training (or test) time. The parameters of the source
parser were never changed during bitext training; only the alignment, bilingual, and target-

language parameters were adjusted.

51t would be useful to explore whether the techniques of §4.4 above could be used to improve English
accuracy by domain adaptation. Furthermore, a model with QG features trained to perform well on Chinese
should not suffer in principle from an inaccurate, but consistent, English parser, but the results in figure 4.7
indicate a significant benefit can be had from better English parsing or from joint Chinese-English inference.
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4.7.4 Importance of learning non-isomorphic mappings

Figure 4.5 plots the target-language unlabeled dependency accuracy on held-out bitext.

The different training and testing conditions are:

Target only training merely trains a monolingual parser on the target side of the bitext.

Due to the small size of the training data, we use LINK and VALENCE factors.

Synchronous parsing takes the monolingually trained source and target models and ap-
plies the synchronous hard constraint SYNCH (§4.7.2.4). All alignment links permit-
ted by the baseline alignment model receive equal log-potential values of 0. This
approach is analogous to Smith and Smith (2004) and Burkett and Klein (2008), who

used slightly different synchronous grammars.

QG-mono parsing also combines monolingually trained source and target models, but
with a soft MONO constraint with log-potential 1. As in the synchronous parsing
case, all alignment links are equally likely. The setup expresses a soft preference for

monotonic dependency alignments.

QG-mono training is the first of the bilingually trained models. In addition to training
the alignment and target features on bitext, this setup includes only the MoNO QG
factor. This approach is comparable to Burkett et al. (2010), who include a trainable

factor that rewards monotonic syntactic alignments.

QG training trains a model on bitext with all QG factors from §4.7.2.3.
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Figure 4.5: Bitext parsing with quasi-synchronous features. Bilingual parsing after QG

training is equivalent to having twice as much data in the target language.

The QG-based methods consistently outperform the baseline target-only and syn-
chronous methods. Full QG training outperforms the QG-mono conditions, with increasing
margins (around 1% absolute) as the amount of training data with which to tune its param-
eters increases. Across different training sizes, QG training produces a parser as accurate

as one trained on twice the amount of monolingual data.
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4.7.5 Summing out source trees

The number of QG factors scales with the number of variables needed to represent a
distribution over source trees T'°. If we have a pipelined system, where we use a monolin-
gual source-language parser to get a single 7', then bitext parsing speeds up asymptotically
and empirically. How useful is it to do joint inference over 7, A, and T*° simultaneously?
Figure 4.6 shows that for QG models trained on small amounts of bitext, joint inference
get only an insignificant gain (around 0.2% absolute) but when the QG model is trained
on 1000 sentences or more, the gains are more substantial (around 1%). For comparison,
we show the effect of using the true source trees. In all cases, training conditions matched
test—e.g., we used the 1-best source parses in training the model that decoded with 1-best
source parses.

The empirical differences in inference time are clear from table 4.4, which compares av-
erage number of seconds per sentence on development data. Target-only inference with the
higher-order VALENCE factors is already an order of magnitude slower than edge-factored
parsing. Joint inference over source and target trees is twice as slow as a pipelined approach
that first finds the best source tree. More surprisingly, parsing with only the monotonic QG
factors is much faster, whether we pipeline inference over 7° or not. The large number
of loops induced in the factor graph by the full set of QG factors seems to be having a
substantial effect on the convergence of BP. Note also that enforcing the synchronous hard
constraint takes even more time: the SYNCH family needs to enforce at least as many hard

constraints as there are soft QG constraints.
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Figure 4.6: Pipelined and joint decoding on bitext with QG training
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Inference procedure s/sentence
Edge-factored target 0.06
Target only 0.54
1-best source 1.43
Joint source-target 2.56
1-best source, monotonic 1.15
Monotonic 1.52
Synchronous 2.72

Table 4.4: Bitext inference runtimes

4.7.6 Effect of true alignments and source trees

Projection performance is, not surprisingly, better if we know the true source trees at
training and test time (figure 4.7). Even with the 1-best output of the source parser, QG
features help produce a parser as accurate as one trained on twice the amount of mono-
lingual data. In ablation experiments, we included bilingual factors only for MONO con-
figurations, with no features for head-swapping, grandparents, etc. When using 1-best
English parses, parsers trained only with direct-projection and monolingual features per-
formed worse; when using gold English parses, parsers with direct-projection-only features
performed better when trained with more Chirese trees. The penalty for using automatic
alignments instead of gold alignments is negligible; in fact, using Source text alone is often

higher than +Gold alignments. Using gold source trees, however, significantly outper-
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forms using 1-best source trees; at small training sizes, adding in gold alignments has an

additional effect.

4.8 Discussion

The two related problems of parser adaptation and projection are often approached in
different ways. Many adaptation methods operate by simple augmentations of the tar-
get feature space, as we did in our monolingual adaptation setup (Daumé, 2007). Parser
projection, on the other hand, often uses a multi-stage pipeline (Hwa et al., 2005). The
methods presented here move parser projection much closer in efficiency and simplicity to
monolingual parsing.

Building on the belief propagation work in chapter 2, we can jointly infer two de-
pendency trees and their alignment, under a joint distribution p(T7, A, 7% | W7, W5)
that evaluates the full graph of dependency and alignment edges. We have shown how to
parametrize this joint model in terms of source- and target-language parser features, align-
ment features, and features inspired by quasi-synchronous grammar.

We showed that augmenting a parser with quasi-synchronous features can lead to sig-
nificant improvements—first in experiments with adapting to different dependency repre-
sentations in English, and then in cross-language parser projection and bilingual parsing.
As with many domain adaptation problems, it is quite helpful to have some annotated target

data, especially when annotation styles vary (Dredze et al., 2007). Our experiments show
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Figure 4.7: Parser projection with target trees. The penalty for using automatic alignments
instead of gold alignments is negligible; in fact, using Source text alone is often higher
than +Gold alignments. Using gold source trees, however, significantly outperforms using
1-best source trees; at small training sizes, adding in gold alignments has an additional

effect.
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that unsupervised QG projection improves on parsers trained using only high-precision
projected annotations and far outperforms, by more than 35% absolute dependency accu-
racy, unsupervised EM. When a small number of target-language parse trees is available, a

bilingually trained parser gives a boost equivalent to doubling the number of target trees.
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Chapter 5

Extensions and Future Work

In previous chapters, we have focused on models of syntax, specifically dependency
syntax, using the combination of graphical models, approximate inference, and graph op-
timization. We now explore some of the loose ends remaining -in our treatment of mono-
lingual and bilingual syntax (§5.1), as well as a broad array of important new application
areas (§§5.2-5.5) and methods for improving the efficiency and accuracy of inference in

factor graphs (§5.6).

5.1 Modeling Syntax

Before we turn to applications further afield, we sketch some of the areas of monolin-
gual syntactic modeling opened up by the techniques under discussion. After discussing

some natural extensions to our models of monolingual dependency parsing (§5.1.1), we out-
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line an approach to modeling constituency structures, the dominant approach to syntactic
representation in linguistics (§5.1.2). In any case, most linguists, computational and other-
wise, represent syntactic structures with trees, and so our presentation of “graph inference”
for syntax has been confined to the special case of trees as output structures. In §5.1.3, we
discuss some alternatives for modeling syntax with non-tree graphs, and in §5.1.4, we dis-
cuss the application to multi-tree syntactic representations. These multi-structure views of

syntax lead naturally to models for coordinating several linguistic levels in the next section

(§5.2).

5.1.1 Further experiments in dependency parsing

While chapters 2 and 3 explored approaches to dependency syntax, they were by no
means exhaustive. In this section, we outline three natural extensions to the models pre-
sented earlier: labeled parsing, nonprojective parsing with a hidden projective structure,
and parsing with hidden subcategorization variables.

We focused almost exclusively on unlabeled parsing in the experiments. Preliminary
experiments with hidden labels in §3.2.5 did not, for reasons we discussed there, have
any effect on unlabeled accuracy. On the other hand, that does not imply that supervised
training of edge-factored (non-loopy) labeled models would be ineffective or that it would
simply be equivalent to assigning labelings to the one-best tree. As in the hidden label ex-
periments, we would need O(n?) multinomial variables taking values from e U £, the union

of the empty string with the set of labels. One of the efficiency drawbacks of the hidden la-
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bel experiments was that any dependency could take any label. For supervised training, we
should be able to restrict the set of candidate labels using, e.g., POS of candidate parent and
child with little loss in recall. Such sparsification would be even more useful once binary
interactions among the labels is added, which would require in the worst case O(|£|*n?)
potential values.

