# Spell Once, Summon Anywhere: <br> A Two-Level Open-Vocabulary Language Model 

AAAI 2019 Technical Track

Sabrina J. Mielke and Jason Eisner
sjmielke@jhu.edu, jason@cs.jhu.edu
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

## Language modeling: a generative story of text

$p$ (the cat chased the)

## Language modeling: a generative story of text

$p$ (the cat chased the) $=p$ (the)

## Language modeling: a generative story of text

$p$ (the cat chased the) $=p$ (the) $\cdot p$ (cat $\mid$ the $)$

## Language modeling: a generative story of text

$p$ (the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $)$

## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$

## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary

| type | spelling |
| :--- | :--- |
| $w$ | $\sigma(w)$ |
| (1) | the |
| (2) cat |  |
| (3) chased |  |

## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary
type spelling embedding
(1) the
(2) cat
(3) chased

## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| (1) | the | $[0.2, \cdots, 0.0]$ |
| (2) | cat | $[0.4, \cdots, 0.5]$ |
| (3) chased | $[-0.1, \cdots, 0.2]$ |  |

## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| $(1)$ | the | $[0.2, \cdots, 0.0]$ |
| $(2)$ | cat | $[0.4, \cdots, 0.5]$ |
| (3) | chased | $[-0.1, \cdots, 0.2]$ |
|  |  |  |

Text generation with an RNN


## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary
Text generation with an RNN

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| (1) | the | $[0.2, \cdots, 0.0]$ |
| (2) | cat | $[0.4, \cdots, 0.5]$ |
| (3) chased | $[-0.1, \cdots, 0.2]$ |  |


the

## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| $(1)$ | the | $[0.2, \cdots, 0.0]$ |
| $(2)$ | cat | $[0.4, \cdots, 0.5]$ |
| (3) | chased | $[-0.1, \cdots, 0.2]$ |
|  |  |  |

Text generation with an $R N N$


## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary
Text generation with an RNN

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| $(1)$ | the | $[0.2, \cdots, 0.0]$ |
| (2) | cat | $[0.4, \cdots, 0.5]$ |
| (3) chased | $[-0.1, \cdots, 0.2]$ |  |



## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary
Text generation with an RNN

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| (1) | the | $[0.2, \cdots, 0.0]$ |
| (2) | cat | $[0.4, \cdots, 0.5]$ |
| (3) chased | $[-0.1, \cdots, 0.2]$ |  |



## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$

Lexicon / vocabulary type spelling embedding
$w \quad \sigma(w) \quad e(w)$
(1) the $[0.2, \cdots, 0.0]$
(2) cat $[0.4, \cdots, 0.5]$
(3) chased $[-0.1, \cdots, 0.2]$

Text generation with an RNN


## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary
Text generation with an RNN type spelling embedding
$w \quad \sigma(w) \quad e(w)$
(1) the $[0.2, \cdots, 0.0]$
(2) cat $[0.4, \cdots, 0.5]$
(3) chased $[-0.1, \cdots, 0.2]$


## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$

Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| $(1)$ | the | $[0.2, \cdots, 0.0]$ |
| $(2)$ | cat | $[0.4, \cdots, 0.5]$ |
| (3) | chased | $[-0.1, \cdots, 0.2]$ |
|  |  |  |



## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$

Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| $(1)$ | the | $[0.2, \cdots, 0.0]$ |
| $(2)$ | cat | $[0.4, \cdots, 0.5]$ |
| (3) | chased | $[-0.1, \cdots, 0.2]$ |
|  |  |  |

Text generation with an RNN


## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$

Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| $(1)$ | the | $[0.2, \cdots, 0.0]$ |
| $(2)$ | cat | $[0.4, \cdots, 0.5]$ |
| $(3)$ | chased | $[-0.1, \cdots, 0.2]$ |
| $(4)$ | UNK | $[0.3, \cdots, 0.1]$ |

 UNK

## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$

Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| $(1)$ | the | $[0.2, \cdots, 0.0]$ |
| $(2)$ | cat | $[0.4, \cdots, 0.5]$ |
| (3) | chased | $[-0.1, \cdots, 0.2]$ |
| (4) | UNK | $[0.3, \cdots, 0.1]$ |

Text generation with an RNN

...but what is the word?

## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$

Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| $(1)$ | the | $[0.2, \cdots, 0.0]$ |
| $(2)$ | cat | $[0.4, \cdots, 0.5]$ |
| (3) chased | $[-0.1, \cdots, 0.2]$ |  |
| (4) | UNK | $[0.3, \cdots, 0.1]$ |

Pure character-level model as the solution?
 $\mathrm{t} h \mathrm{e}-\mathrm{c} a \mathrm{t}-\mathrm{c} \mathrm{h}$ a s e d -

Text generation with an RNN

...but what is the word?

## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| $(1)$ | the | $[0.2, \cdots, 0.0]$ |
| $(2)$ | cat | $[0.4, \cdots, 0.5]$ |
| (3) chased | $[-0.1, \cdots, 0.2]$ |  |
| (4) | UNK | $[0.3, \cdots, 0.1]$ |

Text generation with an RNN

...but what is the word?

Pure character-level model as the solution?
thera
t

## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| $(1)$ | the | $[0.2, \cdots, 0.0]$ |
| (2) | cat | $[0.4, \cdots, 0.5]$ |
| (3) chased | $[-0.1, \cdots, 0.2]$ |  |
| (4) | UNK | $[0.3, \cdots, 0.1]$ |

Text generation with an RNN

...but what is the word?

Pure character-level model as the solution?


## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| (1) | the | $[0.2, \cdots, 0.0]$ |
| (2) | cat | $[0.4, \cdots, 0.5]$ |
| (3) chased | $[-0.1, \cdots, 0.2]$ |  |
| (4) | UNK | $[0.3, \cdots, 0.1]$ |

Text generation with an RNN

...but what is the word?

Pure character-level model as the solution?


## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| $(1)$ | the | $[0.2, \cdots, 0.0]$ |
| $(2)$ | cat | $[0.4, \cdots, 0.5]$ |
| (3) chased | $[-0.1, \cdots, 0.2]$ |  |
| (4) | UNK | $[0.3, \cdots, 0.1]$ |

Text generation with an RNN

...but what is the word?

Pure character-level model as the solution?

Ugh, spelling the again...

## Language modeling: a generative story of text

$p($ the cat chased the $)=p($ the $) \cdot p($ cat $\mid$ the $) \cdot p($ chased $\mid$ the cat $) \cdot p($ the $\mid$ the cat chased $)$
Lexicon / vocabulary

| type | spelling | embedding |
| :---: | :--- | :--- |
| $w$ | $\sigma(w)$ | $e(w)$ |
| $(1)$ | the | $[0.2, \cdots, 0.0]$ |
| $(2)$ | cat | $[0.4, \cdots, 0.5]$ |
| (3) chased | $[-0.1, \cdots, 0.2]$ |  |
| (4) | UNK | $[0.3, \cdots, 0.1]$ |

Text generation with an RNN

...but what is the word?

Pure character-level model as the solution?
the_cat_chacelay
Ugh, spelling the again... ...can't we memorize it?

## Our model: Spell once, summon anywhere

## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, (e(1)) e(2)
e(3)

## Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

$e(2)$
$e(3)$

## Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

(e(2))
e(3)

## Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

(e(2))
e(3)

## Our model: Spell once, summon anywhere

Known words only have to be spelled out once,

e(2))
e(3)

## Our model: Spell once, summon anywhere

Known words only have to be spelled out once,


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once,


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once,


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:

$\vec{h}_{1}$

## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:


## Our model: Spell once, summon anywhere

Known words only have to be spelled out once, and can then be summoned anywhere:


## Our model: Spell once, summon anywhere - the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere.


## Our model: Spell once, summon anywhere - the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere.


## Our model: Spell once, summon anywhere - the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere.


## Our model: Spell once, summon anywhere - the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere. Unknown words are spelled out "on-demand" using the same character-level model.


## Our model: Spell once, summon anywhere - the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere. Unknown words are spelled out "on-demand" using the same character-level model.


## Our model: Spell once, summon anywhere - the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere. Unknown words are spelled out "on-demand" using the same character-level model.


