
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Learning Multivariate Distributions
by Competitive Assembly of Marginals

Francisco Sánchez-Vega, Jason Eisner, Laurent Younes, and Donald Geman.
Johns Hopkins University, Baltimore, MD, USA

Abstract—We present a new framework for learning high-dimensional multivariate probability distributions from estimated
marginals. The approach is motivated by compositional models and Bayesian networks, and designed to adapt to small sample
sizes. We start with a large, overlapping set of elementary statistical building blocks, or “primitives”, which are low-dimensional
marginal distributions learned from data. Each variable may appear in many primitives. Subsets of primitives are combined in
a lego-like fashion to construct a probabilistic graphical model; only a small fraction of the primitives will participate in any valid
construction. Since primitives can be precomputed, parameter estimation and structure search are separated. Model complexity
is controlled by strong biases; we adapt the primitives to the amount of training data and impose rules which restrict the merging
of them into allowable compositions. The likelihood of the data decomposes into a sum of local gains, one for each primitive in the
final structure. We focus on a specific subclass of networks which are binary forests. Structure optimization corresponds to an
integer linear program and the maximizing composition can be computed for reasonably large numbers of variables. Performance
is evaluated using both synthetic data and real datasets from natural language processing and computational biology.

Index Terms—graphs and networks, statistical models, machine learning, linear programming

F

1 INTRODUCTION

P ROBABILISTIC graphical models provide a po-
werful tool for discovering and representing the

statistical dependency structure of a family of random
variables. Generally, these models exploit the duality
between conditional independence and separation in
a graph in order to describe relatively complex joint
distributions using a relatively small number of para-
meters. In particular, such graded models are poten-
tially well-adapted to small-sample learning, where
the bias-variance trade-off makes it necessary to invest
in model parameters with the utmost care. Learning
models with a very reduced number of samples is
no more difficult than with a great many. However,
arranging for such models to generalize well to un-
seen sets of observations, i.e., preventing them from
overfitting the training data, remains an open and
active area of research in the small-sample domain.

The introduction of carefully chosen topological
biases, ideally consistent with prior domain know-
ledge, can help to guide learning and avoid model
overfitting. In practice, this can be accomplished by
accepting a restricted set of graph structures as well as
by constraining the parameter space to only encode a

• F. Sánchez-Vega, L. Younes and D. Geman are with the Department
of Applied Mathematics and Statistics, The Center for Imaging
Science and the Institute for Computational Medicine, Johns Hopkins
University, 3400 N. Charles St., Baltimore, MD 21218. E-mail:
sanchez, laurent.younes, geman@jhu.edu.

• Jason Eisner is with the Department of Computer Science and the
Center for Language and Speech Processing, Johns Hopkins University,
3400 N. Charles St., Baltimore, MD 21218. E-mail: jason@cs.jhu.edu

restricted set of dependence statements. In either case,
we are talking about the design of a model class in
anticipation of efficient learning.

Our model-building strategy is “compositional” in
the sense of a lego-like assembly. We begin with a set
of “primitives” — a large pool of low-dimensional,
candidate distributions. Each variable may appear in
many primitives and only a small fraction of the
primitives will participate in any allowable construc-
tion. A primitive designates some of its variables as
input (α variables) and others as output (ω variables).
Primitives can be recursively merged into larger dis-
tributions by matching inputs with outputs: in each
merge, one primitive is designated the “connector”,
and the other primitives’ α variables must match a
subset of the connector’s ω variables. Matched vari-
ables lose their α and ω designations in the result.
The new distribution over the union of variables is
motivated by Bayesian networks, being the product of
the connector’s distribution with the other primitives’
distributions conditioned on their α nodes. In fact,
each valid construction is uniquely identified with a
directed acyclic graph over primitives.

The process is illustrated in Fig. 1 for a set of
fourteen simple primitives over twelve variables. This
figure shows an example of a valid construction with
two connected components using six of the primitives.
The form of the corresponding twelve-dimensional
probability distribution will be explained in the text.
Evidently, many other compositions are possible.

We seek the composition which maximizes the like-
lihood of the data with respect to the empirical distri-
bution over the training set. Due to the assembly pro-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Fig. 1. Simple example of primitives and assemblies.

cess, the global “score” (i.e., expected log-likelihood)
of any valid composition decomposes into a sum of
local scores, one for each participating primitive; these
scores are themselves likelihood ratios corresponding
to the gain incurred in fusing the individual variables
into the primitive distribution relative to indepen-
dent variables. This decomposition has several con-
sequences. First, all scores can be precomputed; con-
sequently, parameter estimation (building primitives)
and model construction (competitive assembly) are
separated. That is, once the primitives are learned the
process is data-independent. Second, in many cases,
searching over all decompositions for valid composi-
tions can be done by integer linear programming.

The primary intended application is molecular net-
work modeling in systems biology, where it is com-
mon to encounter a complex underlying dependency
structure among a large number of variables and yet
a very small number of samples, at least relative to
other fields such as vision and language. DNA mi-
croarrays provide simultaneous snap-shot measure-
ments of the levels of expression of thousands of
genes inside cells [1], [2], [3]. However, the number of
profile measurements per experimental study remains
quite small, usually fewer than a few hundreds. Simi-
larly, advances in genotyping microarrays currently
make it possible to simultaneously detect single nu-
cleotide polymorphisms (SNPs) over millions of loci
practically covering the entire genome of an organism,
while the number of individuals in any given study
remains orders of magnitude smaller [4], [5], [6].
Thus, any attempt to infer generalizable multivariate
distributions from these data, in particular correla-
tion patterns or even higher-dimensional interactions,
must deal with well-known trade-offs in computa-
tional learning theory between sample size and model
complexity [7], and between bias and variance [8].

Our proposals for model-building and complexity
control are illustrated with both synthetic and real
data. In the former case, experiments include measur-
ing the KL divergence between the optimal composi-
tion and the true distribution as a function of the sam-
ple size and the number of variables. We compare our
graphs with several well-known methods for “reverse

engineering” networks, including relevance networks
[9], ARACNE [10], CLR [11], which infer graphs from
data, and the K2 algorithm [12] for learning Bayesian
networks. We present two real-data experiments. One
is based on inferring a semantic network from text.
The other involves learning dependencies among mu-
tations of the gene TP53, which plays a central role
in cancer genomics. The substructures in the opti-
mal composition appear biologically reasonable in
the sense of aggregating driver mutations and being
significantly enriched for certain cell functions. Still,
we view our main contribution as methodological,
these experiments being largely illustrative.

After discussing related work in Section 2, we will
present the general theoretical framework for our
models in Section 3, followed by specialization to a
specific subclass based on balanced binary trees. In
Section 4, we will discuss the choice of a statistically
significant set of primitives. These primitives are com-
bined to build the graph structure that maximizes
the empirical likelihood of the observed data under
a given set of topological constraints. In Section 5
we will show how the corresponding optimization
problem can be dealt with using either greedy search
or a more efficient integer linear programming formu-
lation. Section 6 discusses the relationship of the fore-
going approach to maximum a posteriori estimation of
graphical model structure and parameters. After this,
Section 7 presents some results from synthetic data
simulations. In Section 8 we will look at further results
obtained using the 20newsgroups public dataset and
the IARC TP53 Database. Finally, we will provide a
general discussion and we will sketch some directions
for future research.

2 RELATED WORK
Historically, the problem of finding an optimum
approximation to a discrete joint probability distribu-
tion has been addressed in the literature during the
last half century [13]. A seminal paper published by
Chow and Liu in the late sixties already proposed the
use of information theoretic measures to assess the
goodness of the approximation and formulated the
structure search as an optimization problem over a
weighted graph [14]. Improvements to the original al-
gorithm [15] as well as extensions beyond the original
pairwise approach [16] have been proposed. Recently,
the popularity of Bayesian networks combined with
the need to face small-sample scenarios have led to
several works where structural biases are imposed
upon the graphs used to approximate the target dis-
tribution in order to facilitate learning. Bounded tree-
width is an example of such structural constraints.
Even though the initial motivation for this approach
was to allow for efficient inference [17], [18], [19], there
has been work on efficient structure learning [20] and
work that uses this kind of bias to avoid model over-
fitting [21]. Other examples of structural bias aimed

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

at achieving better generalization properties are the
use of L1 regularization to keep the number of edges
in the network under control [22], and constraints
provided by experts [23]. We will discuss in Section 6
how our method is related to these prior approaches.

Compositional representations of entities as hierar-
chies of elementary, reusable parts that are combined
to form a larger whole constitute an active topic of
research in computer vision. Such modeling frame-
works are usually built upon a set of composition
rules, based on parts and combinations of parts, that
progressively define the likelihood of images given
the presence of an object at a given pose [24], [25].
A very simple composition rule, based on each part
voting for the presence of a relevant object around its
location, under the assumption of complex poses, has
been proposed in [26]. The hierarchical structures in-
duced by this kind of aggregation procedures provide
a convenient tool for hardwiring high-level contextual
constraints into the models [27], [28], [29], [30].

Dependency networks, which were proposed in
[31] as an alternative to standard Bayesian networks,
also provide an interesting example of compositional
modeling, since they are built by first learning a set
of small graph substructures with their corresponding
local conditional probabilities. These “parts” are later
combined to define a single joint distribution using
the machinery of Gibbs sampling. In any case, the idea
of combining compositional modeling and Bayesian
networks dates back to the nineties, with the multi-
ply sectioned Bayesian networks (MSBNs) from [32]
and the object-oriented Bayesian networks (OOBNs)
from [33]. Both approaches, as our work, provide
ways to combine a number of elementary Bayesian
networks in order to construct a larger model. The
final structure can be seen as a hypergraph where
hypernodes correspond to those elementary building
blocks and hyperlinks are used to represent relations
of statistical dependence among them. Hyperlinks are
typically associated to so-called “interfaces” between
the blocks, which correspond to non-empty pairwise
intersections of some of their constituting elements.
Even though the actual definition of interface may
vary, it usually involves a notion of d-separation of
nodes at both of its sides within the network. Later on,
the use of a relational structure to guide the learning
process [34] and the introduction of structured data
types based on hierarchical aggregations [35] (antici-
pated in [33]) led to novel families of models.

All of the above approaches must confront the
structure search problem. That is, given a criterion
for scoring graphical models of some kind over the
observed variables, how do we computationally find
the single highest-scoring graph, either exactly or
approximately? Structure search is itself an approxi-
mation to Bayesian model averaging as in [36], but
it is widely used because it has the computational
advantage of being a combinatorial optimization pro-

blem. In the case of Bayesian networks, Spirtes et
al. [37, chapter 5] give a good review of earlier
techniques, while Jaakkola et al. [38] review more
recent alternatives including exact ones. Like many
of these techniques (but unlike the module network
search procedure in [39]), ours can be regarded as
first selecting and scoring a set of plausible building
blocks and only then seeking the structure with the
best total score [23]. We formalize this latter search as
a problem of integer linear programming (ILP), much
as in [38], even if our building blocks have, in general,
more internal structure. However, in the particular
case that we will present in this paper, we search
over more restricted assemblies of building blocks,
corresponding to trees (generalizing [14]) rather than
DAGs. Thus, our ILP formulation owes more to recent
work on finding optimal trees, e.g., non-projective
syntax trees in computational linguistics [40].

3 COMPETITIVE ASSEMBLY OF MARGINALS

In this section, we formulate structure search as a
combinatorial optimization problem — Competitive
Assembly of Marginals (CAM) — that is separated from
parameter estimation. The family of models that we
will consider is partially motivated by this search
problem. We also present a specific subclass of model
structures based on balanced binary forests.

3.1 General Construction
Our objective is to define a class of multivariate
distributions for a family of random variables X =
(Xi, i ∈ D) for D = {1, . . . , d}, where Xi takes values
in a finite set Λ. For simplicity, we will assume that
all the Xi have the same domain, although in practice
each Xi could have a different domain Λi. We shall
refer to the elements of ΛD as configurations.

First we mention the possibility of global, structural
constraints: for each S ⊂ D, we are given a class MS

of “admissible” probability distributions over the set
of subconfigurations ΛS (or over S, with some abuse).
Our construction below will impose MS as a cons-
traint on all joint distributions that we build over S.
To omit such constraint, one can let MS consist of all
probability distributions on S. Let M∗ =

∪
S⊂D MS .

If π ∈ M∗, we will write J(π) for its support, i.e., the
uniquely defined subset of D such that π ∈ MJ(π).

3.1.1 Primitives as Elementary Building Blocks
The main ingredient in our construction is a family T0

of relatively simple probability distributions that we
call primitives. A distribution over X will be in our
class only if it factors into a product of conditional
distributions each of which is specified by a primitive.
The elements of T0 are triplets ϕ = (π,A,O) where
π ∈ M∗ and A,O are subsets of J(π) that serve as
“connection nodes.” A set of five primitives is shown
in Fig. 2. The variables (or “nodes”) in A will be called

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Fig. 2. Example of primitives and merge operations. Left panel shows a set of 5 primitives built from a set of |D| = 25 random variables.
Center panel illustrates a merge operation where primitives ϕ1 and ϕ4 are bound using primitive ϕ3 as a connector. The resulting new
assembly ϕ = Γ(ϕ3, ϕ1, ϕ4) is shown, as well as its associated primitive DAG (where primitives are drawn as pentagons). Right panel shows
the same diagrams for a second merge ϕ′ = Γ(ϕ, ϕ5, ϕ2) where the recently created assembly ϕ acts as a connector to bind ϕ5 and ϕ2.

α-nodes (A being the α-set of primitive ϕ), and the
variables in O will be called ω-nodes (O being the ω-
set of ϕ). We require A,O ̸= ∅ and A ∩ O = ∅. Any
other nodes, J(π) \ (A∪O), are the interior nodes of ϕ.

3.1.2 Compositional Modeling by Primitive Merges

One can combine primitives (conditioning on their α-
sets as needed) to build more complex distributions,
which also have α- and ω-nodes. The merging of
three primitives (ϕ3, ϕ1, ϕ4) is illustrated in the second
panel of Fig. 2. Here ϕ3 serves as the binding primi-
tive, or connector. The merged assembly ϕ is shown at
the top of the third panel and has |A| = 1, |O| = 9.

Formally, given a group of primitives
(ϕ0, ϕ1, . . . , ϕr), where each ϕk = (πk, Ak, Ok), we
define a merged distribution π over S =

∪r
k=0 J(πk) as:

π(xS) = π0(xJ(π0))
r∏

k=1

πk(xJ(πk) | xAk
) (1)

where ϕ0 serves as the connector. (Here and below, xI
(for I ⊂ D) denotes the restriction of x to I , and we
abuse notation by designating joint and conditional
probabilities using the same letter as the original
probability, the set over which they are defined being
implicitly assigned by the variables.)