The experiments within higher-order nonprojective parsing in §3.4 show a significant
increase in accuracy over projective models when trained and tested on treebanks with
high nonprojectivity. In the English trees, the conversion to dependency trees left a small
amount (1% of edges) of nonprojectivity due to reattaching extraposed nodes to traces.
But even with NOCROSS factors to discourage overzealous edge crossing, the projective
parser outperformed the nonprojective one. Somewhat in the spirit of multi-tree models of
syntax (§5.1.4 below), it could be useful to train a model with a set of hidden link variables
connected to a PTREE constraint and another set of observable link variables connected
to a TREE constraint. The corresponding projective and nonprojective variables would be
connected by binary soft constraints parametrized to learn which attributes of dependency
links were likely to lead to crossing. In other words, since even in Czech and Latin, most
links are projective, we would do better to model the exceptional crossing, rather than the
cOmmon non-crossing, cases.

Finally, while individual hidden role labels were shown to be ineffective, previous
research has shown than modeling such hidden phenomena as the argument/adjunct dis-

tinction and their roles in subcategorization frames can improve parser accuracy (Collins,
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1997). The CHILDSEQ and VALENCE constraints (§2.2.5), for instance, are implemented
as finite-state machines that make deterministic transitions given the link variables. In other
words, if we know the dependency tree, we know the child sequence of each head. If, in
addition to a boolean link variable, each dependency link were also modeled by a ternary
argument/adjunct variable, then the VALENCE constraint, for instance, could count only
arguments. Further elaborations on this idea, however, are now often covered by low-level
semantic representations under the rubric of semantic role labeling, which we take up in

§5.2.2 below.

5.1.2 Constituency parsing

This thesis has concentrated on models of dependency trees. Models of constituency
structure, most commonly context-free grammars, are far more widespread in NLP. Such
models have not, however, always taken the form p(T'|W).

While speech recognition researchers used probabilistic CFGs in the 1970s (Baker,
1979), their use in broad-coverage syntactic parsing expanded significantly with the advent
of the Penn Treebank and similar datasets (Marcus et al., 1993). As with sequence labeling
tasks, generative (Carroll and Charniak, 1992) and action-based models (Magerman, 1995)
achieved earlier adaption than more computationally globally normalized models. Some
of the earliest globally normalized parsing models were for the richer formalism of LFG
(Johnson et al., 1999), but in recent years, the computational cost of conditionally trained

log-linear CFG parsers has become more acceptable (Finkel et al., 2008). Log-linear mod-
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els of constituents have also been attractive in information extraction tasks, where the gram-
mar constant is nowhere near as large as a treebank grammar. Constituency parsing meth-
ods can thus be used to segment and label information fields and named entities with nested
structure more naturally than linear-chain CRFs (Viola and Narasimhan, 2005; Finkel and
Manning, 2009); CFG parsing models have also been used to apply semantic labels to the
nodes of trees such as table cells (Jousse et al., 2006). If nested structures are not required,
semi-CRFs provide a finite-state alternative for detecting spans with an upper bound on
their length (Sarawagi and Cohen, 2005).

We can formulate constituency parsing as a graphical model, as we did for dependency

parsing, first by defining variables to encode trees.

e Let U be the set of nonterminals allowed in our trees—we do not say, in the grammar,

because the grammar may not be explicitly represented.

o Let {B;; : 0 < 4,5 < n,i < j} be O(n?) boolean variables such that B;; = true iff

there is a bracket spanning 2 to j.

e Similarly, let C;; be O(n?) multinomial variables taking values ¢ U U. If there is a

constituent of type u from ¢ to j, then Cj; = u, and € otherwise.

This representation cannot capture unrestricted constituency trees over non-empty yields:
since there is only one bracket variable per span, we cannot represent unary productions

above the leaf level.! Any tree, however, may be represented by a context-free grammar,

1A kludge would be to add some bounded number of unary productions with extra variables, but this
would make enforcing a tree constraint more complicated.
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and any CFG may be converted to Chomsky normal form, which eliminates non-leaf unary
productions (Hopcroft and Ullman, 1979). In practice, treebanks usually have trace nodes
removed and are converted to a Markovized binary-branching format to reduce sparsity in
the extracted rules (Johnson, 1998). An alternative representation that avoids some of these
drawbacks is a case-factor diagram (McAllester et al., 2004).

To coordinate bracket and constituent variables, we need a family of O(n?) hard “e
pluribus enum” (EPU) constraints to map boolean to multinomial variables. The potential
EPU;; = 1if B;; = false A C’zJ = eorif B;; = true A Cj; # ¢; the potential is other-
wise 0. When a bracketing has a very low probability, it may not be worth while to extract
features for or propagate messages from the corresponding constituent variable. This sug-
gests that a coarse-to-fine strategy could avoid instantiating many constituent variables or
could clamp their values to € (Charniak et al., 2006). One could also introduce constituent
variables at several levels of refinement. Hard constraints, similar to EPU, would enforce
deterministic refinements: e.g., N ~ NNS gets potential 1, but N ~ VBZ gets potential
0. Non-deterministic refinements would require soft constraints. Different nonterminal re-
finements could also represent different Markovizations of an underlying treebank. During
training, we could exploit the sum-product algorithm to sum over different Markovizations.

As in the dependency parsing case, we also introduce families of O(n?) unary soft
constraints on the basic variables: BRACKET;; factors and CONSTIT;; factors. The former
requires a single potential that fires if B;; is present; the latter requires |U| + 1 potentials

that fire if a constituent of the appropriate type (or no constituent) is present. The features
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used to calculate these potentials could examine the words or punctuation at the edges of,
or just outside of, the given constituent; the length of certain constituents; their proximity
to the beginning or end; and POS tag sequences (if available). In the bracketing case,
many of these features are similar to the Constituent-Context Model of Klein and Manning
(2002)—but in a globally normalized, and not a deficient generative, model.

Hard constraints enforce that the variables represent a tree that spans the whole sen-
tence with no overlapping brackets. Bounded factors could represent certain of these
constraints—e.g., we could introduce O(n*) binary factors to prohibit crossing brackets—
but global constraints over all variables, as with PTREE and TREE, are asymptotically
faster. We sketch the properties of the hard constraints on the B;; variables CKY BRACKET,
which ensures fhat they form a binary-branching tree, and EARLEYBRACKET, which al-
lows for a greater fanout.

In both cases, the odds ratios of the bracket values function as “grammar” weights on
the productions. Call these quantities O;;. Consider the case of the CKY constraint. A

bracketing parser uses the grammar with a single nonterminal X

XXX

X —a

where a is a dummy terminal replicated n times. When running the inside algorithm to
calculate the weight of all trees, we accumulate inside quantities 8x (%, 7) (in the notation of

Manning and Schiitze, 1999). Each rule that adds an increment to Sx (4, 5) is be multiplied
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by O;;. 2 Having calculated Sx (0, n), we can compute the outside probabilities and the
posterior probabilities of brackets. Propagation for CKYBRACKET thus takes O(n®) time
with a grammar constant of 1.

The version of inside-outside for EARLEYBRACKET might naively seem to take O(n*)
time: unless we put an arbitrary limit on constituent fanout, we need rules with from 1 ton
nonterminals on the right-hand side. Observe, however, that the dotted rules in the Earley
chart can “forget” the number of X nonterminals consumed so far. Equivalently, we can
represent the right-hand side of the bracketing grammar rule by a finite-state machine, so
that X — X X+. This allows us to reuse slots in the Earley stack decoder and achieve
cubic runtime. An upper bound on fanout might, nevertheless, be empirically useful.

The combination of soft unary and tree constraints formulates a “bracket-factored” or
“constituent-factored” model. Such models will not, in general, be very effective with tree
grammars with a high degree of deterministic dependencies among constituents, e.g. from
conversion to Chomsky normal form. Like edge-factored dependency models, however,
their low grammar constant enables very efficient, though still cubic-time, inference.

The natural next step for a constituency model is to add O(n?) rewrite rule factors. For
binarized trees, we connect a ternary REWRITES; i, to Cj;, Cji, and Cy fori < j < k. Ina
naive implementation, each REWRITE factor has a potential table with (|U|+1)? entries (in-

cluding structural zeros to prohibit combining € constituents). Most grammars will benefit

2With a “felicitous” order of updates, as in traditional CKY, to 8x (%, j), we can factor out O;; and wait
until the inside value is fixed before multiplying it in. This entire procedure is similar to the procedure for
maximum constituent recall decoding (Goodman, 1996), except that all quantities in the inside algorithm are
summed instead of maximized.
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from sparse implementations. In the dependency parsing case (§2.4), the addition of, e.g.,
grandparent constraints induces a loopy factor graph but maintains O(n3) asymptotic run-
time compared to O(n*) for dynamic programming. Here, we pay the cost of approximate
inference with no runtime speedup. If we want to enforce all of the constraints encoded
in a CFG, we should simply use a weighted constituency tree factor, i.e. a parser that can
compute the posterior probabilities of constituents for our C;; variables.

