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Abstract

Task-oriented dialogue systems often assist
users with personal or confidential matters. For
this reason, the developers of such a system
are generally prohibited from observing actual
usage. So how can they know where the system
is failing and needs more training data or new
functionality? In this work, we study ways in
which realistic user utterances can be generated
synthetically, to help increase the linguistic
and functional coverage of the system, without
compromising the privacy of actual users. To
this end, we propose a two-stage Differentially
Private (DP) generation method which first
generates latent semantic parses, and then
generates utterances based on the parses. Our
proposed approach improves MAUVE by 2.5×
and parse tree function type overlap by 1.3× rel-
ative to current approaches for private synthetic
data generation, improving both on fluency and
semantic coverage. We further validate our ap-
proach on a realistic domain adaptation task of
adding new functionality from private user data
to a semantic parser, and show overall gains of
8.5% points in accuracy with the new feature.

1 Introduction
In task-oriented dialogue systems, such as Siri and
Alexa, a software agent parses a user’s intent into
a program, executes it and then communicates the
results back to the user (Andreas et al., 2020; Li
et al., 2022; Cheng et al., 2020; Gupta et al., 2018;
Young et al., 2013). As a result of their growing
popularity, these systems face an increasing
demand to improve their linguistic coverage (How
do users talk?) as well as functional coverage
(What are users trying to do?). An input utterance
to such a system could look like this: “Could you
tell me what the weather is gonna be like today in
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New York?” and the agent answers it by predicting
and executing a program, or semantic parse.

In many cases, due to privacy controls, system
developers can only use datasets that are limited
and contrived, e.g., dialogues created by crowd
workers pretending to be users. This is a significant
domain shift from real private user data. Unlabeled
data from real user interactions with dialogue
systems has abundant signals that could be used to
improve the linguistic and functional coverage of
semantic parsers. For instance, practitioners could
detect gaps in coverage by examining interactions
where the system was unsure about what to do or
responded that it lacked the requested functionality.

Note that training on real user interactions would
be problematic for privacy even if automated and
unsupervised. Trained models can “memorize”
details of their training data (Tirumala et al., 2022;
Feldman, 2020; Mireshghallah et al., 2022b), and
this can be exploited through different types of
attacks that either extract full training sequences
from models (Carlini et al., 2021, 2019) or infer
the presence of a given sequence of interest in the
training data (Mireshghallah et al., 2022a).

To mitigate that problem, Differentially Private
(DP) training algorithms, such as DP-SGD (Abadi
et al., 2016; Dwork et al., 2006), can be used to
provide worst-case guarantees on the information
leakage of a trained model. This guarantee is
controlled by the privacy budget ϵ, where lower
epsilon means higher privacy. But while DP-SGD
could be used to adapt (fine-tune) a semantic parser
on unannotated private data, there is a limit to what
can be done in this way. Even if some users are
asking the system to hop up and down, fine-tuning
is unlikely to make it grow legs. Thus, our goal
in this paper is to use DP-SGD to produce realistic
data that can be inspected (so that the developers
know to build legs) and expertly annotated (to
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Figure 1: Overview of our problem setup and a baseline approach: We want to improve the performance of a semantic
parser using differentially private synthesized utterances, based on private user data.

rapidly teach the semantic parser that words like
“hop” and ”jump” should invoke the leg API).

Recent concurrent work (Yue et al., 2022;
Mattern et al., 2022) has attempted to generate
synthetic labeled data to train a text classifier. They
sample labels from a given distribution and sample
corresponding text strings from a differentially
private language model, conditioning each string on
its label. This approach does not directly apply to
our setting, as our distribution over labels is private
and one of our goals is to learn it. We cannot even
substitute a uniform distribution for the sake of
generation, since no such distribution exists over the
infinitely many labels of the semantic parsing task.

To meet the unique requirements of our setting,
a simple baseline is to ignore the classes and simply
train a differentially private language model on
all the private utterances, applying DP-SGD to the
usual log-likelihood objective (Figure 1). We could
then sample synthetic utterances for inspection and
annotation. However, we find that when we enforce
privacy with budget ϵ = 3, this baseline’s top-25
most common function types1 only have 64%
overlap with the top-25 most common function
types in the private utterances (see Section 5.1 and
Table 6 for full experimental details and results). In
other words, the baseline model does not accurately
capture the distribution of the private training data,
over a limited number of synthesized samples.

To ensure sufficient coverage of how users
invoke different function types, we propose a
2-stage method (Figure 2) that exploits the structure
of the output space, by privately (using DP-SGD)
modeling the parse trees (bottom of the figure) and
the conditional distribution of the utterances given
a parse tree (top of the figure), separately. These
models can then be used to generate as many sam-
ples as desired, by first sampling parse trees from
the parse generation model and then prompting

1Function types are the set of unique, discrete node labels
in the semantic parse tree, corresponding to API methods.

the parse2utterance model with these parse trees.
Using the proposed method, we observe a 80%
coverage of the top-25 most common function
types in private utterances, which is a significant
improvement over the baseline (64%). To further
evaluate the efficacy of our method in improving
a downstream system, we annotate DP-generated
utterances to add a missing functionality to a low-
resource semantic parser, and show that the parser’s
accuracy on this missing functionality is 13.4%
higher if the DP-generated utterances come from
our 2-stage method rather than the 1-stage baseline.

2 Background
Definition 2.1 (Differential Privacy (DP) (Dwork
et al., 2006)). A randomized algorithmA is (ϵ,δ)-
differentially private if for any two neighboring
inputsD andD′, which differ in exactly the data per-
taining to a single record, and for any set S of possi-
ble outputs: Pr[A(D)∈S]≤eϵPr[A(D′)∈S]+δ.

To train a neural network with differential privacy,
the most widely used algorithm is the DP variant of
stochastic gradient descent, DP-SGD (Abadi et al.,
2016). It resembles ordinary SGD, but at each gra-
dient update step, it first clips the per-example gradi-
ent to a maximum norm of C, then obfuscates it by
adding Gaussian noise with mean 0 and standard de-
viation σC. Intuitively, this limits the contribution
that any single example makes to the final model pa-
rameters returned by the training algorithmA. The
privacy expenditure of DP-SGD, (ϵ,δ), is a function
of C, σ, |B| (batch size), |D| (dataset size), and the
total number of epochs T (which controls the total
number of gradient updates). It is determined based
on the Rényi DP (Mironov, 2017) privacy account-
ing method. In practice, following prior work, we
fine-tune our models using DP-Adam (Abadi et al.,
2016; Li et al., 2021; Yu et al., 2021). We elaborate
more on DP training in Appendix C.
Post-processing property. This property of DP
ensures that if an algorithm A satisfies (ϵ,δ)-DP,
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Figure 2: Overview of the proposed 2-stage method: On the left, we see an example of a private user utterance with
its (also private) semantic parse tree. On the right we see how our 2-stage framework trains DP parse tree generation
and parse2utterance models, and then samples from them to produce synthesized utterances.

then so does F ◦ A for any function F (Dwork
et al., 2006). This means that we can take as many
samples as we want from the DP-trained models,
without changing the privacy expenditure.