To ensure that (1) defines a proper distribution, we
may only merge (ϕ0, ϕ1, . . . , ϕr) when

(M1) J(πk)∩ J(π0) = Ak ⊂ O0, for all k = 1, . . . , r.
(M2) J(πk) ∩ J(πl) = ∅ for all k, l = 1, . . . , r, k ̸= l.

(M1) ensures that the α-set of each ϕk matches some
subset of the connector’s ω-set. Together with (M2), it
also ensures that, aside from those matchings, primi-
tives (ϕ0, ϕ1, . . . , ϕr) are over disjoint sets of variables.

We will say that the group (ϕ0, ϕ1, . . . , ϕr) is merge-
able with ϕ0 as connector if (M1) and (M2) are satisfied
and π ∈ MS . We then define the resulting merge
to be the triplet ϕ = (π,A,O) with A = A0 and
O =

∪r
k=0Ok \ ∪r

k=1Ak. So the α-set of a merge is
the α-set of the connector, and its ω-set is the union
of the original ω-sets, from which the α-nodes of the
non-connector primitives are removed (and become
interior nodes in the new structure). This merge or
output will be denoted ϕ = Γ(ϕ0, . . . , ϕr).

The merge operation can now be iterated to form
probability distributions over increasingly large sub-
sets of variables. This is illustrated in the last panel
of Fig. 2, where the merge from the second panel is
itself merged with two of the original primitives. For
S ⊂ D, we will denote by T ∗

S the set of probability dis-
tributions on S that can be obtained by a sequence of
merges as defined above. If S is a singleton, we let, by
convention, T ∗

S = MS . Finally, we let T ∗ =
∪
S⊂D T ∗

S .
We would define our final model class F∗ (of distri-

butions over D) as T ∗
D, except that each distribution in

T ∗
D consists of a single connected component. Instead

we define F∗ as all product distributions of the form

P (x) =

c∏

k=1

πk(xJ(πk)) (2)

where J(π1), . . . , J(πc) partition D and πk ∈ T ∗
J(πk).

The size and complexity of F∗ are limited by two
choices that we made earlier: the set of initial primi-
tives T0, and the set of admissible distributions M∗.
Note that for S (D, the constraints imposed by MS

on intermediate merges may be redundant with the
final constraints imposed by MD (as in Section 3.3
below), or may instead act to further restrict F∗.

The final distribution P is a product of (conditional-
ized) primitives, whose relationships can be captured
by a directed acyclic graph. Indeed, in view of (1),
there is an evident connection with Bayesian networks
which is amplified in the proposition below.

3.1.3 Atomic Decompositions and Primitive DAGs
Given Ψ = {ψ1 . . . , ψN} ⊂ T0, we will let TΨ

denote the subset of T ∗ obtained by iterations of
merge operations involving only elements of Ψ or
merges built from them. Equivalently, TΨ is the set
of distributions obtained by replacing T0 by Ψ in the
construction above. If ϕ ∈ T ∗, we will say that a
family of primitives Ψ = {ψ1 . . . , ψN} ⊂ T0 is an
atomic decomposition of ϕ if Ψ is a minimal subset of
T0 such that ϕ ∈ TΨ (i.e., ϕ can be built by merges
involving only elements of Ψ and all elements of Ψ are
needed in this construction). If P ∈ F∗ is decomposed
as in (2), an atomic decomposition of P is a union
of atomic decompositions of each of its independent
components. Finally, let T ∗

0 (resp. F∗
0) be the set of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

atomic decompositions of elements of T ∗ (resp. F∗).
The set of roots in the atomic decomposition Ψ ∈ T ∗

0

is denoted RΨ and defined as the set of indices k such
that Ak ∩ J(πl) = ∅ for all k, l = 1, . . . , r, k ̸= l.

Proposition 1. Let Ψ = {ψ1, . . . , ψN} ∈ T ∗
0 with

ψk = (πk, Ak, Ok) and define the directed graph G(Ψ)
on {1, . . . , N} by drawing an edge from k to l if and only
if Al ⊂ Ok. Then G(Ψ) is acyclic.

This proposition is part of a larger one, Proposition
S.1, which is stated and proved in Appendix I (see
supplemental material). The acyclic graph G(Ψ) is
illustrated in Fig. 2 for the merges depicted in the mid-
dle and right panels. Notice that the nodes of these
graphs are primitives, not individual variables. Con-
sequently, our models are Bayesian networks whose
nodes are overlapping subsets of our variables X.

3.1.4 Generalization Using Weaker Merging Rules
We remark that the constraints defining merging rules
could be relaxed in several ways, resulting in less
restricted model families. For example, one could
replace (M2) by the weaker condition that supports
of non-connectors may intersect over their α-sets, i.e.,

(M2)’ J(πk) ∩ J(πl) ⊂ Ak ∩Al.
Similarly, one can remove the constraint that ω-sets
do not intersect α-sets within a primitive, allowing for
more flexible connection rules, as defined by (M1) (the
ω-set after merging would then simply be the union
of all previous ω-sets, without removing the α-sets).
Such modifications do not affect the well-posedness
of (1). An extreme case is when primitives contain all
possible pairs of variables, (M2) is replaced by (M2)’
and the ω-set constraint is relaxed. Then our model
class contains all possible Bayesian networks over the
variables (i.e., all probability distributions).

3.2 Likelihood
We now switch to a statistical setting. We wish to
approximate a target probability distribution P ∗ on
ΛD by an element of F∗. This will be done by mini-
mizing the Kullback-Leibler divergence between P ∗

and the model class. Equivalently, we maximize

L(P) = EP∗(logP) =
∑

x∈Λd

P ∗(x) logP (x), (3)

where P ∈ F∗. Typically, P ∗ is the empirical distribu-
tion obtained from a training set, in which case the
procedure is just maximum likelihood.

Let each primitive distribution be parametric, ϕ =
(π(·; θ), A,O), where θ is a parameter defined on a set
Θϕ (which can depend on ϕ). From the definition of
merge, it is convenient to restrict the distributions in
F∗ by separately modeling the joint distribution of
the α-nodes and the conditional distribution of the
other nodes given the α-nodes. Therefore, we assume
θ = (σ, τ), where the restriction of π to A only depends

on σ and the conditional distribution on J(π)\A given
xA only depends on τ , i.e.,

π(xJ(π); θ) = π(xA;σ)π(xJ(π)\A | xA; τ).

We assume that single-variable distributions are un-
constrained, i.e., there is a parameter Pj(λ) for each
λ ∈ Λ, j ∈ D.

In order to maximize L, we first restrict the pro-
blem to distributions P ∈ F∗ which have an atomic
decomposition provided by a fixed family Ψ =
{ψ1, . . . , ψN} ∈ F∗

0 . Afterwards, we will maximize the
result with respect to Ψ. Let θk = (σk, τk) ∈ Θψk

, k =
1, . . . , N and let ℓ(θ1, ..., θN) be the expected log-
likelihood (3). Rewriting the maximum of ℓ based on
likelihood ratios offers an intuitive interpretation for
the “score” of each atomic decomposition in terms of
individual likelihood gains relative to an independent
model. For any primitive ϕ = (π(·; θ), A,O), define

ρ(ϕ) = max
θ
EP∗ log π(XJ(π); θ) (4)

− max
σ

EP∗ log π(XA;σ) +
∑

j∈J(π)\A
H(P ∗

j),

where H(P ∗
j) = −EP∗

j
(logP ∗

j). This is the expected
log-likelihood ratio of the estimated parametric model
for Ψ and an estimated model in which i) all variables
in J \A are independent and independent from vari-
ables in A, and ii) the model on A is the original one
(parametrized with σ). We think of this as an internal
binding energy for primitive ϕ. Similarly, define

µ(ϕ) = max
σ

EP∗ log π(XA;σ) +
∑

j∈A
H(P ∗

j), (5)

the expected likelihood ratio between the (estimated)
model on A and the (estimated) model which decou-
ples all variables in A. Then it is rather straightfor-
ward to show that the maximum log-likelihood of
any atomic decomposition decouples into primitive-
specific terms. The proof, which resembles that of the
Chow-Liu theorem [14], is provided in Appendix II.

Proposition 2. Let ℓ(θ1, · · · , θN) be the expected
log-likelihood of the composition generated by Ψ =
(ψ1, . . . , ψN) ∈ F∗

0 . Then

max
θ1,...,θN

ℓ(θ1, · · · , θN) = ℓ∗(Ψ) −
∑

j∈D
H(P ∗

j)

where

ℓ∗(Ψ) =
∑

k∈RΨ

µ(ψk) +
N∑

k=1

ρ(ψk). (6)

Since the sum of entropies does not depend on Ψ,
finding an optimal approximation of P ∗ “reduces”
to maximizing ℓ∗ over all possible Ψ. More precisely,
finding an optimal approximation requires computing

Ψ̂ = argmax
Ψ∈F∗

0

ℓ∗(Ψ) (7)

(with optimal parameters in (4) and (5)).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

The important point is that the values of all ρ’s
and µ’s can be precomputed for all primitives. Con-
sequently, due to (6), any valid composition can be
scored based only on the contributing primitives.
In this way, parameter estimation is separated from
finding the optimal Ψ. Obviously, the constraint Ψ ∈
F∗

0 is far from trivial; it requires at least that Ψ satisfy
conditions (i) and (ii) in Proposition S.1 (Appendix I).
Moreover, computing Ψ̂ typically involves a complex
combinatorial optimization problem. We will describe
it in detail for the special case that is our focus.

3.3 Balanced Compositional Trees

We now specialize to a particular set of constraints
and primitives. In everything that follows, we will
assume a binary state space, Λ = {0, 1}, and restrict
the admissible distributions M∗ to certain models that
can be represented as trees (or forests), for which
we introduce some notation. We call this subclass of
models balanced compositional trees.

If T is a tree, let J(T) ⊂ D denote the set of nodes
in T . For s ∈ J(T), s+ denotes the set of children of s
and s− the set of its parents. Because T is a tree, s−

has only one element, unless s is the root of the tree,
in which case s− = ∅. We will say that T is binary if
no node has more than two children, i.e., |s+| ≤ 2 (we
allow for nodes with a single child). If s+ = ∅ then
s is called a terminal node, or leaf, and we let L(T)
denote the set of all leaves in T . If s has two children,
we will arbitrarily label them as left and right, with
notation s.l and s.r. Finally, Ts will denote the subtree
of T rooted at s, i.e., T restricted to the descendants
of s (including s). We will say that T is almost-balanced
if for each s ∈ J(T) such that |s+| = 2, the number of
leaves in Ts.l and Ts.r differ in at most one unit.

Probability distributions on ΛJ(T) associated with
T are assumed to be of the form:

π(xJ(T)) = p0(xs0)
∏

s∈J(T)\L(T)

ps(xs+ | xs) (8)

where s0 is the root of T , p0 is a probability dis-
tribution and ps, s ∈ J(T) \ L(T) are conditional
distributions. This definition slightly differs from the
usual one for tree models in that children do not have
to be conditionally independent given parents.

For S ⊂ D, we will let MS denote the set of models
provided by (8), in which T is an almost-balanced
tree such that J(T) = S. The balance constraint is
introduced as a desirable inductive bias intended to
keep the depth of the trees under control. The set
T0 will consist of primitives ϕ = (π,A,O) where π
is a probability distribution over a subset J ⊂ D
with cardinality two or three; A (the α-set) is always
a singleton and we let O = J \ A. Primitives will
be selected based on training data, using a selection
process that will be described in the next section.

Fig. 3. Illustration of a set of primitives and an atomic decomposi-
tion for compositional trees. Left panel shows a pool of 15 primitives
built from 23 variables. The encircled ones constitute an atomic
decomposition for the four-component model depicted in the top-right
panel. The center and bottom right panels show the corresponding
DAGs of primitives and variables, respectively. In the last graph,
dashed lines are used to link siblings within the same primitive.

Because α-sets have cardinality one, we have
µ(ϕ) = 0 for all ϕ ∈ T0 (where µ is defined in (5)),
and (6) boils down to maximizing

ℓ∗(Ψ) =
N∑

k=1

ρ(ψk) (9)

over F∗
0 . The description of F∗

0 and of our maximiza-
tion procedures is given in Section 5.

An example of a set of primitives that can be used
to build balanced compositional trees is presented in
Fig. 3, together with a sequence of elementary merges.

4 PRIMITIVE SELECTION

From here, we restrict our presentation to the
particular case of balanced compositional trees. We
discuss selecting an initial set of primitives T0 and
estimating their parameters. We justify the need for
a lower bound on the empirical likelihood gain for
each accepted primitive and we describe a procedure
for choosing this threshold based on controlling the
expected number of false positives under the null
hypothesis of mutual independence.

4.1 Stepwise Dependency Pursuit

We first specify the allowed representations for pri-
mitives, ϕ = (π(·; θ), A,O). Primitives are defined over
pairs or triplets in D. With pairs, we allow π to be any
distribution on {0, 1}2. More precisely, letting A = {s}
and O = {t}, and using notation from Section 3.2, we
let σ = πs(1) and τ = (πt(1 | xs = 0), πt(1 | xs = 1)).

For triplets, we introduce several levels of comple-
xity, each adding a single parameter to the joint distri-
bution. Let A = {s} and O = {u, v}. We can make the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

joint distribution of (Xs, Xu, Xv) progressively more
general with the following steps:

(1) Xs, Xu, Xv are independent (3 parameters).
(2) Xv⊥(Xs, Xu) (4 parameters).
(2′) Xu⊥(Xs, Xv) (4 parameters).
(3) Xu⊥Xv | Xs (5 parameters).
(4) Xu⊥Xv | Xs = 0 (6 parameters).
(4′) Xu⊥Xv | Xs = 1 (6 parameters).
(5) Unconstrained joint (7 parameters).

Case (1) corresponds to the default singletons, and
(2), (2’) involve a pair primitive and a singleton.
“True” triplet distributions correspond to (3) through
(5). The selection process that we now describe will
assign one model to any selected triplet (s, u, v).

If d = |D| is the number of variables, there are
d(d− 1) possible pairs and d(d− 1)(d− 2)/2 possible
triplets. Since we are targeting applications in which d
can reach hundreds or more, limiting the pool of pri-
mitives is essential to limiting the complexity of both
statistical estimation and combinatorial optimization.
The selection will be based on a very simple principle:
only accept a primitive at a given complexity level
when the previous level has been accepted and the ex-
pected likelihood increment in passing to the higher-
dimensional model is sufficiently large. So, when
building a primitive ϕ = (π(·; θ), A,O) supported by
a set J , with θ ∈ Θϕ, we will assume a sequence of
submodels Θ1 ⊂ Θ2 ⊂ · · · ⊂ Θq and let Θϕ be indexed
by the largest k such that, for all l = 1, . . . , k − 1

max
θ∈Θl+1

EP∗ log π(XJ ; θ) − max
θ∈Θl

EP∗ log π(XJ ; θ) ≥ η

where η is a positive constant and P ∗ is the empirical
distribution computed from observations. For exam-
ple, to form a pair primitive over J = {u, v}, we
compare the joint empirical distribution over J (which
estimates three parameters) to the one for which
Xu and Xv are independent (which estimates two
parameters), and we accept the pair primitive if

EP∗ log
P ∗(Xu, Xv)

P ∗(Xu)P ∗(Xv)
≥ η(2). (10)

(For simplicity, we are just writing P ∗(Xu, Xv) for the
empirical joint distribution of Xu, Xv; in each case
the meaning should be clear from context.) In fact,
we accept two primitives if this inequality is true:
one for which u is the α-node and v the ω-node,
and one for which the roles are reversed. Note that
selection for pairs reduces to applying a lower bound
on the mutual information, the same selection rule as
in relevance networks [9].