What, then, are the advantages of a factor graph representation? As shown in Riedel
et al. (2010), we can achieve significant speedups if we have a reasonably accurate local
(here, constituent-factored) model that we augment with a few “important” higher-order
factors.? In other words, instead of encoding the whole grammar, we could add REWRITE
factors as necessary to achieve good performance. In MAP decoding, such relaxation
methods have been shown to be quite effective (Tromble and Eisner, 2006; Riedel and
Clarke, 2006). More recent work has applied an analogous technique of minimizing the
divergence between full and sparse models to marginal inference (Riedel and Smith, 2010;
Riedel et al., 2010). Extending this argument, we can implement a simple CFG as weighted
tree factor and apply the selected higher-order constraints—such as grandparent or sibling
annotation—using binary factors rather than much larger grammars. Finally, this represen-
tation can serve as a subgraph of larger models, for aligning constituency trees in different
languages (cf. Smith and Smith, 2004; Burkett et al., 2010) or for aligning constituency

trees to dependency trees, LFG f-structures, or logical forms.

3A special case might involve factoring REWRITE constraints from ternary to binary factors that use
O(3|U|?n®) instead of O(|U|3n?) potential values.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. EXTENSIONS AND FUTURE WORK

What did you think I said ?

Figure 5.1: A syntactic DAG: the dotted edge connects the extraposed What to its “original”

head.

5.1.3 Non-tree syntax

At the beginning of this thesis (§1.1), we presented graph inference as a paradigm for
linguistic inference. In the majority of the document, however, the outputs of our mod-
els have been constrained to special cases such as projective (chapter 2) and nonprojective
(chapter 3) spanning trees for dependency structures, and alignments with constrained de-
gree (chapter 4). When costs are edge-factored, these are all problems where efficient
algorithms exist (if only for MAP inference, in the case of alignments).

Some syntactic theories, however, have proposed more general representations,
most commonly (connected) directed acyclic graphs (DAGs) (Chen-Main, 2006; Buch-
Kromann, 2006; Hudson, 2007). In the sentence, “What did you think I said?” (figure 5.1),
the extraposed interrogative what could be said to have a grammatical relation to the matrix
verb did and its “original” governor said. In cases of ellipsis, such as “Sam cooked and ate
the beans,” these “syntactic graph” theories connect the shared subject Sam to both verbs.

Finding the highest-weighted acyclic subgraph of a directed graph has long been known
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to be NP-hard (Karp, 1972).* While there exist approximation algorithms for the general
max DAG problem (Hassin and Rubenstein, 1994), we observe that many theories of syn-
tactic graphs distinguish between “primary” edges, which form a tree, and optional “sec-
ondary” edges, which induce undirected cycles.> We could thus model the primary edges
with link variables subject to a tree constraint, as usual, and introduce a matching set of sec-
ondary link variables, which would be constrained to be false if its corresponding primary
link variable were true.

But how can we prevent the secondary links from inducing cycles in the combined
graph? Assume that we know the full primary tree. A secondary link will only induce
a directed cycle if it runs from a word to one of its ancestors. For MAP inference, we
could continue this procedure by greedily adding secondary edges and maintaining sets of
ancestors. For marginal inference, we can efficiently compute beliefs about ancestor re-
lations only for projective trees, and without a procedure for updating these beliefs given
secondary edges, we cannot encode all of the necessary constraints. Despite the lack of ex-
act inference, one property may make DAG inference effective in practice: we will usually
want secondary links to be much sparsér that primary links and can enforce this constraint
with factors that score the number of secondary edges. We can also adopt relaxation tech-
niques to add members of the exponentially sized family of cycle-prohibiting constraints
as necessary (Riedel and Clarke, 2006) or possibly multi-commodity flows for MAP infer-

ence (cf. single commodity flows in Martins et al., 2009a). Another approach is outlined

4Since the weights are positive, a maximum subgraph is guaranteed to be connected.
5This “coloring” of the links is similar to the multiplanar parsing of Yli-Jyrd (2003).
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in our discussion of semantic role labeling, in §5.2.2 below: we model a syntactic tree and

extra semantic links, although the semantic structures can double the syntactic ones.

5.1.4 Multi-structure syntax

Formalisms such as Lexical Functional Grammar (LFG) and Autolexical Syntax ex-
press grammaticality constraints by reference to multiple structural representations (Falk,
2001; Sadock, 1991). In LFG, for instance, an utterance must satisfy both the constituency
c-structure and the functional f-structure. The c-structure is expressed as a context-free
grammar and would thus, on its own, admit efficient inference algorithms; however, inter-
section with functional constraints, which can refer to arbitrary features of the utterance
and its parse, makes inference intractable. One solution to LFG parsing is simply to parse
with a (sparse) CFG alone and then exhaustively enumerate c-structures while knocking
out those that violate f-structure constraints (Johnson et al., 1999). Other work on LFG has
exploited dynamic programming with a packed representation of trees to achieve more ef-
ficient, though still exponential runtime (Geman and Johnson, 2002). Researchers, at least
as early as Maxwell and Kaplan (1993), have explored the advantages of polynomially
solvable subproblems—in their case, they combined cubic-time (Boolean) chart parsing
for the c-structure and exponential-time Boolean satisfiability solving for the f-structure in

LFG.% These strategies are applied to an unweighted grammar, but it would be interest-

SMaxwell and Kaplan (1993) describe interleaved pruning strategies reminiscent of message passing be-
tween the PTREE factor and other constraints and non-interleaved strategies—both top-down, as in coarse-
to-fine parsing, and bottom-up, as in forest reranking (Huang, 2008).
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ing to combine a factor for weighted constituency parsing as in §5.1.2 (with or without a
grammar) with factors for functional constraints. Similarly, Autolexical Syntax’s parallel

constituency-tree representations could communicate with each other via message passing.

5.2 Multiple Linguistic Levels

The boundary between syntax—the core module in generative linguistics—and other
processes such as morphology or compositional semantics varies across different theories.
In NLP applications, however, morphology and semantics are usually handled separately.
Much of the f-structure syntax in LFG, for instance, is similar to “semantic roles” when
handled by NLP researchers. In this section, we briefly sketch models that combine our
factor-graph representations of syntax with extensions for morphological and semantic dis-

ambiguation.

5.2.1 Syntax and Morphology

We have assumed, in the parsing models discussed for far, that part-of-speech tags
have already been assigned to the words. Finite-state sequence taggers—HMMs, condi-
tional Markov models, conditional random fields, etc.—can achieve quite high accuracies
for English (e.g., Toutanova et al., 2003); in any case, if we are focused solely on depen-
dency accuracy, we may not care if the tags we use for our features are correct so long as

they are consistent. For other languages, morphological disambiguation is not as accurate
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(Smith et al., 2005).” Finite-state models perform particularly poorly on case, in languages
that mark for it. While differences in inflectional syncretism may provide accidental cues
for disambiguating case locally, many case decisions would be nearly deterministic if a
dependency tree were known. In contrast, an ambiguity in verb tense will often be left
underspecified by the syntax of a single sentence, except when sequence of tenses is fol-
lowed in subordinate clauses: compare “I like plums” to “You knew I liked plums,” but
then substitute an ambiguous verb such as hit.

The most recent work on joint morphology and syntax for data-driven parsing has been
for modern Hebrew (Cohen and Smith, 2007; Goldberg and Tsarfaty, 2008). As with most
recent work on modern standard Arabic, morphological analysis for modern Hebrew usu-
ally concentrates on segmenting an orthographic word into a stem, proclitics and enclitics,
and possibly some morphological suffixes. We anticipate that joint morphological and syn-
tactic inference will be even more helpful for languages such as Czech or Latin, where
multi-attribute fusional morphology combines with free word order to foil local sequence
methods.

When discussing the runtime advantages of the BP approach (§2.4), we noted that joint
edge-factored inference over tags and dependencies would take O(n® + g?n?) with BP for
a vocabulary of g tags, as opposed to O(g*n3) with dynamic programming. The Penn
Treebank approach of fusing word classes and morphological attributes leads to an uncom-

fortably large g for a language such as Latin or ancient Greek, where a verbal lemma can

"The “parts of speech” in the Penn Treebank and some other corpora fuse traditional word-class infor-
mation, such as nouns, verbs, etc., with morphological information, such as VBZ for “3rd person singular
present tense verb”.
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be expressed in thousands of forms (Crane, 1991). The approach of Smith et al. (2005),
where morphological attributes such as gender, number, case, tense, etc., were represented
by separate variables, should be more appropriate. We can further reduce the search space
if the values of thpse variables can be reduced, for common words at any rate, by mor-
phological dictionaries, which linguists have constructed for many languages (Beesley and

Karttunen, 2003).

5.2.2 Semantic Role Labeling

Another layer of annotation closely tied to syntax are certain forms of shallow seman-
tics. In particular, a substantial amount of effort in the NLP community has been devoted
to semantic role labeling (SRL), which, while not a complete account of compositional
semantics, manages to abstract away some phenomena of surface syntax (as, famously,
active vs. passive) in order to describe underlying argument structures of nouns, verbs,
and adjectives. SRL has been performed consequent to both constituency (Gildea and Ju-
rafsky, 2000) and dependency parsing (Hacioglu, 2004). While most of the best systems
are pipelined and used the one-best syntactic tree, some models have shown improvements
with joint inference (Toutanova et al., 2005).

