
Spell Once, Summon Anywhere:
A Two-Level Open-Vocabulary Language Model
AAAI 2019 Technical Track

Sabrina J. Mielke and Jason Eisner

sjmielke@jhu.edu, jason@cs.jhu.edu
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

1

Language modeling: a generative story of text

p(the cat chased the)

= p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling

embedding

w σ(w)

e(w)

1© the

[0.2, · · · , 0.0]

2© cat

[0.4, · · · , 0.5]

3© chased

[−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the)

· p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling

embedding

w σ(w)

e(w)

1© the

[0.2, · · · , 0.0]

2© cat

[0.4, · · · , 0.5]

3© chased

[−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the)

· p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling

embedding

w σ(w)

e(w)

1© the

[0.2, · · · , 0.0]

2© cat

[0.4, · · · , 0.5]

3© chased

[−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat)

· p(the | the cat chased)

Lexicon / vocabulary

type spelling

embedding

w σ(w)

e(w)

1© the

[0.2, · · · , 0.0]

2© cat

[0.4, · · · , 0.5]

3© chased

[−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling

embedding

w σ(w)

e(w)

1© the

[0.2, · · · , 0.0]

2© cat

[0.4, · · · , 0.5]

3© chased

[−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling

embedding

w σ(w)

e(w)

1© the

[0.2, · · · , 0.0]

2© cat

[0.4, · · · , 0.5]

3© chased

[−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w)

e(w)

1© the

[0.2, · · · , 0.0]

2© cat

[0.4, · · · , 0.5]

3© chased

[−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]

4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]

4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]

4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]

4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]

4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]

4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]

4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]

4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]

4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

chased

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]

4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

c a g e d

UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

c a g e d
UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

c a g e d
UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

c a g e d
UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...

...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

c a g e d
UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...

...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

c a g e d
UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...

...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

c a g e d
UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...

...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

c a g e d
UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...

...can’t we memorize it?

2

Language modeling: a generative story of text

p(the cat chased the) = p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling embedding
w σ(w) e(w)

1© the [0.2, · · · , 0.0]
2© cat [0.4, · · · , 0.5]
3© chased [−0.1, · · · , 0.2]
4© UNK [0.3, · · · , 0.1]

Text generation with an RNN

RNN
cell

the

RNN
cell

cat

RNN
cell

c a g e d
UNK

...but what is the word?

RNN
cell

the

Pure character-level model as the solution?

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

RNN
cell

t

RNN
cell

h

RNN
cell

e

Ugh, spelling the again...
...can’t we memorize it?

2

Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

look up
embeddings

look up
spellings

e(1©)

e(2©)

e(3©)

RNN
cell

t

RNN
cell

h

RNN
cell

e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

the

σ(w1)

~h2
RNN

w2
= 2©

cat

σ(w2)

~h3
RNN

w3
= 3©

chased

σ(w3)

~h4
RNN

w4
= 1©

the

σ(w4)

3

Our model: Spell once, summon anywhere – the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere.

Unknown words are spelled out “on-demand” using the same character-level model.

e(UNK)

e(1©)

e(2©)

e(3©)

RNN
cell

RNN
cell

RNN
cell

t h e

RNN
cell

RNN
cell

RNN
cell

c a t

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(1©)

σ(2©)

σ(3©)

~h1

w1
= 1©

~h2

w2
= 2©

~h3

?

~h4

w4
= 1©

RNN
cell

c

RNN
cell

a

RNN
cell

g

RNN
cell

e

RNN
cell

dcatthe the

σ(w1) σ(w2) σ(w4)

4

Our model: Spell once, summon anywhere – the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere.

Unknown words are spelled out “on-demand” using the same character-level model.

e(UNK)

e(1©)

e(2©)

e(3©)

RNN
cell

RNN
cell

RNN
cell

t h e

RNN
cell

RNN
cell

RNN
cell

c a t

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(1©)

σ(2©)

σ(3©)

~h1

w1
= 1©

~h2

w2
= 2©

~h3

?