For triplets, we will apply the analysis to the se-
quence of models (1), (2)/(2’), (3), . . . above. For
example, to accept a triplet that corresponds to model
(3), we first require that model (2) (or (2’)) is preferred
to model (1), which implies that either the pair (s, u)
or the pair (s, v) is accepted as a primitive using (10).

We then demand that model (3) is significantly better
than, say, model (2), meaning that

EP∗ log
P ∗(Xu | Xs)P

∗(Xv | Xs)

P ∗(Xu | Xs)P ∗(Xv)
≥ η(3). (11)

To select model (4), we need model (3) to have been
selected first, and then, defining

P̂ (xu, xv | xs) =

{
P ∗(xu | xs)P ∗(xu | xs) if xs = 0

P ∗(xu, xv | xs) if xs = 1,

we will require

EP∗ log
P̂ (Xu, Xv | Xs)

P ∗(Xu | Xs)P ∗(Xv | Xs)
≥ η(4). (12)

Selecting model (5) is done similarly, assuming that
either model (4) or (4)’ is selected.

4.2 Determination of the Selection Threshold
The threshold η determines the number of selected
primitives and will be based on an estimation of the
expected number of false detections. At each step of
the primitive selection process, which correspond to
the five numbered steps from above, we will assume
a null hypothesis consistent with the dependencies
accepted up to the previous level and according to
which no new dependencies are added to the model.
We will define η to ensure that the expected number of
detections under this null is smaller than some ϵ > 0,
which will be referred to as the selection threshold.

We will fix η(2) such that the expected number of
selected pairs under the assumption that all variables
are pairwise independent is smaller than ϵ. Assuming
that m(2) pairs have been selected, we will define η(3)
to ensure that the expected number of selected triplets
of type (3) is smaller than ϵ, under the assumption that
any triplet of variables must be such that at least one
of the three is independent from the others. Similarly,
assuming that m(3) triplets are selected, η(4) will be
chosen to control the number of false alarms under
the hypothesis of all candidates following model (3).
In some sense, selection at each level is done condi-
tionally to the results obtained at the previous one.

At each step, the expected number of false alarms
from model (k − 1) to (k) can be estimated by ϵ̂,
which is defined as the product of the number of
trials and the probability that model (k) is accepted
given that model (k − 1) is true. Since model (k) is
preferred to model (k − 1) when the likelihood ratio
between the optimal models in each case is larger
than η(k), ϵ̂ will depend on the distribution of this
ratio when the smaller model is true. If the number of
observations, n, is large enough, this distribution can
be estimated via Wilks’ theorem [41] which states that
two times the likelihood ratio asymptotically follows
a χ2 distribution, with degrees of freedom given by
the number of additional parameters (which is equal
to one for each transition).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

The number of trials for passing from level (3) to
(4) and from level (4) to (5) is the number of selected
triplets of the simplest type, i.e., t(3) = m(3) and
t(4) = m(4) respectively. Between levels (2) and (3), we
make t(2) = (d−2)m(2) trials, and t(1) = d(d−1)/2 tri-
als between levels (1) and (2). With this notation, and
the fact that each new level involves one additional
parameter, we use the following selection process: let
η(k), k = 2, . . . , 5 be defined by

η(k) =
1

2n
F−1

step

(
1 − ϵ

4t(k−1)

)
(13)

where Fstep is the cumulative distribution function of
a χ2 with 1 d.f. (a standard normal squared) and the
factor 4 ensures that the total number of expected false
alarms across all levels is no more than ϵ.

For small values of n, the approximation based on
Wilks’ theorem is in principle not valid. Based on
Monte-Carlo simulations, however, we observed that
it can be considered as reasonably accurate for n ≥ 20,
which covers most practical cases. When n < 20,
we propose to choose η(k) using Monte-Carlo (for
very large values of d, the number of required Monte
Carlo replicates may become prohibitively large, but
learning distributions for extremely large d and n < 20
may be a hopeless task to begin with).

5 STRUCTURE SEARCH ALGORITHM

The procedure defined in the previous section yields
the collection, T0, of building blocks that will be com-
posed in the final model. Each of these blocks, say ψ,
comes with their internal binding energy, ρ(ψ), which
can be precomputed. The structure search problem, as
described in (9), consists in maximizing

ℓ∗(Ψ) =
N∑

k=1

ρ(ψk)

over all groups Ψ = {ψ1, . . . , ψN} ∈ F∗
0 , i.e., all groups

of primitives that lead to a distribution on D that can
be obtained as a sequence of legal merges on Ψ.

We start by describing F∗
0 . Recall that each family

Ψ = {ψ1, . . . , ψN} ⊂ T0 defines an oriented graph
G(Ψ) on D, by inheriting the edges associated to each
of the ψk’s. We have the following fact (the proof is
provided in Appendix III, as supplemental material).

Proposition 3. A family of primitives Ψ ⊂ T0 belongs to
F∗

0 if and only if
(i) The α-nodes of the primitives are distinct.

(ii) The primitives do not share edges
(iii) G(Ψ) is an almost-balanced binary forest.

These conditions can be checked without seeking a
particular sequence of admissible merges that yields
G(Ψ). That is, the structure search problem reduces
to maximizing ℓ∗(Ψ) over all Ψ = {ψ1, . . . , ψN}
such that G(Ψ) is an almost-balanced forest. This is

still hard: when the true underlying distribution is
rich in dependencies (yielding a large set T0), the
number of possible Ψ’s explodes combinatorially as
the number of variables increases. Because of this,
the exhaustive enumeration of all possible forests is
not feasible. We propose two alternatives: a greedy
search heuristic and a reformulation of the search as
an ILP optimization problem, which can be solved
using publicly available software (we worked with the
Gurobi optimizer).

5.1 Greedy Search Solution
We begin with an edgeless graph where all variables
are treated as singletons, i.e. Ψ0 = ∅. The search
operates by progressively adding new elements to Ψ
until no such option exists. At step k of the procedure,
with a current solution denoted Ψk, we define the next
solution to be Ψ(k+1) = Ψk ∪ {ψk+1} where ψk+1 is
chosen as the primitive for which ρ is maximized over
all primitives that complete Ψk into a legal structure
(and the procedure stops if no such primitive exists).
At the end of each step, the set T0 can be progressively
pruned out from all primitives that will never be used
to complete the current Ψk, i.e., primitives that share
an edge, or an α-node, with already selected ψj ’s,
or primitives with ω-nodes coinciding with already
allocated α-nodes. Of course, this strategy risks get-
ting trapped in local maxima and is not guaranteed
to find the optimal global solution.

5.2 Integer Linear Programming Solution
Exact maximization of ℓ∗(Ψ) is an ILP problem. Let V
be the set of vertices and let E be the set of (oriented)
edges present in T0. Here, whenever we speak of an
edge we refer to edges in the graph structure associ-
ated to each primitive, where each node corresponds
to a variable (as opposed to hyperedges in the higher
level hypergraph where each node corresponds to
a different primitive). The graph structure for pair
primitives consists of an oriented edge from the α-
node to the ω-node. The graph for triplet primitives
consists of two oriented edges from the α-node to each
of the ω-nodes (as shown in Fig. 3).

Introduce binary selector variables xψ, ψ ∈ T0 and
ye, e ∈ E . For e ∈ E , let Te be the set of ψ ∈ T0

that contain e. We want to rephrase the conditions in
Proposition 3 using linear equalities on the x’s, y’s and
other auxiliary variables. (The meaning of the notation
x, y, is different, in this section only, of what it is in
the rest of the paper, in which it is used to denote
realizations of random variables.)

We formulate the ILP here only in the specific set-
ting of balanced compositional trees (Section 3.3), al-
though the approach generalizes to other cases where
G(Ψ) is restricted to be a forest. If we wished to
allow G(Ψ) to be any DAG, we would modify the
ILP problem to rule out only directed cycles [38], [42].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

The first constraint is, for all e ∈ E ,
∑

t∈Te

xt = ye,

which ensures that every selected edge belongs to one
and only one selected primitive.

We also need all edges in each selected primitive to
be accounted for, which gives, for all ψ ∈ T0,

(|ψ| − 1)xψ ≤
∑

e∈ψ
ye

where |ψ| is the number of vertices in ψ (two or three).
For every directed edge e = (v, v′) with v, v′ ∈ V ,

let its reversal be ē = (v′, v). Our next constraint
imposes ye+ yē ≤ 1. Note that this constraint is made
redundant by the acyclicity constraint. Still, it may be
useful to speed up the solver.

Vertices must have no more than one parent and no
more than two children, which gives, for all v ∈ V ,

∑

(v′,v)∈E
y(v′,v) ≤ 1 and

∑

(v,v′)∈E
y(v,v′) ≤ 2.

We also ensure that no vertex is the α-node of two
distinct selected binary primitives. For v ∈ V , let Ψv

denote the subset of T0 containing binary primitives
with {v} as an α-node. Then we want, for all v ∈ V

∑

ψ∈Ψv

xψ ≤ 1.

The remaining conditions are more complex and
require auxiliary variables. We first ensure that the
graph associated to the selected ψ’s is acyclic. This
can be done by introducing auxiliary flow variables
fe, e ∈ E with the constraint
{

−C(1 − ye) + ye +
∑
e′→e fe′ ≤ fe ≤ ye +

∑
e′→e fe′

0 ≤ fe ≤ Cye

where C is large enough (e.g., C = |E|) and e′ →
e means that the child in edge e′ coincides with the
parent in edge e. (If ye = 1, this condition implies
fe = 1+

∑
e′→e fe′ which is impossible unless fe = ∞

if the graph has a loop.)
The last condition is for balance. Introduce variables

ge, e ∈ E and he, e ∈ E with constraints




0 ≤ he ≤ ye

he ≤ 1 − ye′ if e → e′

he ≥ 1 − ∑
e→e′ ye′ − C(1 − ye)

−C(1 − ye) +
∑
e→e′ ge′ ≤ ge ≤ he +

∑
e→e′ ge′

ye ≤ ge ≤ Cye

for all triplets ψ, |ge(ψ) − ge′(ψ)| ≤ 1 + C(1 − xψ)

where e(ψ) and e′(ψ) denote the two edges in triplet
ψ. The variable he equals 1 if and only if e is a terminal
edge. The variable ge counts the number of leaves (or
terminal edges). We have ge = 0 if ye = 0. If e is
terminal and ye = 1, then the sum over descendants

vanishes and the constraints imply ge = 1. Otherwise
(he = 0 and ye = 1), we have ge =

∑
e→e′ ge′ . The last

inequality ensures that the trees are almost-balanced.
The original problem can now be solved by maxi-

mizing
∑
ψ∈T0

ρ(ψ)xψ subject to these constraints, the
resulting solution being Ψ̂ = {ψ : xψ = 1}.

ILP is a general language for formulating NP-
complete problems. Although the worst-case runtime
of ILP solvers grows exponentially with the problem
size, some problem instances are much easier than
others, and modern solvers are reasonably effective at
solving many practical instances of moderate size. We
show empirical runtimes in Section II of the supple-
mental material, together with an analysis of the size
of the ILP encoding. Note that one can improve upon
greedy search even without running the ILP solver
to convergence, since the solver produces a series of
increasingly good suboptimal solutions en route to the
global optimum. Also, when the number of variables
and constraints in the ILP problem becomes compu-
tationally prohibitive, we can adopt a hybrid search
strategy: start by running a greedy search (which
typically leads to a forest with several independent
components) and then solve multiple ILP problems as
the one described above, each restricted to ψ′s that are
supported by the set of variables involved in each of
those components. Even though the solution may still
not be globally optimal, this coarse-to-fine approach
may lead to improved performances over the use of
greedy search and ILP alone.

6 CONNECTION WITH MAP LEARNING OF
BAYESIAN NETWORK STRUCTURE

To situate our statistical approach with respect to the
prior work of Section 2, we now discuss how it relates
to MAP estimation of Bayesian networks.

6.1 Primitives as Bayesian Networks

The approach that we propose in this paper consists
in constructing small-dimensional primitives, possibly
having complex parametrizations (if allowed by the
data-driven selection process), and assembling them
globally into a model covering all variables subject
to complexity contraints. Note that, even though the
global relationship among primitives is organized as a
Bayesian network, as described in Section 3.1, the dis-
tribution specified by each primitive can be modeled
in an arbitrary way. We conceive of these primitives
as small modeling units, and the parametric repre-
sentation introduced in Section 3.2 can be based on
any appropriate model (one can use, for example, a
Markov random field built by progressive maximum
entropy extension [43], selected similarly to Section 4).

In the case in which these primitives are also
modeled as Bayesian networks, the global distribution
of our model is obviously also represented as such.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

This case includes the compositional trees introduced
in Section 3.3, for which deriving a Bayesian network
representation in cases (2)–(5) is straightforward.

In such a case, an alternative characterization of
our method is that we perform a structure search
over Bayesian networks that can be partitioned into
previously selected primitives. In this regard, it can
be compared with other inductive biases, including
the well-studied case of restricting the tree-width
of the graph, which leads to a maximum-likelihood
structure search problem that is equivalent to finding
a maximum-weight hyperforest [44], [45]. Our global
constraints M∗ could be used to impose such a tree-
width restriction on the graph over primitives, during
greedy or global search. In particular, the composi-
tional trees of Section 3.3 restrict this graph to tree-
width 1, yielding our simpler combinatorial problem
of finding a maximum-weight forest whose nodes
are (possibly complex) primitives. Relaxing (M2) to
(M2)’ in Section 3.1, we remark that if our primiti-
ves consist of all Bayesian networks on subsets of
≤ w + 1 variables, then assembling them under the
global compositional-tree constraint gives a subset of
Bayesian networks of tree-width w, while dropping
the global constraint gives the superset CPCPw [46].