The dependency version of SRL produces a labeled, directed graph over the words of
a sentence, some of which are predicates and some (including both predicates and non-
predicates) are arguments with edges from those predicates (figure 5.2). The semantic

roles filled by the arguments label the edges. Unlike a syntactic dependency structure, the
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Figure 5.2: Semantic role labeling with dependency trees: The dependency tree is drawn
above, and the semantic graph is shown below the sentence. Predicates correspond to
lexical items, and the semantic graph need not cover all words. Some words, such as banks

may be arguments of more than one predicate.

SRL graph is by no means a tree: the graph is not connected, since some words are neither
predicates nor arguments; a word may serve as an argument for multiple predicates, as in
the figure, and thus have multiple parents; and the graph is even sometimes cyclic, with
nouns and verbs mutually taking each other as arguments. Even the subgraphs comprising
the arguments of a single predicate are not entirely well-behaved. For example, while most
predicates have a single AQ argument (usually the agent) and Al (theme), about 5% of
predicates have multiple arguments in the same role.

There is, nevertheless, a strong correlation between syntactic dependencies and SRL
links, and previous work has naturally depended on features of the syntactic tree to train
SRL models. It is easy to augment our factor-graph dependency model with extra vari-
ables to represent whether a word is a predicate and variables for whether two words are

in a predicate-argument relation. The semantic link variables can then be connected to
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each other with factors that score the arity of predicates—how many arguments, and how
many AQ arguments, should a predicate have? Finally, the semantic link variables can
be connected to dependency variables, as in the quasi-synchronous bilingual factors in
§4.7.2.3. Some predicate-argument links may correspond exactly to dependency links, as
in the banks <> want SRL link in figure 5.2. In other cases, a direct semantic link may
arise from a more distant syntactic connection—for example, the control construction in the
example means that the banks &° break semantic relation corresponds to a c-commanding
syntactic relation.

This close relation between syntax and semantics makes it unremarkable that an SRL
model without access to dependency structures performs much worse than one that uses
the true dependency tree—viz. “No syntax” vs. “Oracle syntax” in figure 5.3. Also, “Joint
syntax-semantics” inference incurs some loss compared to the oracle syntax. With a joint
factor-graph model of dependency syntax and semantic roles, we can both train and test
with the dependency tree as a hidden variable. What is surprising is that this setup (“Hidden
syntax”) outperforms the joint condition, which has access to the true dependency trees at
training time, and even, at high levels of SRL training data, the setup where we know the
true dependency tree at test time. The syntactic trees produced by this hidden-variable
setup only get about 50% dependency accuracy compared to treebank annotations, but that

is of less importance if the purpose of the model is solely semantic role labeling.
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Figure 5.3: Performance of semantic role labeling. Treating syntax as a hidden variable
performs better, on F1 measure for predicate and argument prediction, than joint training

and decoding for syntax and semantics.
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5.3 Bilingual Training for Monolingual Parsers

In chapter 4, we discussed three monolingual and bilingual parser adaptation setups,
but there is much more work to be done in this area. Consider, in particular, the case of
unsupervised parser projection: we wish to train on bitext and test on monolingual target-
language sentences. The monolingual target-language features that are most important at
test time will have been trained in the presence of source-language data. Since we don’t
observe these source sentences in monolingual target-language texts, they need to be in-
ferred. In other words, we would need a target-to-source translation system in order to use
our target-language parser!

For the unsupervised parser projection experiments in §4.6, we parsed target-language
text with target features alone and ignored the small number of quasi-synchronous and
alignment features. While this strategy was enough to beat unsupervised baselines, it fails
to improve over parsers trained on even a small number of unlabeled trees. Moreover, the
generative model was much simpler than the joint model from §4.7. When we try to play the
same trick with the joint model—simply ignore all non-target features—monolingual target
parsing accuracy is even worse. In this section, therefore, we discuss some approaches to

learning monolingual parsers using the richer joint model.
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5.3.1 Self-training and co-training

The simplest approach to using bilingual data is a form of self-training. We acquire
trees on the target side of the bitext by training a bilingual parser and decoding or using
simple projection (§4.6.3.3). Then, we train a monolingual parser on the target side of the
bitext, with its mixture of hand- and machine-labeled trees.?

Another training workaround would be to stipulate that monolingual target text simply
connects to non-existent source text with NULL alignments. In other words, we would
have some bitext training data and some monolingual target-language training data whose
source side was null. This retrenchment, however, means that the bilingual factors, which
on bilingual training data helped the target-language factors to find the right 77, may be
undertrained for their task. The situation appears even worse if we have some features that
strongly prefer some NULL-aligned dependencies over others. In addition, we may over-
regularize some bilingual features if we train on a mix of monolingual target and bilingual
text.

We can acknowledge that monolingual and bilingual parsing require separate parame-
terizations and perform multitask learning with some of the monolingual features tied, or
regularized to be close to each other. In preliminary experiments, this approach was not
successful—there was no reason to expect that the values of the target-language’s parame-
ters should be close in monolingual and bilingual training.

Finally, we can adopt a co-training approach where the monolingual and bilingual

8Smith and Smith (2004) presented an even simpler version of this training setup: the target language
parser was trained only on monolingual trees and only the inference was bilingual.
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models train each other using bitext. Each model is able to infer 77 from W7 (and also
the source side of the bitext, in the bilingual model’s case), and so the output of each can
be supervision for the other. The process may be started by training either a monolingual
or a bilingual model.

Figure 5.4 shows the monolingual accuracy of two co-trained parsers. In one case, co-
training was initialized by training a monolingual parser on target trees alone; in the other,
co-training started by training the bilingual parser on bitext with annotated target trees (just
as in training the bitext parsers in §4.7). The plot also shows the learning curves from earlier
experiments on target-language training alone and, as an upper bound, the performance of
the bilingual parser, which has access to the source sentence at test time. The co-trained
parsers consistently outperform the target-only baseline, but while for seed sizes of 10 and
100 trees there are 4.5% and 1.5% absolute improvements respectively, the improvement is
0.4-0.6% with 1000 target trees. To achieve more robust results, we may need to address
the sample selection problem: which trees produced by one parser should be used to train
the other? At present, we find that using output on the whole corpus performs better than
a confidence-based threshold, but performance of co-training still declines after the first

iteration.

5.3.2 Noisy channel models

An alternative approach is to cast parser projection as a noisy channel model. To

achieve this, we factor the joint distribution p(T%,TT, A | WS W7T) into p(T%, A |
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Figure 5.4: Monolingual accuracy of a parser co-trained on bitext
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Figure 5.5: A noisy-channel model of parser projection

TT, WSp(TT | WT) (figure 5.5). If T is observed at training time, or if we trust a
p(T® | W) parser enough to treat its one-best output as observed, we have the following
optimization:

max » _ p(T*%, A| TT,W¥)p(T" | WT) (5.1)
ATT

What does this model do when parsing monolingual W7? As a child of 77 in the di-
rected graphical model, the unobserved 7%, A falls away without affecting the distribution
of T, and we can simply use the monolingual parameters of p(T7 | WT) without change.

If we don’t trust the one-best output of p(T"5 | W¥), we can still encourage the trees T°
produced by quasi-synchronous projection to agree with the output forest F5 of a mono-
lingual S-parser. We introduce a Boolean “agreement” variable M that is true if its parents
T* and F° match. During training, we stipulate that M is observed as true (figure 5.6).
This exact matching criterion could, with some more involved machinery, be softened to a
minimum risk objective such as maximizing the number of matching dependency links.

This “agreement” model presents a slightly trickier scenario for monolingual parsing
of WT. If the agreement variable M is still observed as true, we are thrown back on the
uncomfortable situation we started with: W needs to be imputed via machine translation.
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Figure 5.6: Modeling agreement between a source parser and projected source trees

Instead, we should simply treat M as unobserved and let the descendants of 77 fall away.

While introducing directed edges between supernodes in the model has made inference
simpler at a high level, we can no longer get BP to give us gradients directly to optimize
(5.1). Procedurally, we first perform inference on 77 and get marginals over link variables
and other variables that connect to A and T'. These marginals become the fixed messages
used in BP inference on A and T°. The gradient of these 77 marginals with respect to the
log-likelihood of T*% is the belief vector as usual. We then need to calculate the gradient of
the marginals of T'7 with respect to the parameters of that model. For edge-factored models
of T7, this involves a second derivative computation, as described for projective parsers in
§B.5 and nonprojective parsers in §3.2.4.

In preliminary experiments with the simple noisy channel model trained to predict a
single source tree, we find that the target-language parser is no more accurate (and often
worse) than the naive approach of training the joint model and then setting the bilingual

feature weights to zero. If the target language parser is trained partly from target trees
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and partly as a component of the noisy channel, we have not seen any improvement over

training on target trees alone.

