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Situating the Thesis

• Too much information in the world!

• Most information is represented linguistically.
– Most of us can understand one language or more.

• How can computers help?

• Can NLP systems “build themselves”?



July 13, 2006 3

Modern NLP

Machine Learning / Statistics Linguistics / Cognitive Science

Natural Language Processing

Build models empirically
from data; language

learning and processing
are inference.

Symbolic formalisms for
elegance, efficiency, and

intelligibility.
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An Example:  Parsing

Model

Dynamic
Programming

Algorithm

Discrete Search

Sentence



July 13, 2006 5

Is Parsing Useful?

• Speech recognition (Chelba & Jelinek, 1998)

• Text correction (Shieber & Tao, 2003)

• Machine translation (Chiang, 2005)

• Information extraction (Viola and Narasimhan, 2005)

• NL interfaces to databases (Zettlemoyer & Collins, 2005)

Different parsers for different problems, and

learning depends on the task.
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The Current Bottleneck

• Empirical methods are great when you have enough of
the right data.

• Reliable unsupervised learning would let us more
cheaply:
– Build models for new domains

– Train systems for new languages

– Explore new representations (hidden structures)

– Focus more on applications
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Central Practical Problem of the Thesis

• How far can we get with

unsupervised estimation?

Parse Tree

Model

Dynamic
Programming

Algorithm

Discrete Search

Sentence
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Structured input

Deeper Problem

• How far can we get with

unsupervised estimation?

Structured output

Model

Structured input

Structured input

Structured input

Structured input
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Outline of the Talk

Learning
To

Parse

Learning =
Optimizing a

Function

Improving the
Function

Improving the
Optimizer

Improving the
Function and 
the Optimizer

Multilingual
Experiments

Chapters 1, 2 Chapter 3

Chapters 4, 5, 6

Chapter 7

Maximum Likelihood by EM

Contrastive Estimation

Deterministic Annealing
Structural Annealing

•German
•English
•Bulgarian
•Mandarin
•Turkish
•Portuguese
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Dependency Parsing
• Underlies many linguistic

theories
• Simple model & algorithms

(Eisner, 1996)

• Projectivity constraint →
context-free
(cf. McDonald et al., 2005)

• Unsupervised learning:
– Carroll & Charniak (1992)
– Yuret (1998)
– Paskin (2002)
– Klein & Manning (2004)

Applications:

• Relation extraction
Culotta & Sorenson (2004)

• Machine translation
Ding & Palmer (2005)

• Language modeling
Chelba & Jelinek (1998)

• All kinds of lexical learning
Lin & Pantel (2001), inter alia

• Semantic role labeling
Carerras & Marquez (2004)

• Textual entailment
Raina et al. (2005), inter alia



July 13, 2006 11

A Dependency Tree
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Our Model A (“DMV”)

• Expressible as a SCFG

• Can be viewed as a log-linear model with these
features:
– Root tag is U.

– Tag U has a child tag V in direction D.

– Tag U has no children in direction D.

– Tag U has at least one child in direction D.

– Tag U has only one child in direction D.

– Tag U has a non-first child in direction D.
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Example Derivation of the Model

Klein & Manning, 2004

VBZ
retains

NN
title

NNP
Mr.

NNP
Smith

CD
39

DT
the

IN
of

JJ
chief

JJ
financial

NN
officer

Root tag is VBZ. VBZ has a right child.

VBZ has only 1 right child.

VBZ has NN as right child.

VBZ has a left child. VBZ has NNP as left child.

VBZ has only 1 left child. NNP has a right child. NNP has CD as right child.
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Stochastic and Log-linear CFGs

Model
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Model A is Very Simple!

• Connected, directed trees over tags.
– Tag-tag relationships

– Affine valency model

• No sister effects, even on same side of parent.

• No grandparent effects.

• No lexical selection, subcategorization, anything.

• No distance effects.