~h4

w4
= 1©

RNN
cell

c

RNN
cell

a

RNN
cell

g

RNN
cell

e

RNN
cell

dcatthe the

σ(w1) σ(w2) σ(w4)

4

Our model: Spell once, summon anywhere – the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere.

Unknown words are spelled out “on-demand” using the same character-level model.

e(UNK)

e(1©)

e(2©)

e(3©)

RNN
cell

RNN
cell

RNN
cell

t h e

RNN
cell

RNN
cell

RNN
cell

c a t

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(1©)

σ(2©)

σ(3©)

~h1

w1
= 1©

~h2

w2
= 2©

~h3

w3
= UNK

~h4

w4
= 1©

RNN
cell

c

RNN
cell

a

RNN
cell

g

RNN
cell

e

RNN
cell

dcatthe the

σ(w1) σ(w2) σ(w4)

4

Our model: Spell once, summon anywhere – the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere.
Unknown words are spelled out “on-demand” using the same character-level model.

e(UNK)

e(1©)

e(2©)

e(3©)

RNN
cell

RNN
cell

RNN
cell

t h e

RNN
cell

RNN
cell

RNN
cell

c a t

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(1©)

σ(2©)

σ(3©)

~h1

w1
= 1©

~h2

w2
= 2©

~h3

w3
= UNK

~h4

w4
= 1©

RNN
cell

c

RNN
cell

a

RNN
cell

g

RNN
cell

e

RNN
cell

dcatthe the

σ(w1) σ(w2) σ(w4)

4

Our model: Spell once, summon anywhere – the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere.
Unknown words are spelled out “on-demand” using the same character-level model.

e(UNK)

e(1©)

e(2©)

e(3©)

RNN
cell

RNN
cell

RNN
cell

t h e

RNN
cell

RNN
cell

RNN
cell

c a t

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(1©)

σ(2©)

σ(3©)

~h1

w1
= 1©

~h2

w2
= 2©

~h3

w3
= UNK

~h4

w4
= 1©

RNN
cell

c

RNN
cell

a

RNN
cell

g

RNN
cell

e

RNN
cell

dcatthe the

σ(w1) σ(w2) σ(w4)

4

Our model: Spell once, summon anywhere – the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere.
Unknown words are spelled out “on-demand” using the same character-level model.

e(UNK)

e(1©)

e(2©)

e(3©)

RNN
cell

RNN
cell

RNN
cell

t h e

RNN
cell

RNN
cell

RNN
cell

c a t

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(1©)

σ(2©)

σ(3©)

~h1

w1
= 1©

~h2

w2
= 2©

~h3

w3
= UNK

~h4

w4
= 1©

RNN
cell

c

RNN
cell

a

RNN
cell

g

RNN
cell

e

RNN
cell

dcatthe the

σ(w1) σ(w2) σ(w4)

4

Our model: Spell once, summon anywhere – the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere.
Unknown words are spelled out “on-demand” using the same character-level model.

e(UNK)

e(1©)

e(2©)

e(3©)

RNN
cell

RNN
cell

RNN
cell

t h e

RNN
cell

RNN
cell

RNN
cell

c a t

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(1©)

σ(2©)

σ(3©)

~h1

w1
= 1©

~h2

w2
= 2©

~h3

w3
= UNK

~h4

w4
= 1©

RNN
cell

c

RNN
cell

a

RNN
cell

g

RNN
cell

e

RNN
cell

dcatthe the

σ(w1) σ(w2) σ(w4)

4

Our model: Spell once, summon anywhere – the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere.
Unknown words are spelled out “on-demand” using the same character-level model.

e(UNK)

e(1©)

e(2©)

e(3©)

RNN
cell

RNN
cell

RNN
cell

t h e

RNN
cell

RNN
cell

RNN
cell

c a t

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(1©)

σ(2©)

σ(3©)