5.4 Applications of Noisy Alignment

We first presented quasi-synchronous grammar as a generative model of target trees
and words (Smith and Eisner, 2006b). Although originally proposed for word alignment
and machine translation, QG models were applied in chapter 4 to monolingual and bilin-
gual parser projection. We also discussed the use of QG bilingual configurations—aligned
source and target subtrees—as features in a joint model of aligned source and target trees.

The generative form of QG has found useful applications in tasks that score the prob-
ability of one document being generated from another, as in language-model-based infor-
mation retrieval. Wang et al. (2007), for instance, modeled the probability that a question
could be generated by a noisy transformation from a candidate answer. Das and Smith
(2009) evaluated paraphrase correspondence by a QG in both directions. Woodsend et al.
(2010) used a QG to model the generation of headlines and captions from documents.

In many information retrieval applications, however, we do not have large numbers of
document-query pairs to train on. Although “learning-to-rank™ approaches have become
more popular, the number of free parameters in IR models remains in the tens, as opposed
to the millions used to train monolingual and bilingual parsers in this thesis. One promising

setup for learning alignments between queries and documents is a bootstrapping approach
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based on pseudo-relevance feedback (Bendersky et al., 2010; Xue et al., 2010). The top
results from an query can be used as examples of aligned documents to learn the parameters
of the QG model.

Another type of noisy alignment is that between text documents and databases of facts
possibly expressed in those documents (Bellare and McCallum, 2009). These databases
can serve as “distant supervision” for entity and relation extraction and classification in
text in the absence of annotated examples (Yao et al., 2010). While the “template” string
between two entity mentions is usually taken as a feature, or even a deterministic indicator,
of the relation between those entities (Ravichandran and Hovy, 2002), it might be useful to
learn models with hidden syntactic variables to map mentions to entities and relations.

Finally, machine translation could benefit both from the flexibility of modeling with
quasi-synchronous features but also from runtime speedups from BP. Decoding is very ex-
pensive with a synchronous grammar composed with an n-gram language model (Chiang,
2007)—but the analysis of tagging above (§2.4) suggests that BP might incorporate a lan-
guage model rapidly. Gimpel and Smith (2009) applied a QG-based decoder to the task
of rescoring translation lattices, and it might be useful to incorporate some of their hard

constraints on coverage of the source string into a joint model of source and target trees.
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5.5 Inferring Conversational Graphs

It is interesting to note here another application of graph inference outside of depen-
dency parsing. Conversations are the basis for social interaction in most online environ-
ments: users agree or disagree with, comment on or quote, the posts and links submitted
by other users. One important inference task is to reconstruct the relationships between
these conversational acts. Some forums and social networking sites encode the reply struc-
ture, €.g., by indentation, but other forums, comment threads, and chatrooms simply stream
posts as they are received. If each post (barring the post that starts the thread) responds to
exactly one previous post, then a thread is a directed tree; forum threads, blogs, email, and
other media where participants can respond to multiple posts form a directed acyclic graph
(DAG).

Given models that score whether a pair of posts in a thread form a parent-child pair, we
can use edge-factored inference to reconstruct a conversational tree (Seo et al., 2009). In
fact, when timestamps are provided, a spanning tree can be constructed in one greedy pass:
simply attach each post to the previous post with the best parent score. Many posts are
quite impoverished, and discourse features over an entire conversation will be necessary
for more accurate reconstruction. It will therefore be interesting to investigate higher-order

models and BP inference for conversational trees and DAGs.
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5.6 More Efficient Inference

We saw in §2.9.2 that BP parsing with combinatorial factors could be faster than dy-
namic programming with higher-order models, and in §4.7 we demonstrated bilingual pars-
ing with better runtime than synchronous parsing. Our models are still often too slow, due
to the constant overheads from large numbers of factors and their features. In Riedel and
Smith (2010) and Riedel et al. (2010), we present methods for incrementally adding factors
to a factor graph given a procedure for computing marginals under a base model (e.g., a fast
edge-factored parser). A greedy approach to adding higher-order factors is especially use-
ful when local models are a decent approximation to the full model distribution. We found
that by adding less than 1% of the grandparent and sibling factors, we could achieve run-
times that empirically scaled linearly with sentence length without any loss in dependency
accuracy.

Finally, we can take advantage of general improvements to BP proposed by the machine
learning community. For example, instead of updating all messages in parallel at every
iteration, it is empirically faster to serialize updates using a priority queue (Elidan et al.,
2006; Sutton and McCallum, 2007). These methods need alteration to handle our global
propagators, which update all their outgoing messages at once. Rather than prioritizing

messages, BP should prioritize factors.
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Chapter 6

Conclusions

The diligent reader deserves some resolution after attending throughout the preceding
chapters and their expository involutions; the savvy reader merits a reward for turning first
to the concluding arguments. In this brief chapter, we discharge our obligations to both by a

summary of the novel contributions of this thesis and a sketch of their broader implications.

6.1 Algorithmic Contributions

The new algorithmic work in this thesis is of direct relevance to natural language pro-

cessing and related fields, by contributing:

o the derivation and application of combinatorial optimization algorithms as subrou-

tines in sum-product belief propagation (§2.5);

e O(n3) runtime guarantees for approximate but accurate projective and nonprojective
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parsing with higher-order features for siblings, grandparents, and other linguistically

motivated constraints (§§2.4, 3.4); and

e the application of the directed matrix-tree theorem to nonprojective dependency pars-

ing, enabling

— O(n®) computation of the partition function (§3.2.2);
— O(n®) computation of first-order gradient and entropy (§3.2.3); and

— further efficient algorithms for second-order gradients, minimum risk training,

and minimum Bayes risk decoding (§§3.2.4, 3.3.1). -

6.2 Modeling Contributions

This thesis also contributes significant empirical results in learning monolingual and

bilingual models of syntax:

e Matrix-tree computations inside BP allow efficient, effective learning and inference
for higher-order nonprojective parsers. These parsers significantly outperform prob-
abilistic edge-factored models (also presented in this thesis) and previously-proposed
greedy hill-climbing inference methods, especially for highly nonprojective lan-

guages such as Dutch, where 11% of dependency links cross other links (§3.4.3).

e Quasi-synchronous models can learn to adapt between different dependency repre-
sentations in English with high accuracy (§4.4).
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e Unsupervised quasi-synchronous projection improves on parsers trained using only
high-precision projected annotations and far outperforms, by more than 35% absolute

dependency accuracy, unsupervised EM (§4.6).

e When a small number of target-language parse trees is available, a bilingually trained

parser gives a boost equivalent to doubling the number of target trees (§4.7).

6.3 Broader Implications

The introductory chapter described a research program for modeling linguistic analysis
with systems of hard and soft constraints. In the following chapters, we developed proba-
bilistic inference algorithms for these systems of constraints and learned empirical models
from linguistic data. The penultimate chapter described some of our ideas and preliminary
investigations for extending this research program in computational linguistics.

The algorithms and models presented in this dissertation promise to enable a wealth of
new applications in language technologies such as information retrieval, question answer-
ing, machine translation, paraphrase, and summarization, in social network analysis, and in
more distant fields—in particular, to applications that need to learn noisy correspondences
among multiple structures. More broadly, our generalization of belief propagation to in-
corporate marginal computations from black-box combinatorial algorithms should enable
more efficient and modular inference in the many domains that use graphical models. The

work in this thesis has, for example, already inspired applications to multiple sequence
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alignment of proteins (Bouchard-C6té and Jordan,' 2010). Our view of message passing
among combinatorial subroutines has been extended in work on Lagrangian relaxation for
NLP problems (Rush et al., 2010; Koo et al., 2010). Such modular design principles for
graphical models will become increasingly important as we seek to model expanding col-

lections of data with ever more intricate statistical dependencies.
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Appendix A

Log-Linear Models

In this Appendix, we review probabilistic structured prediction with log-linear models,
with and without latent variables, and the training of such models by maximizing condi-
tional likelihood. We review linear models of dependency trees, which dispense with tra-
ditional grammars in favor of constraints on indiyidual dependency edges and collections
of edges. These constraints are parametrized by a linear combination of features and their
weights.‘ We close with an algorithmic review of combinatorial inference problems for log-
linear models: maximum a posteriori (MAP) inference to find the most probable output
tree; marginal inference to find the posterior probability of particular trees or subtrees; the
entropy of the distribution over trees; and other related quantities such as the outside Viterbi

score, risk, and its gradient.
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A.1 Linear Classification

In order to decide.on the correct output, we assign a score s, which is a function of an

input-output pair:
S(X, Y) =Ww- f(X, y) (A.1)

We thus have a linear model, where the score is a weighted sum, or dot product of fea-
ture functions f with parameters w. Given an input, a set of possible outputs, a weight
vector, and feature functions, a classifier must find the output with the highest score. More

formally, solve:

y* = argmaxw - f(x,y) (A2)
YEYVx

A.2 Log-Linear Models

First, some notation: The training examples of input strings x are indexed by ; possible
outputs y for a given z; are indexed by j; possible hidden structures z for a given x; and
y;; are indexed by k. Individual feature functions and weights in the vectors f and w are
indexed by 4.