## Our model: Spell once, summon anywhere - the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere. Unknown words are spelled out "on-demand" using the same character-level model.


## Our model: Spell once, summon anywhere - the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere. Unknown words are spelled out "on-demand" using the same character-level model.


## Samples from the model

Sampled text from our model:
Following the death of Edward McCartney in 1060 , the new definition was transferred to the W D I C of Fullett .

## Samples from the model

Sampled text from our model:
Following the death of Edward McCartney in 1060 , the new definition was transferred to the W D I C of Fullett novel word with contextually appropriate spelling

## Samples from the model

Sampled text from our model:
Following the death of Edward McCartney in 1060 , the new definition was transferred to the W D I C of Fullett. novel word with contextually appropriate spelling

## Samples from the model

Sampled text from our model:
Following the death of Edward McCartney in 1060 , the new definition was transferred to the W D I C of Fullett. novel word with contextually appropriate spelling

## Samples from the model

Sampled text from our model:
Following the death of Edward McCartney in 1060 , the new definition was transferred to the W D I C of Fullett novel word with contextually appropriate spelling

## Samples from the model

Sampled text from our model:
Following the death of Edward McCartney in 1060 , the new definition was transferred to the W D I C of Fullett novel word with contextually appropriate spelling

| known spelling | $\leadsto$novel spelling sampled <br> from its embedding |
| :--- | :--- | :--- |
| grounded | $\leadsto$ stipped |
| differ | $\leadsto$ coronate |
| Clive | $\leadsto$ Dickey |

## Samples from the model

Sampled text from our model:
Following the death of Edward McCartney in 1060 , the new definition was transferred to the W D I C of Fullett novel word with contextually appropriate spelling

| known spelling | $\leadsto$ | novel spelling sampled <br> fromits embedding |
| :--- | :--- | :--- |
| grounded | $\leadsto$ stipped |  |
| differ | $\leadsto$ coronate |  |
| Clive | $\leadsto$ Dickey |  |
| Southport | $\leadsto$ Strigger |  |
|  |  |  |

## Samples from the model

| Sampled text from our model: | known spelling | $\sim$ | novel spelling sampled from its embedding |
| :---: | :---: | :---: | :---: |
| Following the death of Edward Mc- | grounded | $\sim$ | stipped |
| Cartney in 1060 , the new defini- | differ | $\sim$ | coronate |
| tion was transferred to the W D I C | Clive | $\sim$ | Dickey |
| of Fullett. novel word | Southport | $\sim$ | Strigger |
| with contextually appropriate spelling | Carl | $\sim$ | Wuly |

## Samples from the model

Sampled text from our model:
Following the death of Edward McCartney in 1060 , the new definition was transferred to the W D I C of Fullett novel word with contextually appropriate spelling

| known spelling | $\leadsto$novel spelling sampled <br> from its embedding |
| :--- | :--- |
| grounded | $\leadsto$ stipped |
| differ | $\leadsto$ coronate |
| Clive | $\leadsto$ Dickey |
| Southport | $\leadsto$ Strigger |
| Carl | $\leadsto$ Wuly |
| Chants | $\leadsto$ Tranquels |

## Samples from the model

Sampled text from our model:
Following the death of Edward McCartney in 1060 , the new definition was transferred to the W D I C of Fullett novel word with contextually appropriate spelling

| known spelling | $\leadsto$novel spelling sampled <br> fromits embedding |
| :--- | :--- |
| grounded | $\leadsto$ stipped |
| differ | $\leadsto$ coronate |
| Clive | $\leadsto$ Dickey |
| Southport | $\leadsto$ Strigger |
| Carl | $\leadsto$ Wuly |
| Chants | $\leadsto$ Tranquels |
| valuables | $\leadsto$ migrations |

## Samples from the model

| Sampled text from our model: | known spelling | $\leadsto$novel spelling sampled <br> from its embedding |
| :--- | :--- | :--- |
| Following the death of Edward Mc- | grounded | $\leadsto$ stipped |
| Cartney in 1060 , the new defini- | differ | $\leadsto$ coronate |
| tion wastransferred to the WDIC | Clive | $\leadsto$ Dickey |
| of Fullett. | Southport | $\leadsto$ Strigger |
| $\quad$ with contextually | Carl | $\leadsto$ Wuly |
| appropriate spelling | Chants | $\leadsto$ Tranquels |
|  | valuables | $\leadsto$ migrations |

So why is this a good way of modeling language?

