Neural Hawkes Particle Smoothing: Imputing Missing Events in Continuous-Time Event Streams 🅟 🏉

Hongyuan Mei¹, Guanghui Qin², Jason Eisner¹ ¹Center for Language and Speech Processing, Department of Computer Science, Johns Hopkins University, USA ²Department of Physics, Peking University, China

Neural Hawkes process (NHP: Mei & Eisner, NeurIPS 2017) Missingness mechanism that determines missing events z $p(\mathbf{z} \mid \mathbf{x})$: What / When / How-Many missing events? Why? Impute past to predict future; train with Monte Carlo EM

Draw $\mathbf{z}_1, \ldots, \mathbf{z}_M$ from a proposal distribution $q(\mathbf{z} \mid \mathbf{x})$ and weight them $w \propto p(\mathbf{z} \mid \mathbf{x})/q(\mathbf{z} \mid \mathbf{x})$ Example: stochastically impute a taxi's pick-up events \blacklozenge given its observed drop-off events \square . Below shows one sequential step, which determines the next event after \Box at time t_1 ---either an unobserved event at time $\in (t_1, t_2)$ or the next observed event at t_2 . • Particle filtering proposes next event \diamond conditioned *only* on *history* summarized as \bigcirc by LSTM preempted propose

• Particle smoothing also considers *future* summarized as \bigcirc by a *right-to-left* LSTM \mathbf{X} accepted propose

Minimize $\beta \operatorname{KL}(p||q) + (1)$

inclusive

exclusive

- Inclusive KL: learn to propose every z that is probable under $p(z \mid x)$

Overview

Sequential Monte Carlo

Training the Proposal Distribution (only for particle smoothing)

$(-\beta) \operatorname{KL}(q||p)$ between $q(\mathbf{z} \mid \mathbf{x})$ and $p(\mathbf{z} \mid \mathbf{x})$

 L_3

• p includes missingness mechanism: don't propose what you know won't be missing! • Exclusive KL: learn to avoid proposing any z that is not probable under $p(z \mid x)$

\bigcirc C = 0.1

Does particle smoothing help (vs. filtering)?

Each point is a single gold seq, showing $\log q$ of proposing it under the two methods Datasets:

- 10 synthetic (left) Elevator (mid)
- NYC taxi (right)

Minimum Bayes Risk Decoding

the positive direction of the steepest improvement \rightarrow