
 

 

2.8.2. Confusion Network Decoding for MT System 
Combination 

Authors: Antti-Veikko I. Rosti, Evgeny Matusov, Jason Smith, Necip Fazil Ayan, Jason Eisner, Damianos 
Karakos, Sanjeev Khudanpur, Gregor Leusch, Zhifei Li, Spyros Matsoukas, Hermann Ney, Richard 
Schwartz, Bing Zhang, and  Jing Zheng 

2.8.2.1 Introduction 

Confusion network decoding has been very successful in combining speech-to-text 
(STT) outputs (Fiscus 1997; Evermann and Woodland, 2000; Mangu et al., 2000) from 
diverse systems using different modeling assumptions. Several modeling paradigms have 
been introduced in machine translation (MT) including rule-based, phrase-based, 
hierarchical, syntax-based and even cascades of rule-based and statistical MT systems. 
Building confusion networks from MT system outputs is more challenging compared to 
STT system outputs since the translations may have very different word orders and 
varying lexical choices without affecting the meaning of the sentence, whereas, the words 
and the word order of speech transcriptions are strictly defined by the utterance. 

A confusion network is a linear graph where all paths travel via all nodes. There may 
be one or more word arcs between two consecutive nodes. These arcs may be viewed as 
alternative choices of words in a hypothesis. Thus, a confusion network may encode an 
exponential number of hypotheses. A word arc may also contain a NULL word which 
represents an empty word or a deletion. Fiscus (1997) aligns the STT outputs 
incrementally to form a confusion network. The vote count of each word arc is increased 
by one for each matching word in the alignment. The path with the highest total number 
of votes through the lattice defines the consensus output. Simple edit distance is sufficient 
in building confusion networks from STT system outputs since the outputs should follow 
a strict word order defined by the actual utterance. The most common STT quality metric, 
word error rate, only considers exact matches as correct. The order in which the STT 
system outputs are aligned does not significantly influence the resulting network. In 
machine translation, there may be several correct outputs with different word orders, as 
well as, different words or phrases with identical meaning. Two problems not relevant to 
combining STT system outputs arise: how to align outputs with different word orders and 
how to choose the word order of the final output. Many alignment algorithms for building 
confusion networks from MT system outputs have been proposed including edit distance 
based multiple string alignment (Bangalore et al. 2001), hidden Markov model based 
alignments (Matusov et al. 2006; He et al. 2008), inversion transduction grammar (ITG) 
(Wu  1997) based alignments (Karakos et al. 2008) and translation edit rate (TER) 
(Snover et al. 2006) based alignments (Sim et al. 2007; Rosti et al. 2007a; Rosti et al. 
2007b; Rosti et al. 2008; Ayan et al. 2008; Rosti et al. 2009). Alignment algorithms 
based on TER approximations using both TERCOM and ITGs and symmetric word 
alignment from a hidden Markov Model (HMM) are detailed in this section. One MT 
hypothesis must be chosen to be the “skeleton” against which all other hypotheses are 
aligned. The final word order and the quality of the decoding output depend on the 
skeleton selection. 
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of the following steps: 
 

1. Collect  N-best  list  outputs  from  MT  systems and  optionally  perform  some  
preprocessing (lower case, re-tokenize, etc.); 

2. Choose one or more skeleton translations for each segment;  
3. Align all other hypotheses against the skeleton/skeletons;  
4. Build confusion network/networks from the alignments for each segment;  
5. Decode confusion networks using arc features and sentence-level scores (LM 

score, word insertion score, etc.);  
6. Optimize feature weights on a development set;  
7. Optional post-processing (true casing, detokenization, etc.).  

 
In incremental hypothesis alignment algorithms, steps 3 and 4 are performed in a single 
process.  

The following three sections describe the confusion network decoding approaches 
used by all three teams participating in the most recent DARPA GALE evaluations. 
Three TER based alignment algorithms and various skeleton selection methods developed 
by the AGILE team are presented in Section 2.8.2.2. Section 2.8.2.3 presents a 
comparison of two alignment algorithms developed by the NIGHTINGALE team. 
Finally, an alternative alignment algorithm for TER scoring and hypothesis alignment 
based on ITGs developed by the Rosetta team is described in Section 2.8.2.4. 

2.8.2.2 AGILE Team Approach 

Three TER based MT hypothesis alignment algorithms and how to build confusion 
networks from these are described in this section. The method used to assign scores for 
paths given system and language model weights and how to choose the skeleton 
hypothesis are presented. Weight tuning algorithm based on Powell’s method is briefly 
reviewed. Experiments combining outputs from up to nine systems on Arabic newswire, 
web and audio sets are presented. 

2.8.2.2.1 Pair-wise TER Alignment 

The TER alignment may be used in building confusion networks from MT hypotheses 
(Sim et al. 2007). The availability of TERCOM has made it easy to create a high 
performance confusion network decoding baseline (Rosti et al. 2007a).45 Since TERCOM 
was developed for automatic evaluation of MT outputs, it can only align two strings, the 
reference and the hypothesis. Assuming one output has been chosen to be the confusion 
network skeleton, all hypotheses may be aligned independently using the skeleton as the 
reference translation. These pair-wise alignments may be consolidated to form a 
confusion network. 

                                                      
 
45 http://www.cs.umd.edu/~snover/tercom/ (current version 0.7.25) 
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pair-wise alignments may be generated. The alignment between the first and second 
hypotheses is: 

NULL    twelve    NULL       cars 
NULL    twelve    big blue    cars 

 
The initial NULLs were inserted to help forming the confusion network with the 

alignment below. This alignment has two insertion errors from the string “big blue”. The 
alignment between the first and third hypotheses is: 

 
NULL     twelve    NULL     cars 
dozen         blue     NULL     cars 

 
This alignment has one insertion from the word “dozen” and one substitution from 

the word “blue”. The NULLs before the word “cars” were inserted to help forming the 
confusion network with the previous alignment.  

 
Figure 2.62: Confusion network using pair-wise TER alignment and “twelve cars” as the skeleton. 

A confusion network generated from these two alignments is shown in Figure 2.62. 
The number of votes for each word is denoted by the number in parentheses. The path 
with the highest vote count is “twelve cars”, but there are some undesirable paths due to 
alignment errors. Since the pair-wise alignments are independent, there is no guarantee 
that the word “blue”, which is not present in the skeleton, will align correctly from the 
other two hypotheses. Multiple insertions “big blue” are aligned with a single NULL arc 
from the other hypotheses. Aligning multiple insertions from several alignments is non-
trivial requiring an additional round of alignments and skeleton selection. Finally, the 
TER algorithm does not know that words “twelve” and “dozen” are semantically 
identical. 

Using the second string as the skeleton yields the following two alignments: 
 

twelve     big         blue         cars 
twelve    NULL     NULL     cars 

 
with two deletion errors and 
 

twelve     big         blue         cars 
NULL   dozen       blue         cars 

 
with one deletion and one substitution error. A confusion network generated from these 
two alignments is shown in Figure 2.63.  
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Figure 2.63: Confusion network using pair-wise TER alignment and “twelve big blue cars” as the skeleton. 

There are three paths with equal number of votes resulting in hypotheses: “twelve big 
blue cars”, “twelve dozen blue cars” and “twelve blue cars”. Obviously, the second path 
is undesirable, although as likely as the other two. 

Using the third string as the skeleton yields the following two alignments: 
 

NULL   dozen       blue         cars 
NULL   NULL      twelve     cars 

 
with one deletion and one substitution and 
 

NULL   dozen       blue         cars 
twelve    big           blue         cars 

 
with one insertion and one substitution error.  A confusion network generated from these 
two alignments is shown in Figure 2.64. Again, there are three paths with equal number 
of votes resulting in hypotheses: “big blue cars”, “dozen blue cars” and “blue cars”. 
However, there are some very bad paths such as “twelve dozen twelve cars”, as a result 
of alignment errors. 

 
Figure 2.64: Confusion network using pair-wise TER alignment and “dozen blue cars” as the skeleton. 

2.8.2.2.2 Incremental TER Alignment 

Confusion networks from MT outputs may be built incrementally. Bangalore et al. 
(2001) used a multiple string alignment (MSA) software package to build the networks. 
MSA (Durbin et al. 1998) is based on edit distance alignment and does not perform 
reordering. An incremental TER alignment allowing shifts was proposed by Rosti et al. 
(2008). First, a trivial confusion network is generated from the skeleton by creating a 
word arc for each skeleton token. Each hypothesis is aligned against the current network 
at a time. All words, including the NULL word, on the arcs connecting two consecutive 
nodes are available for matching with a zero edit cost. A new node and two new arcs are 
created for each insertion. One of these arcs represents the NULL with votes from all 
hypotheses aligned so far and the other arc represents the inserted word from the new 
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hypothesis. A deletion will either create a new NULL arc or increase the vote of an 
existing NULL arc if one already exists at that position. A substitution will always create 
a new word arc. Insertions and deletions have a unit edit cost and a substitution cost of 1 
+  (  = 0.0001 in the experiments) was found to improve the quality of the decoding 
outputs. 

