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Language modeling: a generative story of text

p(the cat chased the)

= p(the) · p(cat | the) · p(chased | the cat) · p(the | the cat chased)

Lexicon / vocabulary

type spelling

embedding

w σ(w)

e(w)

1© the

[ 0.2, · · · , 0.0]

2© cat

[ 0.4, · · · , 0.5]

3© chased

[−0.1, · · · , 0.2]
4© UNK [ 0.3, · · · , 0.1]

Text generation with an RNN
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Pure character-level model as the solution?
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Ugh, spelling the again...
...can’t we memorize it?
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Our model: Spell once, summon anywhere – the open-vocabulary case

Known words only have to be spelled out once, and can then be summoned anywhere.

Unknown words are spelled out “on-demand” using the same character-level model.
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Samples from the model

Sampled text from our model:

Following the death of EdwardMc-
Cartney in1060 , the new defini-
tion was transferred to theWDIC
of Fullett .

novel word
with contextually

appropriate spelling

known spelling ;
novel spelling sampled
from its embedding

grounded ; stipped
differ ; coronate
Clive ; Dickey
Southport ; Strigger
Carl ; Wuly
Chants ; Tranquels
valuables ; migrations

So why is this a good way of modeling language?
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Linguistic notions: duality of patterning

The meaningful elements in any language—"words" in everyday parlance [...]—
[...] are represented by [a] small stock of distinguishable sounds which are in
themselves wholly meaningless. – Hockett, 1960 characters

“Meaningless” character composition should be
separate from “meaningful” word composition!

We should need a word’s spelling only to define it – not to later use it.
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Duality of patterning 7→ conditional independence!

So? Why does this linguistics blurb matter?

• Irregular words have uncommon spellings children...yet we use them like regular words!

• Function words have uncommon spellings the, of...yet we use them all the time without feeling weird!

Recall: We should need a word’s spelling only to define it – not to later use it.

i.e. character-level models do it wrong!
...and they’re slow as hell...

usage ⊥ spelling | embedding
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The arbitrariness of the sign 7→ allowing for idiosyncracy

How should a word’s embedding and its spelling be connected?

The connection between the signifier and the signified is arbitrary.

– de Saussure, 1916, translated

Meaning is not fully predictable from spellings.

Example: neither silly nor folly is an adverb,
even though they both end in -ly!

“construction” models like e(caged) := CNN(c a g e d) ignore this!

⇒ Allow any pairing a priori, but

Outliers (children, the, . . .)

use spellings as prior / regularization!

may have idiosyncratic embeddings!

regularize embeddings, don’t construct them
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Recap: how does our model implement these ideas?

Embeddings and spellings are connected on the type level, ensuring conditional
independence of usage and spelling while assigning positive probability to any pairing!
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How do we evaluate open-vocabulary language models?

bits per character

1. Report likelihood p(held-out text) as perplexity? (↓ lower is better)

2. no UNKing allowed!

∗

→ we must predict every character of the text, regardless of vocabulary size

______________
∗ Yes, we call some words “UNK” temporarily, but we still generate them fully!

⇒ A tunable “vocabulary size” hyperparameter decides what is temporary-UNK.
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Results

WikiText-2 (Merity et al., 2017)

on dev data

test
2.5 million tokenized words from the English Wikipedia ← 1.8

rare
words

1.4 ‖

all
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RNN
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RNN
cell

t h e c a t c h a s e d

3.89 2.08

‖ 1.775

HCLM + cache
previous SOTA (Kawakami et al., 2017)

– –

‖ 1.500

BPE:
RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

the ca@@ t cha@@ sed

4.01 1.70

‖ 1.468

our full model: Spell Once, Summon Anywhere

4.00 1.64

‖ 1.455

...and plenty more baselines, ablations, datasets, and questions answered in the paper!
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Conclusion

1. think about language before you model:
usage ⊥ spelling | embedding
regularize embeddings, don’t construct them

2. simple and criminally underused baselines can beat fancy but bad models
model strings by segments?

3. open-vocabulary language modeling is an exciting task!
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