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Why Soft Prompts?

* Easy to search with backprop.
 We have a larger space of prompts.
* They can emphasize certain keywords, even particular dimensions.
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Ensembling (Mixture of Prompts)

* Bigger model: When one prompt is unsure, others can help
* Better predictions: Ensembling reduces variance
» Better optimization: Explore multiple starting points in parallel
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Main Experiments
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Main Experiments

* Predict factual relations from T-REx dataset by prompting BERT-large
e About 1000 training examples per relation

* |nitialize at other researchers' prompts -- huge improvement!

* |nitialize randomly -- almost as good!

Really close
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L t f E ° LM| Method |— Precision@1 _ Precision@ 10 - MRR
O S O X p e r I m e n S init — soft — deep |init — soft — deep |init — soft — deep
LAMA |26.4 54.3 35.8
LPAQA |[31.2 57.3 39.9
_ _ BEb| SOft (sin.) 26,4 42227, 48,6 £ 10, 49,6 |54.3 42220, 77.6 .02, 77,9 [35.8 42221, 58.7 08, 50.3
M| Method Precision@1 Precision@10 MRR Soft (min.)[31.2 #2097, 502 +03, 5057|573 2197, 792 + 05,79 7739 9 +202", 6. + 04, (.5
init — soft — deep init — soft — deep init — soft — deep Soft (par.) [31.2 z2857, +1857 407 +00 497 |§7.3 +213° 78 6 +06 790 (399 +19.6” 59§ +03 50§
LAMA 311 59.5 40.3 Soft (ran.) | 0.8 462, 47,1 +25, 50,6 | 4.0 *7°4, 744 +49,793 | 2D 543 565 + 29 ()4
LPAQA [34.1 62.0 43.6 LAMA |24.07 3377 3417
BEb Soft (sin.) |31.1 #14:6°, 457 + 20,477 |59.5 *163%, 758 +3.2,79 () [40.3 +2597, 562 * 22, 58 4 LPAQA |37.8f 64.471 44.0t
Soft (min.) |34.1 2247, 48.8 + 12, 50,77|62.0 £25:¢%, 79.6 =11, 8§0.7°|43.6 2527, 504 + 7, 61.17 BEI Soft (sin.) [24.0 +282, 50.2 +*2, 51.4 |53.7 +24:2,78.6 ©°°,79.5 |34.1 *252, 60.0 + 12, 61.2
Soft (par.) [34.1 22287, 46,9 + 15,48 4 (62.0 268", 78 8 £ 02,796 |43.6 11427, 57,8 + 13,59 ] Soft (min.)|37.8 £184, 51.2 £13, 52,5 |64.4 251,795 =15, 81.1 |44.0 =272, 61.0 =14, 62.4
Soft (ran.) 0.7 *466 4773 +08 481 4.6 £74.0 .79 1 +0.0 79 1 2.3 4561 5§58 4 +05 5809 Soft(par.) 37.8 125, 50.3 £ 14, 51.7 |64.4 145,787 +21,80.8 |44.0 =11, 60.1 £19 61.7
LAMA 12807 5777 3877 Soft (ran.) | 1.4 #481, 475 +44, 519 | 54 +089, 743 +63,80)6 | 5.7 +52,569 +5° 61,9
LPAQA  [39.4f 67.41 49.11
BEI Soft (sin.) [28.9 12,458 £53, 51,1 |57.7 £22°,76.7 =24, 81.1 |38.7 178, 56.5 £5:2,61.5
Soft (min.) {39.4 **%-5, 51.0 =°%, 51.6 |67.4 %2, 81.4 £°5, 819 |49.1 £125, 61.6 =25, 62.1 Model P@1 P@10 MRR
Soft (par.) [39.4 +°2,48.6 £25, 5].1 |67.4 225 80.0 =17, 81.7 |49.1 +2°5, 596 +21, 1.7 LAMA (BEb) 0.17 2.67 1.57
Soft (ran.) 2.3T+4” 494 £12,51.3 801‘”30 81.0 27, 81.7 45;559 60.4 £15,61.9 LAMA (BEI) 0.1 50 1.9t
. el o e s e Soft (min.,BEb)|11.3(+11.2) 36.4(+33.8) 19.3(+17.8)
Soft (min.) | 1.2 304, 40.6 — 73,332 | 9.1 4653, 75.4 ~223, 53,0 | 4.2 +155, 53,0 ~121, 40 8 Soft (ran.,BEb) |11.8(+11.8) 34.8(+31.9) 19.8(+19.6)
LPAQA 0.87 i 207 Soft (min.,BEIl) [12.8(+12.7) 37.0(+32.0) 20.9(+19.0)
BAb Soft (min.) | 0.8 +221, 39.9 57 +69.7, 75 4 7.9 +a9.2 5§31 Soft (ran.,BEl) (14.5(+14.5) 38.6(+34.2) 22.1(+21.9)
BA[| LPAQA 3.57 5.67 4.8
Soft (min.) | 3.5 +22:3, 25.8 5.6 £524, 68.0 4.8 +362,41.0
Model P@]1 P@10 MRR Model P@l P@l0 MRR
Model | P@l P@I0 MRR baseline 394 674 491
i T o 0 el LPAQA (BEb) | 18.9 40.4 26.6 g o ok 40'0 69'1 53'3
LPAQA |10.60 2370 1531 Soft (BEb) | 23.0 (+4.1) 45.2 (+4.8) 30.5 (+3.9) a igslisrilggfxiﬁrgs 07 807 el
Soft (sin.) [11.2 (+1.5) 33.5 (+ 6.5) 18.9 (+3.3) LPAQA (BEI) | 23.8 47.7 32.2 ! adiust both 51'0 81'4 61.6
Soft (min.) | 12.9 (+2.3) 34.7 (+11.0) 20.3 (+5.0) Soft (BEI) 27.0 (+3.2) 51.7 (+4.0) 35.4 (+3.2) J . . .
Soft (par.) | 11.5 (+0.9) 31.4 (+ 7.7) 18.3 (+3.0)
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Takeaways

=] * LMs know more facts than we thought.
o= You just have to learn how to ask.

* Prompts are made of vectors, not words!
So you can tune them with backprop.

e Random initialization works fine.
No grad student required.

* Prompt tuning is lightweight,
o and could also be applied to few-shot learning.



Thanks!
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