In order to turn a linear combination of features and weights into a probability model,
we exponentiate the s;;; scores and then normalize them so that the probabilities sum to 1.

We may also abbreviate the exponentiated, unnormalized scores with u, i.e. u;;, = %9k,
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Without hidden structure the model is thus:

1
p(yij | .'L'i) = Zes” (A3)
Zi=) e (A.4)
jl

If, for instance, we want to parse with such a model, one straightforward approach is
to find the output with the larger posterior probability of y—hence maximum a posteriori
(MAP) decoding. Since the normalizing constant Z, is, in fact, constant with respect to
a given input, we can, in the absence of hidden structure, find the most probable output
without exponentiating or normalizing the scores. In other words, the decoding problem is
exactly the same as it was for simple linear models.

With hidden structure, the probability of the output becomes:

p(yis | @) = Zp(yija Zijk | Ti) : (A.S5)
k
1
=5 D €% (A.6)
Yk
Zi=Y) e (A7)
jlkl

Here we sum out the hidden structures z;;,g, which are often termed nuisance variables
with respect to the output, and can then search for the best y. Unfortunately, for many
problems where the space of possible outputs and hidden structures is combinatorial, this
MAP problem is asymptotically harder than the corresponding problem without hidden

structure—indeed, in many cases it is NP-hard. It is therefore common to see the following
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approximation:

max zk:p(yz‘ja Zijk | T3) = max max p(ysj» Zigh | ;) (A.8)

which treats z as just another kind of output.!

A.3 Maximum Likelihood Training

The standard approach to training log-linear models is to maximize the likelihood of the
observed training data. We assume that training examples are independent and identically

distributed (iid). The maximization problem to be solved in training is thus

w = argmaxH Zp(y{, 25 | ) (A.9)
v ik
where y; is the correct output structure and 2}, are the hidden structures compatible with
the correct output.

The product form is somewhat inconvenient to optimize. The logarithm function is

monotonic, and can thus results in the same maximizer. This log likelihood objective is:

L= Z log Zl Z eSik (A.10)
i Pk

=Y llog > e —log Z; (A.11)
i k
~ Note that without hidden structure, the objective function simplifies to:
L= s -logZ (A.12)

!The approximation is often, confusingly, also termed MAP decoding/inference. Some communities
employ Most Probable Explanation (MPE) for the approximate version and reserve MAP for (A.8), but it
is probably too late to insist on too much consistency on this point.
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A.4 Gradient-Based Ti'aining Methods

Now that we have defined an objective function, we need an optimization procedure.
All of the commonly used optimizers for log-linear models are gradient methods: they
use first derivative and sometimes (approximate) second derivative computations to move
the objective function towards the optimum. We must beware of one distinction, however:
the likelihood of a log-linear model without hidden structure is concave, and thus gradient
methods are guaranteed to reach the a unique, globally optimal solution. By introducing
hidden structure, we also introduce non-convexity into the objective function. Gradient
methods may only reach a local optimum.

Learning methods may be broadly divided into online and batch procedures, which
update parameters after seeing one or a few training examples, or all of them.

Stochastic gradient descent is the simplest online optimizer (Bottou, 2003). The pa-

rameter update rule is:

wttD) — w® 4 n(t)VL(t) (A.13)

At each time-step t, we approximate the true gradient of our objective function by the
gradient on one, or a few, examples. The quantity n® is the learning rate for the tth update.
The learning rate is often made smaller with successive updates to speed convergence. This
update rule is quite similar to the perceptron, which uses the features in the highest-scoring
structure if it faiis to match the training output and zero otherwise. (The gradient is zero at

a local optimum.)
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Quasi-Newton methods used gradient information and estimated second-derivative in-
formation to update parameters after a complete sweep through the training data. Among
the most popular such methods is L-BFGS (Limited-Memory Broyden, Fletcher, Goldfarb,

and Shanno, a.k.a LMVM) (Liu and Nocedal, 1989).

A.5 The Gradient of Log Likelihood

For both online and batch methods, we need to compute the gradient of L (A.10). With

respect to a given parameter wy, we have

3we Z B, log Ze ik — —— logZ (A.14)

We differentiate the numerator as:
logZe = Ze kc?s (A.15)
awl Z e Sixt
= (a5 | ufmi) folwi, U5 25) (A.16)
k

and the denominator as:

log Zi 8 B
=31 Sigk A.l
dw, _ Owp Ogjzke (A.17)
= % > e —%Sfjf (A.18)
1 l_]
= Zp(yijazijk | ;) fo(zi, Yij» 2ijk) (A.19)
ik
= E,[fo(zs, )] (A.20)
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Note that the partial derivative of the score s;;; with regard to a given parameter is just the
value of the corresponding feature function. Note also the simplification with expectations.

The gradient may be concisely written thus:

oL

a_W = p[fl(xiay;',ka')] _Ep[ff(xia'a')] (A21)

If there is no hidden structure, the first expectation is deterministic and this is even
simpler:
oL

e fo(@i,y7) — Bp[fe(zi, )] (A.22)

'A.6 Regularization

Directly optimizing (A.10) will, with some methods, cause some of the parameters wy
to go to infinity since we can always make the log-likelihood better by assigning higher
weight to the correct y*. We therefore introduce a regularization term.

A common method of regularization adds a penalty term to the log likelihood with the
sum of squares of the weights. This quadratic or L, regularization can also be viewed as
a Gaussian prior on the parameters w: the weights are assumed a prior to be distributed
according to a multivariate normal with zero mean and a covariance matrix with diagonal
all o2.

The L,-regularized objective function is:

F= Zlogzp(y{, zh | i) — %5 Z w (A.23)
i k

£
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In other words, if a parameter w, becomes too large in the positive or negative direction,
the regularization term will penalize the objective function unless that parameter is able to
increase likelihood by a greater amount.

The amount of regularization is controlled by a variance parameter o2. When variance
is low, regularization is strong, and parameters stay close to zero. When variance is high,
parameters are able to range farther from zero in either direction.’

The gradient of the regularized objective function is:

oF 1
v ol fe(@i, 47 )] = Eplfe(is -, )] = —we (A.24)

A.7 Motivation for Maximum Likelihood

The exponential form of log-linear models is often motivated by the related maximum
entropy problem. This derivation strictly only applies to the likelihood objective func-
tion we introduced above. More generally, we can see the likelihood as one of a class of
distance-minimizing objective functions.

In particular, consider the point distribution p*, which assigns probability 1 to the cor-
rect output structure y* and probability zero to other events. An information-theoretic

expression of the difference between two distributions is the Kullback-Leibler divergence:

:L'
D(p|lq) = Zp log )

2Most models use this setup with a single variance parameter. If we have prior knowledge that certain
features are more helpful, we could increase their individual variances. If we have prior knowledge that if one
feature w, is high then another wj is likely to be high, we might introduce covariance terms. These changes

would require replacing the inverse variance ;1; with an inverse covariance matrix 1.
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If we minimize the divergence between the ideal p* and our model p,,, we have (omitting

hidden zs for clarity)

. ' . ‘ P (i | Ti
min D(p* || p)=mln§ p*(yij | %) log (v | =)
w w "
7

A.25
Pw(¥ij | i) (A25)

= min — log p, (y; | z;) (A.26)
w

since the probability under p* for allvy,-j other than y; is zero and with the convention that
Olog0 = 0.

The divergence-minimization approach is also useful in the analysis of bootstrapping
and self-training algorithms for semi-supervised learning (Abney, 2004; Smith and Eisner,

2007).

A.8 Minimum Risk

This derivation makes it clear that the likelihood function is very strict: all incorrect
structures—whether they contain one mistaken dependency link or twenty—are assigned
zero weight by p* during training. We might prefer to penalize some ungrammatical struc-
tures more heavily than others, which insight leads to other training and decoding strategies
for probabilistic models.

Researchers in many areas of natural language processing have long observed that high
likelihood, or even low perplexity, is not always well correlated with low error rate. . In

speech recognition, an early bastion of empirically driven methods, researchers have for
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a while applied methods to directly minimize errors during training (Bahl et al., 1988).
More recently, almost every statistical machine translation system has adopted minimum
error training to directly minimize a translation evaluation metric such as BLEU on held-
out data (Och, 2003). In contrast to the likelihood surface, however, the error surface for
discrete structured prediction is not only riddled with local minima, but piecewise constant
and not everywhere differentiable with respect to the model parameters. A small change
in the parameters w of a dependency model will probably not result in any change in the
dependency links predicted by the parser. For this reason, most practical applications of
direct error minimization adjust only a small number of hyperparameters (about 20 in many
MT systems).