Algorithm 1 Differentially Private Training and
Sampling: 1-stage Baseline
Input: Utterance generation model pθx(x), private

utterances Dpriv, privacy budget (ϵ,δ), batch
size |B|, epochs T , clipping threshold C, pri-
vacy accountantA

1: Feed the parameters ϵ, δ, C, T , and |B| to the
accountantA to get noise multiplier σ

2: Fine-tune pθx(x) on Dpriv with DP-SGD and
parameters σ and C for T epochs with batch
size |B|

3: Populate Ds with samples from pθx

4: return Ds

3 Method
Setting. We are given an unlabeled private dataset
Dpriv={xi} drawn from the distribution of private
user utterances, ppriv(x). We are also given a
labeled public dataset Dpub = {(xj , yj)}, and a
semantic parser pϕ0(y |x) already trained on Dpub.
Goal. Our goal is to find an (ϵ,δ)-DP model ϕ, such
that pϕ(y |x) has a lower loss than pϕ0(y |x) on the
task of semantically parsing utterances from ppriv.
We will achieve this by proposing different methods
of using Dpriv with DP to train a model pθ of ppriv,
and using it to synthesize an unlabeled dataset, Ds,
that can then be manually annotated and used to
augment the training set Dpub for learning ϕ.

In the rest of this section, we first introduce the
baseline method for pθ(x), then we propose our
2-stage method. In both cases, the output of the pro-

cess is a dataset of unlabeled synthetic utterances,
Ds, which is similar to Dpriv and will later be an-
notated and used to augment Dpub when training ϕ.
Due to the post-processing property (see Section 2),
any model trained on Ds still satisfies (ϵ,δ)-DP.

Algorithm 2 Differentially Private Training and
Sampling: Proposed 2-stage Technique
Input: Parse tree generation pθy(y) and

parse2utterance pθyx(x | y) models, pri-
vate utterances Dpriv, privacy budget (ϵ, δ),
batch size |B|, T1 and T2 as epochs allocated
to stages 1 and 2, clipping threshold C, privacy
accountant A, low-resource parser pϕ0(y | x)
trained on Dpub

1: Feed the parameters ϵ, δ, C, T =T1+T2, and
|B| to the accountantA to get noise multiplierσ

2: FeedDpriv topϕ0 to sample a parse tree for each
utterance, and augment Dpriv with the trees

3: Fine-tune pθy(y) on only parse trees from
Dpriv with DP-SGD and parameters σ and C
for T1 epochs with batch size |B|

4: Fine-tune pθyx(x | y) on Dpriv with DP-SGD
and parameters σ and C for T2 epochs

5: Take samples from pθy(y) with batch size |B|
6: Prompt pθyx(x |y) with the sampled parse trees

from the previous step, and populate Ds with
the output samples.

7: return Ds

3.1 Baseline: Vanilla DP Language Model
Figure 1 shows the 1-stage baseline approach of
fine-tuning a pre-trained generative auto-regressive
language model on private user utterances using
DP-SGD (Abadi et al., 2016; Li et al., 2021; Yu
et al., 2021). Algorithm 1 details this process: To
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create the synthesized dataset, we first fine-tune
the initial utterance model pθx on Dpriv, using
DP-SGD with noise multiplier σ, batch size |B|
and clipping threshold C, for T epochs. The noise
multiplier is given to us by the privacy accountant
(see Section C.1). Then, we take samples from
this fine-tuned model. Due to the post-processing
property of DP, any sample from this model satisfies
the guarantees and the synthesized dataset size does
not affect the privacy guarantees.

3.2 Proposed Method: 2-stage Generation

As we discuss in the introduction and the results
sections, the baseline fails to accurately capture the
distribution of different word-types (vocabulary)
and parse tree function-types in the private
utterances. To increase the linguistic and functional
coverage of the synthesized data, we propose a
2-stage method to exploit the inherent structure in
the private user-utterance parse trees. We assume
that the parse trees for the private utterances are
also private, since they are almost unique to each
utterance, and cannot be released/used without pri-
vacy measures. We also assume that the parse trees
are noisy, e.g., generated by low-resource parsers
rather than expert annotators, and we use such trees
in our end-to-end experiments. Figure 2 shows
an overview of our proposed 2-stage generation
model, with the bottom part showing (in blue) one
stage of the process, training a parse tree generation
model, with DP-SGD, to model the parse trees
as intermediate (latent) variables. A model like
p(x) =

∑
y p(y)p(x|y) is a latent variable model

(for example, a variational autoencoder) of x,
where we can sample x, by first drawing y, then
drawing x given y, then discarding y. That is what
we have done, with y being a parse-tree and x
being an utterance. The other stage is training a
parse2utterance model that would take the interme-
diate variables (parse trees, y) as input prompts and
produce the utterance corresponding to them. It is
noteworthy that the training of these two stages is
completely independent and can be parallelized.

Algorithm 2 shows the details of the training
and sampling process. An important design choice
is how to split T , the number of overall training
epochs, between the two stages as T = T1 + T2.
This effectively splits the privacy budget: the stage
that gets more epochs consumes more of the privacy

budget. We discuss this further and run ablation
studies in Section 5.3.

We choose to use the same privacy parameters
(σ and C) determined from T for training of both
stages, as this enables us to use the sophisticated
privacy accountant of Rényi DP (RDP) (Mironov,
2017) and achieve a tighter bound on the privacy
parameter ϵ, compared to directly splitting ϵ and
using different privacy parameters for each stage.
The privacy accountant keeps track of how much
privacy budget ϵ (information that an adversary can
recover about a training sample) has been spent so
far during the training process. We elaborate more
on this choice in Appendix C.2.

4 Experimental Setup
In this section we briefly describe our experimental
setup. For full experimental details see App. A.

4.1 Datasets
We use two large-scale conversational semantic
parsing datasets, SMCalFlow v2.0 (Andreas et al.,
2020) and TreeDST (Cheng et al., 2020). We
pre-process them to break the conversations with
the agents into single turns, each consisting of an
(utterance, parse tree) pair, and we only use the
human turns. This yields a training/test dataset
with size of 133,584/14,571 and 121,652/22,897
for SMCalFlow and TreeDST respectively.

4.2 Metrics
We compare the synthesized datasets to human
utterances on a distribution level, as there is no
one-to-one mapping between them. We report
two sets of metrics here: (1) Language and
(2) Parse metrics. Language metrics (MAUVE and
word overlap) are measured from the generated
utterances themselves, whereas parse metrics
(chi-square distance and function overlap) are
measured from parse trees corresponding to
the synthesized utterances, produced using a
high-resource parser.2 All the results are reported
over 14, 751 and 22, 897 synthesized utterances,
compared to the same number of human utterances,
for SMCalFlow and TreeDST datasets respectively.
MAUVE (Pillutla et al., 2021) is a comparison
measure for open-ended text generation, which
directly compares the learned distribution from

2A parser trained on a large amount of data, close to SotA
accuracy.
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a text generation model to the distribution of
human-written text using divergence frontiers.3

Word-type Overlap (W. Overlap) measures the
word-type (vocabulary) coverage of generated text,
as the ratio of overlapping types between the gener-
ated text and human utterances, against the human
utterances, when the text is tokenized using spaces.
Function Type Overlap (F. Overlap) measures the
function type coverage of the parse trees of the syn-
thesized text, as the ratio of overlapping parse tree
API function types between the generated text and
human utterances, against the human utterances.
Chi-square Distance (Dist.) measures the χ2 dis-
tance between the distribution of API function types
from the parse trees of the synthesized utterances
against the parse trees of human utterances.

