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Max log prob of data

Loop over all 50000 event types!
(A, B, C, …)Loop over real events

Integrate over infinitely many non-events!
(often approx by sampling)

SLOW!
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Doesn’t Matter

Max log prob of correct discrimination

Loop over real and noise events!
finite & small à faster SGD

Both p and q conditioned on true history 

FAST!

Noise events drawn from a known and cheaper model 

Coarse-to-Fine Noise DistributionMLE vs. NCE (theorems and analysis in paper) Experiments
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consistent?

sample-efficient?

sampling for …

fewer func evals?

lower runtime?

better learning curve?
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How?

How much better?

# of probabilities computed wall-clock time

log-likelihood NCE MLE

what typical learning curves look like
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time=0

B A C A
t

∅

70dt

15dt

1-(70+15)dt
≈1

real

B Cnoise

B C Anoise

X

Y

…
…

A

t + dt

Draw noise conditioned on true history

coarse event type

(fine) event type

Hierarchical sampling

Noise distribution q is trained by MLE or NCE

(no need to loop over all 50000 event types)


