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Many NLP tasks are about scoring strings

| anguage modeling  Machine translation
 Good:  Good:
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 Maybe:
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Many NLP tasks are about scoring strings
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Many NLP tasks are about scoring strings

we want to measure their goodness quantitatively with an NN

known as energy-based models

* goodness(‘Roses are red”) = 1000 goodness (x)

e goodness(“Roses are nosy’) =95

. goodness(‘Roses queen sierra’) = 0.0 i
T T T

e support of goodness: PN PN

* set of strings whose goodness > 0
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Many NLP tasks are about scoring strings

we want to measure their goodness on a scale between 0 and 1

e /=goodness(“Roses are red”)
+ goodness(“Roses are nosy”)
+ goodness(“Roses queen sierra’)

+ ... FEEDFORWARD LAYER

e |ntractable!

goodness (x)/7Z

Roses are
red

Roses are
nosy

Roses
queen

Las rosas
son rojos

exponentially (or even infinitely) many columns!

SUM

1000

5

0.01

0.00001

1000+5+0.01+
0.00001 +...
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Autoregressive parametrization
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Autoregressive parametrization

e goodness(“Roses are red’) =

p(“Roses”) ...
=0.1...

red

Roses

are

sierra

SUM

0.001

0.1

0.002

0.0001

<S>

-

SOFTMAX

TRANSFORMER



 goodness(“Roses are red”) =
p(“Roses”) *

p(“are” | “Roses”) ...
=0.1 0.3 ...
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 goodness(“Roses are red”) =
p(“Roses”) *

p(uareu ‘ “ROSGS”) *
p(“red” | “Roses are”)
=0.1 0.3 70.05

15

Autoregressive parametrization

red

Roses are sierra

SUM
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Autoregressive parametrization
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Autoregressive parametrization

Xt=

red

Roses

are

P (Xt |X<t)=

evaluates in O(pol
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Autoregressive parametrization

* Autoregressive models guarantee Z
= 1

e goodness(“Roses are red”)
= 0.0015/Z2 = 0.0015

e goodness(“Roses are nosy’)
= 0.0000076/Z = 0.0000076

e« goodness(“Roses queen
sierra’)

= 0.000000015/Z = 0.000000015
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EBMs vs autoregressive models

goodness (x)

FEEDFORWARD LAYER

AT

red
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EBMs are more powerful!

EBMs ;2 autoregressive models



This work
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Why EBMs > autoregressive models?

Xi= red Roses are
goodness (x) P (Xt |X<t)=
FEEDFORWARD LAYER SOFTMAX
< > )
> 0
+ TRANSFORMER
Q\_____._-f’



Why EBMs > autoregressive models?

(A1 or not A;) and (A3z)
e assignment:

AT
> ao

Q\_______——’

*

x = formula # assignment
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Why EBMs > autoregressive models?

(A1 or not A;) and (A3z)
e assignment:

A
P P e goodness(x)
e > 0 If assignment satisfies formula
te—— e —

e =0 otherwise

*

x = formula # assignment

22



Why EBMs > autoregressive models?

goodness (x) e formula:

(A1 or not A;) and (A3z)
e assignment:

N
P P e goodness(x)
e > 0 If assignment satisfies formula
'\_____-d
* =0 otherwise

, e goodness(x) can be constructed as an
x = formula # assignment RNN with size O(|x[3)
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Why EBMs > autoregressive models?

Xt= 0

* Now let’s look at autoregressive D (Xt | X<t )=

?
models.
» Can we implement goodness(x)

using an autoregressive model?

TRANSFORMER
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Why EBMs > autoregressive models?

Xt= 0
» Computing the first token right after P (Xt | X<t )= ?
<s> formula # Is as hard as
determining if formula is
satisfiable... .
=

TRANSFORMER

—

TS

\ 080 1]
~

<s> formula #

<s> formula #

In contrast, EBMs need only

to check a single assignment. 1 =4
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Why EBMs > autoregressive models?

Xt= 0

» Computing the first token right after P (Xt |%X<t)=

?
<s> formula # Is as hard as

determining if formula is

satisfiable. .

* which is NP-complete!