4.3 Model Architectures and Decoding
Semantic Parser. We train a Transformer-based
semantic parser from Zhou et al. (2022) on only
the human turns from the dialogues (without any
context). Details are provided in Appendix A.3.
1-stage and 2-stage models. We fine-tune a pre-
trained GPT-2 (small) from Hugging Face (Wolf
et al., 2019) for all three of the utterance generation,
parse tree generation, and parse2utterance models.
We also provide results for GPT2-Large in the
Appendix B.5.
Decoding. We use Hugging Face’s multinomial
beam search (beam_sample) with beam width of
1 for decoding from the parse-generation model and
beam width of 5 for decoding from parse2utterance
and utterance generation models, as found in our
hyperparameter search.

4.4 Baselines
1-stage. This baseline denotes the method
explained in Section 3.1, where we fine-tune a
pre-trained language model (GPT2-Small) with DP-
SGD (Abadi et al., 2016), on the utterances. This
baseline is essentially equivalent to the methods
proposed in Li et al. (2021); Yu et al. (2021).
1-stage + domain (1.5-stage). For further evalua-
tion of our method, we devise a more sophisticated
baseline, inspired by Yue et al. (2022), where we
augment the 1-stage model with a constrained set
of prompts that reflect the domain of the modeled
utterance. As such, we fine-tune GPT2-Small with
DP-SGD to create a domain2utterance model on the

3 https://github.com/krishnap25/mauve

TreeDST dataset, which uses the domain label (10
domains: flight, hotel, etc.) instead of the parse tree.
We sample domains from the true domain distribu-
tion. This is also similar to the setup in Mattern et al.
(2022), though they only target classification tasks.

5 Experimental Results
In this section we first compare the baseline and our
proposed method. We then study possible reasons
for the observed superiority of the proposed 2-stage
technique, and analyze hyperparameter sensitivity
for the generation process. Finally, we compare
the performance of the baseline and the proposed
method on improving the performance of a down-
stream semantic parser. We provide additional
experiments and ablations (such as hyperparameter
sensitivity and detailed result break-downs) in Ap-
pendix B alongside sample synthesized utterances
and parse-trees in Tables 9 and 10, as a reference.

5.1 Comparison with Baselines
Table 1 shows a comparison of the 1-stage and
1-stage + domain (1.5 stage) baselines (Section 4.4)
with our proposed 2-stage method, for three
different privacy budgets of ϵ= {3,8,16}, for the
two datasets SMCalFlow and TreeDST. We present
results for the 1-stage + domain baseline only on
the TreeDST dataset, since we have the domain
annotations only for this dataset. The ground-truth
row reports the metrics for the utterances in the test
set, which is why the language metrics are both
at the maximum value 1.0. However, the parse
metrics are not perfect since the high-resource
parser used for evaluations does not achieve 100%
accuracy on the test set.

We can see that the proposed 2-stage method
outperforms both the 1-stage baselines, at all levels
of privacy budget, even when the privacy budget
is ∞ (i.e., the No DP row in the table), for both
datasets. The 1-stage + domain baseline has a per-
formance that is on average better than the 1-stage
baseline (hypothethically due to the guidance that
the domain prompts provide) but inferior to the
proposed 2-stage method. We can also observe that
on average, as the privacy budget increases (lower
privacy), the performance of all methods increases,
which makes sense as the added noise is decreasing.

Both single and 2-stage methods perform better
overall on the TreeDST dataset in terms of the
parse metrics. This could be due to the smaller set
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of function types for TreeDST (303 for TreeDST
vs. 524 for SMCalFlow), making it easier for
both methods to capture these types. One counter-
intuitive observation is that for some metrics, for
the 1-stage baseline, the performance with ϵ=16
is actually higher than ϵ=∞. We hypothesize that
this could be due to the regularization effect that
small amounts of noise has on the training (Smith
et al., 2020), therefore the DP model with a high
budget can generalize better (overfits less). We
also observe that for the SMCalFlow dataset,
MAUVE doesn’t improve much as we increase the
privacy budget. We relate this to the complexity
of the hyperparameter search/optimization in
DP-mechanisms, and that we were not optimizing
for improving MAUVE. A more extensive hyperpa-
rameter search could yield better results on ϵ=16.

We provide more fine-grained comparisons on
the parse tree distribution matching with ground
truth (such as the top-10, 25, 50 and 100 most
common function coverage in Appendix B.4). We
explore the reasons behind the superior perfor-
mance of the proposed method in the next section.

5.2 Ablation Studies
We hypothesize that the superiority of the 2-stage
method, which models the parse trees as inter-
mediate variables, is because it (1) improves the
language modeling within each utterance and (2)
helps the model learn the different semantic modes
in the data.

Disrupting the Correlation between Parse-trees
and Utterances. We first disrupt the correla-
tion between parse trees and utterances by shuffling
them (i.e., each utterance is now paired with a ran-
dom parse tree). We discuss the full details and
results of this experiment in Appendix B.2, but in
short we observe that in this setup, the parse-related
metric (function overlap) for 2-stage synthetic data
falls from 63.9% to 23.2%, which is below that of
the 1-stage baseline (47.5%), supporting the hypoth-
esis that the structure in the parse trees and the cor-
relation to utterances are important. Based on this,
in the rest of this section, we test our multi-modality
hypothesis by limiting the data to fewer modes.
Changing the Modes in the Data. Our conjecture
is that part of why the 2-stage model benefits from
explicitly learning a distribution over semantic
parses is that this helps it capture the different

semantic modes in the data—that is, the various
types of functionality invoked by the utterances.

To test this hypothesis, we create a subsample
of the original dataset, consisting only of (utterance,
parse tree) pairs where the parse tree contains the
Weather function. This “single-mode” dataset fo-
cuses on weather-related queries. We compare the
pattern of results to that in the original experiment,
where the dataset had greater diversity of function
types. Note that, due to the high compositionality
of the parse trees (e.g., a parse tree that contains
the Weather function may also contain many other
functions for, e.g., datetimes and locations), the
restricted dataset still contains 158 function types,
compared to the 524 in the original data.

Table 2 shows the results for this experiment,
and compares the performance of the 1-stage and
2-stage methods (the numbers don’t match those of
Table 1 for the same ϵ value, as for this experiment
we use a smaller batch size of 1024 for the sake
of run-time). As we can see, the improvement
achieved by the 2-stage method shrinks on the re-
stricted dataset, which supports our conjecture. It is
noteworthy that although the improvement shrinks,
it remains relatively high for the metrics that
consider parses, showing that the 2-stage method
retains an advantage in capturing the remaining
functional diversity in the restricted dataset.

5.3 Hyperparameter Sensitivity Analysis

We run extensive analysis to study the effect of dif-
ferent hyperparameters (batchsize, learning rate,
clipping threshold and the total number of the
epochs for the 2-stage method) on the quality of the
synthesized text. For the sake of space we present all
these results in Appendix A.3. In short, we find that
as the batch size increases, the quality of the gener-
ated text also improves, which has been observed by
prior work in DP generation of text (Li et al., 2021).
For splitting of the privacy budget between the train-
ing of the parse-generation and parse2utterance
models, we find that most of the epochs should be
allocated to the latter: increasing T2 at the expense
of T1 steadily improves the quality of the generated
text (under both text-based and parse-based met-
rics), until a tipping point is reached. We findT1=2
and T2=8 epochs to be the best setup.
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SMCalFlow TreeDST

Language Metrics Parse Metrics Language Metrics Parse Metrics

Method W. Overlap ↑ Mauve ↑ Dist. ↓ F. Overlap ↑ W. Overlap ↑ Mauve ↑ Dist. ↓ F. Overlap ↑

G. Truth 1.0 1.0 0.003 0.820 1.0 1.0 0.001 0.990

N
o

D
P 1-stage 0.087±0.005 0.334±0.056 0.258±0.034 0.487±0.004 0.125±0.021 0.274±0.043 0.101±0.019 0.702±0.033

