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Quiz question: CRF is to dynamic programming Joint distribution = locally normalized distribution = greedy sampling = easy Justifying the neural approximation of dynamic programming
as RNNisto...? Conditional distribution = globally normalized distribution = hard!

If the model were an HMM emitting (@t yt)pairs, instead of an RNN, our architecture would be exact.

The hidden vectors St and St would represent forward and backward distributions over the hidden HMM state,
Condition on evidence x = Yoyodyne industries was ... and would be updated linearly at each t.
(Updates are deterministic because these are belief states, i.e., distributions over states.)
Our RNN is trying to approximate some 10000000-dimensional () HMM using only a 50-dimensional vector.
We hope the belief states tend to fall near a 50-dimensional manifold so that St can give the manifold coordinates.
The deterministic update in that coordinate space becomes nonlinear.

Hi, I built a fancy globally normalized neural model that is more powerful than CRFs! &
But oops, dynamic programming doesn't work anymore &
— How will I compute my gradient for training? Sampling P(Y | X)means sampling a path without gray nodes,

but these white paths sum to < 1 both locally and globally.

To sample Y3 from the correct local distribution p(ys | X, y1y2),
we must look ahead to see which ¥3 values are compatible with future x.

— How will I figure out what my model predicts (conditioned on evidence)?

— How will I combine my model with other probability distributions?

neural- approximation

I guess I can sample from P (¥ | %), but how? My model specifies P (%,¥) Bad news: Doing this via the backward algorithm is intractable for RNN models. normalized forward probabilies \ Jeft-10-yight RNN:
(%, ) Good news: We can approximate it using a right-to-left RNN ... and then correct the s = L
p(y [ %) = s 5 P

approximation by reweighting the particles.

[ know that 2.y P(5Y") but I don'’t really feel like summing over

normalized backward probabilities: right-to-left RNN:
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the exponentially many y’s. What can I do? &
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Incremental stateful global scoring models
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