~h1

w1
= 1©

~h2

w2
= 2©

~h3

w3
= UNK

~h4

w4
= 1©

RNN
cell

c

RNN
cell

a

RNN
cell

g

RNN
cell

e

RNN
cell

dcatthe the

σ(w1) σ(w2) σ(w4)

4

Samples from the model

Sampled text from our model:

Following the death of EdwardMc-
Cartney in1060 , the new defini-
tion was transferred to theWDIC
of Fullett .

novel word
with contextually

appropriate spelling

known spelling ;
novel spelling sampled
from its embedding

grounded ; stipped
differ ; coronate
Clive ; Dickey
Southport ; Strigger
Carl ; Wuly
Chants ; Tranquels
valuables ; migrations

So why is this a good way of modeling language?

5

Samples from the model

Sampled text from our model:

Following the death of EdwardMc-
Cartney in1060 , the new defini-
tion was transferred to theWDIC
of Fullett . novel word

with contextually
appropriate spelling

known spelling ;
novel spelling sampled
from its embedding

grounded ; stipped
differ ; coronate
Clive ; Dickey
Southport ; Strigger
Carl ; Wuly
Chants ; Tranquels
valuables ; migrations

So why is this a good way of modeling language?

5

Samples from the model

Sampled text from our model:

Following the death of EdwardMc-
Cartney in1060 , the new defini-
tion was transferred to theWDIC
of Fullett . novel word

with contextually
appropriate spelling

known spelling ;
novel spelling sampled
from its embedding

grounded ; stipped
differ ; coronate
Clive ; Dickey
Southport ; Strigger
Carl ; Wuly
Chants ; Tranquels
valuables ; migrations

So why is this a good way of modeling language?

5

Samples from the model

Sampled text from our model:

Following the death of EdwardMc-
Cartney in1060 , the new defini-
tion was transferred to theWDIC
of Fullett . novel word

with contextually
appropriate spelling

known spelling ;
novel spelling sampled
from its embedding

grounded ; stipped

differ ; coronate
Clive ; Dickey
Southport ; Strigger
Carl ; Wuly
Chants ; Tranquels
valuables ; migrations

So why is this a good way of modeling language?

5

Samples from the model

Sampled text from our model:

Following the death of EdwardMc-
Cartney in1060 , the new defini-
tion was transferred to theWDIC
of Fullett . novel word

with contextually
appropriate spelling

known spelling ;
novel spelling sampled
from its embedding

grounded ; stipped
differ ; coronate

Clive ; Dickey
Southport ; Strigger
Carl ; Wuly
Chants ; Tranquels
valuables ; migrations

So why is this a good way of modeling language?

5

Samples from the model

Sampled text from our model:

Following the death of EdwardMc-
Cartney in1060 , the new defini-
tion was transferred to theWDIC
of Fullett . novel word

with contextually
appropriate spelling

known spelling ;
novel spelling sampled
from its embedding

grounded ; stipped
differ ; coronate
Clive ; Dickey

Southport ; Strigger
Carl ; Wuly
Chants ; Tranquels
valuables ; migrations

So why is this a good way of modeling language?

5

Samples from the model

Sampled text from our model:

Following the death of EdwardMc-
Cartney in1060 , the new defini-
tion was transferred to theWDIC
of Fullett . novel word

with contextually
appropriate spelling

known spelling ;
novel spelling sampled
from its embedding

grounded ; stipped
differ ; coronate
Clive ; Dickey
Southport ; Strigger

Carl ; Wuly
Chants ; Tranquels
valuables ; migrations

So why is this a good way of modeling language?

5

Samples from the model

Sampled text from our model:

Following the death of EdwardMc-
Cartney in1060 , the new defini-
tion was transferred to theWDIC
of Fullett . novel word

with contextually
appropriate spelling

known spelling ;
novel spelling sampled
from its embedding

grounded ; stipped
differ ; coronate
Clive ; Dickey
Southport ; Strigger
Carl ; Wuly

Chants ; Tranquels
valuables ; migrations

So why is this a good way of modeling language?