1.5-stage - - - - 0.230±0.005 0.399±0.046 0.079±0.010 0.842±0.025
2-stage 0.236±0.012 0.632±0.005 0.085±0.009 0.797±0.006 0.456±0.012 0.521±0.019 0.040±0.006 0.966±0.004

ϵ
=
1
6 1-stage 0.092±0.012 0.258±0.073 0.167±0.018 0.499±0.025 0.142±0.015 0.213±0.041 0.108±0.016 0.755±0.031

1.5-stage - - - - 0.174±0.008 0.176±0.031 0.102±0.019 0.774±0.051
2-stage 0.213±0.007 0.524±0.027 0.057±0.003 0.708±0.013 0.290±0.013 0.384±0.021 0.035±0.005 0.954±0.009

ϵ
=
8 1-stage 0.093±0.014 0.198±0.053 0.183±0.011 0.487±0.052 0.140±0.016 0.199±0.032 0.110±0.023 0.773±0.027

1.5-stage - - - - 0.172±0.009 0.178±0.017 0.102±0.024 0.793±0.041
2-stage 0.210±0.007 0.533±0.032 0.055±0.004 0.707±0.010 0.281±0.018 0.354±0.047 0.036±0.006 0.945±0.010

ϵ
=
3 1-stage 0.086±0.016 0.138±0.035 0.185±0.001 0.485±0.059 0.138±0.023 0.176±0.030 0.111±0.030 0.795±0.058

1.5-stage - - - - 0.166±0.006 0.147±0.016 0.105±0.024 0.801±0.016
2-stage 0.205±0.004 0.530±0.031 0.054±0.003 0.693±0.010 0.256±0.008 0.294±0.040 0.037±0.005 0.938±0.007

Table 1: Comparison of the proposed 2-stage method with the 1-stage and the 1-stage + domain (1.5 stage) baseline,
with different levels of privacy budget (ϵ), where lower budget means higher privacy. The numbers are presented
as mean±σ (unbiased sample standard deviation), over three runs with three different seeds.

Method MAUVE ↑ Dis. ↓

N
o

D
P Few-modes

1-stage 0.234±0.023 0.241±0.024
2-stage 0.214±0.062 0.105±0.032

Full-modes
1-stage 0.334±0.056 0.258±0.034
2-stage 0.632±0.005 0.085±0.009

ϵ=
8 Few-modes

1-stage 0.285±0.063 0.194±0.014
2-stage 0.224±0.037 0.169±0.039

Full-modes
1-stage 0.203±0.103 0.163±0.019
2-stage 0.428±0.046 0.073±0.010

Table 2: The effect of using few-modal data for training
vs. the full dataset, on the performance of the 1-stage
baseline and the proposed 2-stage method. The goal
here is to see if the superiority of the 2-stage method is
due to it better capturing different modes in the data. The
numbers are presented as mean ± standard deviation,
over three runs with different random seeds.

5.4 Downstream Parser Improvement
In this section, we demonstrate a major application
of our privacy-preserving data synthesis, through an
end-to-end experiment: improving the performance
of a low-resource semantic parser and adding
new functionality to it based on private user data.
Building on the notation described in Section 3, we
assume access to a small “eyes-on” (non-private)
dataset Dpub of (utterance, parse tree) pairs, and
a semantic parser pϕ0(y | x) trained on Dpub. We
also assume we have “eyes-off” access to a much
larger unlabeled private utterance dataset Dpriv,
which we can only access through a DP mechanism.
Our goal is to synthesize dataset Ds such that a
parser trained on Dpub ∪ Ds performs better on
dataset Dpriv than the original parser pϕ0(y |x).

We devise this experiment such that Dpub is

missing function types that Dpriv has, and we aim
to capture this missing functionality through the
DP data synthesis and augmentation. Specifically,
we will construct Dpub by removing one class of
function from SMCalFlow: either Weather or event
on date (EoD). We chose these two to be distinct,
as weather-related queries comprise only 3.4% of
the samples in the dataset, whereas EoD appears
in 10.7%. Comparing these two helps us study the
effect of a function’s commonness on the ability
to add it through this procedure.
Dataset Partitioning. We uniformly subsample
1
10 of the pre-processed SMCalFlow training set
(from Section 4.1) to form Dpub. Each entry
contains a human-generated utterance and the
corresponding expert-annotated parse tree. We
drop all the samples with weather or EoD from
Dpub. We use the remaining 9

10 th of the dataset to
form Dpriv. We test on a uniformly sampled subset
of the test data (with the same 1

10 ratio).
Parser Metrics. We measure the performance
of the initial low-resource semantic parser and
the augmented ones using the following three
metrics, adopted from Zhou et al. (2022): (1) Exact
Anonymized Graph Match, which reports the per-
centage of test samples for which the anonymized
generated parse tree is an exact match to the
ground truth expert annotations from SMCalFlow;
(2&3) API Match Precision and Recall, which
measures the precision and recall of the generated
parse tree nodes (API functions) from the parser,
treating the tree as a bag of nodes, against those of
the ground truth.
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Missing (Weather/EventOnDate) function breakdown Average over all function types

Method Anonymized Graph Match API Precision API Recall Anonymized Graph Match API Precision API Recall

Full Dataset 76.6 / 74.0 77.5 / 78.5 77.5 / 78.6 73.9±0.1 78.1±0.3 78.2±0.4

W
ea

th
er Non-augmented 0.0±0.0 1.9±0.7 2.1±0.9 60.9±1.1 65.7±1.2 65.6±1.3

1-stage 37.7±2.6 42.1±3.1 42.1±3.1 65.9±0.2 71.0±0.5 71.0±0.5
2-stage 43.7±0.7 50.3±0.9 50.3±0.9 66.4±0.6 71.9±0.4 71.9±0.4

E
oD

Non-augmented 0.0±0.0 4.4±0.1 4.3±0.0 57.6±0.3 61.4±0.9 61.4±0.9
1-stage 48.0±0.7 52.2±1.1 51.9±1.1 64.0±0.5 67.9±0.3 67.9±0.3
2-stage 61.4±0.7 65.6±0.7 65.3±0.5 66.1±0.5 71.0±0.5 70.9±0.5

Table 3: End-to-end experiment results (low-resource semantic parser augmentation). The Weather and EoD rows
determine the composition of Dpub (Section 5.4). The “Missing (Weather/EventOnDate)” columns report the
metrics over only the functionality that was missing from the public data, but present in Dpriv (since Full Dataset
isn’t missing a function we report both functions, separated by ‘/’). The “Average over all” columns report metric
over all function types.

Experimental Procedure.
Starting with a low-resource parser pϕ0(y | x)

trained on Dpub, and we aim to improve it using
Dpriv. We first obtain a predicted parse tree for each
utterance in Dpriv by running it through pϕ0(y |x).
We then train the 1-stage baseline and our 2-stage
method on Dpriv with DP-SGD (we set ϵ=3), and
then take samples from them to formDs, as outlined
in Algorithms 1 and 2. For the purpose of this ex-
periment, we set the size of Ds to 90,000 samples 4.
At this point, when applied in practice, we would
have experts annotate the utterances in Ds with
their parse trees. For this experiment, lacking hu-
man annotators, we use a high-resource parser (Ap-
pendix A.3) to predict a parse tree as a reasonably
good approximation to the ground truth. Finally,
we augment Dpub with Ds, re-train the semantic
parser, and compare its performance to pϕ0(y |x).
Results. Table 3 shows the results for the different
compositions of Dpub, described earlier in this sec-
tion. We provide the language and parse metrics
(from the previous sections) for these generations
in Appendix B.3, alongside a more fine-grained
breakdown of the results in Appendix Table 8. As
expected, the exact graph match performance of
the non-augmented parser when Dpub is missing
Weather or EoD is 0.0 on utterances containing
those functions (the precision and recall are not
exactly zero since there are queries that contain
Weather alongside other function types and those
other types are correctly identified). After augmen-
tation, we see that both methods for synthesizing ut-

4As we want to makes Dpub ∪Ds have about the same
size as the original SMCalFlow training set). The future work
can explore different ways to vary exactly how we sample Ds

(such as focusing on the fenced utterances, or changing the
size of Ds).

terancesDs lead to parser improvements, with the 2-
stage method providing more overall improvement.