Unlike in the pair-wise TER alignment, the order in which the hypotheses are added 
influences the resulting confusion network. As in MSA, the alignment order may be 
determined by the edit distance from the current confusion network. The hypothesis 
closest to the network is aligned first. The TER between the current confusion network 
and all remaining unaligned hypotheses is computed. This requires a total of 0.5( −) alignments per segment to be computed for building a network from  outputs. 
Given outputs ℰ { , … , , an algorithm to build a set of Ns confusion networks { , … ,  may be written as: 

 
for n = 1 to Ns do 

Cn ⇐ Init(En) {initialize confusion network from the skeleton} ℰ' ⇐ℰ −En {set of unaligned hypotheses} 
while ℰ' ∅ do 

Em ⇐ argminE∊ℰ'  Dist(E, Cn) {compute edit distances} 
Cn ⇐ Align(Em, Cn)  {align closest  hypothesis} ℰ' ⇐ ℰ'−Em  

end while 
end for 
 
Using the same strings from the examples in Section 2.8.2.2.1 and the first string as 

the skeleton, yields the following alignment: 
 

twelve    NULL     NULL      cars 
twelve    big           blue         cars 
dozen    NULL      blue         cars 

 
where the third hypothesis is an  farther from the initial network compared to the second 
hypothesis. The confusion network is shown in Figure 2.65. The path with the highest 
number of votes yields “twelve big blue cars” and there are no undesirable paths. Using 
the second string as the skeleton yields the following alignment: 
 

twelve    big           blue         cars 
twelve    NULL     NULL      cars 
dozen    NULL      blue         cars 

 
where again the third hypothesis is an  farther from the initial network compared to the 
first hypothesis. The confusion network is identical to the one in Figure 2.65. 
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Figure 2.65: Optimal confusion network from incremental TER alignment using “twelve cars” and “twelve 

big blue cars” as skeletons. The same network results from the incremental alignment with flexible matching 
described in Section 2.8.2.2.3 using any hypothesis as the skeleton. 

Using the third string as the skeleton yields the following alignment: 
 

NULL      dozen     blue         cars 
NULL    NULL     twelve      cars 
twelve    big           blue         cars 

 
where both hypotheses are an equal distance from the initial network and were aligned in 
the arbitrary order they were listed. The word “twelve” in the first hypothesis is aligned 
with the word “blue” since the algorithm does not know that it is synonymous with 
“dozen”. The string “blue cars” from the second hypothesis is matched exactly with the 
network, “twelve” appears as an insertion and “big” as a substitution. A confusion 
network generated from this alignment is shown in Figure 2.66. There are three 
hypotheses with equal number of votes: “dozen blue cars”, “blue cars” and “big blue 
cars”. Some undesirable, lower cost paths also exist; for example, “twelve dozen twelve 
cars”. 

 
Figure 2.66: Confusion network using incremental TER alignment and “dozen blue cars” as the skeleton. 

The incremental TER alignment may be used to extract an approximate TER oracle 
translation from a confusion network. This can be achieved by aligning a reference 
translation with the confusion network and finding a path with the lowest edit cost with 
respect to the aligned reference through the network. This may be repeated for multiple 
reference translations and the lowest cost path among all reference translations will be the 
oracle translation. 

2.8.2.2.3 Incremental Alignment with Flexible Matching  

Ayan et. al (2008) and  He et al. (2008) have proposed improved pair-wise alignment 
algorithms by trying to match semantically equivalent words. Snover et al. (2009) 
similarly extended the TER algorithm to produce an evaluation metric called TER-plus 
(TERp). Rosti et al. (2009) modified incremental TER alignment to allow matching 
synonyms and words with identical stems with a lower cost. Semantically equivalent 
words may be collected from the individual system outputs using WordNet (Fellbaum 

338 Chapter 2: Machine Translation from Text 



 

 

1998). During the alignment, substitutions between equivalent words are assigned an edit 
cost of 0.2. In the above example, there are two equivalent words “twelve” and “dozen” 
which do not always align when using the incremental TER alignment. Using the first 
string as the skeleton, the incremental alignment with flexible matching yields the 
following alignment: 

 
 

twelve    NULL     NULL      cars 
dozen    NULL      blue         cars 
twelve    big           blue         cars 

 
where the distance of the third hypothesis is 1.2 and second hypothesis is 2 from the 
initial network. Therefore, the third hypothesis is aligned first creating a new node and 
two arcs with a NULL from the skeleton and “blue” from the third hypothesis. Aligning 
the second hypothesis also creates a new node and two arcs with a NULL from the other 
two hypotheses and “big” from the second hypothesis. Using the second string as the 
skeleton, yields the following alignment: 
 

twelve    big           blue         cars 
dozen    NULL      blue         cars 
twelve    NULL     NULL      cars 

 
where the  word  “dozen”  aligns  correctly  with  the skeleton word “twelve”. Using the 
third string as the skeleton, yields the following alignment: 
 

dozen    NULL      blue         cars 
twelve    NULL     NULL      cars 
twelve    big           blue         cars 

 
where again the words “dozen” and “twelve” are correctly aligned. Each hypothesis used 
as the skeleton yields the same confusion network shown in Figure 2.65 with the same 
total edit costs. 
 

 
(a)  Alignment using the standard TER shift heuristics. 

 
(b)  Alignment using the modified shift heuristics. 

Figure 2.67: Confusion networks using different shift heuristics in alignment. 
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The heuristic shift constraints of TER are not reasonable when using the flexible 
matching since there may be a block of tokens in the reference with some matching 
words and some synonyms. Snover et al. (2009) relaxed the shift constraints in 
computing the TERp score by considering synonyms and words with identical stems as 
exact matches while using the TER shift heuristics, but using tuned edit costs for these 
when computing the edit distance. The shift heuristic may be modified to consider any 
block shifts that do not increase the edit cost.46 This increases the complexity of the 
algorithm considerably, but has some desirable influence on hypothesis alignment. 
Karakos et al. (2008) showed an example where the TER yields a poor alignment. The 
hypotheses were “thomas jefferson says eat your vegetables” and “eat your cereal thomas 
edison says”. The TER shifts two blocks “eat your” and “thomas” and the final alignment 
has three substitution, a total of five edits. The modified algorithm shifts only one block 
“eat your cereal” resulting in only two substitution errors, a total of three edits. Confusion 
networks resulting from these alignments are shown in Figure 2.67 a) and b), 
respectively. Since TERp requires exact, synonym, stem matches, or phrase matches, it 
would not find the optimal shift in this example unless there are some unlikely phrase 
pairs in the TERp phrase table. The modified shift heuristics yield clearly a better 
confusion network for this artificial example. However, it is hard to quantify whether it 
yields better system combination performance (Karakos et al. 2008). 

2.8.2.2.4 Word Posteriors and LM Features 

As seen in the previous sections, the confusion networks may often contain several 
paths with an equal number of votes. Also, some MT systems may consistently produce 
better translations in which case their vote should count more. This may be achieved by 
introducing system weights. The diversity of the confusion networks may also be 
increased by aligning N-best hypotheses from the MT systems. In addition, a language 
model may be able to break any remaining ties by giving a higher score to more fluent 
hypotheses. 

 
J =3  S =2  E =3  SC =(0.76,0.00,0,0.66,0.10,0.46,0.24,0,0)  W=head  
J =4  S =2  E =3  SC =(0.24,0.05,0,0.00,0.00,0.00,0.00,0,0)  W=NULL  
J =5  S =2  E =3  SC =(0.00,0.95,1,0.15,0.90,0.41,0.70,1,1)  W=president  
J =6  S =2  E =3  SC =(0.00,0.00,0,0.19,0.00,0.00,0.06,0,0)  W=chief  
J =7  S =2  E =3  SC =(0.00,0.00,0,0.00,0.00,0.13,0.00,0,0)  W=chairman 

Figure 2.68: Example lattice snippet showing five word arcs with word posteriors between nodes 2 and 3. 
Here J is the arc index, S is the start node index, E is the end node index, SC is a vector of nine system 
specific word posteriors and W is the word label. 

If 1-best outputs are used in the incremental alignment algorithm, a total of 0.5( −)  alignments are performed, where Ns is the number of MT systems. The N-best 
                                                      
 
46 Snover et al. (2009) investigated relaxing the shift heuristics in the same way. This resulted in lower TERp 
scores, similarly to using ITGs to estimate TER in section 2.2.1.4 but the correlations with human judgment 
were worse. 
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hypotheses from a MT system are usually very similar, so it may be reasonable to align 
all hypotheses from one system in the rank order and determine the order in which the N-
best lists from different systems are aligned by the distance of the 1-best from the current 
confusion network. This will add at most ( − 1) alignments. 

An ad hoc weighting of 1/(1 + n) where n is the hypothesis rank is used to give a 
lower vote for words from lower ranking hypotheses. These votes are collected for each 
system separately, so that each word arc has Ns scores. After all hypotheses are aligned, 
the Ns vote counts are scaled to sum to one across all word arcs between two consecutive 
nodes. An example lattice snippet is shown in Figure 2.68. There are five word arcs 
between nodes 2 and 3 with the words head, NULL, president, chief and 
chairman. Nine system specific scores are shown in parentheses. Each score may be 
viewed as a posterior probability of the system generating the word in that position. For 
example, the probability that system 1 generated the word head between nodes 2 and 3 
is 0.76, the probability for NULL is 0.24 and zero for other words.  