5

Samples from the model

Sampled text from our model:

Following the death of EdwardMc-
Cartney in1060 , the new defini-
tion was transferred to theWDIC
of Fullett . novel word

with contextually
appropriate spelling

known spelling ;
novel spelling sampled
from its embedding

grounded ; stipped
differ ; coronate
Clive ; Dickey
Southport ; Strigger
Carl ; Wuly
Chants ; Tranquels

valuables ; migrations

So why is this a good way of modeling language?

5

Samples from the model

Sampled text from our model:

Following the death of EdwardMc-
Cartney in1060 , the new defini-
tion was transferred to theWDIC
of Fullett . novel word

with contextually
appropriate spelling

known spelling ;
novel spelling sampled
from its embedding

grounded ; stipped
differ ; coronate
Clive ; Dickey
Southport ; Strigger
Carl ; Wuly
Chants ; Tranquels
valuables ; migrations

So why is this a good way of modeling language?

5

Samples from the model

Sampled text from our model:

Following the death of EdwardMc-
Cartney in1060 , the new defini-
tion was transferred to theWDIC
of Fullett . novel word

with contextually
appropriate spelling

known spelling ;
novel spelling sampled
from its embedding

grounded ; stipped
differ ; coronate
Clive ; Dickey
Southport ; Strigger
Carl ; Wuly
Chants ; Tranquels
valuables ; migrations

So why is this a good way of modeling language?

5

Linguistic notions: duality of patterning

The meaningful elements in any language—"words" in everyday parlance [...]—
[...] are represented by [a] small stock of distinguishable sounds which are in
themselves wholly meaningless. – Hockett, 1960 characters

“Meaningless” character composition should be
separate from “meaningful” word composition!

We should need a word’s spelling only to define it – not to later use it.

6

Linguistic notions: duality of patterning

The meaningful elements in any language—"words" in everyday parlance [...]—
[...] are represented by [a] small stock of distinguishable sounds which are in
themselves wholly meaningless. – Hockett, 1960 characters

“Meaningless” character composition should be
separate from “meaningful” word composition!

We should need a word’s spelling only to define it – not to later use it.

6

Linguistic notions: duality of patterning

The meaningful elements in any language—"words" in everyday parlance [...]—
[...] are represented by [a] small stock of distinguishable sounds which are in
themselves wholly meaningless. – Hockett, 1960 characters

“Meaningless” character composition should be
separate from “meaningful” word composition!

We should need a word’s spelling only to define it – not to later use it.

6

Duality of patterning 7→ conditional independence!

So? Why does this linguistics blurb matter?

• Irregular words have uncommon spellings children...yet we use them like regular words!

• Function words have uncommon spellings the, of...yet we use them all the time without feeling weird!

Recall: We should need a word’s spelling only to define it – not to later use it.

i.e. character-level models do it wrong!
...and they’re slow as hell...

usage ⊥ spelling | embedding

7

Duality of patterning 7→ conditional independence!

So? Why does this linguistics blurb matter?

• Irregular words have uncommon spellings children...yet we use them like regular words!

• Function words have uncommon spellings the, of...yet we use them all the time without feeling weird!

Recall: We should need a word’s spelling only to define it – not to later use it.

i.e. character-level models do it wrong!
...and they’re slow as hell...

usage ⊥ spelling | embedding

7

Duality of patterning 7→ conditional independence!

So? Why does this linguistics blurb matter?

• Irregular words have uncommon spellings children...yet we use them like regular words!

• Function words have uncommon spellings the, of...yet we use them all the time without feeling weird!

Recall: We should need a word’s spelling only to define it – not to later use it.

i.e. character-level models do it wrong!
...and they’re slow as hell...

usage ⊥ spelling | embedding

7

Duality of patterning 7→ conditional independence!

So? Why does this linguistics blurb matter?

• Irregular words have uncommon spellings children...yet we use them like regular words!

• Function words have uncommon spellings the, of...yet we use them all the time without feeling weird!