6.2 Primitive Selection vs. MAP Estimation

Suppose we omit the initial step of primitive fil-
tering. Then purely maximum-likelihood estimation
could be done using our global structure search algo-
rithms from Section 5. Naturally, however, maximum-
likelihood estimation will tend to overfit the data by
choosing models with many parameters. (Indeed, this
is the motivation for our approach.) A common rem-
edy is instead to maximize some form of penalized
log-likelihood. For many penalization techniques, this
can be accomplished by the same global structure
search algorithm over assemblies of primitives. One
modifies the definition of each binding energy ρ(ψk)
in our maximization objective (9) to add a constant
penalty that is more negative for more complex primi-
tives ψk [23]. Before the search, it is safe to discard any
primitive ψ such that the penalized binding energy
ρ(ψ) < ρ(ψ′) for some ψ′ with (J(ψ), A(ψ)), O(ψ)) =
(J(ψ′), A(ψ′), O(ψ′)), since then ψ cannot appear in
the globally optimal structure [23]. The filtering stra-
tegy in 4.1 can be regarded as a slightly more aggres-
sive version of this, if the penalties are set to 0 for
triplets of type (1), −η(2) for those of type (2)/(2’),
−(η(2) + η(3)) for those of type (3), and so on.

One can regard the total penalty of a structure as
the log of its prior probability (up to a constant).
The resulting maximization problem can be seen as
MAP estimation under a structural prior. To interpret
our η penalties in this way would be to say that a
random model, a priori, is exp η(3) times less likely to
use a given triplet of type (3) than one of type (2).

However, our actual approach differs from the above
MAP story in two ways. First, it is not fully Bayesian,
since in Section 4.2, we set the η parameters of the
prior from our training data (cf. empirical Bayes or
jackknifing). Second, a MAP estimator would include
the η penalties in the global optimization problem—
but we use these penalties only for primitive selection.

Why the difference? While our approach is indeed
somewhat similar to MAP estimation with the above
prior, that is not our motivation. We do not actually
subscribe to a prior belief that simple structures are
more common than complex structures in our appli-
cation domains (Section 8). Furthermore, our goal for
structure estimation is not to minimize the posterior
risk under 0-1 loss, which is what MAP estimation
does. Rather, we seek an estimator of structure that
bounds the risk of a model under a loss function
defined as the number of locally useless correlational
parameters. Our structure selection procedure con-
servatively enforces such a bound ϵ (by keeping the
false discovery rate low even within T0 as a whole,
and a fortiori within any model built from a subset of
T0). Subject to this procedure, we optimize likelihood,
which minimizes the posterior risk under 0-1 loss for
a uniform prior over structures and parameters.

We caution that ϵ does not bound the number of
incorrect edges relative to a true model. T0 includes
all correlations that are valid within a primitive, even
if they would vanish when conditioning also on vari-
ables outside the primitive (cf. [47]). To distinguish
direct from indirect correlations, our method uses
only global likelihood as in [14]. In the small-sample
regime, the resulting models (as with MAP) can have
structural errors but at least remain predictive without
overfitting—as we now show. Bounding the number
of incorrect edges would have to underfit, rejecting all
edges, even if true or useful, that might be indirect.

7 SIMULATION STUDY

We assessed the performance of our learned models
using synthetic data. Here we present an overview of
our results. The full description of our simulations is
provided in Section I of the supplemental material.

We first run several experiments to measure the
effect of sample size, number of variables, selection
threshold and search strategy upon learning perfor-
mance when the true model belongs to our model
class F∗. We evaluated the quality of the estimation
by computing the KL divergence between the known,
ground truth distribution and the distribution learned
using our models. We evaluated network reconstruc-
tion accuracy by building ROC and precision-recall
(PR) curves in terms of true-positive and false-positive
edges. The actual curves and further details can be
found in Section I.A of the supplemental material. Be-
sides the obvious fact that both quality of estimation
and network reconstruction accuracy improved with

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

increasing sample sizes, our results showed that i) the
choice of an excessively large selection threshold leads
to model overfitting and ii) for very small samples,
the distribution learned using CAM can be better (in
terms of KL divergence to the ground truth) than
the distribution learned by using the true generating
graph and estimating parameters from data.

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

n

K
L

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

K
L

Fig. 4. KL divergence between the Bayesian network ground truth
distribution (d = 14) and the distributions learned using CAM (solid,
blue, cross), K2 (dotted, red, circle) and the true generating graph
with MLE parameters (dashed, green, diamond). Results are shown
for a fixed choice of parameters and averaged over 100 random
replicates (see Section I.B of the supplemental material for details).

We compared CAM to other methods from the li-
terature, namely Bayesian networks [48] (represented
by the K2 algorithm [12]), relevance networks (RN)
[9], ARACNE [10] and CLR [11]. Full details are
included as Section I.B of the supplemental material.
First, we sampled from a balanced binary forest like
the ones described in previous sections. We found that
CAM outperformed all the alternatives, both in terms
of KL to the true distribution and network reconstruc-
tion accuracy. This was particularly evident for small
samples. Of course, these results were not surprising
because we were in the favorable case where the
ground truth belonged to our constrained family of
models. Next, we considered the unfavorable case
where we sampled from a generic Bayesian network
with a more complex dependency structure than those
allowed within our model class. Fig. 4 shows an exam-
ple of the type of curves that we observed (curves
for other choices of parameters are shown in Fig.
S.7 of supplemental material). CAM offered the best
performance for small samples by favoring bias over
variance. In fact, for small enough sample sizes CAM
performed better than using the true graph and only
estimating parameters, as we had remarked before.
For larger sample sizes, CAM performed worse than
the alternatives. This was expected: when data are
plentiful and the dependency structure is rich, learn-
ing models more complex than ours becomes feasible.
Precision-recall curves (Fig. S.9) showed that, for same
levels of recall, K2 achieves the least precision. In
general, RN, CLR and particularly ARACNE offer
the best performances, although CAM is comparable
for small samples. For larger sample sizes (over 100)
CAM has lower precision than the others (except K2).

8 REAL-DATA EXPERIMENTS

Our first experiment involves a semantic network
learning task for which the results are reasonably easy
to interpret. In the second one, we learn a network of
statistical dependencies among somatic mutations in
gene TP53, which plays an important role in cancer.

8.1 Learning Semantic Networks from Text
The 20newsgroups dataset [49] is a collection of
approximately 20,000 documents that were obtained
from 20 different Usenet newsgroups. We worked
with a reduced version made publicly available by the
late Sam Roweis through his website at the New York
University. The data are summarized in a matrix with
binary occurrence values for d = 100 words across
n = 16, 242 newsgroup postings, these values indi-
cating presence or absence of the word in a specific
document. We discarded some words with general
or ambiguous meanings, leaving 66 words that were
clearly associated to six well differentiated semantic
categories (computers, space, health, religion, sports and
cars). Intuitively, we would expect the occurrences
of words such as dog and boat to be approximately
independent, whereas not so for say hockey and nhl.

We first measured the effect of the observed sample
size. We evaluated edgewise network reconstruction
accuracy using a hand-crafted ground-truth network
where words that are semantically related were linked
by an undirected edge. We chose random subsets
of documents of different sizes and we learned a
network for each of them using CAM, RN, CLR
and ARACNE (K2 was not used because the causal
ordering of the variables is unknown). The net re-
sult (not shown) is that all methods provide roughly
comparable ROC and PR curves. We then compared
the predictive performance of CAM versus K2 and a
baseline edgeless Bayesian network as a function of
sample size, by computing average log-likelihood on
different sets of hold-out samples. We arbitrarily chose
an entropy ordering for K2 and, in order to provide a
fair comparison, we enforced the same ordering cons-
traint upon the set of candidate CAM structures. Our
results show that CAM outperforms the alternatives
when sample sizes are small (full details can be found
in Section III.A of the supplemental material).

Next, we learned the network shown in Fig. 5
using the full dataset. The network is componentwise
optimal. It is not guaranteed to be globally optimal
because the dual gap for the global optimization
problem was non-negligible; still, the result appeared
to be stable after extensive computation (see Section
II.C for details). We observe a very good correspon-
dence between network components and semantic
categories. In fact, there is only one merge between
components that may seem questionable: the space
and religion components end up being connected by
the word earth. This is a consequence of the local

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Fig. 5. Final network learned using a subset of words from the 20newsgroups dataset and the full sample size. This result was obtained
using the ILP search procedure. Dashed lines are used to identify siblings that belong to the same primitive within our model. Words belonging
to the same semantic categories (computers, space, health, religion, sports and cars) tend to form proximity clusters within the network.

scope of our primitives and the fact that this word
is frequently used within both semantic contexts. For
comparison purposes, we learned two graphs using
RN (see Section III.B of supplemental material). In the
first case, the threshold for mutual information was
the same as the one used for the CAM binary primi-
tives in Fig. 5; in the RN case all the variables wound
up in the same connected component and the large
number of learned interactions made it somewhat
difficult to interpret the result. In the second case, we
equalized the number of learned edges, leading to the
isolation of twenty variables as singletons (and thus
to the failure to learn some important connections).

8.2 Learning Statistical Dependencies among
Somatic Mutations in Gene TP53

The TP53 gene is located on the short arm of chro-
mosome 17 and encodes the p53 tumor suppressor
protein, which plays a fundamental role in many
human cancers [50], [51]. The p53 protein is activated
when cells are stressed or damaged and it blocks their
multiplication, providing an important mechanism to
prevent tumor proliferation. Mutations in the TP53
gene are primarily of the missense type. They are
known to cause direct inactivation of the p53 protein
in about half of the cancers where this protein fails to
function correctly and indirect inactivation in many
other cases [50]. Because of this, understanding the
effect of these mutations can provide very valuable
insight into the mechanisms of cancer [52].

Most of the somatic mutations reported in the litera-
ture are compiled in the International Agency for Re-
search on Cancer (IARC) TP53 Database [53]. We used
version R15 (updated in Nov. 2010) and worked with
the somatic mutations dataset, which mainly consists
of missense mutations detected by DNA sequencing
in tumor samples and mutations within exons 5-8. The
original dataset contains measurements for d = 4,356
different mutations and n = 25, 101 different tissue
samples. (Discarding mutations appearing in fewer

Fig. 6. Some components of the TP53 somatic mutations network
learned using CAM (full network is provided in Fig. S.12). Dashed
lines link siblings within the same primitive. For each node, we
provide the unique mutation identifier in the IARC Database and
the (standard) mutation description at the protein level, where p.XzY
means substitution of amino acid X by amino acid Y at codon z;
e.g., p.R248W represents substitution of Arg by Trp at codon 248.

than two samples leaves d = 2,000 and n = 23,141.)
We can represent each sample as a d-dimensional
binary vector indicating which mutations were ob-
served in a tissue extracted from a patient. Since
patients can have more than one cancer, multiple
samples may come from the same individual. Still,
we treat the vectors of observations as independent
samples from an underlying multivariate distribution
which characterizes the dependency structure among
mutations in a cancer population.

Selecting ϵ = 1 leads to 760 candidate primitives.
Using CAM, we learned a network that contained 68
different mutations (out of the original set of 2,000
candidates). Fig. 6 shows some of the components in
this network (the full network graph is provided in
Fig. S.12, Section IV of supplemental material).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Each somatic mutation in IARC is annotated with
biochemical details about the actual nucleotide vari-
ation, as well as clinical data for the patient and
tissue where the mutation was observed. Enrichment
of shared annotations is statistically significant for
several subsets of mutations within our network, both
at the pairwise and the component levels, which
suggests that these mutations might be functionally
related. Furthermore, based on a hypergeometric null,
the mutations in our network were significantly en-
riched for several biological indicators such as pre-
sence in CpG sites and associated gain of function
(GoF) at the protein level. The same type of test shows
that our network is significantly enriched for “dele-
terious” or “driver” mutations (which are known to
have a negative impact on the phenotype, as opposed
to “neutral” or “passenger” ones). A detailed expla-
nation of our statistical analysis, including some com-
ments on the biological interpretation of our results, is
provided in Section IV of the supplemental material.

9 CONCLUSIONS AND FUTURE WORK

We have introduced a new modeling framework
that combines local model selection (designing and
estimating primitives) with a compositional step
that merges primitives into valid graphical arrange-
ments and multivariate distributions. This construc-
tion makes it possible to adjust model complexity
to sample size by controlling the dimension of the
parameter space. The introduction of structural biases
can be used to decrease variance and avoid model
overfitting, which is critical in small sample regimes.

Our approach has been validated using both syn-
thetic and real data. For simulated data, our method
outperforms general Bayesian networks in approxi-
mating the true generating distribution for small sam-
ple sizes. Our approach is also comparable with me-
thods designed for recovering graphs rather than dis-
tributions. Finally, experiments with real data, particu-
larly genetic mutations in the TP53 gene, demonstrate
that the CAM algorithm can cluster mutations into
biologically plausible groups.

Even though in this paper we have only discussed
the case of discrete random variables, the CAM frame-
work generalizes to the continuous case where dis-
crete distributions are replaced by probability density
functions. Also, we have focused on balanced binary
trees, which simplifies both primitive learning and the
combinatorial optimization problem for competitive
assembling. These constraints yield networks which
are easy to interpret, since the limits on topological
complexity often lead to a final graph with several
components of moderate size. These limits include
strong restrictions to the set of allowable values for
incoming and outgoing vertex degrees. However, our
entire framework applies more generally to any fam-
ily of primitives, such as those depicted in Fig. 1,

allowing us to move beyond the strong structural con-
straints imposed by trees in the context of moderate
to large sample sizes. In particular, such extensions
might allow for learning networks with “hubs” and
scale-free properties provided near-optimal assem-
blies can be identified.

ACKNOWLEDGMENT

Francisco Sánchez-Vega was partially supported by
graduate fellowships from La Caixa Foundation and
Cajamadrid Foundation in Spain. The work of Donald
Geman is partially supported by NIH-NCRR Grant
UL1 RR 025005 and by the US National Science Foun-
dation (NSF) CCF-0625687.

REFERENCES
[1] D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent,

“Expression profiling using cDNA microarrays,” Nat. Gen.
Suppl., vol. 21, pp. 10–14, 1999.

[2] R. J. Lipshutz, S. P. Fodor, T. R. Gingeras, and D. J. Lockhart,
“High-density synthetic oligonucleotide arrays,” Nat. Gen.,
vol. 21, pp. 20–24, 1999.

[3] Y. Wang, D. J. Miller, and R. Clarke, “Approaches to working
in high-dimensional data spaces: Gene expression microar-
rays,” British J. Cancer, February 2008.

[4] J. H. Moore and M. D. Ritchie, “The challenges of whole-
genome approaches to common diseases,” J. Amer. Med. Assoc.,
vol. 291, no. 13, pp. 1642–1643, 2004.

[5] M. Morley, C. Molony, T. Weber, J. Devlin, K. Ewens, R. Spiel-
man, and V. Cheung, “Genetic analysis of genome-wide vari-
ation in human gene expression,” Nature, 2004.

[6] M. I. McCarthy, G. R. Abecasis, L. R. Cardon, D. B. Goldstein,
J. Little, J. P. A. Ioannidis, and J. N. Hirschhorn, “Genome-wide
association studies for complex traits: Consensus, uncertainty
and challenges,” Nat. Rev. Gen., vol. 9, no. 5, pp. 356–369, 2004.