## Linguistic notions: duality of patterning

The meaningful elements in any language-"words" in everyday parlance [...][...] are represented by [a] small stock of distinguishable sounds which are in themselves wholly meaningless. - Hockett, 1960 characters

## Linguistic notions: duality of patterning

The meaningful elements in any language-"words" in everyday parlance [...][...] are represented by [a] small stock of distinguishable sounds which are in themselves wholly meaningless. - Hockett, 1960

## "Meaningless" character composition should be separate from "meaningful" word composition!

## Linguistic notions: duality of patterning

The meaningful elements in any language-"words" in everyday parlance [...][...] are represented by [a] small stock of distinguishable sounds which are in themselves wholly meaningless. - Hockett, 1960

## "Meaningless" character composition should be separate from "meaningful" word composition!

We should need a word's spelling only to define it - not to later use it.

## Duality of patterning $\mapsto$ conditional independence!

So? Why does this linguistics blurb matter?

## Duality of patterning $\mapsto$ conditional independence!

So? Why does this linguistics blurb matter?

- Irregular words have uncommon spellings
...yet we use them like regular words!


## children

## Duality of patterning $\mapsto$ conditional independence!

So? Why does this linguistics blurb matter?

- Irregular words have uncommon spellings ...yet we use them like regular words!


## children

- Function words have uncommon spellings
...yet we use them all the time without feeling weird! the, of


## Duality of patterning $\mapsto$ conditional independence!

So? Why does this linguistics blurb matter?

- Irregular words have uncommon spellings
...yet we use them like regular words!
- Function words have uncommon spellings
...yet we use them all the time without feeling weird! the, of

Recall: We should need a word's spelling only to define it - not to later use it.

## Duality of patterning $\mapsto$ conditional independence!

So? Why does this linguistics blurb matter?

- Irregular words have uncommon spellings
...yet we use them like regular words!
- Function words have uncommon spellings
...yet we use them all the time without feeling weird!


## children

 the, ofRecall: We should need a word's spelling only to define it - not to later use it.
$\uparrow$ i.e. character-level models do it wrong!

## Duality of patterning $\mapsto$ conditional independence!

So? Why does this linguistics blurb matter?

- Irregular words have uncommon spellings
...yet we use them like regular words!
- Function words have uncommon spellings
...yet we use them all the time without feeling weird!


## children

 the, ofRecall: We should need a word's spelling only to define it - not to later use it.

亿 i.e. character-level models do it wrong!
...and they're slow as hell..

## Duality of patterning $\mapsto$ conditional independence!

So? Why does this linguistics blurb matter?

- Irregular words have uncommon spellings
...yet we use them like regular words!
- Function words have uncommon spellings
...yet we use them all the time without feeling weird!


## children

 the, ofRecall: We should need a word's spelling only to define it - not to later use it.

亿 i.e. character-level models do it wrong!
...and they're slow as hell..
usage $\perp$ spelling | embedding

## The arbitrariness of the sign $\mapsto$ allowing for idiosyncracy

How should a word's embedding and its spelling be connected?

## The arbitrariness of the sign $\mapsto$ allowing for idiosyncracy

How should a word's embedding and its spelling be connected? The connection between the signifier and the signified is arbitrary.

- de Saussure, 1916, translated


## The arbitrariness of the sign $\mapsto$ allowing for idiosyncracy

How should a word's embedding and its spelling be connected? The connection between the signifier and the signified is arbitrary. spelling $\uparrow \uparrow$ meaning

- de Saussure, 1916, translated


## The arbitrariness of the sign $\mapsto$ allowing for idiosyncracy

How should a word's embedding and its spelling be connected? The connection between the signifier and the signified is arbitrary.


- de Saussure, 1916, translated

Meaning is not fully predictable from spellings.