Recall: We should need a word’s spelling only to define it – not to later use it.

i.e. character-level models do it wrong!
...and they’re slow as hell...

usage ⊥ spelling | embedding

7

Duality of patterning 7→ conditional independence!

So? Why does this linguistics blurb matter?

• Irregular words have uncommon spellings children...yet we use them like regular words!

• Function words have uncommon spellings the, of...yet we use them all the time without feeling weird!

Recall: We should need a word’s spelling only to define it – not to later use it.

i.e. character-level models do it wrong!

...and they’re slow as hell...

usage ⊥ spelling | embedding

7

Duality of patterning 7→ conditional independence!

So? Why does this linguistics blurb matter?

• Irregular words have uncommon spellings children...yet we use them like regular words!

• Function words have uncommon spellings the, of...yet we use them all the time without feeling weird!

Recall: We should need a word’s spelling only to define it – not to later use it.

i.e. character-level models do it wrong!
...and they’re slow as hell...

usage ⊥ spelling | embedding

7

Duality of patterning 7→ conditional independence!

So? Why does this linguistics blurb matter?

• Irregular words have uncommon spellings children...yet we use them like regular words!

• Function words have uncommon spellings the, of...yet we use them all the time without feeling weird!

Recall: We should need a word’s spelling only to define it – not to later use it.

i.e. character-level models do it wrong!
...and they’re slow as hell...

usage ⊥ spelling | embedding

7

The arbitrariness of the sign 7→ allowing for idiosyncracy

How should a word’s embedding and its spelling be connected?

The connection between the signifier and the signified is arbitrary.

– de Saussure, 1916, translated

Meaning is not fully predictable from spellings.

Example: neither silly nor folly is an adverb,
even though they both end in -ly!

“construction” models like e(caged) := CNN(c a g e d) ignore this!

⇒ Allow any pairing a priori, but

Outliers (children, the, . . .)

use spellings as prior / regularization!

may have idiosyncratic embeddings!

regularize embeddings, don’t construct them

8

The arbitrariness of the sign 7→ allowing for idiosyncracy

How should a word’s embedding and its spelling be connected?
The connection between the signifier and the signified is arbitrary.

– de Saussure, 1916, translated

Meaning is not fully predictable from spellings.

Example: neither silly nor folly is an adverb,
even though they both end in -ly!

“construction” models like e(caged) := CNN(c a g e d) ignore this!

⇒ Allow any pairing a priori, but

Outliers (children, the, . . .)

use spellings as prior / regularization!

may have idiosyncratic embeddings!

regularize embeddings, don’t construct them

8

The arbitrariness of the sign 7→ allowing for idiosyncracy

How should a word’s embedding and its spelling be connected?
The connection between the signifier and the signified is arbitrary.

spelling meaning
– de Saussure, 1916, translated

Meaning is not fully predictable from spellings.

Example: neither silly nor folly is an adverb,
even though they both end in -ly!

“construction” models like e(caged) := CNN(c a g e d) ignore this!

⇒ Allow any pairing a priori, but

Outliers (children, the, . . .)

use spellings as prior / regularization!

may have idiosyncratic embeddings!

regularize embeddings, don’t construct them

8

The arbitrariness of the sign 7→ allowing for idiosyncracy

How should a word’s embedding and its spelling be connected?
The connection between the signifier and the signified is arbitrary.

spelling meaning
– de Saussure, 1916, translated

Meaning is not fully predictable from spellings.

Example: neither silly nor folly is an adverb,
even though they both end in -ly!

“construction” models like e(caged) := CNN(c a g e d) ignore this!

⇒ Allow any pairing a priori, but

Outliers (children, the, . . .)

use spellings as prior / regularization!

may have idiosyncratic embeddings!

regularize embeddings, don’t construct them

8

The arbitrariness of the sign 7→ allowing for idiosyncracy

How should a word’s embedding and its spelling be connected?
The connection between the signifier and the signified is arbitrary.

spelling meaning
– de Saussure, 1916, translated

Meaning is not fully predictable from spellings.
Example: neither silly nor folly is an adverb,

even though they both end in -ly!