It is on EoD that we observe the most improve-
ment (and the most pronounced gap between the
two methods), especially from the 2-stage method.
Presumably this is due to the higher prevalence of
EoD functions in Dpriv, so there are more training
samples (10.7% vs. the 3.4% of weather) for it
than the private training could use. We conjecture
that this is also the reason behind the bigger
performance gap between the single and two stage
models for this function, as there are more samples
wrongly annotated by the low-resource parser, and
the 2-stage method is picking up on this through
its use of the parse trees.

Another observation is that the gap between all
the augmentations and using the full dataset is still
quite significant. We believe this is due to the fact
that we used the low-resource parser to provide
annotations for the private data, which means
inaccurate annotations are being fed to the 2-stage
method for training. Therefore Dpriv is still far
from the fully expert annotated data used to train
the parser in the first row of the table. Using a better
parser, or iteratively augmenting and re-annotating,
might help close this gap by providing more
accurate parse trees to the 2-stage method.

6 Related Work

We offer a brief summary of related work here. For
a detailed discussion see Appendix D.
PII scrubbing. Techniques such as automated
removal of personally identifiable information
(PII) (Lison et al., 2021; Aura et al., 2006) and
training with redacted data (Zhao et al., 2022) are
often used to protect user privacy, especially in
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medical settings (Kayaalp et al., 2014). However,
alone, they do not provide stringent guarantees or
bounds on information leakage (Brown et al., 2022),
as there are many forms of private information not
captured in PII removal. Rather, DP is used as a
gold standard for limiting leakage.
Differentially Private Data Synthesis. Recent
concurrent work (Yue et al., 2022; Mattern et al.,
2022) has attempted different variations of taking
samples from a DP-trained model (Abadi et al.,
2016; Li et al., 2021; Yu et al., 2021; Kerrigan et al.,
2020; Shi et al., 2021; Anil et al., 2021; Tian et al.,
2021) to synthesize labeled data for classification
tasks, by conditioning the generation on the label
of each sample, and assuming that the prior distri-
bution over labels is known and public. They then
use this data to augment and improve classification
models. In our case, however, we are not dealing
with finite labels or classification, we want to
improve the performance of a semantic parser,
which is a structured (hierarchical) task, where
there are infinite possible parses that we cannot enu-
merate, and the labels are also private (since parse
trees are almost unique we consider them private).
Therefore, existing methods cannot be applied to
this problem, as mentioned in the introduction.

Another difference in this concurrent line of
work is their reliance on gold (ground truth) labels.
In our case, as we show in the final experiment, we
can instead train our DP models on imperfect parse
trees that are generated by low-resource parsers.
Semantic Parsing. The closest work to ours is
Yang et al. (2022), which deals with the problem of
safely learning from private user utterances, starting
with a low-resource semantic parser. Unlike our
setup, however, they do not rely on DP and are only
concerned with the removal of PII. While they also
consider a distribution over parse trees and employ
a parse-tree-to-utterance process, they implement
the latter using only the original supervised data,
which forecloses the possibility of adapting to
distributional shifts as in our experiments. Another
line of work advocates for attenuating privacy risks
by enabling semantic parsers to autonomously
learn from interacting with users (Yao et al., 2020;
Karamcheti et al., 2020; Yao et al., 2019). Through
privacy-preserving data synthesis, our method
supports diagnostics of private user traffic and
better control over the associated learning process.

Data Augmentation Data augmentation for per-
formance improvement is also relevant to our
work. Malandrakis et al. (2019); Cho et al. (2019);
Jolly et al. (2020); Okur et al. (2022); Zhang et al.
(2022) propose data generation methods designed
for the “intents and slots” model where each ut-
terance is considered to have one of a fixed set of
intents, and each intent has a fixed set of slots, each
of which needs to be filled with a value. We, in
contrast, use the SMCalFlow and TreeDST datasets
which use compositional semantic representations
of arbitrary complexity. Cho et al. (2019) and Okur
et al. (2022) propose to use automated paraphrasing
to create semantically equivalent variants of an ex-
isting utterance. Each utterance is paraphrased inde-
pendently of the others. Unfortunately, paraphrases
of a private utterance cannot be made public as they
leak information about the private utterance; obtain-
ing differentially private paraphrases would require
new research. Training the paraphrasing model by
DP-SGD will not help (and is generally unnecessary
as such a model can be trained on public data).

7 Conclusions

In this paper, we studied the problem of using
private user data to improve semantic parser perfor-
mance in task-oriented dialogue systems, without
violating user privacy. We proposed a two-stage
method for differentially private utterance synthesis
that exploits the inherent structure in the parse trees
to better fit the private distribution. We showed that
this method outperforms a baseline DP generative
language model on a variety of datasets and metrics.
We also demonstrated the effectiveness of our
method in an end-to-end application scenario where
we improved the performance of a low-resource
parser by adding new functionality that was
motivated by private user data. We showed that our
method provided overall gains of 8.5% points in
accuracy with the new feature.

Limitations

DP training of large models is compute-intensive,
requiring per-example gradients and large batch
sizes (Li et al., 2021; Subramani et al., 2021). This
renders the training of such models difficult and not
easily accessible to everyone.

DP-SGD takes records to be single training
examples, which in this paper’s experiments
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correspond to single user utterances. That setup
prevents the trained model from revealing much
information about any given single utterance, but it
may still allow information to leak that is repeated
across multiple utterances (Brown et al., 2022).

For both the baseline method and our two-stage
method, we trained our model to approximately
match the true distribution of private user utter-
ances, ppriv(x), to the extent that this was possible
under a differential privacy guarantee. Of course,
there are many ways to measure the quality of
an approximation, and different approximations
are appropriate for different tasks where it might
be important to preserve different properties
of ppriv(x). The one-stage baseline approach
implicitly aims to achieve a low cross-entropy, by
applying DP-SGD to the log-likelihood function. In
contrast, our two-stage approach aims to encourage
an approximation that also roughly preserves
the marginal distribution over semantic function
types. We did not investigate more direct ways of
encouraging such an approximation, for example,
one-stage DP-SGD with a modified objective
function that explicitly evaluates the marginal
distribution in addition to the log-likelihood.

Finally, we trained an approximate model of
ppriv from which we can draw utterances to inspect
and annotate. But we must acknowledge that ppriv
is not the ideal distribution to approximate. Even
if we were able to actually use private utterances to
improve the system, we would not necessarily want
to draw them directly from ppriv. Rather, we would
want to select them by active learning—selecting
the private user utterances that would be most useful
to inspect or to include in the annotated training
data. Thus, when training our model by DP-SGD
(using either the one-stage or two-stage procedure),
we could upweight or upselect the private utterances
that appear useful in this way—resulting in a
differentially private model that generates useful
synthetic utterances. Specifically, traditional active
learning by uncertainty sampling (Settles, 2012)
would select utterances where the semantic parser
was uncertain what to do. We would also want to se-
lect utterances where the system suspected for other
reasons that it did not do the right thing—because
it classified the user’s request as a functionality that
the system did not yet support, or because the user
objected in some way to the system’s response. We

have left experiments on this setup to future work.