## The arbitrariness of the sign $\mapsto$ allowing for idiosyncracy

How should a word's embedding and its spelling be connected? The connection between the signifier and the signified is arbitrary. spelling $\boldsymbol{\imath}$ t meaning - de Saussure, 1916, translated

Meaning is not fully predictable from spellings.
Example: neither silly nor $f o l l y$ is an adverb, even though they both end in $-l y$ !

## The arbitrariness of the sign $\mapsto$ allowing for idiosyncracy

How should a word's embedding and its spelling be connected?
The connection between the signifier and the signified is arbitrary.


- de Saussure, 1916, translated

Meaning is not fully predictable from spellings.
Example: neither silly nor $f o l l y$ is an adverb, even though they both end in $-l y$ !

七 "construction" models like $e($ caged $):=\operatorname{CNN}(\mathrm{c}$ a g e d) ignore this!

## The arbitrariness of the sign $\mapsto$ allowing for idiosyncracy

How should a word's embedding and its spelling be connected?
The connection between the signifier and the signified is arbitrary.


- de Saussure, 1916, translated


## Meaning is not fully predictable from spellings.

Example: neither silly nor $f o l l y$ is an adverb, even though they both end in $-l y$ !

七 "construction" models like $e($ caged $):=\operatorname{CNN}(\mathrm{c}$ a g e d) ignore this!
$\Rightarrow$ Allow any pairing a priori, but
use spellings as prior / regularization!

## The arbitrariness of the sign $\mapsto$ allowing for idiosyncracy

How should a word's embedding and its spelling be connected?
The connection between the signifier and the signified is arbitrary.


- de Saussure, 1916, translated


## Meaning is not fully predictable from spellings.

Example: neither silly nor $f o l l y$ is an adverb, even though they both end in $-l y$ !

七 "construction" models like $e($ caged $):=\operatorname{CNN}(\mathrm{c}$ a g e d) ignore this!
$\Rightarrow$ Allow any pairing a priori, but use spellings as prior / regularization!

Outliers (children, the,...)
may have idiosyncratic embeddings!

## The arbitrariness of the sign $\mapsto$ allowing for idiosyncracy

How should a word's embedding and its spelling be connected?
The connection between the signifier and the signified is arbitrary.
spelling $\boldsymbol{\imath} \uparrow$ meaning

- de Saussure, 1916, translated


## Meaning is not fully predictable from spellings.

Example: neither silly nor $f o l l y$ is an adverb, even though they both end in $-l y$ !

七 "construction" models like $e($ caged $):=\operatorname{CNN}(\mathrm{c}$ a g e d) ignore this!
$\Rightarrow$ Allow any pairing a priori, but
use spellings as prior / regularization!

Outliers (children, the,...)
may have idiosyncratic embeddings!
\%. regularize embeddings, don't construct them

## Recap: how does our model implement these ideas?

Embeddings and spellings are connected on the type level, ensuring conditional independence of usage and spelling while assigning positive probability to any pairing!


## How do we evaluate open-vocabulary language models?

1. Report likelihood $p$ (held-out text) as perplexity? ( $\downarrow$ lower is better)

## How do we evaluate open-vocabulary language models?

1. Report likelihood $p$ (held-out text) as per perplexity ( $\downarrow$ lower is better)

## How do we evaluate open-vocabulary language models?

1. Report likelihood $p$ (held-out text) as per perplexity ( $\downarrow$ lower is better)
2. © no UNKing allowed!

## How do we evaluate open-vocabulary language models?

1. Report likelihood $p$ (held-out text) as per perplexity ( $\downarrow$ lower is better)
2. S no UNKing allowed!*

## How do we evaluate open-vocabulary language models?

1. Report likelihood $p$ (held-out text) as per perplexity ( $\downarrow$ lower is better)
2. © no UNKing allowed!*

* Yes, we call some words "UNK" temporarily, but we still generate them fully!


## How do we evaluate open-vocabulary language models?

1. Report likelihood $p$ (held-out text) as per perplexity ( $\downarrow$ lower is better)
2. © no UNKing allowed!* $\rightarrow$ we must predict every character of the text, regardless of vocabulary size
[^0]
## How do we evaluate open-vocabulary language models?