“construction” models like e(caged) := CNN(c a g e d) ignore this!

⇒ Allow any pairing a priori, but

Outliers (children, the, . . .)

use spellings as prior / regularization!

may have idiosyncratic embeddings!

regularize embeddings, don’t construct them

8

The arbitrariness of the sign 7→ allowing for idiosyncracy

How should a word’s embedding and its spelling be connected?
The connection between the signifier and the signified is arbitrary.

spelling meaning
– de Saussure, 1916, translated

Meaning is not fully predictable from spellings.
Example: neither silly nor folly is an adverb,

even though they both end in -ly!

“construction” models like e(caged) := CNN(c a g e d) ignore this!

⇒ Allow any pairing a priori, but

Outliers (children, the, . . .)

use spellings as prior / regularization!

may have idiosyncratic embeddings!

regularize embeddings, don’t construct them

8

The arbitrariness of the sign 7→ allowing for idiosyncracy

How should a word’s embedding and its spelling be connected?
The connection between the signifier and the signified is arbitrary.

spelling meaning
– de Saussure, 1916, translated

Meaning is not fully predictable from spellings.
Example: neither silly nor folly is an adverb,

even though they both end in -ly!

“construction” models like e(caged) := CNN(c a g e d) ignore this!

⇒ Allow any pairing a priori, but

Outliers (children, the, . . .)

use spellings as prior / regularization!

may have idiosyncratic embeddings!

regularize embeddings, don’t construct them

8

The arbitrariness of the sign 7→ allowing for idiosyncracy

How should a word’s embedding and its spelling be connected?
The connection between the signifier and the signified is arbitrary.

spelling meaning
– de Saussure, 1916, translated

Meaning is not fully predictable from spellings.
Example: neither silly nor folly is an adverb,

even though they both end in -ly!

“construction” models like e(caged) := CNN(c a g e d) ignore this!

⇒ Allow any pairing a priori, but Outliers (children, the, . . .)
use spellings as prior / regularization! may have idiosyncratic embeddings!

regularize embeddings, don’t construct them

8

The arbitrariness of the sign 7→ allowing for idiosyncracy

How should a word’s embedding and its spelling be connected?
The connection between the signifier and the signified is arbitrary.

spelling meaning
– de Saussure, 1916, translated

Meaning is not fully predictable from spellings.
Example: neither silly nor folly is an adverb,

even though they both end in -ly!

“construction” models like e(caged) := CNN(c a g e d) ignore this!

⇒ Allow any pairing a priori, but Outliers (children, the, . . .)
use spellings as prior / regularization! may have idiosyncratic embeddings!

regularize embeddings, don’t construct them

8

Recap: how does our model implement these ideas?

Embeddings and spellings are connected on the type level, ensuring conditional
independence of usage and spelling while assigning positive probability to any pairing!

e(UNK)

e(1©)

e(2©)

e(3©)

RNN
cell

RNN
cell

RNN
cell

t h e

σ(1©)

RNN
cell

RNN
cell

RNN
cell

c a t

σ(2©)

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c h a s e d

σ(3©)

~h1

w1
= 1©

~h2

w2
= 2©

~h3

w3
= UNK

~h4

w4
= 1©

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

c a g e dcatthe the

σ(w1) σ(w2) s ∼ pspell(· | ~h3) σ(w4)

9

How do we evaluate open-vocabulary language models?

bits per character

1. Report likelihood p(held-out text) as perplexity? (↓ lower is better)

2. no UNKing allowed!

∗

→ we must predict every character of the text, regardless of vocabulary size

∗ Yes, we call some words “UNK” temporarily, but we still generate them fully!

⇒ A tunable “vocabulary size” hyperparameter decides what is temporary-UNK.

10

How do we evaluate open-vocabulary language models?

bits per character
1. Report likelihood p(held-out text) as perplexity (↓ lower is better)

2. no UNKing allowed!