[7] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements
of Statistical Learning: Data Mining, Inference, and Prediction.
Springer-Verlag, 2001.

[8] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks
and the bias/variance dilemma,” Neural Comput., vol. 4, no. 1,
pp. 1–58, 1992.

[9] A. J. Butte and I. S. Kohane, “Mutual information relevance
networks: Functional genomic clustering using pairwise en-
tropy measurements,” Pac. Symp. Biocomput., pp. 418–29, 2000.

[10] A. Margolin, I. Nemenman, K. Basso, C. Wiggins,
G. Stolovitzky, R. Favera, and A. Califano, “ARACNE: An
algorithm for the reconstruction of gene regulatory networks
in a mammalian cellular context,” BMC Bioinformatics, vol. 7,
p. S7, 2006.

[11] J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski,
G. Cottarel, S. Kasif, J. J. Collins, and T. S. Gardner, “Large-
scale mapping and validation of E. coli transcriptional regu-
lation from a compendium of expression profiles,” PLoS Biol.,
vol. 5, no. 1, p. e8, Jan 2007.

[12] G. F. Cooper and T. Dietterich, “A Bayesian method for the
induction of probabilistic networks from data,” in Machine
Learning, 1992, pp. 309–347.

[13] D. T. Brown, “A note on approximations to discrete probability
distributions,” Info. and Control, vol. 2, no. 4, pp. 386–392, 1959.

[14] C. I. Chow and C. N. Liu, “Approximating discrete probability
distributions with dependence trees,” IEEE Trans. Inf. Theory,
vol. 14, pp. 462–467, 1968.

[15] M. Meila, “An accelerated Chow and Liu algorithm: Fitting
tree distributions to high-dimensional sparse data,” in Proc.
ICML. San Francisco: Morgan Kaufmann, 1999, pp. 249–257.

[16] T. Szántai and E. Kovács, “Hypergraphs as a means of dis-
covering the dependence structure of a discrete multivariate
probability distribution,” Ann. of Operat. Res., pp. 1–20, 2010.

[17] F. R. Bach and M. I. Jordan, “Thin junction trees,” in NIPS 14,
2001, pp. 569–576.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[18] A. Chechetka and C. Guestrin, “Efficient principled learning
of thin junction trees,” in NIPS, Vancouver, Canada, 2007.

[19] D. Shahaf and C. Guestrin, “Learning thin junction trees via
graph cuts,” J. Mach. Learning Res.— Proc. Track, vol. 5, pp.
113–120, 2009.

[20] M. Narasimhan and J. Bilmes, “PAC-learning bounded tree-
width graphical models,” in Proc. UAI, 2004, pp. 410–417.

[21] G. Elidan and S. Gould, “Learning bounded treewidth
Bayesian networks,” in NIPS, 2008, pp. 417–424.

[22] S. I. Lee, V. Ganapathi, and D. Koller, “Efficient structure
learning of Markov networks using L1-regularization,” in Proc.
NIPS, Cambridge, MA, 2007, pp. 817–824.

[23] C. P. de Campos, Z. Zeng, and Q. Ji, “Structure learning of
Bayesian networks using constraints,” in Proc. ICML, 2009.

[24] S. Geman, D. F. Potter, and Z. Chi, “Composition systems,”
Quart. Appl. Math., vol. 60, no. 4, pp. 707–736, 2002.

[25] S. C. Zhu and D. Mumford, “A stochastic grammar of images,”
Found. Trends Comp. Graph. Vision, vol. 2, no. 4, pp. 259–362,
2006.

[26] Y. Amit and A. Trouvé, “POP: Patchwork of parts models for
object recognition,” Int. J. of Comput. Vision, vol. 75, no. 2, pp.
267–282, Nov. 2007.

[27] A. Dobra, C. Hans, B. Jones, J. R. Nevins, G. Yao, and M. West,
“Sparse graphical models for exploring gene expression data,”
J. Multivar. Anal., vol. 90, pp. 196–212, July 2004.

[28] J. Utans, “Learning in compositional hierarchies: Inducing the
structure of objects from data,” in NIPS 6, 1994, pp. 285–292.

[29] R. D. Rimey and C. M. Brown, “Control of selective perception
using Bayes nets and decision theory,” Int. J. Comput. Vision,
vol. 12, pp. 173–207, April 1994.

[30] B. Neumann and K. Terzic, “Context-based probabilistic scene
interpretation,” in Artificial Intell. in Theory and Practice III, ser.
IFIP Adv. in Inform. and Commun. Tech. Springer Boston,
2010, vol. 331, pp. 155–164.

[31] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite,
and C. Kadie, “Dependency networks for inference, collabo-
rative filtering, and data visualization,” J. Mach. Learning Res.,
pp. 49–75, 2000.

[32] Y. Xiang, F. V. Jensen, and X. Chen, “Multiply sectioned
Bayesian networks and junction forests for large knowledge-
based systems,” Comp. Intell., vol. 9, pp. 680–687, 1993.

[33] D. Koller and A. Pfeffer, “Object-oriented Bayesian networks,”
in Proc. UAI, 1997, pp. 302–313.

[34] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer, “Learning
probabilistic relational models,” in Proc. IJCAI, 1999, pp. 1300–
1309.

[35] E. Gyftodimos and P. A. Flach, “Hierarchical Bayesian net-
works: An approach to classification and learning for struc-
tured data,” in Methods and Applications of Artificial Intelligence,
ser. Lecture Notes in Computer Science, G. A. Vouros and
T. Panayiotopoulos, Eds., 2004, vol. 3025, pp. 291–300.

[36] D. Pe’er, “Bayesian network analysis of signaling networks: A
primer,” Sci. STKE, vol. 2005, no. 281, p. pl4, 2005.

[37] P. Spirtes, C. Glymour, and R. Scheins, Causation, Prediction,
and Search, 2nd ed. MIT Press, 2001.

[38] T. Jaakkola, D. Sontag, A. Globerson, and M. Meila, “Learning
Bayesian network structure using LP relaxations,” in Proc.
AISTATS, vol. 9, 2010, pp. 358–365.

[39] E. Segal, D. Koller, N. Friedman, and T. Jaakkola, “Learning
module networks,” in J. Mach. Learning Res., 2005, pp. 525–534.

[40] A. Martins, N. Smith, and E. Xing, “Concise integer linear
programming formulations for dependency parsing,” in Proc.
ACL-IJCNLP, 2009, pp. 342–350.

[41] S. S. Wilks, “The large-sample distribution of the likelihood
ratio for testing composite hypotheses,” Ann. Math. Statist.,
no. 9, pp. 60–62, 1938.

[42] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer pro-
gramming formulation and traveling salesman problems,” J.
Assoc. for Computing Machinery, vol. 7, pp. 326–329, 1960.

[43] S. Della Pietra, V. Della Pietra, and J. Lafferty, “Inducing
features of random fields,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 19, no. 4, pp. 380–393, Apr. 1997.

[44] D. Karger and N. Srebro, “Learning Markov networks: Max-
imum bounded tree-width graphs,” in Proc. 12th ACM-SIAM
Symp. on Discrete Algorithms, 2001.

[45] N. Srebro, “Maximum likelihood bounded tree-width Markov
networks,” Artificial Intell., vol. 143, pp. 123–138, 2003.

[46] K.-U. Höffgen, “Learning and robust learning of product
distributions,” in Proc. COLT, 1993, pp. 77–83.

[47] J. Schäfer and K. Strimmer, “An empirical Bayes approach to
inferring large-scale gene association networks,” Bioinformat-
ics, vol. 21, no. 6, pp. 754–764, 2005.

[48] D. Heckerman, “A tutorial on learning Bayesian networks,”
Microsoft Research, Tech. Rep. MSR-TR-95-06, March 1995.

[49] K. Lang, “Newsweeder: Learning to filter netnews,” in Proc.
ICML, 1995, pp. 331–339.

[50] B. Vogelstein, D. Lane, and A. J. Levine, “Surfing the p53
network,” Nature, no. 408, 2000.

[51] A. J. Levine, C. A. Finlay, and P. W. Hinds, “P53 is a tumor
suppressor gene,” Cell, vol. 116, pp. S67—S70, 2004.

[52] M. S. Greenblatt, W. P. Bennett, M. Hollstein, and C. C. Harris,
“Mutations in the p53 tumor suppressor gene: Clues to cancer
etiology and molecular pathogenesis,” Cancer Res., vol. 54,
no. 18, pp. 4855–4878, 1994.

[53] A. Petitjean, E. Mathe, S. Kato, C. Ishioka, S. V. Tavtigian,
P. Hainaut, and M. Olivier, “Impact of mutant p53 functional
properties on TP53 mutation patterns and tumor pheno-
type: Lessons from recent developments in the IARC TP53
database,” Human Mut., vol. 28, no. 6, pp. 622–629, 2007.

Francisco Sánchez-Vega graduated in
Telecommunications Engineering in 2005
from ETSIT Madrid and ENST Paris. Also in
2005, he was awarded a M.Res. in Applied
Mathematics for Computer Vision and Ma-
chine Learning from ENS Cachan. He arrived
at Johns Hopkins University in 2006 and re-
ceived a M.Sc.Eng. in Applied Mathematics
and Statistics in 2008. He is currently a Ph.D.
candidate at this same department and a
member of the Center for Imaging Science

and the Institute for Computational Medicine at JHU.

Jason Eisner holds an A.B. in Psychology
from Harvard University, a B.A./M.A. in Math-
ematics from the University of Cambridge,
and a Ph.D. in Computer Science from the
University of Pennsylvania. Since his Ph.D.
in 2001, he has been at Johns Hopkins Uni-
versity, where he is Associate Professor of
Computer Science and a core member of
the Center for Language and Speech Pro-
cessing. Much of his research concerns the
prediction and induction of complex latent

structure in human language.

Laurent Younes Former student of the
Ecole Normale Superieure in Paris, Laurent
Younes was awarded the Ph.D. from the
University Paris Sud in 1989, and the thesis
advisor certification from the same univer-
sity in 1995. He was a junior, then senior
researcher at CNRS (French National Re-
search Center) from 1991 to 2003. He is
now professor in the Department of Applied
Mathematics and Statistics at Johns Hopkins
University (that he joined in 2003). He is a

core faculty member of the Center for Imaging Science and of the
Institute for Computational Medicine at JHU.

Donald Geman received the B.A. degree in
Literature from the University of Illinois and
the Ph.D. degree in Mathematics from North-
western University. He was a Distinguished
Professor at the University of Massachusetts
until 2001, when he joined the Department of
Applied Mathematics and Statistics at Johns
Hopkins University, where he is a member of
the Center for Imaging Science and the In-
stitute for Computational Medicine. His main
areas of research are statistical learning,

computer vision and computational biology. He is a fellow of the IMS
and SIAM.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Learning Multivariate Distributions

by Competitive Assembly of Marginals:

Supplemental Material

Francisco Sánchez-Vega, Jason Eisner, Laurent Younes,

and Donald Geman.

Johns Hopkins University, Baltimore, MD, USA

�

1 FULL DESCRIPTION OF SIMULATION STUDY

We assess the performance of our learned models using synthetic data. We sample from

a known model and attempt to recover both the joint probability distribution and the

underlying graph structure. We compare our method with several alternatives from the

literature, some designed only for learning graphs.

1.1 Analysis of the Learning Procedure

The first set of experiments is designed to measure the effect of sample size, number of

variables and search strategy in the ideal case in which the true model, Q, belongs to

our model class F∗. The steps are:

(1) Generate at random an almost-balanced binary forest, F , on the set D = {1, . . . , d}.

(2) Randomly select parameters, θ0, to build a ground truth distribution Q. These

parameters are chosen in such a way that all the primitives in the graph have

associated ρ-values (computed analytically using θ0) above a threshold η0 (which is

obtained using Eq. (13) from the main paper and a reference sample size n0 = 500).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

(3) Sample n d-dimensional binary vectors from Q.

(4) Using our CAM approach, induce a distribution P̂ ∈ F∗ from the training data and

compute its KL divergence from the ground truth

KL := EQ

[
log

Q

P̂

]

The divergence can be computed exactly since the ground truth distribution is

known.

This process is repeated 1,000 times for each experimental setting (choice of d, n, ε in

the selection procedure), and the results are averaged to provide the curves in Figs. S.1

and S.2.

Fig. S.1 shows the average KL divergence for fixed ε = 1 as a function of the sample

size, n, ranging from n = 16 to n = 2, 048. This, and all the other plots shown in our

paper, show error bars that extend for a distance equal to one standard deviation above

and below each average value. Different curves correspond to different choices of model

dimension, d, and search strategy. Naturally, the divergence between P̂ and Q decreases

with sample size. For a fixed number of samples, the KL divergence increases with d.

For this kind of relatively simple models, with small values of d, we observe that the

ILP solution and the greedy search alternative provide very similar results, with a very

slight improvement from ILP. From here on we shall only show results obtained with

the ILP solution.

In Fig. S.2, we fix d = 10, and consider the effect of varying the selection threshold,

ε, on the quality of estimation, again using KL divergence. We also evaluate the impact

of knowing the true structure F , but still estimating the parameters, θ. Top left panel

shows how choosing a very large selection threshold results in model overfitting. In

cases like this, where the number of variables is relatively small, the ILP search method

always finds the optimal solution (i.e. the one that maximizes the global sum of ρ-

values), hence minimizes the KL divergence to the empirical distribution P ∗. However,

when the number of observed samples is small and ε is too large, this is not necessarily

the same as finding the best approximation to the true distribution Q that generated

the data. Similarly, when the number of observed samples is small, the true structure

that generated the data may not be the one that leads to the best approximation to the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

4 5 6 7 8 9 10 11

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

log
2

(n)

KL

Fig. S.1. Evolution of KL divergence as a function of the sample size (in log2 scale) for fixed ε = 1 and different

choices of the number of variables: d = 5 (blue, cross); d = 10 (red, circle); d = 15 (green, diamond). Solid lines

correspond to the ILP solution and dotted lines correspond to greedy search. The average value of the entropy H(Q) is

equal to 2.97 bits, 4.90 bits and 9.00 bits for d = 5 ,d = 10 and d = 15 respectively. Each curve represents an average

over 1,000 random choices of Q and error bars show one standard deviation below and above the mean.

true generating distribution (hence the negative values of the curves in the top right

panel for sufficiently small values of ε and n).

Fig. S.2 also shows how larger sample sizes lead to improved edgewise network

reconstruction accuracy. Our edge comparison is based on the extended undirected

graph in which an edge is added between sibling nodes (since our model does not

assume that they are conditionally independent given their parent). We measure the

recall or true positive rate (TPR), which is the fraction of edges in the ground truth

networks that appear in the (undirected) learned graph; the false positive rate (FPR),

which is the fraction of non-edges in the ground truth that appear in the learned graph;

and the precision (fraction of recovered edges which are true). We provide both ROC

and precision-recall (PR) curves.