1. Report likelihood $p$ (held-out text) as per perplexity ( $\downarrow$ lower is better)
2. © no UNKing allowed!* $\rightarrow$ we must predict every character of the text, regardless of vocabulary size

* Yes, we call some words "UNK" temporarily, but we still generate them fully!
$\Rightarrow$ A tunable "vocabulary size" hyperparameter decides what is temporary-UNK.


## Results



## Results

| WikiText-2 (Merity et al., 2017) | test <br> 2.5 million tokenized words from the English Wikipedia | $\leftarrow 1.8$ |
| ---: | :--- | :---: |

## Results

| WikiText-2 (Merity et al., 2017) 2.5 million tokenized words from the English Wikipedia | $\leftarrow 1.8$ ( $1.4 \\|$ | test |
| :---: | :---: | :---: |
|  <br> theucatuchased | - | 1.775 |
| $\begin{array}{r} \text { HCLM }+ \text { cache } \\ \text { previous SOTA (Kawakami et al., 2017) } \end{array}$ | -1 | 1.500 |

## Results

| WikiText-2 (Merity et al., 2017) <br> 2.5 million tokenized words from the English Wikipedia | $\leftarrow 1.8$ | test |
| :---: | :---: | :---: |
| $\mathrm{th} \mathrm{e}-\mathrm{c} a \mathrm{t}-\mathrm{c} \mathrm{~h} a \mathrm{~s} \mathrm{ed}$ | $\square$ | 1.775 |
| HCLM + cache <br> previous SOTA (Kawakami et al., 2017) | -\| | 1.500 |
| BPE: | -\| | 1.468 |

## Results

| WikiText-2 (Merity et al., 2017) <br> 2.5 million tokenized words from the English Wikipedia | $\leftarrow 1.8$ | test |
| :---: | :---: | :---: |
| $\mathrm{t} h \mathrm{e}-\mathrm{c} a \mathrm{t}-\mathrm{c} \mathrm{~h} a \mathrm{~s} \mathrm{e} \mathrm{~d}$ | $\square$ | 1.775 |
| HCLM + cache <br> previous SOTA (Kawakami et al., 2017) | - | 1.500 |
| BPE: | - | 1.468 |

## Results

| WikiText-2 (Merity et al., 2017) |  |  |
| ---: | :--- | :--- |
| test <br> 2.5 million tokenized words from the English Wikipedia | $\leftarrow 1.8$ | 1.4 \\| |

## Results



## Results

| WikiText-2 (Merity et al., 2017) | on dev data |  |  | est |
| :---: | :---: | :---: | :---: | :---: |
| 2.5 million tokenized words from the English Wikipedia | novel words | $\begin{aligned} & \text { rare } \\ & \text { ward } \end{aligned}$ | frequent |  |
| $\rightarrow$ | 3.89 | 2.08 | 1.38 | 1.775 |
| HCLM + cache previous SOTA (Kawakami et al., 2017) | - | - | - | 1.500 |
|  | 4.01 | 1.70 | 1.08 | 1.468 |
| our full model: Spell Once, Summon Anywhere | 4.00 | 1.64 | 1.10 | 1.455 |

...and plenty more baselines, ablations, datasets, and questions answered in the paper!

## Conclusion

1. think about language before you model:

O: usage $\perp$ spelling | embedding :
©: regularize embeddings, don't construct them ©:

## Conclusion

1. think about language before you model:

O: usage $\perp$ spelling | embedding $\doteq$
Oi: regularize embeddings, don't construct them ©i:
2. simple and criminally underused baselines can beat fancy but bad models Øi: model strings by segments?

## Conclusion

1. think about language before you model:
©
Oi: regularize embeddings, don't construct them ©i:
2. simple and criminally underused baselines can beat fancy but bad models Øi: model strings by segments?
3. open-vocabulary language modeling is an exciting task!

# Spell Once, Summon Anywhere: <br> A Two-Level Open-Vocabulary Language Model 

AAAI 2019 Technical Track

Sabrina J. Mielke and Jason Eisner
sjmielke@jhu.edu, jason@cs.jhu.edu
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA


[^0]:    * Yes, we call some words "UNK" temporarily, but we still generate them fully!