∗

→ we must predict every character of the text, regardless of vocabulary size

∗ Yes, we call some words “UNK” temporarily, but we still generate them fully!

⇒ A tunable “vocabulary size” hyperparameter decides what is temporary-UNK.

10

How do we evaluate open-vocabulary language models?

bits per character
1. Report likelihood p(held-out text) as perplexity (↓ lower is better)

2. no UNKing allowed!

∗

→ we must predict every character of the text, regardless of vocabulary size

∗ Yes, we call some words “UNK” temporarily, but we still generate them fully!

⇒ A tunable “vocabulary size” hyperparameter decides what is temporary-UNK.

10

How do we evaluate open-vocabulary language models?

bits per character
1. Report likelihood p(held-out text) as perplexity (↓ lower is better)

2. no UNKing allowed!∗

→ we must predict every character of the text, regardless of vocabulary size

∗ Yes, we call some words “UNK” temporarily, but we still generate them fully!

⇒ A tunable “vocabulary size” hyperparameter decides what is temporary-UNK.

10

How do we evaluate open-vocabulary language models?

bits per character
1. Report likelihood p(held-out text) as perplexity (↓ lower is better)

2. no UNKing allowed!∗

→ we must predict every character of the text, regardless of vocabulary size

∗ Yes, we call some words “UNK” temporarily, but we still generate them fully!

⇒ A tunable “vocabulary size” hyperparameter decides what is temporary-UNK.

10

How do we evaluate open-vocabulary language models?

bits per character
1. Report likelihood p(held-out text) as perplexity (↓ lower is better)

2. no UNKing allowed!∗

→ we must predict every character of the text, regardless of vocabulary size

∗ Yes, we call some words “UNK” temporarily, but we still generate them fully!

⇒ A tunable “vocabulary size” hyperparameter decides what is temporary-UNK.

10

How do we evaluate open-vocabulary language models?

bits per character
1. Report likelihood p(held-out text) as perplexity (↓ lower is better)

2. no UNKing allowed!∗

→ we must predict every character of the text, regardless of vocabulary size

∗ Yes, we call some words “UNK” temporarily, but we still generate them fully!

⇒ A tunable “vocabulary size” hyperparameter decides what is temporary-UNK.

10

Results

WikiText-2 (Merity et al., 2017)

on dev data

test
2.5 million tokenized words from the English Wikipedia ← 1.8

rare
words

1.4 ‖

all

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

3.89 2.08

‖ 1.775

HCLM + cache
previous SOTA (Kawakami et al., 2017)

– –

‖ 1.500

BPE:
RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

the ca@@ t cha@@ sed

4.01 1.70

‖ 1.468

our full model: Spell Once, Summon Anywhere

4.00 1.64

‖ 1.455

...and plenty more baselines, ablations, datasets, and questions answered in the paper!

11

Results

WikiText-2 (Merity et al., 2017)

on dev data

test
2.5 million tokenized words from the English Wikipedia ← 1.8

rare
words

1.4 ‖

all

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

3.89 2.08

‖ 1.775

HCLM + cache
previous SOTA (Kawakami et al., 2017)

– –

‖ 1.500

BPE:
RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

the ca@@ t cha@@ sed

4.01 1.70

‖ 1.468

our full model: Spell Once, Summon Anywhere

4.00 1.64

‖ 1.455

...and plenty more baselines, ablations, datasets, and questions answered in the paper!

11

Results

WikiText-2 (Merity et al., 2017)

on dev data

test
2.5 million tokenized words from the English Wikipedia ← 1.8

rare
words

1.4 ‖

all

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

3.89 2.08

‖ 1.775

HCLM + cache
previous SOTA (Kawakami et al., 2017)

– –

‖ 1.500

BPE:
RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

the ca@@ t cha@@ sed

4.01 1.70

‖ 1.468

our full model: Spell Once, Summon Anywhere

4.00 1.64

‖ 1.455

...and plenty more baselines, ablations, datasets, and questions answered in the paper!