1.2 Comparison with Other Methods

We now compare the performance of our CAM algorithm to other methods from the

literature on reverse engineering networks using the two criteria considered above. We

will do this both in the favorable case in which Q ∈ F∗ and the unfavorable case in

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

log(ε)

KL

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

log(ε)

Δ
 K

L

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

TP
R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Fig. S.2. Top left: evolution of the KL divergence for d = 10 as a function of log(ε) for different sample sizes (n = 25

in blue and cross marker, n = 50 in red and circular marker, n = 100 in green and diamond marker, n = 200 in magenta

and square marker). Top right: difference between the estimated KL divergence using full model estimation and the KL

divergence obtained assuming that the true structure F is known. Bottom: ROC (left) and PR (right) curves for structure

estimation. Each curve represents an average over 1,000 random choices of Q.

which it does not, and our method cannot learn a graph structure as rich as F . We will

make comparisons with Bayesian networks [1], relevance networks (RN) [2], ARACNE

[3] and CLR [4].

RN, ARACNE and CLR learn network topologies only, i.e., they do not induce a

probability distribution over the variables of interest. Consequently, our comparison

is limited to the accuracy of edge reconstruction. Moreover, these methods do not

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

learn directed edges, so all comparisons will be made using the underlying undirected

graphs for all the approaches. From the structure learning point of view, RN can be

seen as a simplified version of our primitive selection method, where only binary

primitives are considered and all the topological constraints on the graph structure

are ignored. ARACNE goes one step further by inspecting all the three-cliques and

using the triangular information inequality to prune spurious edges. CLR also prunes

relevance networks by scoring each edge based on its z-score relative to the mutual

information of edges with which it shares at least one node. Experiments with CLR

used the code from [4].

The K2 algorithm [5] learns a Bayesian network. It is a heuristic structure-search

method based on the use of the Bayesian score. Its main drawback is that it assumes

that an ordering of the variables is known, {X(1), ..., X(d)}, such that X(i) cannot be

a parent of X(j) if i > j. Of course, in practice the causal ordering of the variables

is typically unknown, which is a very important handicap. On the other hand, this

method is relatively easy to implement and scales well to a reasonably large number of

variables. Here, we used it just for benchmarking purposes as a generic representative

of the Bayesian networks general family of models, and we used the ordering of the

ground truth. We worked with the Matlab implementation by Guangdi Li (update of

August 2009), available through the Mathworks File Exchange website.

1.2.1 Comparison for Binary Tree Models

First, the ground truth is generated as in the previous simulations. In order to provide a

fair comparison, we assume that the true causal ordering of the variables is known, both

for K2 and our algorithm; this information is not applicable to RN, CLR and ARACNE

because they learn undirected graphs. We avoid the need to fine-tune the thresholds

used by these last three approaches by ensuring that they always learn roughly the same

number of edges as our tree models. For example, if the graph we learn for a given

choice of our selection threshold, ε, contains k edges, we will learn the corresponding

RN by keeping the top k edges in terms of pairwise mutual information (and similarly

for CLR and ARACNE).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. S.3 shows the average KL divergence between the learned joint probability dis-

tribution and the ground truth distribution for both K2 and CAM. The approximation

obtained using CAM is clearly better. This is particularly evident for small sample sizes

(in fact, when sample sizes are small enough, our approximation is better than the one

learned using the true structure F).

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

n

KL

Fig. S.3. Evolution of KL divergence for small sample sizes (linear scale) between the true distribution Q and the

distributions learned using CAM (solid, blue, cross), using K2 (dotted, red, circle) and using the true generating graph

and simply estimating parameters (dashed, green, diamond). Each curve represents an average over 1,000 random

choices of Q.

Fig. S.4 compares network reconstruction accuracy for the same simulation. In this

case, we fixed d = 10 and n = 100 and the curves were drawn by choosing different

values for the statistical threshold used by each approach. Results for K2 were averaged

and shown as a single point (with vertical and horizontal error bars showing one

standard deviation at each side of the mean in each dimension), since there were not

any parameters to tune. The performance of CAM is comparable to that of RN, CLR

and ARACNE. For small enough values of the threshold, CAM actually outperforms

these alternatives (which is not surprising, since we are in the favorable case where the

ground truth belongs to our constrained family of models). K2 always learns a relatively

large number of edges, which results in a high average level of recall, but also in an

average level of precision which is below the range of values observed for CAM.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FPR

TP
R

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n
Fig. S.4. Comparison of (undirected) edge recovery accuracy. Curves correspond to CAM (blue,cross), relevance

networks (green, diamond), CLR (magenta, square) and ARACNE (cyan, triangle). Results for K2 are shown as a

single encircled red dot. The black dashed line on the left panel corresponds to random guessing. Results are shown

for d = 10, n = 100 and were averaged over 1,000 replicates.

1.2.2 Comparison for a Generic Bayesian Network

We now assess performance when the data are generated from a more general Bayesian

network. The ground truth network has d = 14 variables and is shown in Fig. S.5. The

parametrization of the corresponding distribution is as follows.

• For the two root nodes, we fix P (X1 = 1) = 0.4 and P (X2 = 1) = 0.6.

• For each non-root node s with parent set s−,

P (Xs = 1|Xt = xt, t ∈ s−) =
exp

(
α · ∑

t∈s− xt
)

1 + exp
(
α · ∑

t∈s− xt
)

Evidently, small values of α correspond to weak dependence (with complete decoupling

for α = 0) whereas as α becomes large, nodes with any “on” parent are likely to be

“on” themselves.

We considered a range of sample sizes from 20 to 2,000 and we fixed ε = 1. Fig.

S.6 shows the number of edges in the final learned structures (averaged over 100

replicates). As expected, the structures learned by CAM contain fewer edges than their

K2 counterparts. Indeed, CAM cannot learn more edges than variables (the slightly

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Fig. S.5. Graph structure for Bayesian network experiment.

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

n

ed

ge
s

200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

n

ed

ge
s

Fig. S.6. Average number of edges learned as a function of sample size. The black dashed line is the number of

edges (32) in the true Bayesian network. Results are shown for different degrees of model dependence: α = 0 (blue,

cross), α = 0.5 (red, circle) and α = 1 (green, diamond). Solid lines correspond to CAM and dotted lines correspond to

K2.

higher values seen in the figure are due to our use of the extended graph, where an

edge is added between sibling nodes, for comparison purposes). For small sample sizes

CAM learns a small number of edges, eventually saturating at the maximum number

that can be learned. In contrast, K2 returns more complex structures (which do not

necessarily correspond to the true one). For complete mutual independence (α = 0), K2

stabilizes at around 14 edges, whereas CAM correctly learns nearly none.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

n

KL

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

KL

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

n

KL

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

KL

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

n

KL

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

n

KL

Fig. S.7. KL divergence between the Bayesian network ground truth distribution and the distributions learned using

CAM (solid, blue, cross), K2 (dotted, red, circle) and the true generating graph with MLE parameters (dashed, green,

diamond). Results are presented for α = 0 (left column), α = 0.5 (center column) and α = 1 (right column). Results

were averaged over 100 replicates.

Fig. S.7 shows the KL divergence to the Bayesian network ground truth distribution

for both methods. In all cases, CAM offers the best performance when sample sizes are

small by favoring bias over variance. For larger sample sizes, and aside from the case

of weak dependence, CAM performs worse than the alternatives. This was expected:

when data are plentiful and the dependency structure is rich, learning models more

complex than ours becomes feasible.

Figure S.8 shows a precision-recall analysis of the results from the same simulation,

but this time we include a comparison with the graphs learned using RN, CLR and

ARACNE.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

pr
ec

is
io

n

recall

Fig. S.8. Precision-recall curves for the generic Bayesian network simulation. Curves correspond to CAM (blue line,

cross marker), K2 (red dotted line, circle marker), RN (green line, diamond marker), CLR (magenta line, square marker)

and ARACNE (cyan line, triangle marker). Results are presented for α = 0 (left), α = 0.5 (middle) and α = 1 (right).

Results were averaged over 100 replicates.

The points on each curve were drawn by using different sample sizes (actually, the

same as in the horizontal axes of Fig. S.7) instead of the traditional approach where

different points are obtained by varying some learning threshold. This is why they may

appear counterintuitive at first sight: as the sample size increases, we may learn more

edges and a larger percentage of all the learned edges may be correct, so precision and

recall may increase simultaneously.

For α = 0, the curves are rather chaotic and the points do not show a clear spatial

trend. This is not surprising, since this choice of parametrization implies complete joint

independence among the variables and no structure can be recovered. As α grows, the

curves exhibit a better defined monotone increasing pattern. In all cases, we observe that

for similar levels of recall, the K2 approach achieves the smallest edgewise precision.

RN, CLR and particularly ARACNE seem to offer the best precision-recall performances.

For very small samples, which include the first few points in the curves starting from

the left, CAM offers a precision-recall performance that is competitive with that of RN,

CLR and ARACNE. For larger sample sizes (over 100 samples), CAM exhibits a lower

level of precision than RN/CLR/ARACNE (always for a same level of recall), although

it consistently outperforms K2 (when remaining within CAM’s strongly limited range

of recall).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

2 SIZE OF ENCODING AND EMPIRICAL RUNTIMES FOR THE ILP SOLUTION

TO STRUCTURE SEARCH

The sets of constraints that we had described in Section 5.2 of our paper to define the

ILP search procedure can be summarized as follows:

(C1) ∀e ∈ E ,
∑

t∈Te
xt = ye

(C2) ∀ψ ∈ T0, (|ψ| − 1)xψ ≤ ∑
e∈ψ ye

(C3) ∀e ∈ E , ye + yē ≤ 1

(C4) ∀v ∈ V ,
∑

(v′,v)∈E y(v′,v) ≤ 1 and
∑

(v,v′)∈E y(v,v′) ≤ 2.

(C5) ∀v ∈ V ,
∑

ψ∈Ψv
xψ ≤ 1

(C6) ∀e ∈ E ,
⎧
⎪⎨
⎪⎩

−C(1 − ye) + ye +
∑

e′→e fe′ ≤ fe ≤ ye +
∑

e′→e fe′

0 ≤ fe ≤ Cye

(C7) ∀e ∈ E ,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ he ≤ ye

he ≤ 1 − ye′ if e → e′

he ≥ 1 − ∑
e→e′ ye′ − C(1 − ye)

−C(1 − ye) +
∑

e→e′ ge′ ≤ ge ≤ he +
∑

e→e′ ge′

ye ≤ ge ≤ Cye

∀ψ ∈ T0,T , |ge(ψ) − ge′(ψ)| ≤ 1 + C(1 − xψ)

In the last constraint, T0,T refers to the subset of primitives with cardinality three (i.e.

the subset of triplets in T0).

Note that, as mentioned in the main paper, our choice of ILP solver for all the synthetic

simulations and real-data data experiments presented here was the Gurobi optimizer

(version 4.5).

2.1 Size of ILP Encoding

Tables 1 and 2 show the number of variables in the ILP problem and the number of

linear constraints associated to each of the conditions above, respectively. Note that, as

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

we had explained in Section 5.2, condition C3 is made redundant by condition C6 and

can therefore be omitted, although in practice we have observed that it helps to speed

up the solver.

Name Description Cardinality

xt Primitive selector |T0|
ye Edge selector |E|
fe Acyclic flow |E|
he Terminal edge indicator (used in balance flow) |E|
ge Counter of terminal edge descendants (used in balance flow) |E|

TABLE 1

Size of ILP encoding: number of variables.

The total number of variables in the ILP problem is a linear combination of |E| and

|T0| of the form:

4 · |E| + |T0|

Condition Motivation # constraints

C1 Every selected edge must appear in exactly one selected primitive |E|
C2 All edges in each selected primitive must be selected |T0|
C3 No edge and its reversal can be simultaneously selected |E|
C4 No vertex can have more than one parent and two children 2|V |
C5 No α-node overlap for binary primitives |V |
C6 Graph must be acyclic 4|E|
C7 Graph must be almost-balanced at triplets 7|E| + |E|∗ + 2|T0,T |

TABLE 2

Size of ILP encoding: number of constraints.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

The total number of constraints in the ILP problem depends on a combination of |E|,
|V |, and |T0| of the form:

13 · |E| + |E|∗ + 3|V | + |T0| + 2|T0,T |

where the term |E|∗ is used to represent the number of constraints associated to the

second inequality in C7. For each edge e = (a, b) ∈ E , this inequality introduces a linear

constraint for every edge e′ = (b, c) ∈ E . Therefore, the actual number of constraints

will depend on the number of overlapping edges contained in E . The following upper

bound is always valid as a “worst case scenario”:

|E|∗ ≤ |E| · (|V | − 1)

Notice that |E| is also an upper bound for the constraints associated to C3, since in

practice it is only necessary to impose this constraint for edges (a, b) ∈ E such that

(b, a) ∈ E , and not for every edge in E . Similarly, V is an upper bound for the number

of constraints in C5, since there may be nodes that do not appear as α-nodes in any of

the primitives contained in T0 (or that appear in only one of them).

The expressions above for the number of variables and the number of constraints

show that the complexity of the ILP problem depends mainly on the properties of the

set of candidate primitives that survive the initial stepwise selection process. On the

one hand, |T0| will be large when there is a large number of significant dependencies

among the variables. It is possible to encounter situations where |V | = d is relatively

small and yet |T0| is relatively large (e.g. the dataset contains few variables but the target

network of dependencies is very dense, as is the case for our 20newsgroups experiment)

and viceversa (e.g. the dataset contains many variables but the target network of de-

pendencies is very sparse, as might well be the case for our TP53 experiment). On the

other hand, |E| will be large when those dependencies involve many different edges

(i.e. oriented pairs). Again, note that |E| is not necessarily a monotone function of |T0|,
since there can be relatively large sets of primitives built by reusing a relatively small

set of edges. Similarly, |E|∗ needs not be a monotone function of |E|, since there can be

large sets of edges with very few overlaps or even no overlaps at all.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

2.2 Empirical ILP Runtimes from Synthetic Simulations

We carried out an empirical evaluation of the runtimes for our ILP search approach and

we compared it to several alternatives based on our synthetic data simulations. Results

are shown in Fig. S.9.

200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

primitives

tim
e

(s
ec

on
ds

)

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

n

tim
e(

s)

200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

n

tim
e(

s)

Fig. S.9. Average runtime results for synthetic data simulations. Left panel shows average runtimes as a function of

|T0| for random choices of structure and parameterization (learned as in the experiment from Fig. S.2, for a fixed choice

of d = 10, n = 10, and averaged over 20e3 replicates). Results are shown for greedy search (yellow, diamond marker)

and ILP search (blue, circle marker). Right panels show average runtimes for the generic Bayesian network experiment

described in Section 1.2 of this supplemental material. Results are shown for ILP search (blue), K2 search (red) and

RN (green). The values on the horizontal axis correspond to different samplesizes.