Ethics Statement
The over-arching goal of our work is to improve
semantic parsers and dialogue systems while pro-
tecting the privacy rights of users who contribute
their data to this goal. While we train our models
by applying DP mechanisms with worst-case
guarantees, deploying these models in real-world
setups and using these synthesized data-sets
requires further verification that users’ privacy is
preserved, by setting the right definition of “record”
(i.e., training example) and the right (ϵ,δ) budget
based on privacy policy guidelines. Further studies
are needed on what the reported privacy budgets
actually mean in practice for users, how users
perceive these privacy mechanisms, and how they
can provide informed consent to have their data
used to improve the systems (Brown et al., 2022).
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Figure 3: Study of privacy budget split between the
two stages of the proposed method. We do the privacy
accounting assuming an overall 10 epochs of training for
both stages together, and the budget is split by splitting
these 10 epochs between the two stages; the y axis
shows this. The first/second number is epochs spent on
training the parse generation/parse2utterance model.

A Experimental Setup Details

A.1 DP Training Implementation
We build our methods on top of the setup in-
troduced by Li et al. (2021), and we use their
repository https://github.com/lxueche
n/private-transformers.

A.2 Software,
Hardware, and Data Specifications

We use Opacus 0.15.0, HuggingFace Transformers
4.10.3, PyTorch 1.9.1 with Cuda 10.2, and Python
3.8.8. We run our experiments on an Azure
ML Nvidia DGX-2 system, which has 16 Tesla
V100 GPUs with 512GB memory in total. (We
estimate that the experiments took an total of 4
weeks of GPU-hours.) We use SMCalFlow 2.0,
and TreeDST, which are both publicly available
datasets. For all the datasets and software used, we
abide by the usage agreement.

A.3 Training Hyperparameter Details
Based on the hyperparameter analysis shown in
Section B.1 below, we find the best clipping thresh-
old to be C =0.1 in all experiments (SMCalFlow
and TreeDST, and the learning rate to be 2×10−3.
We also set the privacy parameter δ=8×10−6, and
T =10 epochs for the 2-stage setup. Below we list
the dataset-specific parameters.

SMCalFlow. For Table 1, we use batch size of
2048, by setting actual batch size to 32 and gradient
accumulation to 64. For the rest of the tables we

use batch size of 1024 for the sake of speed, as we
do gradient accumulation.

We use T =10 for ϵ=16 and T =7 for ϵ values
of 8 and 3 in the single stage scenario, and T1 =
2 and T2 = 8 in the 2-stage. For the non-private
experiments, T =6 for single stage and T =10 for
two stage, where we split the epochs equally. For the
numbers in Tables 2 and 4 we set T1=3 and T2=7.

TreeDST. For Table 1, we use batch size of 1024,
by setting actual batch size to 32 and gradient
accumulation to 32. We use T =10 for all epsilon
values in the single stage scenario, and T1=2 and
T2 = 8 in the 2-stage. We set the learning rate to
0.002. For the non-private experiments, T =6 for
1-stage and T =20 for 2-stage, where we split the
epochs equally. We set the learning rate to 0.001.

High-Resource Parser Hyperparameters. We
use the parser architecture from Zhou et al. (2022),
where we train the model with no context (as in we
train on single utterances and not conversations),
and we only use the human utterances and not the
agent’s. We train two parsers, one on SMCalFlow
and one on TreeDST, for their corresponding
evaluations. All of our parsers are based on the
Transformer architecture, adapted to the graph
action sequence. Implementation details for the
parser are provided in Appendix E of Zhou et al.
(2022). We trained this model with learning rate
of 0.001 for 50 epochs.

End-to-end (Parser Improvement) Experiment
Hyperparameters. For the experiments in
Section 5.4, for training the DP models we use
the same hyperparameters as before. For training
the low-resource parsers, we find that for the one
missing the Weather function the best set learning
rate and epoch numbers are 0.003 and 150 epochs.
For event on date we use the same learning rate, but
train for 180 epochs.

Choosing the best setup to report. To select
the best hyperparameter setup for the baselines and
our method, we relied on MAUVE and Function
overlap metrics, as in chose the setup which had
a higher combination of these two values (in almost
all cases if one was highest the other was also
highest). However, we did discard some setups
with high GPT-2 loss (higher than 2.0 on a GPT-2
fine-tuned on SMcalflow 2.0), as we observe that
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Figure 4: Hyperparameter ablation studies for the 1-stage baseline (top) and 2-stage proposed method (bottom).
We ablate the clipping threshold, learning rate and batch size. We report the vocab overlap and node overlap metrics,
as language and parse metrics.

MAUVE and Function overlap tend to be very high
on some grammatically incorrect sentences with
diverse vocabulary. Therefore, we use GPT-2 loss
as an auxiliary metric to help us sift.

B Additional Experimental Results

B.1 Hyperparameter Sensitivity Analysis
In this section we compare different hyperparam-
eter settings in the generation process, and analyze
their effect on the quality of the synthesized text.
First, we vary the privacy budget split between
the first and second stages, in the 2-stage setup.
Then, we vary the training hyperparameters such
as learning rate, clipping threshold, and batch size,
to measure the sensitivity of the results. We use the
test set portion of the dataset for this.
B.1.1 Training Epoch Split
How the number of training epochs is split between
the two stages (i.e., how the privacy budget is
split) has a significant impact on the quality of the
synthesized text. Figure 3 shows the results for
this experiment, where we experiment with all 9
possible ways of splitting 10 total training epochs
between the two stages. A row label such as “9–1”
denotes a model trained for9 epochs on stage 1 and1
epoch on stage 2. The more epochs spent on a stage,
the more the privacy expenditure of that stage.

Based on the 4 measured metrics, we can see
that the setup 2–8 is the best one. We also see that
as we go from the bottom of the graph to the top
(i.e. as we spend less epochs on training the parse

generation model and more epochs on training
the parse2utterance) the overall quality improves.
However, we also see that this trend breaks when
we go from 2–8 to 1–9, where the metrics plummet,
which is probably due to 1 training epoch being too
small for the parse generation model.

B.1.2 Clipping, Batch size and Learning Rate
Finally, we run a hyperparameter sensitivity
analysis on the gradient clipping threshold (for the
DP optimization which requires gradient clipping
and addition of noise, see Section C.1), batch size
and learning rate. Figure 4 shows the results for
the 1-stage and 2-stage techniques, on the top and
bottom rows of the figure, respectively. Here, we
only look at the token type overlap and function
overlap metrics, for simplicity. The first two graphs
in each row are controlled for batch size (set to 1024
and change clipping and learning rate), whereas the
last two graphs are controlled for clipping threshold
(set to 0.1) and change batch size and learning
rate. We can see that for both the baseline and
the proposed method, the best set of parameters is
0.1, 0.002 and 2048 for clipping, learning rate and
batch size, respectively.

B.2 Disrupting the Correlation
Between Parse Trees and Utterances

For this experiment we take the parse trees and
utterances in the dataset and randomly pair them up,
so that the utterance in each pair has no relationship
to the parse tree. In this setting, we expect the
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parse2utterance model to ignore the uninformative
parse or, by fitting to spurious correlations, use it
as a source of randomness.