: : TRANSFORMER
* Thus, no polynomial-time

autoregressive model can model
such distributions if P#NP.

<s> formula #
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Actually it got worse

* [here are distributions that can be captured by EBMSs.
But no autoregressive model can:

e capture those distributions exactly (Theorem 1)
e approximate well enough to get the same ranking of strings (Theorem 2)
o approximate within any multiplicative factor (Theorem 4)

 Why should we care if we only need to model finite datasets”?

* In other words, we can always make the model larger to handle longer
sequences (if smaller models don’t work)...right?
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Just make the model larger?

* |f the model sizes only grow
polynomially in sequence length, they
belong in the P/poly class.

|t is widely believed NPZP/poly.

 So the models must grow
superpolynomially larger and/or run
superpolynomially longer in sequence
length, to model longer problems (since
they are NP-hard).

* otherwise, the model simply won’t fit
even with access to an oracle in
training!

P/poly

NP-complete

ALL
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What if | am not interested in Boolean SAT problems?

* |n general, autoregressive models cannot capture distributions over strings of the form
problem#solution, where a problem is computationally hard to solve.

« EBMs can capture such distributions
« Some CL/NLP problems are indeed computationally hard:
* Parsing of many syntactic/semantic formalisms (e.g. AMR)
* Propositional logic (NLI)
* Optimality Theory
* |mportant linguistic regularities cannot be captured by autoregressive models!

* We use prepesttionaHegie generating a Star Wars movie script as an example.
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A long time ago in a galaxy far, far away....
The Rebels fought against the evil Galactic Empire,
and eventually won.

The story started with Luke....
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A long time ago Iin a galaxy far, far away....
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A long time ago Iin a galaxy far, far away....
The Rebels fought against the evil Galactic Empire,

and eventually won.
The story started with Luke....

Luke and
Vader ncler t ,
. M M \
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D ™  The Rebels lost!
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Ve, at the beginning)

no autoregressive model
can guarantee
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(Theorem 3)
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brief summary so far

* Autoregressive models cannot even guarantee that its generation is
consistent (under propositional logic)!

* This is really bad because checking their (in)consistency is indeed easy.

» Speaking very loosely, autoregressive models cannot tell between a surprising
plot twist and an inconsistent continuation.
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Outline

* Autoregressive models are not as expressive as other model families,
energy-based models in particular.

 And having more parameters helps little!

 Model families that are more expressive than autoregressive models
made their own trade-offs.
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Comparison of model families

Autoregressive
models

v

Some but not all
languages in P

Energy-based
models

v
v

4
v

no efficient factorization

All languages in P
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Comparison of model families

Compact
parameters?

Efficient scoring?

Efficient sampling?

Support can be...

Autoregressive
models

v

Some but not all
languages in P

Energy-based
models

v
v

v
v

X

All languages in P

Autoregressive latent
variable models
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Comparison of model families

Compact
parameters?

Efficient scoring?

Efficient sampling?

Support can be...

Autoregressive
models

Some but not all
languages in P

Energy-based
models

v
v

All languages in P

Autoregressive latent
variable models

ANA AN

X

needs to marginalize

v
X
v

All languages in NP
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Comparison of model families

Compact
parameters?

Efficient scoring?

Efficient sampling?

Support can be...

Autoregressive
models

v

Some but not all
languages in P

Energy-based
models

X

All languages in P

Autoregressive latent
variable models

v
v
X

v

All languages in NP

Lookup models
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Lookup models

 |f the model size can be unbounded, we can model any finite language!
* | ook up factoids in a database
* there are sub-linear time retrieval methods.

 examples include KNNLM and adaptive semiparametric LMs.
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Comparison of model families

Compact
parameters?

Efficient scoring?

Efficient sampling?

Support can be...

Autoregressive
models

Some but not all
languages in P

Energy-based
models

All languages in P

Autoregressive latent
variable models

All languages in NP

Lookup models

Anything

unbounded size
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Conclusion

e Autoregressive models are inherently limited.

 Some string distributions have ‘hard’ conditional probabilities, even though
the joint (unnormalized) probabilities may be easy to evaluate.

e Alternative model families have their own tradeoffs.
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