Given system weights wn, which sum to one and system specific word posteriors snj for 
each arc j, the weighted word posteriors are defined as: ∑ 1        (2.83) 

The hypothesis score is defined as the sum of the log-posteriors along the path which is 
linearly interpolated with a log-LM score and a non-NULL word count: ( | ) ∑ log∈ ( ) ( ) ( )     (2.84) 

where ( ) is the sequence of arcs generating the hypothesis E for the source sentence F, 
SLM(E) is the Log-LM score and Nw(E) is the number of non-NULL words. The set of 
parameters { , … , , ,  can be tuned so as to optimize an evaluation metric on 
a development set as described later in Section 2.8.2.2.6. Decoding with an n-gram 
language model requires expanding the lattice to distinguish paths with unique n-gram 
contexts before assigning the LM scores to each arc. 

2.8.2.2.5 Skeleton Selection 

As seen in Sections 2.8.2.2.1 and 2.8.2.2.2, the decision of which skeleton to use may 
affect the quality of the resulting confusion network. If the alignment algorithm yields 
better alignments, the decision is less important. The optimal alignment was found for all 
skeletons in the example in Section 2.8.2.2.3. However, the incremental alignment with 
flexible matching cannot always find the optimal alignment for longer hypotheses with 
different word orders. 

Sim et al. (2007) proposed using the minimum Bayes risk (MBR) criterion with TER as 
the loss function and a uniform posterior distribution:47 
                                                      
 
47 MBR (Kumar and Byrne, 2004) is measured as the minimum expected loss L(E, E ') over the posterior 
probability distribution P(E |F) of all possible translations: argmin ∑ ( | ) ( , ). Since the 
posterior probability distributions P(E |F) for translations from different MT systems are usually not 
comparable, a uniform distribution is assumed in skeleton selection. 
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argmin ∑ TE R ( , )
where the MBR hypothesis  has the minimum expected TER with respect to other 
hypotheses Ej. Using the example in Section 2.8.2.2.1, the total number of edits for each 
hypothesis as the skeleton is four but the second hypothesis is longer than the other two 
and yields a lower MBR score. Therefore, the hypothesis “twelve big blue cars” would be 
chosen to be the skeleton. The MBR skeleton is chosen before tuning the system weights, 
so the weights do not influence the decision. 

Matusov et al. (2006) proposed selecting the skeleton as late as possible by building 
Ns confusion networks with the 1-best outputs as skeletons and connecting these 
networks into a joint lattice with a common start and end node. The system weight was 
used as a prior probability for each sub-network in the lattice. Rosti et al. (2007a) 
extended this by estimating priors from the MBR scores by treating the expected TER 
score percentages as negative log-probabilities which were scaled so as to define a prior 
distribution. These priors were also multiplied by the system weights, so that a skeleton 
with a high MBR score, but a low system weight would less likely be selected. 

2.8.2.2.6 Weight Tuning 

The optimization of the system and LM feature weights may be carried out using N-
best lists as in the work of Ostendorf et al. (1991). Standard tools may be used to 
generate N-best hypotheses including word confidence scores and language model scores 
from the lattice representing multiple confusion networks. The N-best list is reordered 
based on the sentence-level scores S(Em,k|Fm) from Equation 2.84 for the mth source 
sentence Fm and the corresponding kth hypothesis Em,k.  The current 1-best hypothesis  
given a set of weights  { , … , , ,  may be represented as follows: ( | ) argmax , ( , | )       (2.85) 

The objective is to optimize the 1-best score on a development set given a set of 
reference translations. For example, estimating weights to minimize TER between a set of   
1-best hypotheses ℰ  and reference translations ℰ  can be written as: argmin ∑ TE R (ℰ, ℰ )       (2.86) 

  
This objective function is not differentiable, so gradient-based optimization methods 

may not be used. In this work, Powell’s method, as described in the work of Press et al. 
(2007), is used. The algorithm explores better weights iteratively starting from a set of 
initial weights. First, each dimension is optimized using a line minimization algorithm 
utilizing bracketing and parabolic interpolation. Then, the direction of largest decrease is 
replaced with a new direction based on the old directions weighted by the change in the 
objective function value. This procedure is iterated until the change in the objective 
function value becomes small. To improve the chances of finding a global optimum, 19 
random perturbations of the initial weights are used in parallel optimization runs. Since 
the N-best list represents only a small fraction of all hypotheses in the confusion network, 
the optimized weights from one set of optimization runs may be used to generate a new 
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N-best list from the lattice for the next optimization iteration. The N-best lists are merged 
between these iterations. Similarly, weights to optimize other evaluation metrics such as 
BLEU (Papineni et al. 2002) or METEOR (Lavie and Agarwal  2007) may be tuned. 

Och (2003) proposed a more efficient algorithm for log-linear models where an exact 
minimum may be computed in the line minimization. Since the system weights are not 
log-linear interpolation weights in Equation 2.84, the exact line minimization may not be 
used. 

2.8.2.2.7 Experimental Evaluation 

The Agile team ran system combination experiments on Arabic Newswire 
development sets to contrast the effects of different design decisions. Outputs from nine 
systems covering rule-based, phrase-based, hierarchical, syntax-based and a cascade of a 
rule-based and a hierarchical MT systems were used. All outputs had up to 10-best 
hypotheses, were lower cased and used identical tokenization. Unpruned bigram and 5-
gram language models, trained on about 8 billion words of English text, were used in 
confusion network decoding and N-best list rescoring. 48  A development set of 2118 
segments was used in tuning the system combination weights to maximize the BLEUscore 
and a set of 1031 segments was used as a test set. 49 The development sets consisted of 
documents from the newswire portion of NIST MT04, MT05, MT06 and MT08 
evaluation sets, the GALE P1 and P2 evaluation sets and GALE P2 and P3 development 
sets. Four reference translations were available for both sets. All individual statistical MT 
systems were tuned to maximize the BLEU score on a separate tuning set. 

 
 dev test 

System TER BLEU TER BLEU 
A 48.73 38.38 49.52 38.29 
B 41.41 51.08 42.14 49.41 
C 40.57 53.03 40.97 51.37 
D 40.10 53.64 40.91 51.58 
E 38.10 54.79 39.61 52.39 
F 37.76 54.96 38.70 52.56 
G 38.25 55.21 39.47 52.89 
H 37.59 55.69 38.92 53.91 
I 37.46 56.25 38.53 54.33 
Pair-wise 34.87 59.80 36.08 57.33 
Incremental 34.10 61.06 35.00 58.85 
Flexible 34.13 60.90 35.25 58.66 

Table 2.85: Case insensitive TER and BLEU scores on the Arabic Newswire development and test sets. 

Table 2.85 shows the scores for the individual system outputs (systems A through I 
sorted according to increasing BLEU score), as well as, the system combination outputs 
using the three different alignment algorithms on the tuning and test sets. The 

                                                      
 
48 Using a trigram LM in decoding did not yield improvements after 5-gram rescoring. 
49 The brevity penalty was calculated using the original formula in the work of Papineni et al. (2002), rather 
than the definition implemented in the NIST mteval-v11b.pl script. 
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combination using pair-wise TER alignment yields significant gains over the best 
individual system scores (system I) on both sets. The incremental TER alignment yields 
significant gains over the pair-wise TER alignment and similar scores with the 
incremental alignment with flexible matching. Table 2.86 shows the average number of 
nodes and arcs per segment in the confusion networks and the scores for the oracle 
hypotheses extracted from the confusion networks built using the incremental alignment 
algorithms on the test set. The oracle scores are better when no flexible matching is used. 
This may be explained by the fact that the flexible matching yields more compact 
networks which contain fewer paths. The average number of tokens in the test set outputs 
was 37.83 and the maximum length of a hypothesis that can be generated from a 
confusion network is equal to the number of nodes minus one. 
 

System #nodes #arcs TER BLEU
Incremental 57.45 122.87 14.71 78.30 
Flexible 53.31 111.48 15.46 76.97 

Table 2.86: Average number of nodes (#nodes) and arcs (#arcs) per segment and case insensitive TER and 
BLEU scores for the oracle outputs on the Arabic Newswire test set. 

The pair-wise TER alignments were obtained using the Java TER software and the 
incremental confusion network building software was written in C++. The average time 
to build the confusion networks was about 3.58 seconds per segment when using the pair-
wise TER alignment, 10.19 seconds per segment when using the incremental TER 
alignment and 101.72 seconds per segment when using the incremental alignment with 
flexible matching. The N-best lists had on average 8.92 hypotheses per segment. Using 
the N-best lists slowed down the alignment by about a factor of two compared to using 
only 1-best outputs. The gain from using the N-best lists was about 0.4 BLEU points on 
the development set and the scores on the test set were practically identical. 