Table 4 shows the results for this experiment,
both with and without DP. We can see that the
2-stage shuffle model performs worse than the base-
line on the parse-related metrics, which supports
the hypothesis that the structure in the parse trees
and the correlation to utterances are important for
these metrics. That is, the benefit of the original
2-stage model does not arise simply from the fact
that it has 2-stages or more parameters. We also
see the same pattern for the word-type (vocabulary)
overlap metric, where once shuffled the model fails
to capture the diversity in the vocabulary. However,
the baseline exhibits higher MAUVE than the
shuffled model. Manual investigation revealed that
the shuffled model’s generations are grammatically
correct but are more repetitive across utterances,
compared to other models, and MAUVE fails to
sufficiently penalize these issues.

B.3 Metrics for the Samples Used
in the Parser improvement Experiment

Table 5 shows the detailed language and parse
metrics for the checkpoints used for augmenting the
parser in Section 5.4. These results are obtained for
ϵ=3, and for the 2-stage method they are overall
worse than the numbers shown in the main results,
Table 1, for the same ϵ value. The reason behind
this discrepancy is that for the parser improvement
experiment we annotate the training samples using
the low-resource parser which is much less accurate
that the ground truth parse trees used in Table 1.
However, we see that for the 1-stage baseline the
overlap metrics are now much higher. The reason
behind this discrepancy is that in Table 5 we report
results over the 90k samples, whereas the results in
the body of the paper are over 13k samples, and the
more we generate the more vocabulary/functions
get covered.

B.4 Function Distribution
Coverage Break-down Results

To provide a better, more detailed depiction of how
well each method matches the distribution of the
functions to that of the ground truth, we report the
overlap between the top-10, 25, 50 and 100 most
common functions in the ground truth, with those
for each generation method. We report those results

in Table 6.

B.5 Results For Larger Models
The results discussed in the body of the paper are
all reported on pre-trained GPT2-small. To further
explore with other models, we present results
on GPT2-Large, on the SMCalFlow dataset and
present the results in Table 7. We do not observe
improvements over GPT2-small in the synthesized
data’s quality. We speculate this is due to insuffi-
cient hyperparameter searches on the larger model,
or the small size of our training dataset.

B.6 Effect of Data-augmentation for Adding
New Functionality on Existing Functions

In this section we want to see whether our
data augmentation we implement to add new
functionality ends up hurting the performance of
the existing functions. Table 8 shows this. This
table corresponds to Table 3 in the main body of
the paper, however it presents results for every
functionality, except the augmented one.

B.7 Examples
of Generated Utterances and Parse-trees

Table 9 shows some examples of generated
utterances for the 1-stage baseline, and the
2-stage proposed method. Table 10 shows pairs
of generated trees and then utterances that are
conditioned on those trees, for the second stage
model. We observe some syntactically invalid
generated parse trees from the parse generation
model in the 2-stage setup. Nonetheless, the second
stage model can still generate coherent text from
such trees, and benefit from them, as we see the
2-stage model captures the distribution better.

C DP and Privacy accounting

C.1 Training via DP-SGD
To train a neural network with differential privacy,
the most widely used algorithm is the DP variant
of stochastic gradient descent (DP-SGD) (Abadi
et al., 2016). DP-SGD resembles ordinary SGD,
but at each gradient update step (derived from a
minibatch of training examples), it first clips the
per-example gradient by its norm, then obfuscates
the gradient by adding Gaussian noise. Intuitively,
this limits the contribution that a single example
makes to the final model parameters.

Clipping the gradient to a maximum norm of C
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Language Metrics Parse Metrics

Method W. Overlap ↑ MAUVE ↑ Dist. ↓ F. Overlap ↑

Ground Truth 1.0 1.0 0.00296 0.82

N
o

D
P 1-stage 0.087±0.005 0.334±0.056 0.258±0.034 0.487±0.004

2-stage 0.236±0.012 0.632±0.005 0.085±0.009 0.797±0.006
2-stage-shuffle 0.049±0.009 0.560±0.031 0.354±0.070 0.391±0.019

ϵ
=
3 1-stage 0.086±0.006 0.160±0.072 0.170±0.023 0.475±0.018

2-stage 0.169±0.007 0.404±0.063 0.079±0.010 0.639±0.005
2-stage-shuffle 0.032±0.004 0.401±0.063 0.453±0.024 0.232±0.010

Table 4: The effect that disrupting the correlation between parse trees and utterances (shuffling parse trees and
utterances) has on the performance of the 1-stage and 2-stage models. The goal here is to confirm that the superiority
of the 2-stage model is due to its exploiting the correlations between parses and utterances. The numbers reported
are presented in the format of mean±σ, over three runs with three different seeds.

Language Metrics Parse Metrics

Method W. Overlap ↑ MAUVE ↑ Dist. ↓ F. Overlap ↑

Ground Truth 1.0 1.0 0.00296 0.82

W
ea

. 1-stage 0.163 0.282 0.142 0.656
2-stage 0.294 0.460 0.088 0.729

E
oD 1-stage 0.115 0.137 0.221 0.536

2-stage 0.313 0.471 0.078 0.758

Table 5: The language and parse metrics for the
generations used in the end-to-end, parser improvment
experiments (Table 3). Wea. shows the results for
dropping the Weather functions and EoD shows
experiments for dropping EventOnDate function. We
do not report σ here since we use only one checkpoint’s
generations for augmentation.

(a hyperparameter) is done as follows:

g̃←
∑
x∈B

clip(∇ℓ(x)) (1)

where B is the current minibatch and
clip(v) = v · min

{
1, C

∥v∥2

}
. The clipped gra-

dient is small enough for us to obfuscate it (without
further changing its mean) by adding Gaussian
noise with mean 0 and standard deviation σC:

g←
g̃+N

(
0,σ2C2

)
|B|

(2)

The privacy expenditure (ϵ,δ) is a function of C,
σ, |B|, |D|, and the total number of epochsT (which
controls the total number of gradient updates). It
is determined based on the Rényi DP (Mironov,
2017) privacy accounting method. In practice,
following prior work, we fine-tune our models
using DP-Adam (Abadi et al., 2016; Li et al., 2021).

Post-processing property. The post-processing
property of DP (Dwork et al., 2006) ensures that
if an algorithm A satisfies (ϵ,δ)-DP, then so does

F ◦A for any function F , which means that we can
run as many inferences (i.e., take as many samples)
as we want from the DP-trained models, without
changing the privacy expenditure.

C.2 Privacy Accounting
We chose in Algorithm 2 (§3.2) to split T into T1

and T2 and share the other DP parameters across
the two stages. This lets us use a single shared
moments accountant (Abadi et al., 2016) and thus
benefit from sub-linear composition.

To be precise, if our method for ensuring (ϵ,δ)-
DP happens to guarantee (ϵi,δ)-DP at each stage
i (as a result of training for Ti epochs with clipping
threshold C, batch size |B|, and noise multiplier σ),
then we have ϵ≤ϵ1+ϵ2. We may enjoy ϵ<ϵ1+ϵ2
(Kairouz et al., 2015; Mironov, 2017).

Thus, we are in general able to train for more
total epochs, or with lower noise multipliers, than
if we had directly divided the privacy budget as
ϵ= ϵ1+ ϵ2, enforced (ϵi,δ)-DP at each stage i to
guarantee (ϵ,δ)-DP overall by linear composition,
and used that commitment to determine the
maximum allowed Ti (for a given σi) or the
minimum allowed σi (for a given Ti) at each stage i.