O(n5) naïve;
O(n3)

(Eisner & Satta, 
1999)
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Evaluation

Treebank tree (gold standard)

hypothesis tree

✖ ✖ ✖ ✖ ✖ ✖✔ ✔ ✔

Accuracy = 3 / (3 + 6) = 33.3%
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Evaluation

Treebank tree (gold standard)

hypothesis tree

✖ ✔ ✖ ✔ ✖ ✖✔ ✔ ✔

Undirected Accuracy = 5 / (5 + 4) = 55.5%
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Fixed Grammar, Learned Weights

Model

Context-Free
Grammar

(production rules)

Rule weights

All dependency trees on all tag
sequences can be derived.

How do we learn the weights?

  

! 

r 
" 
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Maximum Likelihood Estimation
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Expectation-Maximization

• Hillclimber for the likelihood function.

• Quality of the estimate depends on the starting point.

Rule weights
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EM for Stochastic Grammars

• E step
Compute expected rule counts for each sentence:

• M step
Renormalize counts into multinomial distributions.
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Experiment

• WSJ10:  5300 part-of-speech sequences of length ≤10

• Words ignored, punctuation stripped

• Three initializers:
– Zero:  all weights set to zero

– K&M:  Klein and Manning (2004), roughly

– Local:  Slight variation on K&M, more smoothed

• 530 test sentences
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Experimental Results:  MLE/EM

MLE/EM

26.074958.922.8Local

25.166262.141.7K&M

26.074958.822.7Zero

-062.139.5Attach-Right

-062.122.6Attach-Left

Cross-
Entropy

Iterations
Undirected

Accuracy
(%)

Accuracy
(%)
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Dirichlet Priors for PCFG Multinomials

• Simplest conceivable smoothing:  add-λ

• Slight change to M step:

! 

"
r

i+1( ) = log c
r

+ #( ) $ Z

As if we saw each event an additional λ times.

This is Maximum a Posteriori estimation, or “MLE with a prior.”

How to pick λ? 



July 13, 2006 25

Model Selection

Supervised selection:  best accuracy on annotated
development data (presented in talk)

Unsupervised selection:  best likelihood on unannotated
development data (given in thesis)

Rule weightsλ 

Rule weightsλ 

Rule weightsλ 

…

Best on
development

dataset

Rule weights
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Model Selection

Advantages:
• Can re-select later for different applications/datasets.
Disadvantages:
• Lots of models to train!
• Still have to decide which λ values to train with.

Rule weightsλ 

Rule weightsλ 

Rule weightsλ 

…

Best on
development

dataset

Rule weights
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Experimental Results:  MAP/EM

MLE/EM

26.074958.922.8Local

25.544962.241.6
MAP/EM (sel. λ,

initializer)

25.166262.141.7K&M

26.074958.822.7Zero

-062.139.5Attach-Right

Cross-
Entropy

Iterations
Undirected

Accuracy
(%)

Accuracy
(%)
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“Typical” Trees

Treebank

learned model
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Good and Bad News About Likelihood



July 13, 2006 30

Selection over Random Initializers
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On Aesthetics

 Hyperparameters should be interpretable.

 Reasonable initializers should perform reasonably.
• These are a form of domain knowledge that should help,

not hurt performance.

• If all else fails, “Zero” (maxent) initializer should perform
well.

Can we have both?
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Where are we?

Learning
To

Parse

Learning =
Optimizing a

Function

Improving the
Function
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Likelihood as Teacher

Red leaves don’t
hide blue jays.

Mommy doesn’t
love you.

Dishwashers are
a dime a dozen.

Dancing granola
doesn’t hide blue jays.
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Probability Allocation

Σ*

observed
sentences



July 13, 2006 35

What We’d Like

• Focus on the model on the properties of the data that
will lead to an explanation of syntax.

Red leaves don’t hide blue jays.

*Jays blue hide don’t leaves red.

*Blue don’t hide jays leaves red.

*Hide don’t blue jays red leaves.