 
 

 dev test 
System TER BLEU TER BLEU
Pair-wise 35.77 58.20 36.48 56.06
Incremental 34.58 58.79 35.45 56.89
Flexible 34.67 58.87 35.68 56.62

Table 2.87: Case insensitive TER and BLEU scores on the Arabic Newswire development and test sets without 
system weights or language model; i.e., voting. 

Table 2.87 shows the scores obtained with equal system weights without using a 
language model. This corresponds to simple voting. Comparing these scores to those in 
Table 2.85 shows that the system weights, as well as, the bigram decoding and 5-gram 
rescoring yield about 1.3 to 2 BLEU point gains. The BLEU score differences between the 
pair-wise and incremental alignment algorithms are greater after tuning. The confusion 
networks built using the incremental alignment algorithms probably have paths with 
more fluent hypotheses and the language model helps to find these. 

Table 2.88 shows the influence of the skeleton choice on the quality of the decoding 
output. If only a single system is always chosen as the skeleton, the best scores are 
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achieved by using system I. The MBR skeleton yields a small, but consistent gain in both 
TER and BLEU scores on both development and test sets. The following three results are 
obtained using all 1-best outputs as skeletons and connecting the resulting confusion 
networks with common start and end nodes. The initial NULL arcs connecting the start 
node to the confusion networks have unit system specific scores in the first case, no 
weights. In this case, the system weights do not influence the skeleton selection. In the 
second case weights, the system specific scores are set to zeros apart from that for the 
system used as the skeleton. This corresponds to using the system weights as the prior 
distribution. In the third case MBR priors, a MBR based prior estimate is placed as the 
system specific score. The TER and BLEU scores on both sets improve consistently from 
MBR to MBR prior in the order listed. The oracle skeleton was selected by choosing the 
systems with the lowest TER when used as the skeleton for each segment. This gives an 
estimate of the upper bound for any skeleton selection method. 

 
 dev test 

Skeleton TER BLEU TER BLEU
system I 34.47 60.13 35.64 57.86
MBR 34.30 60.47 35.51 58.25
no weights 34.46 60.58 35.40 58.31
weights 34.25 60.62 35.32 58.48
MBR priors 34.13 60.90 35.25 58.66
oracle 31.41 62.59 32.51 60.19

Table 2.88: Case insensitive TER and BLEU scores for different skeleton choices. 

 WB  BN  BC 
System TER BLEU TER BLEU TER BLEU
Best 48.38 42.00 46.62 33.26 50.18 30.12 
Pair-wise 46.95 43.81 44.63 34.20 48.04 31.18 
Incremental 45.84 46.06 43.92 35.10 47.47 31.76 
Flexible 45.14 46.15 44.14 34.89 47.19 32.15 

Table 2.89: Case insensitive TER and BLEU scores on the Arabic web, BN and BC test sets. 

Finally, results on test sets for web, broadcast news (BN) and broadcast 
conversations (BC) are shown in Table 2.89. The web test set had mostly four reference 
translations whereas the audio sets (BN and BC) had only a single reference translation. 
The BN and BC system outputs were generated by running MT on the 1-best output of 
the AGILE P3 Arabic STT system. Separate development sets were used to tune the 
individual MT systems and the system combination weights for newswire, web and 
audio. Tuning separate system combination weights for BN and BC did not yield any 
improvements. The system combination weights for the web and audio sets were tuned to 
minimize 0.5TER + 0.5(1 − BLEU) since it yielded significantly lower TER scores without 
a significant impact on the BLEU scores. 

2.8.2.3 NIGHTINGALE Team Approach 

The NIGHTINGALE team developed two confusion network system combination 
approaches that differ in the methods for alignment of individual system hypotheses. The 
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The first method is a statistical alignment framework first described by Matusov et 
al. (2006) in which the alignment between words in the target (English) language is 
learned statistically using a Hidden Markov alignment model (HMM). The context of a 
whole corpus of parallel system translations rather than a single sentence is considered in 
this iterative, unsupervised procedure, yielding a more reliable alignment. The second 
alignment algorithm of Ayan et al. (2008) is a two-pass approach: In the first pass, all 
hypotheses are aligned to the skeleton independently using a TER-based alignment with 
word synonym matching and a confusion network is built. Next an intermediate reference 
sentence is created from the confusion network generated in the first pass via majority 
voting for each position in the network. The second pass uses this intermediate reference 
as the skeleton translation to generate the final confusion network. 

Although the system combination approaches of these two methods differ in the word 
alignment algorithms used, they share the same CN structure, so that the alignment 
component can be easily interchanged. Therefore, the differences of the two approaches 
in scoring the CNs and their dependency on a particular alignment type can be 
investigated experimentally. We will show that both alignment approaches perform 
similarly well, resulting in high-quality system combination translations on GALE 
Chinese-to-English text and speech translation tasks (2008 evaluation). 

2.8.2.3.1 RWTH Hypothesis Alignment Approach  

The alignment approach of RWTH is a statistical one. It takes advantage of multiple 
translations for a whole corpus to compute a consensus translation for each sentence in 
this corpus. It also takes advantage of the fact that the sentences to be aligned are in the 
same language. 

The network is created by the pair-wise method (Section 2.8.2.2.1). The word 
alignment is trained in analogy to the alignment training procedure in statistical MT. We 
use the IBM Model 1 (Brown et al. 1993) and the Hidden Markov Model (Vogel et al. 
1996) to estimate the alignment model.  The alignment training corpus is created from a 
test corpus of effectively · ( − 1) ·  sentences translated by the involved MT 
engines. 50   The single word based lexicon probabilities ( | )  are initialized from 
normalized lexicon counts collected over the sentence pairs ( , ) on this corpus.  
Since all of the hypotheses are in the same language, we count co-occurring identical 
words; i.e. if ,  is the same word as ,  for some i and j. In addition, we add a fraction 
of a count for words with identical prefixes.  

The model parameters are trained iteratively using the GIZA++ toolkit (Och and Ney 
2003). The training is performed in the directions  →  and  → . The updated 
lexicon tables from the two directions are interpolated after each iteration. The final 
alignments are determined using a cost matrix C for each sentence pair  ( , ). The 
elements of this matrix are the local  costs  C (j, i) of  aligning  a  word ,  from  to a 
word ,  from .  Following Matusov et al. (2004), we  compute  these  local  costs  by  
                                                      
 
50 A test corpus can be used directly because the alignment training is unsupervised and only automatically 
produced translations are considered. 
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interpolating the negated logarithms of the state occupation probabilities from the 
“source-to-target” and “target-to-source” training of the HMM model.  Two different 
alignments are computed using the cost matrix C. The first alignment  is a function of 
words in . It is used to reorder the words in  so that the resulting alignment of the 
reordered  with the skeleton   becomes monotonic Then, this alignment is modified 
to alignment  that includes only one-to-one connections. In case of many-to-one 
connections in  of words in  to a single word from , we only keep the connection 
with the lowest alignment costs. The  use  of  the  one-to-one  alignment  a implies that  
some  words  in  the  secondary  translation  will not have a correspondence in the 
skeleton translation and vice versa.  We consider these words to have a null alignment 
with the empty word ε.  In the corresponding confusion network, the empty word will be 
transformed to an epsilon arc. Given the  M − 1  monotonic  one-to-one  alignments a 
between  as the skeleton translation and , 1, … , ; ,  we construct a 
confusion network following the approach of Bangalore et al. (2001) with an extension 
that improves the alignment of the words which are insertions with respect to the skeleton 
hypothesis (Matusov et al. 2008). 

2.8.2.3.2 SRI Hypothesis Alignment Approach  

Another   alignment   strategy   pursued   within   the Nightingale  team  by  SRI  is  
based  on  TER  alignment  extended  by  matching  of  synonyms,   as  described in 
Section 2.8.2.2.3. In natural language, it is possible to represent the same meaning using 
synonyms in possibly different positions.  For example, in the following sentences, “at 
the same time” and  “in the meantime”, “waiting for” and “expect” and “set” and 
“established” correspond to each other, respectively: 

 
Skeleton: at the same time expect Israel to abide by the 
deadlines set by. 
Hypothesis: in the meantime, we are waiting for Israel to 
abide by the established deadlines. 

 
To incorporate matching of word synonyms into the alignment and for better 

alignment of similar words at different word positions, we employ the following steps:  
The first step is to use WordNet to extract synonyms of each word that appear in each 

hypothesis regardless of their POS tag in the given translation.51 We should note that 
WordNet contains only open-class words; i.e., nouns, verbs, adjectives and adverbs. 
There are no entries for determiners, prepositions, pronouns, conjunctions and particles. 
For better matching of these additional POS tags, we manually created a different 
equivalence class for each POS tag that is not included in the WordNet so that words with 
the same POS tag can be considered synonymous. 