If we have a probabilistic model, we can avoid some of the drawbacks of the error
surface by instead minimizing the expected error, or risk. If we have a loss function L that
assesses a penalty for having the model predict ¥y when the true structure is ¢*, we have the

following objective:
min Z Ep, L(yi,yi) = min Z pr(yij | ) L(yi5, v7) (A.27)
i i
We can thus see (A.25) above as minimizing the risk under an “all or nothing”, or 0-1, loss
function.
While risk, unlike likelihood, is not necessarily convex, it is continuous and differen-
tiable. Minimum risk training has been shown to improve training in MT (Smith and Eisner,
2006a); in particular, the now differentiable objective can be optimized by gradient-based

methods, which makes training large numbers of parameters more practical (Li and Eisner,
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2009).

A.9 Minimum Bayes Risk

Probabilistic models also enable a class of loss-aware decoding procedures, called min-
imum Bayes risk (MBR), which were adopted in speech recognition (Goel and Byrme,
2000) and thence became widespread in statistical MT (Kumar and Byrne, 2002, 2004,
Tromble et al., 2008; Kumar et al., 2009).

As opposed to minimum risk training, a parser doesn’t have access to the correct anal-
yses at test time. Instead, we can use the probability model p to compute the risk of each
possible output. If we weight those outputs by a prior distribution p, we get the MBR

objective:

y* = argminp(y | z) Y pu(¥’ | 2)L(v,) (A.28)
YEYx ¥ €Vx

Many applications employ a uniform prior distribution. While we might estimate p in
various ways, a useful class of priors impose structural constraints. Goodman (1996), for
instance, described an MBR objective for constituency parsing that he called “maximum
constituent recall”. He calculated the posterior probability of constituents of the base model
p and then fed those probabilities as weights to a CKY parser to find the best valid tree.

A further application of MBR decoding is in approximating the consensus problem
when trying to sum out hidden variables. Goodman (2003), again, showed how to sum
over deri'vation trees in a tree substitution grammar (trained, in that instance, according to
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the Data-Oriented Parsing framework) to find the best derived tree according to an MBR
criterion. Matsuzaki et al. (2005) and Dreyer and Eisner (2006) used a similar method to
parse with PCFGs with latent annotations, and Cohen and Smith (2007) parsed Hebrew

while summing over morphological segmentations.

A.10 Entropy

Finally, due to the results of information theory, probabilistic models possess natural
measures of the uncertainty of their predictions, known as entropy.
The most widely used such measure is Shannon entropy (entropy fout court), which

is the expectation of the negative log probability:

H(p) = — Y _p(y; | ©)logp(y; | 2) (A.29)
J
=—Y [p(y; | z)loge% — p(y; | z)log Z] (A:30)
J
=— p(y;|z)-5;+1082Z Y ply; | z) (A.31)
J J
= —E,s+logZ (A.32)
202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. LOG-LINEAR MODELS

The Rényi entropy is a theoretically and computationally attractive generalization:
og (Y p(y; | 2)° (A.33)

-« - 7 | '

— L tog [z e (A.34)
l1-a : )

J

1 as;s :
i (log XJ: e* — a'log Zi) (A.35)

R, =

It can be shown that lim,,; R,(p) is in fact the Shannon entropy H(p) and that
limy o0 Ra(p) = —logmax,p(y), i.e. the negative log probability of the modal or
“Viterbi” label (Arndt, 2001; Karakos et al., 2007). The o« = 2 case, widely used as a
measure of purity in decision tree learning, is often called the “Gihi index.” Finally, when

a = 0, we get the log of the number of possible outcomes, log || in our notation.
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Algorithms for Dependency Parsing

In our discussions of dependency parsing in the body of chapter 2, and in the foregoing
appendix on log-linear models, we have presented certain structured modeling problems
with a blithe declarative innocence. Simply take the arginax, or the sum or expectation,
and ignore the combinatorial spaces to be searched.

As noted above, the paradigm of edge-factored parsing is attractive because there exist
efficient algorithms for solving these problems. As with other algorithms commonly used
in natural language processing, such as the Viterbi and forward-backward algorithms for
hidden Markov models or the CKY algorithm for constituency parsing, we can use dy-
namic programming to search the space of projective dependency trees with edge-factored
weights.

In this Appendix, we review the algorithms for solving several inference problems for

edge-factored dependency parsing.

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B. ALGORITHMS FOR DEPENDENCY PARSING

B.1 Finding the Best Parse

When speaking of “parsing” proper, we usually mean solving a maximization problem
to find the highest-weighted tree according to some model. With dynamic programming,
we can incrementally infer the best way of building subtrees of progressively larger sizes
until we find the best subtree that spans the entire input sentence.

We present the algorithm here (algorithm B.1) using a notation similar to McDonald

et al. (2005a). The exponentiated weight for the dependency edge from a parent word
indexed % to child j is denoted (4, j) = (). The dynamic program works by filling in
cells in a chart C with subtrees of increasing width; C is indexed by a quadruple (¢, 5, d, ¢),
consisting of the left and right edges of a head’s span, a direction (L or R) indicating
whether the head is gathering left or right children, and a Boolean for whether the subtree
is closed, i.e., whether the head can stop taking any more children in that direction.
It is easy to see from the form of the algorithm that it takes O(n?) time: the two nested loops
range over the sentence length n, as do the inner maximizations over r. In the terminology
of Eisner and Satta (1999), this is a “split-head” parser, since each child is attached without
considering any of its siblings, let alone siblings on the opposite side of the head. An
important practical advantage of edge-factored parsing is the lack of a grammar constant,
which often dominates CKY parsing (Klein and Manning, 2001).

For clarity in comparing this algorithm to related ones below, we show only the opera-
tions for computing the weight of the best parse tree. To extract the best tree itself, we need

to record which split point maximized the combined weight of each pair of subtrees, i.e. an
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Algorithm B.1 Find the score of the best projective tree with edge-factored weights

1: function EFMAX(u, n) > Edge weight array u and sentence length n
2 C[i,i,d,c]+ 0,Vie {0.n},de {L,R},c€ {0,1}
3: for width <~ 1.ndo
4: fori < 0..ndo
5: k < i+ width
6: if £ > n then break .
7: Cli, k, L, 0] + max;<j<x(C[i, j, R, 1] - C[j + 1,k, L, 1] - u(k, 7))
8 Cli, k, R, 0] + max;<;<x(C[i, 5, R, 1] - Clj + 1, k, L, 1] - u(i, k))
9: Cli, k, L, 1] + max;<;<x(C[i, 4, L, 1] - C[4,k, L, 0])
10: Cli, k, R, 1] + max;<;<x(C[i, 4, R,0] - C[4, k, R, 1})
11 end for
12: end for
13: return C ' > Best score is C[0,n, R, 1]

14: end function

argmax; in addition to the max; in lines 7-10. When the algorithm terminates, we can then
retrace the sequence of decisions that formed the best tree, as one follows backpointers to
extract the best sequence of HMM states in the Viterbi algorithm.

Also for comparability’s sake, we have presented the algorithm as computing the tree
with the best product of exponentiated scores u, rather than the best sum of scores s. In

practice, log-domain computations are used for this and later algorithms.

B.2 The Partition Function and Its Gradient

Searching for the best tree is common to linear learning frameworks, where it is also
used during training, as well as parsing with log-linear models. The latter, however, require
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additional inferences for maximum likelihood (or minimum risk) training. In particulér,
we need to compute the normalizer, or partition function, Z; for each input z; and its
gradient (A.21).!

Instead of the (score of the) best tree, the partition function requires the sum of scores
of all trees. For grammars amenable to dynamic programming, this is precisely the quantity
computed by the inside algorithm. Goodman (1999) presented the relationship between
the maximization and summing algorithms as a change of semiring. In brief, we can
derive the inside algorithm (algorithm B.2) by replacing the maximization operations in

algorithm B.1 with summations.

Algorithm B.2 Find the total score of all projective trees with edge-factored weights

1: function EFINSIDE(u, n) > Edge weight array v and sentence length n
2: Cli,i,d,c] < 0,Vi€ {0..n},d € {L,R},c e {0,1}

3 for width + 1..n do

4 for: + 0..ndo

5 k < i 4+ width

6: if £ > n then break

7 Cli, k,L,0] Zisj<k(0[i,j, R1]-C[j+ 1,k,L,1] - u(k, 1))

8 Cli, k, R, 0] « Zisjdc(C[i,j, R,1]-C[j+1,k,L,1] - u(i, k))

9: Cli, k,L,1] + ZiSK,C(C[i,j, L,1]-C[j,k,L,0])

10: Cli, k, R, 1] « ZKJ.S,C(C[i,j, R,0] - C[j, k, R, 1])

11: end for

12: end for

13 return C > Total score is C[0,n, R, 1]

14: end function

1For simple (stochastic) gradient descent algorithms (A.13), we in fact need only the gradients, which will
be advantageous when the partition function and its gradient are approximated (§2.7).
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Computing the expected counts of grammar rules or dependency links over all possible
trees (A.21) is often performed by the inside-outside algorithm (Baker, 1979). A an alter-
native to deriving this specialized algorithm (by analogy to the forward-backward algorithm
on trellises for HMM inference), we can perform automatic differentiation on the opera-
tions of the forward algorithm (Griewank, 1988; Griewank and Corliss, 1991; Pearlmutter
and Siskind, 2008). In particular, we can differentiate in the reverse mode, also known
as backpropagation, to get a cubic-time algorithm that computes the gradient of narrower
spans from wider ones (algorithm B.3). Each of the products in B.2.7-10 becomes by the
product rule two or three operations in the gradient algorithm, depending on the number of
factors.