• Idea:  train model to explain order but not content.
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Contrastive Estimation
(Smith & Eisner, 2005)

Σ*

observed
sentences

implicitly
negative
sentences
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Maximum Likelihood Estimation
vs. Contrastive Estimation

MLE/MAP:
observed data are

Sentences,
neighborhood is Σ*
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Partition Neighborhood = Conditional EM

Σ*

observed
sentences

implicitly
negative
sentences
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Riezler’s (1999) Approximation

Σ*

observed
sentences
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Analogy to Conditional Estimation
(Supervised)

Σ*

Y
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CE for Syntax

Σ*

observed
sentences

Same content,
syntactically
ill-formed
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CE as Teacher

Red leaves don’t
hide blue jays.

Leaves red don’t
hide blue jays.

Red don’t leaves
hide blue jays.

Red leaves hide don’t
blue jays.
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Optimizing Contrastive Likelihood
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Getting Rid of Simplex Constraints
• PCFGs represent distributions p(tree, sentence).

• So do some WCFGs - if you can normalize.
(Requires a finite sum over all derivation scores.)

PCFGs and WCFGs represent the same family.

• PCFGs represent p(tree | sentence).

• So do some WCFGs - if you can normalize.
(Requires a finite sum over all sentence derivations.)

PCFGs and WCFGs represent the same conditional family.

Chi (1999) Abney et al. (1999)

Smith and Johnson (2005)
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Optimizing Contrastive Likelihood
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Summing over N(x)

• Dynamic programming saves the day again!
• If the set N(x) is represented as a lattice, we can

apply the usual Inside-Outside algorithm with a slight
change.

a b c

Dynamic
Programming

Algorithm

a b c

a b c
c b
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Original Idea:  Word Order

N(x) = all permutations of x

• Up to |x|! reorderings and requires lattic e with
O(2|x|) arcs

• Tradeoff:  we want
– A small lattice

– A neighborhood that includes as many conceivable negative
examples as possible

– A neighborhood that has few false negative examples
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Crude Lattice Neighborhoods

• Mangle the syntax of the sentence by locally
reordering and/or deleting some tags.

Transpose 1 Dynasearch

Delete 1
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Midpoint Joke
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CE Computation

Dynamic
Programming

Algorithm

Dynamic
Programming

Algorithm
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Experimental Results:  CE

65.347.6Dynasearch (sel. σ2, init.)

53.539.7Del1 (sel. σ2, init.)

69.057.6Del1OrTrans1 (sel. σ2, init.)

62.541.2Trans1 (sel. σ2, init.)

62.241.6MAP/EM (sel. λ, initializer)

64.945.5Length (sel. σ2, init.)

62.139.5Attach-Right

Undirected
Accuracy

(%)

Accuracy
(%)
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Experimental Results:  Del1OrTrans1
LocalK&MZero

61.8

62.2

58.9

58.8

62.1

Undir.
(%)

48.4

48.6

41.6

41.7

39.5

Dir.
(%)

65.4

64.9

62.2

62.2

62.1

Undir.
(%)

69.057.635.8
Del1OrTrans1

(unreg.)

59.424.423.8 MAP/EM (sel. λ)

69.057.636.4
Del1OrTrans1

(sel. σ2)

58.922.822.7MLE/EM

62.139.539.5Attach-Right

Undir.
(%)

Dir.
(%)

Dir.
(%)
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“Typical” TreesTreebank MAP/EM

CE
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Cause for Concern?
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Bonus!
• Log-linear grammars can model more features.

• Smith & Eisner (2005):  in HMM estimation from
unlabeled data, spelling features can make up for
worse dictionaries.

• In thesis:  Model U
– Not representable as a stochastic model (only log-linear)
– Improvement with spelling features (poor man’s

lexicalization)
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Where are we?

Learning
To

Parse

Learning =
Optimizing a

Function

Improving the
Function

 



Improving the
Optimizer 
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Expectation-Maximization

• Hillclimber for the likelihood function.

• Quality of the estimate depends on the starting point.