D Additional Related Work
In this section, we discuss additional related work
beyond Section 6.

D.1 Differentially
Private Training and Synthesis

In our work, we took samples from a generative
language model trained with differential pri-
vacy (Abadi et al., 2016; Li et al., 2021; Yu et al.,
2021; Kerrigan et al., 2020; Shi et al., 2021; Anil
et al., 2021; Tian et al., 2021), to build a synthesized
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SMCalFlow TreeDST

Method Top-10 Top-25 Top-50 Top-100 Top-10 Top-25 Top-50 Top-100

ϵ
=
16 1-stage 0.40 0.60 0.80 0.84 1.00 0.68 0.74 0.81

2-stage 0.60 0.76 0.92 0.90 1.00 0.80 0.88 0.87
ϵ
=
8 1-stage 0.50 0.64 0.80 0.84 1.00 0.72 0.78 0.81

2-stage 0.60 0.80 0.92 0.90 1.00 0.80 0.88 0.88

ϵ
=
3 1-stage 0.60 0.64 0.82 0.84 1.00 0.72 0.82 0.81

2-stage 0.60 0.80 0.94 0.89 1.00 0.80 0.88 0.87

Table 6: Breakdown of the function type distribution/coverage for different methods (Table 1). We show the overlap
of the top-k function types between ground truth and the generations.

Language Metrics Parse Metrics

Method W. Overlap ↑ MAUVE ↑ Dist. ↓ F. Overlap ↑

N
oD

P 1-stage 0.049±0.007 0.166±0.032 0.375±0.121 0.345±0.019
2-stage 0.230±0.001 0.608±0.037 0.088±0.003 0.781±0.013

ϵ
=
8 1-stage 0.104±0.006 0.136±0.019 0.172±0.010 0.485±0.021

2-stage 0.187±0.007 0.476±0.028 0.108±0.008 0.674±0.015

Table 7: Results for GPT2-Large

dataset which would then be used to improve
different down-stream tasks.

As an alternative, it is also possible to decode
in a differentially private way from a non-DP
model (Ginart et al., 2022) Other work has proposed
DP n-grams (Kim et al., 2021a), which helps
extract common n-grams from the data privately.
n-grams, however, are not much help in improving
performance on downstream tasks (parsing or NLU
classification), unless n is quite large.

D.2 Semantic Parsing
Other than Yang et al. (2022), we are not aware of
other works that specifically address learning from
private data for semantic parsing. Nevertheless,
many papers have explored ways to construct,
improve, and adapt semantic parsing systems
with minimal amounts of supervision. Wang et al.
(2015) construct semantic parsing datasets by first
enumerating potential parse trees (as “canonical
utterances”) and then asking crowd workers to
convert them into utterances. Su and Yan (2017)
leverage the canonical utterances for cross-domain
generalization in semantic parsing by reformulating
semantic parsing as paraphrasing from input utter-
ances to canonical utterances. Yin et al. (2022) is a
later instantiation of a similar idea, with automated
paraphrasing of canonical utterances into natural
utterances and a few other components. Zhao et al.
(2019); Zhong et al. (2020); Cao et al. (2020);
Burnyshev et al. (2021); Kim et al. (2021b); Tseng

et al. (2021) are other works in a similar vein. Since
these tend to use similar primitives as our 2-stage ap-
proach, but trained without DP on different sources
of data, our approach is largely complementary and
can be used to augment the prior approaches.

18



Missing Weather function breakdown Average over all function types

Method Anonymized String Match API Precision API Recall Anonymized String Match API Precision API Recall

W
ea

th
er Non-augmented 0.0±0.0 1.9±0.7 2.1±0.9 60.9±1.1 65.7±1.2 65.6±1.3

1-stage 37.7±2.6 42.1±3.1 42.1±3.1 63.4±3.1 74.9±5.0 75.0±4.9
2-stage 43.7±0.7 50.3±0.9 50.3±0.9 66.5±0.3 77.6±5.0 77.5±4.9

Table 8: Low-resource semantic parser augmentation experiment results. The Weather and EoD rows determine the
composition of Dpub (Section 5.4). The “Missing (Weather)” columns report the metrics over only the functionality
that was missing from the public data, but present in Dpriv. The “All But Missing” columns report metric over all
other function-types, to see if we observe degradation from the augmentation.

Single-stage baseline Two-stage proposed method

N
o

D
P

What is the weather like in San Francisco? what will the weather be like tomorrow in texas?
Can you find any meetings scheduled between 2 and 5 pm next Friday? Do I have any more meetings scheduled in the next two weeks?
I need to cancel all my meetings for the rest of the week. Cancel the marketing meeting.
also i need to book a hotel room for the end of the day on friday Change my snowboarding event next month to end at 2 pm.
invite all my relatives to the baby shower Who has declined the invite for my vacation this month?

ϵ=
3

what is the weather going to be like for this weekend? What is the weather in Seattle today?
Can you tell me what events I have scheduled for next week? Can you tell me if I have any appointments scheduled for next week?
cancel the meeting with Kim and her team. I need to cancel my meeting with my supervisor.
all events are supposed to end at 1 pm instead of 2 pm. Can you make it end at 2 pm?
who is attending the meeting? Can you schedule a meeting with other attendees today?

Table 9: Sample generations from the 1-stage baseline and the 2-stage proposed method, with and without differential
privacy. The sentences that are put in one row were generated completely independently and have no particular
correspondence; we only tried to group sentences based on similarity. The hyperparameters here are those yoused
to generate Table 1.

Parse trees (y) Utterances (x)

N
o

D
P move ( Y i e l d ( Dele teCommitEventWrapper

( D e l e t e P r e f l i g h t E v e n t W r a p p e r
( Event . i d ( s i n g l e t o n ( QueryEventResponse

. r e s u l t s ( F i n d E v e n t W r a p p e r W i t h D e f a u l t s ( Event

. s u b j e c t \ _ ? (?~= " m a r k e t i n g mee t ing " ) ) ) ) ) ) ) ) )

Cancel the marketing meeting

wasYie ld ( A t t e nd e e s Wi t h R e s p o n s e
( Event . a t t e n d e e s ( s i n g l e t o n ( QueryEventResponse

. r e s u l t s ( F i n d E v e n t W r a p p e r W i t h D e f a u l t s
( EventDur ingRange ( Event . s u b j e c t _

? (?~= " v a c a t i o n " ) ) ) ( Ful lMonthofMonth ( Date
. month ( Today ) ) ) ) ) ) ( R e s p o n s e S t a t u s T y p e . D e c l i n e d ) ) )

Who has declined the invite for my vacation this month?

ϵ=
3

a t Aerospace
( Y i e l d ( WeatherQueryApi ( A t P l a c e ( F i n d P l a c e
( L o c a t i o n K e y p h r a s e . a p p l y " S e a t t l e " ) ) ) ) ) ) ) )

What is the weather in Seattle

( Y i e l d ( Execu te ( R e v i s e C o n s t r a i n t ( r e f e r
( ^ ( Dynamic ) r o l e C o n s t r a i n t ( Pa th . a p p l y " o u t p u t " ) ) )
( ( Event ) C o n s t r a i n t T y p e I n t e n s i o n ) ( Event . end_ ? (?=
( Da teAtT imeWi thDefau l t s (Now) ( NumberPM 2L ) ) ) ) ) ) )

Can you make it end at 2 pm?

Table 10: Sample parse-trees and corresponding (conditioned) utterances from the 2-stage method, with and without
differential privacy.
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