                                                      
 
51 Our goal is to add as many synonyms as possible to increase the chances of a word aligning to one of its 
possible synonyms rather than to any other word. Therefore, we do not distinguish between the synonyms of 
the same word according to their confidence value or their POS tag. 
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After extracting the synonyms of each word in the given translations, the next step is to 
augment each reference word with its synonyms. To avoid over generation of synonyms, 
we make the assumption that words w and w are synonyms of each other only if w appears in the synonym list of w  and w  appears in the synonym list of w . In our 
running example, the augmented (extended) skeleton according to the second hypothesis 
is as follows:  
 

Extended skeleton: at the [same time \ meantime] [expect \ 
waiting] Israel to abide by the deadlines [set \ 
established] by. 

  
The final step is to modify the TER script to favor matching of a word to its 

synonyms rather than to any other word (see Section 2.8.2.2.3). 
 
Two-Pass Alignment Strategy 

When building a confusion network, the usual strategy is first to align each 
hypothesis to the skeleton separately and reorder them so that the word ordering in the 
given hypothesis matches the word ordering in the skeleton translation. Next a confusion 
network is built between all these reordered hypotheses. This approach, however, is 
problematic when the hypotheses include additional words that do not appear in the 
skeleton translation. In such cases, two hypotheses other than the skeleton may not align 
perfectly since the alignments of two different hypotheses are done independently. 

To overcome this issue, we employ a two-pass alignment strategy. In the first pass, 
we align all hypotheses to the skeleton independently and build a confusion network. 
Next an intermediate reference sentence is created from the confusion network generated 
in the first pass. To create this intermediate reference, we find the best position for each 
word that appears in the confusion network using majority voting. The second pass uses 
this intermediate reference as the skeleton translation to generate the final confusion 
network. 

When we create the intermediate reference, the number of positions for a given word 
is bounded by the maximum number of occurrences of the same word in any hypothesis. 
It is possible that two different words are mapped to the same position in the intermediate 
reference. If this is the case, these words are treated as synonyms when building the 
second confusion network and the intermediate reference looks like the extended 
reference above.  

2.8.2.3.3 Confusion Network Scoring  
In the approaches of RWTH and SRI, given a single skeleton hypothesis, a confusion 

network is created using one of the two alignment strategies described above. In the 
RWTH approach, the system combination lattice is a union of several CNs, which were 
built by considering each of the system translations as the skeleton. The single-best path 
is determined after summing the probabilities of identical paths which originate from 
different CNs. This is done through determinization of the lattice. The sum over the 
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identical hypotheses in the decision criterion can help to reach consensus not only on the 
word level, but on the level of sentence structure: the word order preferred by the 
weighted majority of the systems most probably will be used in the system combination 
translation. 

As described above, SRI generates a single confusion network based on a two-pass 
alignment strategy. Beyond the system prior weights and LM scores, SRI uses two 
additional features to control the number of epsilon arcs and number of words during the 
confusion network scoring. The number of words feature is also included in the RWTH 
system. 

The system prior weights and the scaling factors of additional statistical models such 
as the language model need to be tuned to produce good consensus translations. At 
RWTH, these parameters are optimized using the publicly available CONDOR 
optimization toolkit (Vanden Berghen and Bersini 2005). For the GALE evaluation, we 
selected a linear combination of BLEU and TER as optimization criterion, ΘargmaxΘ(2 · BL E U − TE R ).  In each iteration of the optimization, we extract a new 
hypothesis directly from the system combination lattice. System combination at SRI was 
optimized using an in-house implementation of minimum-error-rate training (MERT) 
(Och 2003) to maximize BLEU score.  

2.8.2.3.4 Experimental Evaluation  
We present the results of system combination experiments on the Chinese-to-English 

GALE data which was used by the Nightingale team to prepare for the December 2008 
evaluation. The results in the tables below are reported in terms of the well-established 
automatic MT evaluation measures BLEU and TER; the evaluation was case insensitive, 
but considered punctuation marks. We used the closest reference length for computation 
of brevity penalty. 

 
Development and Test Sets 

For the experiments, we used all of the available GALE-related data with multiple (4) 
translations. It includes (parts of) the GALE 2006 and 2007 evaluation sets, the official 
GALE 2007 development set, as well as the GALE part of the NIST MT 2008 evaluation 
data. The data was provided by LDC under the catalog numbers LDC2008E08, 
LDC2008E09, LDC2008E19. To define the development and the blind test sets from this 
data, we firstly separated all the documents into 4 genres: newswire text (NW), webtext 
(WT), broadcast news (BN) and broadcast conversations (BC). Then, in each genre the 
documents were divided in two more or less equally-sized parts with the same 
distribution of sources. In the following, we refer to these two parts (for all genres) as the 
NIGHTINGALE test sets A and B. 

We combined up to 8 system outputs in our experiments as described below. The 
systems which produced those outputs followed phrase-based, hierarchical, and syntax-
based translation paradigms. One of the systems was a serial combination of a rule-based 
and a phrase-based MT system. Table 2.90 gives an overview of the number of sentences 
in the test sets A and B that had to be translated by these systems, as well as, the number 
of words they have produced. The test set A was used for individual system tuning, 
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whereas, the test set B was used for tuning the weights of the features in the system 
combination algorithms. Thus, the test set A can be considered as “blind” test set for 
judging the performance of the system combination approaches presented here. 

 
  NW  WT BN BC 
 test set A    

Sentences  485  533 529 1134 
Running words (K)  15.8  13.7 14.7 16.7 
Distinct words (K)  5.5  5.2 4.6 3.7 

 test set B    
Sentences  480  490 483 937 
Running words (K)  15.9  13.1 13.1 14.2 
Distinct words (K)  5.5  5.0 4.5 3.4 

Table 2.90: Corpus statistics for the hypotheses of the 8 individual systems used in system combination on 
the NIGHTINGALE test sets. The number of running words is averaged over the 8 systems. 

Combination of Variants of a System 
Table 2.91 presents BLEU and TER scores for 3 input systems (hierarchical phrase-

based system (HPBT) and its two syntax-based extensions, denoted by SAMT and S2D) 
and their combination using SRI’s system combination approach. All three input systems 
were trained on the same training data but with different word segmentations and the n-
best lists were reranked using different subsets of seven additional LMs. The input 
systems were optimized on test set A newswire and webtext (text) using minimum error 
rate training (MERT) to maximize BLEU score. System combination was also optimized 
on the same test set on 2000-best lists generated from the confusion network decoding, 
using MERT to maximize BLEU score. As inputs to the system combination, we used 10-
best hypotheses from each of the reranked n-best lists. For language model scores during 
system combination, we used the same 4-gram LM that we used during decoding of the 
individual systems. 

The results indicate that the system combination yields better translations even when 
the input systems are very similar to each other in terms of their performance: on 
newswire and webtext data, system combination yields an absolute improvement of up to 
1.3 BLEU point and up to 1.3 TER point over the best individual system. These results 
validate the results reported in an earlier paper using three variants of SRI’s hierarchical 
system on different test sets (Ayan et al. 2008). 

 
 

System test set A test set B test set A test set B 
 BLEU  TER BLEU TER BLEU TER BLEU TER 
 Newswire Webtext 

HPBT 34.2 57.6 33.7 58.2 26.2 63.4 27.2 62.5 
S2D 34.5 59.0 34.3 58.7 26.9 63.7 26.6 64.2 
SAMT 34.3 59.5 33.0 59.4 26.9 63.8 27.4 62.5 
SysComb 35.6 56.9 34.5 56.9 28.2 63.6 28.7 62.9 

Table 2.91: scores (in %) for three SRI systems and their combination. System combination was optimized on 
test set A and tested on test set B. 
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General vs. Adapted LM Rescoring 

By Matusov et al. (2008), it was proposed to rescore the system combination CNs 
with a trigram LM trained on the outputs of the systems involved in system combination. 
The LM training data in this case were the system hypotheses for the same test corpus for 
which the consensus translations were to be produced. Using this “adapted” LM for 
lattice rescoring, thus, gives bonus to n-grams from the original system hypotheses, in 
most cases from the original phrases. Presumably, many of these phrases have a correct 
word order, since they are extracted from the training data. We compared the 
performance of the SRI’s system combination approach using the “adapted” trigram LM 
or a 4-gram LM trained on large amounts of English text. For this experiment, we used 
single best outputs from all eight systems and tested the impact of two LMs on four 
different genres. The system optimization was performed on the text portion of test set B 
for newswire and webtext and audio portion of test set B for broadcast conversations and 
news.  

Table 2.92 presents the results on the test sets A for each genre. Our results validate 
the previous finding about the usefulness of “adapted” LMs, yielding an absolute 
improvement of up to 0.6 BLEU point and up to 1.0 TER point over using the general 
higher-order LMs. We explain these improvements in part by the fact that the number of 
n-grams in a system combination CN can be very large and may include those n-grams 
which have high general LM probability, but are not in any way related to the source 
sentence. With the absence of any other model that links words and phrases in the CN to 
the source sentence, the influence of the general LM may be overestimated. The 
“adapted” LM does not seem to have this problem, since it only gives high probabilities 
to a limited number of “good” n-grams preselected by the individual systems based on 
phrase-to-phrase translation scores and general LM scores. 