11

Results

WikiText-2 (Merity et al., 2017)

on dev data

test
2.5 million tokenized words from the English Wikipedia ← 1.8

rare
words

1.4 ‖

all

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

3.89 2.08

‖ 1.775

HCLM + cache
previous SOTA (Kawakami et al., 2017)

– –

‖ 1.500

BPE:
RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

the ca@@ t cha@@ sed

4.01 1.70

‖ 1.468

our full model: Spell Once, Summon Anywhere

4.00 1.64

‖ 1.455

...and plenty more baselines, ablations, datasets, and questions answered in the paper!

11

Results

WikiText-2 (Merity et al., 2017)

on dev data

test
2.5 million tokenized words from the English Wikipedia ← 1.8

rare
words

1.4 ‖

all

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

3.89 2.08

‖ 1.775

HCLM + cache
previous SOTA (Kawakami et al., 2017)

– –

‖ 1.500

BPE:
RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

the ca@@ t cha@@ sed

4.01 1.70

‖ 1.468

our full model: Spell Once, Summon Anywhere

4.00 1.64

‖ 1.455

...and plenty more baselines, ablations, datasets, and questions answered in the paper!

11

Results

WikiText-2 (Merity et al., 2017)

on dev data

test
2.5 million tokenized words from the English Wikipedia ← 1.8

rare
words

1.4 ‖

all

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d

3.89 2.08

‖ 1.775

HCLM + cache
previous SOTA (Kawakami et al., 2017)

– –

‖ 1.500

BPE:
RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

the ca@@ t cha@@ sed

4.01 1.70

‖ 1.468

our full model: Spell Once, Summon Anywhere

4.00 1.64

‖ 1.455

...and plenty more baselines, ablations, datasets, and questions answered in the paper!

11

Results

WikiText-2 (Merity et al., 2017) on dev data test
2.5 million tokenized words from the English Wikipedia novel

words
rare

words
frequent
words all

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d 3.89 2.08 1.38 1.775

HCLM + cache
previous SOTA (Kawakami et al., 2017)

– – – 1.500

BPE:
RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

the ca@@ t cha@@ sed 4.01 1.70 1.08 1.468

our full model: Spell Once, Summon Anywhere 4.00 1.64 1.10 1.455

...and plenty more baselines, ablations, datasets, and questions answered in the paper!

11

Results

WikiText-2 (Merity et al., 2017) on dev data test
2.5 million tokenized words from the English Wikipedia novel

words
rare

words
frequent
words all

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t h e c a t c h a s e d 3.89 2.08 1.38 1.775

HCLM + cache
previous SOTA (Kawakami et al., 2017)

– – – 1.500

BPE:
RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

the ca@@ t cha@@ sed 4.01 1.70 1.08 1.468

our full model: Spell Once, Summon Anywhere 4.00 1.64 1.10 1.455

...and plenty more baselines, ablations, datasets, and questions answered in the paper!

11

Conclusion

1. think about language before you model:
usage ⊥ spelling | embedding
regularize embeddings, don’t construct them

2. simple and criminally underused baselines can beat fancy but bad models
model strings by segments?

3. open-vocabulary language modeling is an exciting task!

12

Conclusion

1. think about language before you model:
usage ⊥ spelling | embedding
regularize embeddings, don’t construct them

2. simple and criminally underused baselines can beat fancy but bad models
model strings by segments?

3. open-vocabulary language modeling is an exciting task!

12

Conclusion

1. think about language before you model:
usage ⊥ spelling | embedding
regularize embeddings, don’t construct them

2. simple and criminally underused baselines can beat fancy but bad models
model strings by segments?

3. open-vocabulary language modeling is an exciting task!

12

Spell Once, Summon Anywhere:
A Two-Level Open-Vocabulary Language Model
AAAI 2019 Technical Track

Sabrina J. Mielke and Jason Eisner

sjmielke@jhu.edu, jason@cs.jhu.edu
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

13

