

CENTER FOR LANGUAGE AND SPEECH PROCESSING

RESEARCH GOAL

- Investigate the feasibility of using Macaronic Text to assist language learning.
- Macaronic: mixture of native language (L1) with second language (L2).
- Present a learner with appropriately leveled macaronic text to allow them to read and learn new vocabulary and simple linguistic structures.

die

Die

Police

verhaftete Polizei verhaftete the verhaftete

criminals. criminals. Straftäter.

TASK & REQUIREMENTS

- Automatically generate macaronic text from monolingual (L2) content.
- Generate full spectrum of macaronic states.
- Provide a learner with the ability to explore and interact with the macaronic content.

MACARONIC INTERFACE INTERACTION

A Learner can interact with and explore the text via two main actions: Translation and Reordering.

Creating Macaronic Interface for Language Learning

Adithya Renduchintala, Rebecca Knowles, Philipp Koehn, Jason Eisner

MACARONIC TEXT GENERATION

- Moses (Koehn et al., 2007) was used to translate L2 content to L1 with associated word alignments.
- Alignments were converted to *Minimal Alignments* i.e. 1-to-1, 1-to-many, or many-to-1, with no null alignments.
- Minimal Alignments ensure consistent reversibility of actions.
- Alignments form small connected components called *Units*.

Fig 3: Source sentence (L2) with translation (L1) and minimal alignments constituting 7 units (only units 2,3 and 4 are highlighted for clarity of image)

- A unit forms a bipartite graph; the language of the words (which form nodes) defines two disjoint sets.
- Macaronic sentences can then be produced by selecting the display language for each unit.

Fig 4: Selecting English as the display language for units u2 and u3 results in the following displayed macaronic sentence.

- Reordering is handled by changing the unit order of the macaronic sentence.
- Possible orderings for a sentence pair are defined by a bracketing ITG tree (Wu, 1997)
- Translation and Reordering act independently, which allows for a large space of macaronic states to be displayed.

String Rendered	Unit Ordering
they run	
they laufen	$\int u_{n} \left\{ \left \left \left \int u_{n} \right \right \right\} \right\}$
sie <i>run</i>	$\begin{bmatrix} 1 & 1 & 2 \end{bmatrix} \subset \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$
sie laufen	
run they	
<i>run</i> sie	$\int u_{n} \left\{ \left\{ \right\} \right\} = \left\{ u_{n} \right\}$
laufen <i>they</i>	$\lfloor u_2 \rfloor > \lfloor u_3 \rfloor$
laufen sie	

Table 1: Generating reordered strings using units along with possible
 translations for each unit ordering.