 
Genre general LM adapted LM 

 BLEU TER BLEU TER 
NW 38.1 55.1 38.3 54.5 
WT 29.2 60.1 29.8 59.2 
BN 31.4 60.0 31.9 59.0 
BC 28.8 62.5 29.3 61.3 

Table 2.92: Comparison of SRI’s system combination approach with eight input systems and 2 different LMs 
on test set A (the scores are in %). System combination was optimized on test set B. 

Combination of Structurally Different Systems  
In the following experiments, we compared the alignment approaches of RWTH and 

SRI using both the RWTH and SRI CN scoring procedures. In these experiments, we 
combined single-best outputs of eight systems and the “adapted” LMs were used. The 
parameter tuning on test set B was genre specific for the RWTH system and was 
performed separately for text and audio in the SRI system. 

Table 2.93 compares the automatic MT evaluation measures BLEU and TER on the 
“blind” test set A. Both system combination approaches significantly improve translation 
quality with respect to the best individual system being combined; in some cases, the 
improvements exceed three points in BLEU and four points in TER. 
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Alignment CN scoring BLEU TER BLEU TER BLEU TER BLEU TER 
 Newswire Webtext Broadcast News Broadcast Conversations 

best single system 35.3 58.5 27.2 62.6 29.7 63.6 28.0 63.3 
RWTH RWTH 38.7 54.2 30.3 59.0 32.5 59.2 29.9 61.8 

SRI RWTH 37.0 55.7 29.7 60.0 32.4 59.5 29.8 61.3 
RWTH SRI 37.6 54.1 29.1 59.0 31.9 59.3 29.1 61.2 

SRI SRI 38.3 54.5 29.8 59.2 31.9 59.0 29.3 61.3 

Table 2.93: Comparison of word alignment and CN scoring approaches on test set A (the scores are in %). 
“Best single system” refers to the individual system with the highest BLEU score among eight systems. 

System combination was optimized on test set B. 

On the audio data, SRI and RWTH alignments perform similarly well, but the RWTH 
CN scoring algorithm has slightly better BLEU scores than the SRI scoring algorithm. For 
Newswire and Webtext data, the results are inconclusive: the RWTH system combination 
approach performs best using the RWTH alignment algorithm, the SRI approach exhibits 
better scores with the SRI alignment algorithm. Also, there are some discrepancies 
between BLEU and TER: on Newswire, the RWTH approach is better than the SRI 
approach in BLEU, but worse in TER. A subjective analysis of the differences between 
SRI and RWTH approach on the Newswire data has shown that the system combination 
of SRI is more often able to make the right lexical choice, especially of content words. 
This is most probably due to the explicit matching of synonyms performed in the 
construction of confusion networks. In contrast, the RWTH approach often produces 
better sentence structures and has fewer reordering and missing word errors than the SRI 
approach. 

 
best single system ... why not have the money to spend, an important reason. 
system combination ... there is one important reason why did not dare to spend money. 
reference translation ... there is an important reason why people have money but don’t dare spend it. 
best single system For the reader, a good story is a strong life again. 
system combination For the reader, a good novel is a powerful reappearance of life. 
reference translation As for readers, a good novel is a powerful reproduction of life. 
best single system They kneel on a chair beside the edge, to pray together. 
system combination They knelt down at the edge of a chair beside him, praying together. 
reference translation They then kneeled down on the edge of a chair beside them and prayed together. 

Table 2.94: Examples of improved translation quality after system combination (test sets A and B).  

Table 2.94 shows some examples of improved translation quality due to system 
combination in comparison with the translations of the individual system that had overall 
best translations on this corpus. The examples were drawn from test sets A and B. 

2.8.2.4 Rosetta Team Approach  
The Rosetta Team developed a system combination approach based on alignments 

computed using inversion transduction grammars (ITGs). A pair-wise alignment strategy, 
similar to the one described in Section 2.8.2.2.1, appeared in the work of Karakos et al. 
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(2008) and was later improved in three ways: (i) the pair-wise alignment strategy was 
replaced by an incremental alignment strategy, similar to the one described in Section 
2.8.2.2.2, but with some crucial differences; (ii) the original ITG-based algorithm was 
sped up significantly with an A* heuristic that uses a finite-state reordering method for 
computing a lower bound to the ITG alignment cost, and (iii) the same algorithm was 
extended to allow ITG alignments between confusion networks, instead of strings. 

2.8.2.4.1 Approximate Methods for Computing TER  
Since computation of TER is an NP-complete problem, TERCOM uses some 

heuristics to constrain the space of permutations and, thus, compute an approximation to 
TER in polynomial time. The block shifts which are allowed in TERCOM have to adhere 
to the following constraints: (i) A block cannot be moved if it has an exact match in its 
current position, and (ii) for a block to be moved, it should have an exact match in its new 
position. These constraints sometimes lead to counterintuitive sequences of edits, as 
shown in Section 2.8.2.2.3. 

We have modified the TERCOM code to relax the above constraints in the following 
way: the requirement of a perfect match between the words in a block and the words it 
gets aligned to was replaced by a user-specified bound on the (normalized) number of 
edits in the new position. This roughly means that a block which does not have a perfect 
match in its original position and does not differ in its new (candidate) position by more 
than x% of its length, is allowed to move to that position. These constraints revert to the 
original TERCOM constraints when x = 0. As is described later, this modification was 
done in order to allow alignments between confusion networks and the use of a more 
flexible cost function than the binary (match/no-match) cost of the original TERCOM. 
 
Inversion Transduction Grammars 

The inversion transduction grammar (ITG) formalism (Wu 1997) allows one to view 
the problem of alignment as a problem of synchronous parsing. Specifically, ITGs can be 
used to find the optimal edit sequence under the restriction that block moves must be 
properly nested, like parentheses. That is, if an edit sequence swaps adjacent substrings A 
and B of the original string, then any other block move that affects A or B must stay 
completely within A or B, respectively. An edit sequence with this restriction 
corresponds to a synchronous parse tree under a simple ITG that has one non-terminal 
and whose terminal symbols allow insertion, deletion and substitution. 

The minimum-cost ITG tree can be found by dynamic programming. This leads to 
invWER (Leusch et al. 2003), which is defined as the minimum number of edits 
(insertions, deletions, substitutions and block shifts allowed by the ITG) needed to 
convert one string to another. As described in Section 2.8.2.4.2, the minimum-invWER 
alignments are used for generating confusion networks. 

 
Using TERCOM and invWER to Approximate TER 

In this section, we compare TERCOM and invWER in terms of how well they 
approximate TER. Specifically, the two competing alignment procedures were used to 
estimate the TER between reference (human) translations and machine translation system 
outputs submitted to NIST for the GALE evaluation in June 2007. The references are the 
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post edited translations for each system (i.e., these are “HTER” approximations). As can 
be seen from Table 2.95, for all systems and all language and genre conditions, invWER 
gives a better approximation to the true TER than TERCOM.52 In fact, out of over 16,000 
total segments in all languages/genres, TERCOM is lower in less than 1% of the 
segments, while invWER is lower in over 10%. This is a clear indication that ITGs can 
explore the space of string permutations more effectively than TERCOM. 
 

  System 1 System 2 System 3 
Lang. / Genre  TERCOM invWER TERCOM invWER TERCOM invWER 

Arabic BC  18.4% 18.0% 24.6% 24.1% 20.6% 20.4% 
Arabic BN  17.8% 17.5% 23.2% 22.8% 19.0% 18.7% 
Arabic NW  12.1% 12.0% 14.8% 14.6% 15.4% 15.2% 
Arabic WB  22.0% 21.7% 23.6% 23.2% 25.6% 25.3% 
Chinese BC  30.7% 29.9% 32.0% 30.9% 33.6% 32.7% 
Chinese BN  22.9% 22.4% 25.5% 24.8% 29.5% 28.8% 
Chinese NW  20.8% 20.5% 24.3% 23.6% 25.9% 25.2% 
Chinese WB  26.2% 25.9% 27.2% 26.5% 30.3% 29.9% 

Table 2.95: Comparison of average per-document TERCOM with invWER on the EVAL07 GALE Broadcast 
Conversation (“BC”), Broadcast News (“BN”), Newswire (“NW”) and Weblogs (“WB”) data sets. 

2.8.2.4.2 Incremental System Combination  
This section describes the incremental alignment method used in our experiments. 

We have been inspired by the work of Rosti et al. (2008), but we have modified their 
incremental algorithm to improve speed (without loss in performance). 

 
1. The n-best list of each system is aligned together incrementally into a confusion 

network using regular edit distance alignments, which are roughly 50 times faster 
than the TERCOM alignments described later. Thus, several per-system 
confusion networks are created.53 

2. One system (usually the one with the best performance) is chosen as the skeleton. 
Its confusion network bins are used as anchors for aligning all other confusion 
networks together.  

3. One-by-one, the per-system confusion networks are aligned with the partially 
generated confusion network. We have experimented mainly with TERCOM and 
ITG-based alignments during this step.  

4. The final probability of each arc is set to the relative frequency of its label in the 
bin.  

5. The final confusion network is then rescored with a 5-gram language model; this 
results in a reassignment of arc costs according to a loglinear combination of the 
costs (as computed above) and the probability assigned by the language model. 
The weights in the linear combination are determined through a development set. 