An alternative backpropagation strategy to this explicit program transformation in-
volves the use of a “tape” to record operations on the forward pass, which is then run
backwards to get the gradient (Eisner et al., 2005). If we only need the gradient with

. respect to a few parameters/rules/dependencies, it is more efficient to perform a single for-

ward pass with the expectation semiring (Eisner, 2002).

B.3 Viterbi Outside Scores

A similar program transformation on the best-tree procedure allows us to compute the
“Viterbi outside scores” or “max-marginals” (algorithm B.4). The product of the Viterbi

outside score by the Viterbi inside score for a particular dependency, say 7 — j, gives the
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Algorithm B.3 Find the gradient of the partition function with respect to all edges

1: function EFINSIDEGRADIENT(u, C, n) > Chart C from EFINSIDE
2: g(i,7) < 0,V 4,5 € {0..n}

3. Gli,j,d,c] « 0,Vi,je{0.n},de{L,R},ce {01}

4  G[0,n,R,1] + (C[0,n, R,1])7?

5: for width <— n..1do

6: fori < 0..ndo

7: k + i+ width

8: if £ > n then break

9: for j « (i +1)..k do > Backprop B.2.10
10: Gli,j, R,0] + G[i, 4, R,0] + G[i, k, R, 1] - C[4, k, R, 1]

11: Glj, k, R, 1] «+ G[j, k, R, 1] + G[i, k, R, 1] - C[i, 5, R, 0]

12: end for

13: for j < i..(k—1)do > Backprop B.2.9
14: Gli,j, L, 1] + Gli, 4, L, 1] + G[i, k, L, 1] - C[3, k, L, 0]

15: Glj, k, L,0] < G[j,k, L,0) + G[i, k,L,1] - C[3, 4, L, 1] .

16: end for

17: for j «i..(k—1)do > Backprop B.2.7
18: Gli,j, R, 1] + G[i, 3, R, 1] + G[i, k,L,0] - C[j + 1, k, L, 1] - u(k, )
19: Glj+1,k,L, 1] + G[j +1,k, L, 11+ Gli, k, L,0] - C[i, j, R, 1] - u(k, 5)
20: g(k,%) < g(k,?) + G[i, k,L,0] - C[é, 5, R,1] - C[j + 1,k, L, 1]
21: end for
22: for j < i..(k—1)do ' > Backprop B.2.8
23: Gli, J, R, 1] « G[4, 4, R, 1] + G[3, k, R,0] - C[j + 1, k, L, 1] - u(4, k)
24: Glj+1,k, L, 1]« G[j +1,k, L, 1]+ G[i, k, R,0]- C[i, 4, R, 1] - u(¢, k)
25: g(i, k) « g(i, k) + G[i, k,R,0] - C[i, 5, R, 1] - Clj + 1, k, L, 1]
26: end for
27: end for
28: end for
29: return g

30: end function
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score of the best tree that contains ¢ — j. We can use the outside scores of simpler models
as figures of merit or A* estimates to speed best-first parsing (Klein and Manning, 2003),
we can also use them as messages in max-product belief propagation with combinatorial

factors (Duchi et al., 2006), which we explore further in chapter 2.

B.4 Entropy

To compute the entropy of the distribution over trees, we apply to the inside algorithm
the transformation derived by Hwa (2000) for constituency parsing. As noted by Li and
Eisner (2009), this forward-pass algorithm B.5, which depends on inside scores alone, is
appropriate for calculating the scalar entropy.

We can see from (A.32), however, that the entropy can also be calculated from the fea-
ture expectations. For edge-factored dependency models, which have O(n?) scores s(3, 7),
if we have already computed feature expectations using the inside-outside algorithm, it
is therefore always more efficient to add up a quadratic number of scores than to run al-
gorithm B.5 in cubic time. If we want the gradient of the entropy, however, it is more
convenient to apply the gradient transformation to the forward-pass entropy algorithm.

In contrast, we do not need any new machinery to calculate the Rényi entropy and its
gradient: we need only two calls to the inside-outside algorithm. We can see from (A.35)
that we need to calculate log > ;€% and alog Z;. For the former quantity, multiply all

edge scores by « and then run sum all derivations; for the latter, compute Z; as usual.
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Algorithm B.4 Find the outside scores of the best tree

1: function EFMAXGRADIENT(u, C, n) > Chart C from EFMAX
2. g(4,7) «0,Vi,5€{0.n}

32 Gli,j,d,c] «+ 0,Vi,j€{0.n},de{L,R},ce {0,1}

4 G[0,n,R,1] + 1

5: for width < n..1do

6: fori < 0.ndo

7: k i+ width

8: if £ > n then break

9: for j « (i+1)..kdo

10: G[i, j, R,0] «+ max(G[i, j, R,0], G[i, k, R, 1] - Clj, k, R, 1])

11: Glj, k, R, 1] « max(G[j, k, R, 1], G[i, k, R, 1] - C[i, 4, R, 0])

12: end for

13: for j «—i..(k—1)do

14: G[i, j, L, 1] + max(G[i, j, L, 1], G[i, k, L, 1] - C[34, k, L, 0])

15: Glj, k, L, 0] + max(G[j, k, L, 0], G[i, k, L, 1] - C[s, 4, L, 1])

16: end for

17: for j «—i.(k—1)do

18: G[i, j, R, 1] « max(G[i, j, R, 1], G[i, k, L,0]-C[j + 1,k, L, 1] - u(k, 7))
19: Glj+ 1,k, L, 1] + max(G[j + 1,k, L, 1],

G[i, k,L,0] - C[3, 5, R, 1] - u(k, 1))
20: g(k,i) < max(g(k,1),G[i, &k, L,0] - C[¢,5,R,1] - C[j + 1, k, L, 1])
21: end for
22: for j «i.(k—1)do
23: G[i, j, R, 1] « max(G[s, 3, R, 1], G[i, k, R,0]-C[j +1,k, L, 1] - u(3, k))
24: Glj + 1,k, L, 1] + max(G[j + 1,k, L, 1],
Gli, k, R,0] - C[i, 4, R, 1} - u(3, k))

25: g(i, k) + max(g(i, k), G[i, k, R,0] - C[i, j, R, 1} - C[j + 1,k, L, 1])
26: end for
27: end for
28: end for
29: return g

30: end function
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Algorithm B.5 Find the entropy of all projective trees with edge-factored weights
1: function EFENTROPY(u, C, n) " p Chart C form EFINSIDE

2 H[i,i,d,c]+0,Vie€ {0.n},d e {L,R},ce {0,1}

3: for width + 1..n do
4: for i <~ 0..ndo
5: k < i+ width
6: if £ > n then break
7: Hli, k,L,0] + >ici<n(H[4, 5, R1] - C5 + 1k, L, 1] - u(k, 1)
+Cli, 5, R,1]- H[j + 1,k,L,1] - u(k, 1)
+Cli, 5, R, 1] - C[j + 1,k, L, 1] - —u(k,i)log u(k,))
8: H[i,k, R,0] < >, (H[E, 5, R, 1] - Clj + 1,k, L, 1] - u(i, k)
+Cl[i, 4, R, 1) - H[j + 1,k, L, 1] - u(i, k)
+Cli, 5, R,1]-C[j + 1,k, L, 1] - —u(s, k) log u(i, k))
9: Hli,k, L,1] Y., (H[i, 4, L,1] - Cl5, k, L, 0] |
+Cli,5,L,1] - H[j,k,L,0])
10: Hli,k, R, 1] < >, i, (H[i, 5, R,0] - C[4, k, R, 1]
+Cls,4, R,0] - H[j, k, R, 1])
11: end for

12: end for
13: return H[0,n, R, 1]/C[0,n, R, 1] + log C[0,n, R, 1]

14: end function
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B.5 Second-Order Gradients

Computing the gradient of scalar values that happen to use inside and outside costs is
done fairly straightforwardly in cubic time. In some situations, however, we need the full
Hessian.

If we apply the gradient transformation to algorithm B.3, we get a O(n®) algorithm
to compute the Hessian. A tape algorithm to retrace that algorithm while maintaining the
Hessian is also quintic since it needs to pass the O(n?) entries of the Hessian through egch
of O(n?) steps. In many applications, however, we only want O(n)-sized product of the
Hessian times a vector, e.g., the gradient of risk. In contrast, §3.2.4 shows how to compute

the Hessian for nonprojective edge-factored models in O(n?*) time.
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