Left panel shows average runtimes as a function of |T0| for greedy search versus ILP

search. Within the same experimental setting that we had used to generate the results

shown in Fig. S.2, we generated random structures with random parameterizations

involving d = 10 variables and for each of them we generated n = 100 samples. By

varying the selection threshold, we obtained in each case |T0| of different cardinalities.

We applied greedy search and ILP search to look for the best structure and we measured

the runtimes for each approach as a function of |T0| (the averages were computed using

bins of size 100 primitives). In this experiment, ILP was always run to convergence. The

plot shows how greedy search runtimes grow faster for small sets of primitives and then

tend to stabilize, while ILP runtimes exhibit a more linear behavior. This confirms what

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

we had observed in practice: when the number of candidate primitives is relatively

small, ILP search is competitive with greedy search in terms of speed, sometimes it is

even faster. For large numbers of primitives, the computational cost of ILP continues to

grow linearly while the cost of greedy search stabilizes, which results in ILP needing

much runtimes.

Finally, the last two panels on the right side of Figure S.9 show the time averages

for the second experiment of Section 1.2 of this supplemental material (for the case

α = 0.5), where we compared our CAM-ILP approach to K2 and RN/ARACNE/CLR

using a generic Bayesian network. Since the dimension of the problem was relatively

small (d = 14), the runtimes for ARACNE and CLR were almost identical to the runtimes

for RN, which roughly corresponded to the time required to compute and sort all the

pairwise values of mutual information. These are shown in green in the figure. Of

course, these average runtimes for RN are much smaller than the runtimes for K2 and

ILP search. Once again, we observe that ILP runs faster than K2 for small samples,

although their time requirements tend to equalize as the observed sample size grows.

2.3 Performance Analysis of the ILP Solution for our Real Data Experiments

Table 3 presents the actual values of |V |, |T0| and |E0| for our 20newsgroups and TP53

experiments. It also includes the number of variables in the dataset (d) and our choice

of selection threshold (ε).

Problem d ε |V | |T0| |T0,T | |E0| |E0|∗

20newsgroups 66 10−6 66 13,820 12,994 1,753 57,586

TP53 2,000 1 76 760 626 290 1,940

TABLE 3

Size of ILP encoding for the 20newsgroups and the TP53 experiments.

The numbers of rows, columns and nonzero variables in each ILP problem, as well

as the final values for the objective function, best bound and dual gap are shown in

Table 4.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

Problem Rows Columns NonZeros Final Score BestBound Gap

20newsgroups 88,164 20,327 543,712 0.72267 0.78455 8.56 %

TP53 5,288 1,680 35,811 0.04345 0.04345 0.0046 %

TABLE 4

Size of encoding (continued) and final results of ILP search for the 20newsgroups and

the TP53 experiments. These are the values reported by the Gurobi optimizer after the

initial presolve step, which typically carries out some problem reductions.

As we had explained in Section 8.1 of the main paper, global optimality of the solution

shown in Fig. 5 cannot be guaranteed because the final dual gap reached by the solver

was non-negligible. The solution itself was first reached after approximately three and

a half days of computation. At that point, the gap was 8.58%. The result appeared to

be stable after extensive computation, meaning that no improvement in terms of the

objective function for the primal problem was observed after running the Gurobi solver

for several additional days on a 16 core machine. There was a small reduction of the

bound based on the solution to the dual problem, which pushed the gap down to

the 8.56% reported. The fact that this reduction was so small for such a large amount

of additional computation suggests that, in situations like this, where the number of

rows/columns/nonzeros is large, the gap may indeed be difficult to close. Note that

this does not mean that this solution is not optimal, but only that its global optimality

cannot be guaranteed based on the dual gap. In fact, in practice it may be possible

to find a very good, possibly optimal or near-optimal solution relatively fast. Table 5

illustrates this point.

On the other hand, in Section 8.1, we had also mentioned that the final network that

we had learned (shown in Fig. 5) is componentwise optimal. This means that, after

learning the global network, we revisited each of the five independent components one

by one and we run a separate ILP search restricted to the variables contained in that

component. The difficulty of these problems varied a lot from one to another (from the

0.4 seconds required to solve the one for the cars category, to the more than 5 days

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

required to solve the one for the computers category) but they were all much more

computationally affordable than the original global problem. Some additional details

are provided in Table 6. For every one of these ILP subproblems, the solver reached a

guaranteed optimal solution (for a gap threshold of 0.01%) which coincided in all cases

with the structure that we had learned as a part of the global network.

Time Objective Function Best Bound Gap

36 seconds 0.69141 -0.84677 22.5 %

∼ 1 minute 0.70386 0.81512 15.8 %

∼ 1 hour 0.71686 0.78854 10.0 %

∼ 10 hours 0.72076 0.78589 9.04 %

∼ 3.5 days 0.72267 0.78470 8.58 %

∼ 6 days 0.72267 0.78455 8.56 %

TABLE 5

Temporal evolution of the global ILP search for the 20newsgroups dataset. Greedy

search reached a final objective function value of 0.6475 after 13.17 seconds.

Subproblem Variables Rows Columns NonZeros Final Score Time

Cars 5 340 129 1,379 0.0255 0.40

Sports 9 2,077 745 10,593 0.11552 4.80

Health 11 2,206 755 11,348 0.07160 7.33

Space and religion 18 6,711 2,238 31,722 0.26189 564

Computers 23 27,787 8,327 141,309 0.24817 436,292

TABLE 6

Size of ILP encoding for each of the five componentwise ILP search problems.

The solution for the ILP search problem in the TP53 case (which corresponds to the

network shown in Fig. 6 and Fig. S.12) was found in 441.96 seconds. The solution is

guaranteed to be optimal for a dual gap threshold of 0.01% (the solver stopped when

an actual gap of 0.0046% was reached). As we had explained above, the fact that the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 18

TP53 search problem is solved much faster than the 20newsgroups case might seem

counterintuitive at first sight, since d = 2, 000 for TP53 and d = 66 for 20newsgroups.

However, the actual complexity of the search problem is determined by T0. Since there

are many more primitives that survive the stepwise selection process for 20newsgroups,

the associated ILP problem becomes much harder to solve.

Finally, please note that, as we had explained at the end of Section 5 in the main

paper, the ILP solution may improve upon greedy search even without running to

convergence. This claim is supported by the following empirical evidence:

• For the 20newsgroups dataset, our greedy search algorithm got a final score of 0.6475

after 13.17 seconds. The first ILP solution that improved this result was obtained

after approximately 36 seconds and had a score of 0.6914 (with a gap of 22.5 %).

• For the TP53 experiment, our greedy search algorithm got a final score of 0.0395

after 12.43 seconds. The first ILP solution that improved this result was obtained

in approximately 1 second and had a score of 0.4246 (with a gap of 12.2 %).

These results also show that the runtimes needed to find an ILP solution that improves

the one obtained by greedy search are competitive with the empirical runtimes measured

for the greedy search algorithm.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 19

3 EXTENDED DISCUSSION OF OUR EXPERIMENTS USING THE 20newsgroups

DATASET

In this section, we present an experiment based on the 20newsgroups dataset where

we show that, within small-sample regimes, the probability distributions learned using

CAM provide better predictions on holdout samples than the distributions learned

using the K2 algorithm and a baseline edgeless Bayesian network. We also present

a comparison between the semantic network learned using CAM on the 20newsgroups

dataset and two networks learned using the relevance networks approach.

3.1 Quantitative Evaluation of the Predictive Performance of CAM Models on Hold-

out Samples

We work with the 20newsgroups dataset and we consider the same set of 66 variables

and 16,242 samples that we had used to learn the network shown in Fig. 5. In this

case, however, we will split the data into a training set and a learning set. We will use

our family of CAM models to learn the joint probability distribution of the 66 variables

using the training set and we will evaluate its performance at predicting the holdout

samples by computing the average log-likelihood of the test set.

We will compare our results with the ones obtained using K2, since none of the other

methods for network reconstruction discussed in our paper is designed to learn the

underlying joint probability distribution. We will also compare our results with those

associated to a baseline model (BL) consisting of an edgeless Bayesian network (i.e.

a model which assumes full independence, so that the joint is simply computed as a

product of all the individual marginals).

3.1.1 Experimental Setting

We want to evaluate the performance of the three methods mentioned in the previous

paragraph as a function of the available sample size, n. For this, we propose the

following procedure:

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 20

• At replicate i, do:

1) Randomly choose a subset of N samples from the original set of 16, 242 obser-

vations. This will be our training set L(i). All the remaining 16, 242−N samples

will be used as the test set H(i) (or “holdout set”) for replicate i.

2) Index the N samples in the training set L(i), so that L(i) = {x(i)
1 , . . . ,x

(i)
N } (where

each x ∈ Rd).

3) For Nj from N0 to N in increments of ΔN , do:

a) Let the current partial training set L(i,j) contain the first Nj samples in the

training set L(i), i.e. L(i,j) = {x(i)
1 , . . . ,x

(i)
Nj

}.

b) Learn the joint probability distribution of X using BL, K2 and CAM.

c) Compute the average log likelihood of the samples in the test set H(i) under

the joint distributions learned with each of the previous models:

LL(L(i,j),H(i)) =
∑

xk∈H(i)

logPL(i,j)(xk)

|H(i)| · d

where |H(i)| = 16, 242 −N is the number of holdout samples.

We repeated the steps above for a total of 100 replicates and averaged the final results

in order to evaluate the performance associated to BL, K2 and CAM. The results are

shown in Fig. S.10.

The K2 algorithm assumes knowledge of the causal ordering of the variables, i.e. it

needs to be told which variables can be parents of which variables in the final structure.

Of course, the true causal ordering in the current problem is unknown. We decided to

run the K2 algorithm using a frequency (or, equivalently, entropy) ordering, according to

which a variable can only be a parent of another one if the word associated to the parent

appears in more documents than the word associated to the child. Note that, since all

the frequencies are relatively small in this example (and far below 0.5), entropy is a

monotone function of frequency and therefore the entropy and the frequency orderings

coincide. In order to provide a fair comparison with CAM, we also restricted the space

of candidate CAM structures to enforce the same constraint, i.e. we discarded all the

primitives where the frequency of parents was not larger than the frequency of their

children. Once again, we do not claim that this is a “true” causal ordering, but we can

guarantee that the same ordering was enforced for the two approaches.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 21

5000 6000 7000 8000 9000 10000 11000 12000

−0.126

−0.124

−0.122

−0.12

−0.118

−0.116

n

LL

1000 2000 3000 4000 5000
−0.18

−0.17

−0.16

−0.15

−0.14

−0.13

−0.12

n

LL

100 200 300 400 500
−0.3

−0.28

−0.26

−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

n

LL

Fig. S.10. Average log-likelihood over holdout samples as a function of observed sample size. Results are shown

for BL (green, diamond), K2 (red, circle) and CAM (cross marker). CAM results are shown for ε = 1 (cyan), ε = 10−3

(blue), ε = 10−6 (magenta) and ε = 10−9 (black). The three panels cover different ranges of sample sizes. On the left

panel, the green and the black lines overlap because the results for BL and CAM(ε = 10−9) are very similar (identical

for most sample sizes).

When it comes to our CAM models, attempting to find a guaranteed optimal solution

for the ILP search problem may be computationally prohibitive for this given dataset,

depending on the available sample size (which will influence the actual cardinality of

T0, for more details see the discussion in Section 2.3 of this supplemental material). Still,

a good solution can typically be found in a relatively short time. In order to illustrate

this point, we imposed an upper bound of five minutes for each run of the ILP solver,

meaning that a solution is accepted if either it is guaranteed to be optimal or if the time

limit of 300 seconds is reached. In most cases, particularly those corresponding to small

samples, the optimal solution was found for runtimes far below the five minute limit.

3.1.2 Discussion

Our results support our claim of the fact that CAM models perform well within small

sample scenarios.

For sample sizes between 100 and 500 samples, the performance of CAM is compa-

rable to that of BL. This makes sense: since the available sample size is so small relative

to the number of variables, the model with the best generalization properties is the

edgeless graph (let us keep in mind the fact that we are attempting to learn a distribution

with a state space of 266 configurations from just a few hundreds of observations). For

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 22

sufficiently small values of ε, CAM will simply ”refrain” itself from learning any edges

and thus the results are identical to those obtained with BL. A large choice of ε may

lead to overfitting, as is the case for the cyan line in the figure. K2, however, always

learns a relatively complex graph and therefore always ends up severely overfitting the

data within this range of samples.

For sample sizes between 500 and 5,000, CAM clearly outperforms the other two

approaches. BL is too simple to achieve a good performance. The performance of K2

improves as sample size grows, so that it does better than BL after approximately 2,000

samples. However, K2 still performs worse that CAM because the observed sample

size is not enough to support the complexity of the models that it is attempting to

learn. We remark that, for this range of sample sizes, CAM consistently outperforms its

alternatives over a very wide range of choices of ε (from ε = 1 to ε = 10−9).

Finally, when a sufficiently large set of samples is observed, K2 will overpass CAM

(as shown in the third panel of Fig. S.10). This was expected and is the type of result that

agrees with the conclusions that we had reached from our synthetic data simulations:

when the number of samples in the training set is large enough, models that are more

complex than CAM exhibit better learning performance.

3.2 Comparison with Relevance Networks

Fig. 5 in Section 8.1 shows the final network learned using CAM models for the whole

20newsgroups dataset. For comparison purposes, we also looked at the kind of graphs

that would be learned using standard relevance networks. Results are shown in Figure

S.11.

We considered two different network building strategies in order to provide a fair

comparison. On the one hand, the threshold for the mutual information was chosen to

be the same as the one used to select binary primitives for the network in Fig. 5. On

the other hand, we sorted all the pairwise mutual information values and only kept

the top scorers, in order to learn a graph with the same number of edges as the one

that we had learned using CAM. In the first case, all the variables appeared in the

graph as members of a unique connected component. The large number of pairs that

survived thresholding led to a very crowded network representation with lots of nodes

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 23

Fig. S.11. Two graphs learned by relevance networks using the 20newsgroups dataset. Left panel: the mutual

information threshold is the same as the threshold that was used for selecting binary primitives in the network shown

in Figure 5 of the main paper. Right panel: the threshold is chosen so that the learned relevance network has the same

number of edges as the network shown in Figure 5.

of high degree. Although the words are certainly clustered by semantic categories in

terms of their proximity within the network, the large number of detected interactions

makes it difficult to further interpret the results. In the case where only the top edges

were kept, a total of 20 variables (out of the original 66) were left out of the final

structure and treated as singletons (they were not linked to any others). This means that

many meaningful interactions remained undiscovered, even if the multiple independent

components seem to correspond well to different semantic categories. In either case,

we must not forget that, unlike relevance networks, our balanced compositional trees

provide a truly generative model based on an efficient parametrization of the target

global joint probability distribution and this offers advantages that go beyond those

associated to a merely more attractive visual representation.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 24

4 ANALYSIS OF RESULTS FOR THE TP53 EXPERIMENT

The final network learned using our CAM approach on the full IARC TP53 dataset con-

tained a total of 68 different mutations structured in several independent components.