                                                      
 
52 Both tercomTER and invWER are upper bounds to true TER, so lower is better. 
53 The n-best list of a single system will usually only contain local reorderings; we have found that using 
monotone alignments in this step does not degrade performance. 
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To extend pair-wise string alignment algorithms to confusion networks, we treat the 

confusion network bins as “words” and use the probability of mismatch between bins as 
the word substitution cost. More precisely, the formula for computing the substitution 
cost between two bins b1; b2 is54 1| 1|| 2| ∑ 1( )∈ 1 ∈ 2 2( ) ( )     (2.87) 

where ( ) is the number of times word x appears in bin j (x can also be the empty 
word, epsilon). The cost of inserting/deleting a bin is similarly computed as the 
substitution cost between the bin and an empty bin. When two bins are aligned together 
to form a new merged bin, the counts of their words get added together. If a bin gets 
inserted into, or deleted from, the confusion network, a NULL arc is also added in the 
appropriate place. 
 
Combinations Using TERCOM 

To handle confusion network bins, we performed the following modifications to 
TERCOM: 

 
1. It can take as input a pair-wise cost matrix, which determines the cost of 

substituting one confusion network bin with another. This allows the use of 
Equation 2.87 when aligning confusion networks.  

2. The modification mentioned in Section 2.8.2.4.1 was extended to confusion 
network bins and the threshold x was applied to the normalized sum of bin 
substitution costs, as computed by 2.8.2.4.1. We used a value of x = 50% in our 
experiments as a compromise between performance and tractability.  
 

Combinations with Inversion Transduction Grammars 
The work on ITG-based incremental alignment is a follow-up on the work of Karakos 

et al. (2008), where ITGs were used for aligning together MT outputs based on the pair-
wise alignment procedure of Rosti et al. (2007a). Originally, an 11-rule Dyna program 
(Eisner et al. 2005) was used to compute ITG alignments, which we replaced by an 
optimized C++ code that significantly reduced the execution time. This implementation 
was sped up 10-fold by an A* search heuristic, whose details appear below. When 
comparing this new implementation with the modified TERCOM code described above, 
ITG alignments are roughly five times faster.  However, for computing TER on the 
dataset described in Section 2.8.2.4.1, the ITG code takes three times longer than the 
unmodified version of TERCOM. 

In order to speed up the O(n6) synchronous parse under the inversion transduction 
grammar used for alignments, we use best-first chart parsing (Charniak et al. 1998). 

                                                      
 
54 This formula can be easily modified to use alternate word substitution costs in place of the exact matching 
given by 1(w ≠ v). We have experimented with the surface similarity of the work of He et al. (2008) and 
character edit distance, but did not see any improvements. 
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Rather than filling in the chart in a fixed order, we create an agenda of edges and process 
them in an order based on some measure of “goodness”. To ensure that the first parse we 
find is optimal, the “goodness” measure must be an optimistic estimate of the total cost of 
any parse containing that edge. This approach is known as A* parsing (Klein and 
Manning 2003). 

Let c1 and c2 be the confusion networks that we are synchronously parsing with the 
ITG grammar, where | |  and | |  (| | refers to the number of bins in c). Let e 
be an edge in the ITG chart which spans the intervals ( , ) in  and ( , ) in . The 
estimate of the total cost is divided into an inside estimate (the cost of aligning the 
intervals ( , )  to ( , )) and an outside estimate (the cost of aligning (0, ) · ( , )     
to (0, ) · ( , )). The inside cost is already known in bottom-up parsing, so we focus 
on the outside estimate. Let be the confusion network created by concatenating (0, ) 
and ( , ), and similarly, let  be the concatenation (0, ) and ( , ). The outside 
estimate can be reformulated as a lower bound of the cost of parsing  and . Also, 
recall that invWER is an upper bound to TER, so any lower bound of TER will also be a 
lower bound of invWER. We now describe a finite state reordering scheme which acts as 
a lower bound to TER. 

As mentioned earlier, the TER between two strings is defined as the minimum 
number of word insertions, deletions, substitutions and block moves required to 
transform one string into the other. If block moves were not allowed, computation would 
be simple and in fact equivalent to edit distance. To allow the possible reorderings 
introduced by block moves, we add “jump” arcs to the edit distance machine which allow 
free movement in the input string (shown in Figure 2.69). Shapira and Storer (2002) show 
that a sequence of n block moves splits a string into at most 3n + 1 contiguous blocks. 
Since one “jump” arc is needed to account for each of the 3n discontinuities between 
these blocks, we set the costs of these arcs to one third the cost of a block move. This 
model is not only used for the A* estimate in the previous section, but also for alignment 
itself.55 

 

                                                      
 
55 When generating confusion networks with this model, we modify the machine to ensure there are as many 
insertions or substitutions as there are words in the hypothesis.  In our experiments with ITGs, this cheaper 
model is used when we are aligning confusion networks longer than 150 bins. 
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Figure 2.69: Finite state alignment model. The basic edit distance machine has been augmented with “jump” 
arcs which model the discontinuities introduced by block moves. While only two are pictured for space, there 

are jump arcs to and from each state in a row. 

Oracle Computation with ITGs 
By setting the cost function between a word and a confusion network bin equal to a 

0/1 value (i.e., depending on whether the word is in the bin or not) we were able to easily 
compute the oracle invWER in a path using our ITG code: once an alignment between a 
confusion network and the reference sentence is obtained through a permutation of bin 
blocks, computing the TER simply entails counting the number of bins, which do not 
contain the aligned reference word, plus the number of block shifts. 

This computation of the oracle path in a confusion network is much more efficient 
than through the Dyna code used for the oracle experiments of Karakos et al. (2008); the 
Dyna code is more general, though, because of its applicability to any kind of lattice. 
Oracle results appear in Section 2.8.2.4.3. 

2.8.2.4.3 Experimental Setup and Results  

We report results on three sets of system combination experiments: (i) a controlled 
comparative study of the alignment procedures described above in terms of combination 
performance on Arabic speech, (ii) a large-scale experiment with the ITG-based 
combination applied to Arabic speech (automatic recognition output) and text (newswire 
documents and weblogs), and (iii) a similar ITG-based experiment on Chinese speech 
and text. In the rest of this section we will refer to these as experiment 1, 2 and 3, 
respectively. 

Because GALE measures performance on a per-document basis, the TER, BLEU 
results reported here are document averages. Furthermore, to better understand the impact 
of the combination on the performance of the worst translated documents, we also report 
“tail” results, such as tailBL E U  1| | BL E U (D∈ ) 
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where W is a window of documents “around” the GALE target consistency level (e.g., 
90% for Arabic Newswire). In more mathematical terms, W is defined as 
 : rank( ) − 100 ×  

 
where N is the total number of documents, rank(d) is the rank of document d (with the 
best document having rank 1) and t is a threshold chosen so that |W| is equal to a desired 
value. The value of |W| for each genre/condition was set to 11. Tail TER is defined 
similarly. 

The corpora used are the following: 
1. Development sets: These are used to tune the parameters of the LM rescoring, that 

is, the mixture weight for the confusion network and LM and the NULL transition 
penalty. For experiment 1, the development set is part of Arabic MT06, consisting 
of roughly 260 segments (utterances) of speech. For experiment 2, the development 
set is Arabic DEV-07, that was made available under Phase 2 of the GALE 
program, consisting of roughly 580 segments of newswire text, 650 segments of 
weblog text, 620 utterances of broadcast news and 260 utterances of broadcast 
conversations. For experiment 3, the development set is the Chinese DEV-07 Blind 
set, containing 270 segments of newswire text, 300 segments of weblog text, 320 
utterances of broadcast news and 680 utterances of broadcast conversations. 

2. Test sets: For experiment 1, the test set is Arabic DEV-07 (speech part) described 
above. For experiments 2 and 3, the test set is part of the development set under 
Phase 3 that was made available under the GALE program, combined with the test 
set of the 2008 NIST MT evaluation. We refer to this set as DEV+MT08. For 
Arabic (experiment 2), this set consists of roughly 800 segments of newswire text, 
500 segments of weblog text, 600 utterances of broadcast news and 500 utterances 
of broadcast conversations. For Chinese, (experiment 3), it contains 690 segments 
of newswire text, 660 segments of weblog text and 1480 utterances of combined 
broadcast news and broadcast conversations. 

3. Language models: We experimented with two fixed (non-adaptive) language 
models in the rescoring of the confusion networks: one trained on roughly 180 
million words of the English side of the parallel data used in GALE for training the 
Arabic systems (used in experiment 1) and one which also included the AFP and 
Xinhua sources of the English Gigaword (used in experiments 2 and 3). The 
models were standard 5-gram LMs using modified Kneser-Ney smoothing. 