Rule weights
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" 

r 
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! 

r 
" 

Can we improve the
search procedure to

avoid getting stuck on
local optima?
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Deterministic Annealing

Rose et al. (1990)

Ueda and Nakano (1998)
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EM as Coordinate Ascent

Neal and Hinton (1998)
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Deterministic Annealing

Model Model Model Model

High entropy required No entropy constraint

time
β ⋲ 0 β = 1
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Skewed
Deterministic Annealing
(Smith and Eisner, 2004)

Clever initializer
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Skewed Deterministic Annealing

Model

Low divergence from initializer No divergence constraint

time
β ⋲ 0 β = 1

ModelModelModel
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Optimizers of Likelihood

27.92

22.12

26.07

Cross-
entropy

(training)

46.7

34.8

41.6

Accuracy
(s-sel.; %)

✔✔
Skewed DA

✔✖
DA

✖✔
EM

Tries to
avoid local

optima

Can exploit
good

initializer

Supervised selection applied across
initializers, λ (for EM), and schedule (for DA, SDA).
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Summary So Far
• EM just barely outperforms Attach-Right

• CE training does better with good initializers
Bonus:  log-linear models, so new features can be added

 Concern:  performance gain not consistent on random models

• DA does its job (better likelihood) but doesn’t help accuracy!

• SDA can outperform EM, but not because it avoided a local
optimum.  (Either luck, or effect of search trajectory.)

Objective matters.  Search matters.
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Where are we?

Learning
To

Parse

Learning =
Optimizing a

Function

Improving the
Function

 



Improving the
Optimizer

Improving the
Function and 
the Optimizer
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A Different Approach

• CE:  Domain knowledge defines neighborhood
– Define what structure is supposed to “explain”

• DA/SDA:  “Managed” difficulty improves search
– Easy function → difficult function

• Structural Annealing:
– Domain knowledge informs our ideas about search difficulty
– Easy structures → difficult structures
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Short Dependency Preference

1 1 1 1 12
22 3
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Dependency Length Distribution
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A Locality Feature (Model L)
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Structural Annealing

•Early:  Big penalty for long attachments
(δ << 0)

 … gradually increase δ …
•Later:  No penalty

(δ = 0)

(Keep going, using development data to decide
when to stop.)
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Two Views of SA

• Search View:  We start with an easier objective and
move to a harder one.

• Objective Function View:
– We added a feature to the model, during training.

– Its weight is trained in a different way, because we know
roughly what it should be.

– Adding a feature changes the objective.
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Experimental Results:  SA

∞, Local69.057.6CE/Del1OrTrans1 (sel. σ2, init.)

10, -0.6,
Zero

69.461.8Locality Bias (sel. λ, δ, init.)

10-2/3, K&M62.241.6MAP/EM (sel. λ, initializer)

10, -0.6, 0.1,
0.1, Zero

73.166.7
Structural Annealing

(sel. λ, δ0, ∆δ, δf, init.)

-62.139.5Attach-Right

Hyper-
parameters

Undirected
Accuracy

(%)

Accuracy
(%)
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Structural Annealing Performance

Zero initializer, λ = 10
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“Typical” TreesTreebank MAP/EM

MAP/SA
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Path Analysis
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Path Analysis

Attach-Right

CE/Del1OrTrans1

MAP/EM

MAP/SA

Distribution over distance from
a tag to its true parent, in the

hypothesized (undirected) tree.
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CE and SA

65.5 / 72.366.7 / 73.1Annealed bias

63.5 / 71.561.8 / 69.4Fixed bias

57.6 / 69.0)41.6 / 62.2(No bias

CE
(Del1OrTrans1)MAP

objective

search
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Another Structural Feature

• “Model S” - just like Model A, but allows broken trees
(roots modeled by unigram distribution).

• Gradually in crease bias toward connectedness.

• Decode with Model A.

Undirected
(%)

Directed (%)

68.858.4(anneal β)

67.055.6Model S (fix β)

62.241.6Model A (MAP/EM)
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Decoding under Model S
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On Supervision

size of development set

directed accuracy (%) Use SA if you
have <50 trees
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Where are we?