It is shown in Fig. S.12.

Fig. S.12. Network of interactions among somatic mutations for the IARC TP53 dataset learned using CAM models.

Dashed lines are used to link siblings that belong to the same triplet primitive. For each node, we provide the unique

mutation identifier in the IARC Database and the (standard) mutation description at the protein level, where p.XzY

represents the substitution of amino acid X by amino acid Y at codon number z; for example, p.R248W represents

substitution of Arg by Trp at codon 248. Components labeled with a capital letter contain enriched annotations which

are detailed in Table 7.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 25

As we had explained in Section 8.2, each somatic mutation in the IARC Database

is annotated with biochemical details about the actual nucleotide variation, as well

as clinical information for the patient and tissue where the mutation was observed.

The IARC Database also provides a unique nucleotide position for each mutation. The

average distance between nodes within the same connected component in our network

is 486.8 nucleotides, whereas the average distance among unconnected nodes (including

singletons) is 1,436.5 nucleotides.

We first work with two types of annotation: topography and morphology. Topography

refers to the site of the tumor in which the mutation was observed, as defined by organ

or group of organs; there are 74 distinct labels and examples include breast, brain, prostate

or colon. Morphology refers to the tumor type; there are 323 distinct labels and examples

include adenoma, malignant lymphoma or leukemia.

We hypothesize that mutations which are close in our network are more likely to be

functionally related. In particular, pairs of mutations linked by an edge should be more

likely to share annotation than pairs of mutations chosen at random. It is easy to show

that sharing at least 5 topography terms or at least 5 morphology terms has probability

less than 0.05 for a random pair. In the learned network, of the fifty-eight edges in the

graph, all connected pairs share at least one topography term and 14 share at least six.

Similarly, all share at least one morphology term, and 16 out of the 58 share at least six.

These are all rare events under random pairing.

We investigated enrichment of annotations at the component level, permuting muta-

tion IDs and computing hypergeometric p-values. These p-values represent the proba-

bilities of observing an equally large or larger number of mutations within a component

that are associated with a given term under the null hypothesis of independent labels

within a randomly-composed component of the same size. Using the fifth percentile for

significance, we found that several components in our network contained significantly

enriched annotations for topography and morphology. They are shown in Table 7, where

the labels in the first column correspond to the labels in Fig. S.12 and the numbers in

the second column correspond to the IARC mutation identifiers.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 26

COMPONENT MUTATIONS TOPOGRAPHY MORPHOLOGY

2143,2705,2821,

A 3236, 3294, 3297, 53 terms 98 terms

3327,3730,3737,

3879

2907,3251,3676,

B 3773,3787,3865, LUNG ADENOCARCINOMA

3889,4013,4221

C 3742,3991,4094, STOMACH -

4095,4120,4172

D 1809, 2168,2195 ADRENAL GLAND GERMINOMA, YOLK SAC TUMOR, ASTROCYTOMA

E 2010,2267 THYROID PAPILLARY CARCINOMA, MATURE T-CELL LYMPHOMA.

F 3909,5375 - HEMANGIOSARCOMA

G 3303,5466 - HEMANGIOSARCOMA

TABLE 7

Components with enriched topography and morphology annotations in TP53 network.

The component of size ten is significantly enriched for a large number of annota-

tions, both in terms of topography and morphology. Interestingly, it contains the nine

most frequent p53 mutations, which are well-known to be localized in seven mutation

hotspots [6], [7]. The top eight most frequent mutations belong to the DNA-binding

domain of the p53 protein (R248W, R248Q, R273C, R249S, R175H, R273H, G245S and

R282W). Mutations within this region can result in the removal of DNA contacts, or

can have a structural effect by destabilizing the local conformation or inducing global

denaturation. One of the other two mutations in the component, Y220C, is located in

the β-sandwich of the protein and is the most common cancer mutation outside the

DNA-binding surface, accounting for 1.4% of somatic missense mutations in p53 [8].

The remaining mutation, R213X, is of the nonsense type, which means that it introduces

a stop codon which leads to premature translational stop.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 27

PROPERTY ALL MUTATIONS MUTATIONS IN NETWORK P-VALUE

CPG ASSOCIATION 213/2000 13/68 0.0239

AVERAGE MUTATION RATE 0.1381 0.2935 4 · 10−4

DELETERIOUS(SIFT) 200/321 13/15 0.0368

DELETERIOUS(AVCVD) 196/321 13/15 0.0296

GAIN OF FUNCTION 136/514 11/22 0.0136

TABLE 8

Properties of the mutations in our TP53 network.

We also evaluated several properties of the variables in our network using additional

data from the same database. Results are shown in Table 8. Some details follow.

CpG islands are associated with methylation, which usually leads to failure in the

silencing of certain oncogenes and their corresponding over expression. This is a feature

found in many cancer cells [9]. Based on a hypergeometric null, CpG enrichment is

borderline significant in our network (p=0.024). In addition, mutation rates are available

for 1,348 out of the 2,000 variables in our model, and for 57 out of the 68 mutations in

our learned network. The average mutation rate over the whole set of 1,348 mutations

is 0.138, whereas it is 0.293 over the 57 mutations in our network (p = 4 · 10−4). The

functional impact of mutations is classified as “deleterious”, “neutral” or “unclassified”

using two different approaches, namely the Sorting Intolerant From Tolerant (SIFT)

program and the Average Graham Variation and Graham Deviation (AVGVD) indicator.

Another permutation test shows that the mutations in our connected components are

significantly more likely to be deleterious using either method (p = 0.0368 and p = 0.0296

respectively). Also known as “driver” mutations, these are known to have a negative

impact on the phenotype relative to “neutral” or “passenger” mutations. Finally, in

terms of protein descriptors, 514 out of the 2,000 mutations have functional annotations

and 136 of those have at least one associated gain of function (GoF) term. Within our

network, 22 out of the 68 mutations have functional annotations and 11 of them have

at least one associated GoF term. The corresponding hypergeometric p-value is, once

again, borderline significant (p = 0.0136).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 28

APPENDIX A

PROPOSITION S.1

If Ψ = {ψ1, . . . , ψN} ∈ T ∗
0 , then, letting ψk = (πk, Ak, Ok) and Jk = J(πk):

(i) For a given k, either Ak ∈ RΨ, or the collection of nonempty sets in Ak ∩ Ol, l 	= k,

forms a partition of Ak. The set RΨ cannot be empty and is a singleton if Ψ ∈ T ∗
0 .

(ii) We have D = S ∪ (
⋃
k∈RΨ

Ak)∪ (
⋃N
k=1(Jk \Ak)) and Ψ specifies a unique probability

P ∈ F∗ given by

P (x) =
∏

j∈S
Pj(xj)

∏

k∈RΨ

πk(xAk
)
N∏

k=1

πk(xJk |xAk
). (1)

where variables indexed over S := D \ ⋃N
k=1 Jk are mutually independent under P

and correspond to singleton distributions in Eq. (2) from the main paper.

(iii) Define the directed graph G(Ψ) on {1, . . . , N} by drawing an edge from k to l if

and only if Al ⊂ Ok. Then G(Ψ) is acyclic.

Proof. We prove (i) by induction on the number of merges. First, however, note that,

by construction, the α-sets of any φ ∈ TΨ must be one of the α-sets of the original

family, Ψ, since no new α-set is created by the merge operation. If Ψ is an atomic

decomposition, this α-set cannot overlap with any of the ω-sets of Ψ and the associated

primitive therefore provides a root. Conversely, the α-set of the connector is the only

α-set in the merge operation that does not intersect an ω-set, so that any root of an

atomic decomposition must coincide with it. This proves that any decomposition in T ∗
0

has exactly one root.

Let U (0) = Ψ and, for k ≥ 1, U (k) be the union of U (k−1) and of the set of results of

single merge operations involving elements of U (k−1). Assume that (i) is true for any

subset of Ψ providing an atomic decomposition of elements of U (k), and let us show that

it is true also for those associated to elements of U (k+1). Consider φ ∈ U (k+1)\U (k), which

therefore can be written as φ = Γ(φ0, . . . , φr) with each φj = (πj, Aj, Oj) ∈ U (k). Then, an

atomic decomposition of φ is obtained by taking the union of decompositions of φj’s by

elements of Ψ. Let Ψ0, . . . ,Ψr denote these decompositions and Ψ̃ their union. Since the

φj such that j ≥ 1 must have disjoint supports, with J(πj)∩J(π0) = Aj ⊂ O0, no non-root

α-set in Ψj (j ≥ 1) can intersect an ω-set from another decomposition and therefore (i)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 29

remains true for these α-sets. The only change happens with Aj such that j ≥ 1, which

were roots in Ψj , and now are included in O0. Since this ω-set is recursively defined as

disjoint unions of ω-sets of merges obtained from elements of Ψ̃, it is a disjoint union of

some ω-sets of elements of Ψ, and each Aj with j ≥ 1 is partitioned by its intersection

with these ω-sets.

This proves (i) for elements of T ∗
0 , and the corresponding statement for F∗

0 is straight-

forward. Statements (ii) and (iii), can be proved with similar induction arguments. For

(ii), this proceeds directly from the definition of Γ, and for (iii), the above discussion

shows that G(Ψ̃) is deduced from G(Ψ) by adding edges between the indices of the roots

of each G(Ψj), j ≥ 1 and some of the indices of the output sets in Ψ0. Since these edges

only allow to leave G(Ψ0) (but not to go back) and do not create any communication

between G(Ψj) and G(Ψj′) for j 	= j′ and j, j′ ≥ 1, the resulting graph is acyclic if this

was the case for the original subcomponents, which is the induction assumption. �

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 30

APPENDIX B

PROOF OF PROPOSITION 2

First, since single-variable distributions are explicitly maximized for Pj(λ) = P ∗
j (λ), and

due to Eq. (1) from Proposition S.1 in Appendix A, the problem with fixed Ψ reduces

to maximizing the following expression:

(σ1, τ1, . . . , σN , τN) =
∑

k∈RΨ

EP ∗ log πk(XAk
; σk) +

N∑

k=1

EP ∗ log πk(XJk |XAk
; τk) −

∑

j∈S
H(P ∗

j)

where H(P) = −EP (logP) is the entropy of P and S := D \ ⋃N
k=1 J(πk). Assuming, for

notational ease, that the maxima over individual parameters are achieved, the maximum

of
 is given by

̂ =
∑

k∈RΨ

max
σk

EP ∗ log πk(XAk
; σk) +

N∑

k=1

max
τk

EP ∗ log πk(XJk |XAk
; τk) −

∑

j∈S
H(P ∗

j)

=
∑

k∈RΨ

EP ∗ log
πk(XAk

; σ̂k)∏
j∈Ak

P ∗
j (Xj)

+
N∑

k=1

EP ∗ log
πk(XJk ; σ̂k, τ̂k)

πk(XAk
; σ̂k)

∏
j∈J(πk)\Ak

P ∗
j (Xj)

+
∑

k∈RΨ

EP ∗ log
∏

j∈Ak

P ∗
j (Xj) +

N∑

k=1

EP ∗ log
∏

j∈J(πk)\Ak

P ∗
j (Xj) −

∑

j∈S
H(P ∗

j)

=
∑

k∈RΨ

μ(ψk) +
N∑

k=1

ρ(ψk) −
∑

j∈D
H(P ∗

j)

�

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 31

APPENDIX C

PROOF OF PROPOSITION 3

The “only if” part being obvious, we briefly discuss the proof of the “if” part, which

can go by induction on the number of elements in Ψ. The result is true if Ψ is empty,

or has a single element. Assume that it is true for any Ψ with cardinality N or less

and take a family Ψ = {ψ1, . . . , ψN+1} such that G(Ψ) is a union of balanced trees. Let

ψk = (πk, Ak, Ok) (with Jk = Ak ∪ Ok). Assume that ψj’s are ordered so that ψN+1 is a

root in Ψ and let Ψ′ = {ψ1, . . . , ψN}. Since the α-sets are singletons, the α-node of ψN+1

must also be a root of the connected component, say T , in G(Ψ) that contains it.

Since the definition of almost-balanced trees is recursive, removing the top component

either separates T into two balanced subtrees (when ψN+1 is a triplet with two nonempty

subtrees appended to its ω-nodes), or leaves a – possibly empty – single balanced tree

(in the other cases). The fact that α-nodes cannot be shared among ψk’s removes the

problematic case of two pairs sharing an α-node at the root of a tree.

In all cases, G(Ψ′) is a union of almost-balanced trees, and, since (i) and (ii) are

obviously inherited by the restriction, Ψ′ ∈ F∗
0 . Since putting ψN+1 back to its former

position is a legal merge operation, we find that Ψ ∈ F∗
0 also. �

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 32

REFERENCES

[1] D. Heckerman, “A tutorial on learning Bayesian networks,” Microsoft Research, Tech. Rep. MSR-TR-95-06, March

1995.

[2] A. J. Butte and I. S. Kohane, “Mutual information relevance networks: Functional genomic clustering using

pairwise entropy measurements,” Pac. Symp. Biocomput., pp. 418–29, 2000.

[3] A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Favera, and A. Califano, “ARACNE:

An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context,” BMC

Bioinformatics, vol. 7, p. S7, 2006.

[4] J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J. J. Collins, and T. S. Gardner,

“Large-scale mapping and validation of E. coli transcriptional regulation from a compendium of expression

profiles,” PLoS Biol., vol. 5, no. 1, p. e8, Jan 2007.

[5] G. F. Cooper and T. Dietterich, “A Bayesian method for the induction of probabilistic networks from data,” in

Machine Learning, 1992, pp. 309–347.

[6] A. N. Bullock, H. J., and A. R. Fersht, “Quantitative analysis of residual folding and DNA binding in mutant p53

core domain: Definition of mutant states for rescue in cancer therapy,” Oncogene, no. 19, pp. 1245–1256, 2000.

[7] T. E. Baroni, T. Wang, H. Qian, L. R. Dearth, L. N. Truong, J. Zeng, A. E. Denes, S. W. Chen, and R. K. Brachmann,

“A global suppressor motif for p53 cancer mutants,” Proc. Natl. Acad. Sci. USA, vol. 101, no. 14, pp. 4930–4935,

2004.

[8] A. C. Joerger and A. R. Fersht, “Structure-function-rescue: The diverse nature of common p53 cancer mutants,”

Oncogene, vol. 26, no. 15, pp. 2226–2242, April 2007.

[9] P. A. Jones and D. Takai, “The role of DNA methylation in mammalian epigenetics,” Science, vol. 293, no. 5532,

pp. 1068–1070, 2001.