 
All of the above datasets have four references, except the speech portions of Chinese 

and Arabic DEV-07, which have one reference. 
In the case of speech, an ASR system by IBM was used to generate the automatic 

transcriptions that were subsequently translated by the three systems. The ASR system 
had a cross-adapted architecture between unvowelized and vowelized speaker-adaptive 
trained (SAT) acoustic models. The distinction between the two comes from the explicit 
modeling of short vowels, which are pronounced in Arabic, but almost never transcribed. 
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Both sets of models were trained discriminatively on approximately 500 hours of 
supervised data and 2000 hours of unsupervised data. 

Nine MT systems were made available for the combination, seven of which were used 
for Experiment 1. Three of these systems were hierarchical, following the work of 
Chiang (2005), one was based on the Direct Translation System of Ittycheriah and 
Roukos (2007), one was example-based (Brown 1996), three were phrase-based 
statistical MT systems and one was rule-based. 

The hypothesis selection technique of Hildebrand and Vogel (2008) was applied to 
the above systems and its output was made available to us as a separate system. In all 
experiments, we used it as the skeleton in our combination. 

 
Results 

We show results on the two sets of experiments. 
 

Experiment 1 
 

  Broadcast News   Broadcast Conversation  
 Average Tail Oracle Average Tail Oracle 
 TER BLEU TER BLEU TER TER BLEU TER BLEU TER 

Best system 48.62 30.44 55.73 23.66 - 53.86 25.14 58.60 20.01 - 
Hyp. Selection 47.53 32.47 55.26 25.57 - 53.05 27.03 57.48 21.97 - 

TERCOM (0/1) 46.30 33.73 53.86 26.71 24.17 51.72 27.28 56.73 22.04 30.16 
TERCOM  46.23 33.27 53.89 26.16 23.81 51.66 27.40 56.59 21.95 29.69 
ITG-based 46.26 33.37 53.63 26.06 23.79 51.71 27.36 56.73 21.98 29.66 
Finite State 46.50 32.93 54.24 25.98 25.84 52.25 26.75 57.23 21.42 31.86 

IHMM-based 46.51 33.54 54.38 26.49 27.25 51.94 27.63 56.67 22.36 33.50 

Table 2.96: Combination results for Arabic ASR to English translation on DEV07 speech (Experiment 1). 
The best result in each column and any results which are not significantly different from it (p = 0:05) are 

shown in bold. Statistical significance was not measured for the “tail”, since the documents included in the 
tail will vary by system. 

In Table 2.96, we report the average and tail TER, BLEU for two genres (broadcast 
news and broadcast conversations), for the following setups: (i) TERCOM-based 
combination using the 0/1 cost function of  Rosti et al. (2008) (ii) TERCOM-based 
combination using the bin cost of Equation 2.87; (iii) ITG-based combination using 
Equation 2.87; (iv) finite-state reordering as described in Section 2.8.2.4.2; and (v) 
incremental IHMMbased combination, using the settings mentioned by He et al. (2008) 
(but excluding the semantic similarity). For the TERCOM and ITG combinations, the 
order with which the systems were incrementally aligned to the skeleton was determined 
by the edit distance from the incremental confusion network, as described above. For 
comparison, the results obtained with only the hypothesis selection method of Hildebrand 
and Vogel (2008) are also mentioned. The “Oracle” TER column shows the value of the 
minimum-invWER path (as computed by our ITG code) in the confusion networks. 
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Experiments 2 and 3 
Table 2.97 and Table 2.98 show average and tail results for the four genres of both 

languages: newswire and weblogs (text), broadcast news and broadcast conversations 
(ASR). As can be seen from these results, in all conditions, the combination gives an 
improvement of 2-4% points compared to the best individual system. 

 
 NW Average NW Tail BN Average BN Tail 
 TER BLEU TER BLEU TER BLEU TER BLEU 

Best system 39.01 54.60 45.39 45.05 39.73 51.85 45.06 42.26 
Hyp. Selection 39.29 56.56 48.85 46.23 37.70 56.02 43.80 47.05 

ITG-based 37.49 57.81 45.23 47.20 37.30 56.36 42.43 48.01 
 WB Average WB Tail BC Average BC Tail 
 TER BLEU TER BLEU TER BLEU TER BLEU 

Best system 49.70 38.02 54.95 30.12 40.78 47.15 44.06 42.58 
Hyp. Selection 49.28 41.08 53.01 34.86 41.78 49.64 44.40 45.58 

ITG-based 46.70 41.86 51.38 35.40 39.26 51.20 42.75 47.09 

Table 2.97: Combination results for Arabic text and ASR translation to English on DEV+MT08 (Experiment 
2). The best result in each column is shown in bold. 

 NW Average NW Tail BN Average BN Tail 
 TER BLEU TER BLEU TER BLEU TER BLEU 

Best system 56.01 31.37 64.37 19.09 56.86 30.36 61.87 24.27 
Hyp. Selection 55.67 34.46 64.17 23.26 56.23 32.39 60.82 26.43 

ITG-based 52.56 36.16 61.13 23.16 53.15 33.61 56.85 27.28 
 WB Average WB Tail BC Average BC Tail 
 TER BLEU TER BLEU TER BLEU TER BLEU 

Best system 58.69 23.21 61.44 18.26 61.00 24.10 63.77 19.46 
Hyp. Selection 59.99 25.50 62.99 20.86 62.56 26.83 65.30 22.22 

ITG-based 57.15 26.88 60.53 21.46 58.69 28.40 61.23 24.18 

Table 2.98: Combination results for Chinese text and ASR translation to English on DEV+MT08 
(Experiment 3). The best result in each column is shown in bold. 

2.8.2.5 Conclusions 

Confusion network decoding may be used to combine outputs from multiple MT 
systems. The combination output was shown to yield significantly better TER and BLEU 
scores than the output of any individual MT system included in the combination. Three 
alignment algorithms based on the translation edit rate and how they are used in building 
confusion networks were first presented by the Agile team. The incremental alignment 
algorithms were shown to outperform the pair-wise TER alignment. There does not seem 
to be a significant improvement from using the flexible alignment. The results have been 
mixed on other test sets too; for example, the system combination experiments presented 
at the Fourth Workshop on Statistical Machine Translation (Rosti et al. 2009). The choice 
of the skeleton determines the word order of the output and may also help in choosing a 
network with fewer alignment errors. The best results were obtained by allowing all 1-
best system outputs act as skeletons and assigning each confusion network a prior 
probability estimated from the expected alignment statistics. 
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Different edit costs may influence the alignment quality in the TER based alignment 
algorithms. Finding optimal edit costs may be time consuming as the outputs have to be 
realigned every time the costs change. Faster implementation of the alignment and more 
computing capacity may allow optimization of these edit costs. Direct optimization of the 
system combination weights without relying on N-best lists may also be helpful. 

The NIGHTINGALE team compared two established approaches used in by the team 
to align translation hypotheses for the word-level MT system combination. The first 
method is a statistical alignment algorithm that learns alignment connections on a whole 
corpus of parallel system translations. The second method is a two-pass approach that is 
based on translation edit rate and explicitly considers synonyms. On the GALE text and 
audio data, we showed that both approaches result in highly significant translation quality 
improvements when combining up to eight state-of-the-art MT systems. A notable 
improvement can be also obtained when combining three relatively similar systems. 

The Rosetta team showed that although previous approaches to system combination 
use TERCOM to align hypotheses, invWER is a more accurate approximation to TER 
(Table 2.95). The team also investigated a number of novel system combination methods 
for machine translation based on confusion network construction. Specifically, they 
compared confusion networks constructed using TERCOM-based alignments, ITG-based 
alignments and Indirect-HMM-based alignments. The results on Arabic text and speech 
demonstrated that combination methods almost always result in significant improvements 
compared to the best system output with gains of up to 4% absolute. 

Authors: Roland Kuhn, Jean Senellart, Jeff Ma, Antti-Veikko Rosti, Rabih Zbib, Achraf Chalabi, Loïc 
Dugast, George Foster, John Makhoul, Spyros Matsoukas, Evgeny Matusov, Hazem Nader, Rami Safadi, 
Richard Schwartz, Jens Stephan, Nicola Ueffing and Jin Yang 

2.8.3.1 Introduction  

With the recent remarkable success of statistical machine translation (SMT) systems, 
the question arises: how can the linguistic knowledge locked up in older, rule-based 
machine translation (RBMT) systems most conveniently be incorporated in these systems? 
In many cases, RBMT systems represent an investment of several man-years of applied 
expertise; even if one is an ardent proponent of the SMT approach, it makes sense to 
capitalize on this investment.  

Inside the GALE project, two teams looked at the problem of incorporating RBMT 
systems into SMT ones. Surprisingly, though the teams were working completely 
independently and on two different language pairs (Chinese-English and Arabic-English), 
they reached almost identical conclusions as to the best approach to pursue and attained 
remarkably good experimental results with this approach.  

Figure 2.70 illustrates the difference between two ways of combining MT systems: 
parallel system combination and serial system combination. In parallel system 
combination, each MT system independently generates one or more translations of a 
source-language sentence into the target language. The target-language outputs are then 

Handbook of Natural Language Processing and Machine Translation 361

2.8.3. Serial System Combination for Integrating Rule-Based 
and Statistical Machine Translation  