Learning
To

Parse

Learning =
Optimizing a

Function

Improving the
Function

 



Improving the
Optimizer

Improving the
Function and 
the Optimizer

Multilingual
Experiments 
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Experimental Setup

• Similar to English:
– Part-of-speech tags only, sequences of ≤10 tags after

stripping punctuation

– ⋲500 development, ⋲500 test sentences

• Training:
– 8K German (Tiger)

– 5K English (WSJ) & Bulgarian (BulTreeBank)

– 3K Mandarin (Penn Chinese) & Turkish (METU-Sabanci)

– 2K Portuguese (Bosque)

• Supervised model selection
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Multilingual Experiments

86.572.572.379.282.583.7supervised

50.562.358.058.766.771.8MAP/SA

50.462.351.149.261.861.3MAP/δ

71.859.041.140.557.663.4CE

42.348.050.045.641.654.4MAP/EM

29.561.842.923.839.547.0Attach-
Right

36.26.613.137.222.68.2Attach-Left

PortugueseTurkishMandarinBulgarianEnglishGerman
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Multilingual Experiments
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Future Work
• Hyperparameter selection should be part of optimization.

– More Bayesian (and expensive) approach:  optimize hyperparameters,
integrating out the parameters!

• Better models that can capture lexical effects.
– “Anneal” from Model A into such models?

• Learning & testing on longer sentences.
– Structural annealing might be even more helpful!

• Better or more task-focused CE neighborhoods?

• Other kinds of structure
– Cross-lingual structure (word alignments, trees, etc.)

– Morphology, semantics, discourse, tertiary protein structure …
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Conclusion

• Explored two key dimensions of unsupervised
structure learning:
– What do you optimize?  (objective function)

– How do you optimize it?  (search)

Both are important!

• Five-fold increase in “labeled data threshold.”

• State-of-the-art performance on all 6 languages tested.

• Two clean ways to improve unsupervised modeling
using domain knowledge:  CE, SA
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Key Contributions

• Novel generalization of partial-data MLE to incorporate
implicit negative evidence (CE).
– Bonus:  easier training of log-linear models (with arbitrary features)

• Novel generalization of deterministic annealing to
exploit good initializers (SDA).

• Novel parameter search technique allowing the use of
domain knowledge to start simple and gradually push
the model toward difficult structures (SA).

• Significant accuracy improvements on weighted
grammar induction in six diverse languages.
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Other Contributions Not in Thesis
• WCFG = SCFG (as conditional distributions)

(Smith & Johnson, in review)
• Vine grammar:  regular dependency grammars

(Eisner & Smith, 2005)
• Multilingual NLP:

Korean/English parsing (Smith & Smith, 2004)
State-of-the-art morphological disambiguation for Korean, Arabic, and Czech (Smith,
Smith, & Tromble, 2005)
Fast, precise vine parsing for 13 languages (Dreyer, Smith, & Smith, 2006)

Contributor to:
• Dyna language ror weighted dynamic programming (Eisner, Goldlust, & Smith, 2004, 2005)

• STRAND bilingual text mining system (Resnik, 1999; Resnik and Smith, 2003)

• Egypt statistical machine translation toolkit (Al-Onaizan et al., 1999, Smith & Jahr, 2000)
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Model A, Supervised

• MLE:  82.5% accuracy, 84.8% undirected
• MAP (oracle λ):  82.8%, 85.1%

• MCLE (unreg.):  83.9%, 86.6%

• MLE (train on Sections 2-21):  70.4% (Section 23)
– With distance model:   75.6% (Eisner & Smith, 2005)

McDonald et al. (2006):  91.5%
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Motivation
• Goal of NLP:  build software that does useful things with

language.
– Transcribe spoken language.

– Digitize printed language.

– Find & present information from text & speech databases.

– Translate between languages.

• Does this have anything to do with human intelligence?

Maybe.

Success will have everything to do with understanding language.
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7-fold cross-validation
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