
DISCRIMINATIVE TRAINING AND VARIATIONAL DECODING

IN MACHINE TRANSLATION VIA

NOVEL ALGORITHMS FOR WEIGHTED HYPERGRAPHS

by

Zhifei Li

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

April, 2010

c© Zhifei Li 2010

All rights reserved

Abstract

A hypergraph or “packed forest” is a compact data structure that uses structure-sharing to
represent exponentially many trees in polynomial space. A probabilistic/weighted hyper-
graph also defines a probability (or other weight) for each tree, and can be used to represent
the hypothesis space considered (for a given input) by a monolingual parser or a tree-based
translation system (e.g., tree to string, string to tree, tree to tree, or string to string with
latent tree structures).

Given a weighted/probabilistic hypergraph, we might ask three questions. What atomic
operations can we perform on the weighted hypergraph? How do we set the weights in
the hypergraph? Which particular translation (among the possible translations encoded in
a hypergraph) should we present to an end user? These correspond to three fundamental
problems: inference, training, and decoding, for which this dissertation will present novel
techniques.

The atomic inference operations we may want to perform include finding one-best, k-
best, or expectations over the hypergraph. To perform each operation, we may implement a
dedicated dynamic programming algorithm. However, a more general framework to spec-
ify these algorithms is semiring-weighted logic programming. Within this framework, we
first extend the expectation semiring, which is originally proposed for a finite state automa-
ton, to a hypergraph. We then propose a novel second-order expectation semiring. These
semirings can be used to compute a large number of expectations (e.g., entropy and its
gradient) over the exponentially many trees presented in a hypergraph.

The weights used in a hypergraph are usually learnt by a discriminative training method.
One common drawback of such method is that it relies on the existence of high-quality su-
pervised data (i.e., bilingual data), which may be expensive to obtain. We present two
unsupervised discriminative training methods: minimum imputed-risk training, and con-
trastive language model estimation, both can exploit monolingual English data to perform
discriminative training. In minimum imputed-risk training, we first use a reverse transla-
tion model to impute the missing inputs, and then train a discriminative forward model by
minimizing the expected loss of the forward translations of the missing inputs.

In contrast, the contrastive language model estimation does not use a reverse system.
It first extracts a confusion grammar, then generates many alternative sentences (i.e., a
contrastive set) for each English sentence using the confusion grammar, and finally trains
a discriminative language model on the contrastive sets such that the model will prefer the

ii

original English sentences (over the sentences in the contrastive sets).
During decoding, we are interested in finding a translation that has a maximum poste-

rior probability (i.e., MAP decoding). However, this is intractable due to spurious ambi-
guity, a situation where the probability of a translation string is split among many distinct
derivations (e.g., trees or segmentations). Therefore, most systems use a simple Viterbi
decoding that approximates the string probability with its most probable derivation’s prob-
ability. Instead, we develop a variational approximation, which considers all the derivations
but still allows tractable decoding. Our particular variational distributions are parameter-
ized as n-gram models. We also analytically show that interpolating these n-gram models
for different n is similar to lattice-based minimum-risk decoding for BLEU. Experiments
show that our approach improves the state of the art.

All the above methods have been implemented in an open-source machine translation
toolkit Joshua. In this dissertation, the methods have mainly been applied to a machine
translation task, but we expect that they will also find applications in other areas of natural
language processing (e.g., parsing and speech recognition).

Primary Advisor: Sanjeev Khudanpur
Secondary Advisor: Jason Eisner
Readers: Sanjeev Khudanpur, Jason Eisner
Committee: Sanjeev Khudanpur, Jason Eisner, Chris Callison-Burch

iii

Acknowledgements

First, I would like to thank my advisers, Sanjeev Khudanpur and Jason Eisner, for many
helpful and insightful technical discussions during the course of my graduate study. They
have served as two oracles to me, in many aspects. Sanjeev knows beforehand every math
formula I may need to use in my research, and Jason knows in advance every algorithm
I may want to implement. They are also great teachers, knowing how to explain very
sophisticated material in simple terms. I thank Sanjeev for bringing me into the wonderful
world of statistical natural language processing, which I may never have ventured into, had
I not taken his intensive class about statistical speech recognition. I thank Jason for shaping
me into a better presenter and for changing how I approach machine translation as a formal
problem.

I would also like to thank Chris Callison-Burch, who essentially has acted as my third
advisor, in many aspects. He is always supportive of me and eager to promote my work
to folks outside JHU. He has also provided many valuable insights and suggestions about
my work. Since his arrival at Johns Hopkins University, the research on MT at CLSP has
become more involved, which has benefitted me a lot.

I am very grateful to David Yarowsky, with whom I collaborated for two papers. He is
always so gentle, and is able to identify the key intuitions that make our ideas work.

My work has also greatly benefited from regular discussions with Markus Dreyer and
Jason Smith. Special thanks go to Ziyuan Wang, who helped me to run the experiments in
chapters 4 and 5.

I am also very grateful for many discussions with Professor Damianos Karakos, and
many students at CLSP such as Jia Cui, Yonggang Deng, Anoop Deoras, Nikesh Garera,
Arnab Ghoshal, Delip Rao, Ariya Rastrow, David Smith, Yi Su, Roy Tromble, Balakrish-
nan Varadarajan, Chris White, Puyang Xu, Omar Zaidan, and Haolang Zhou.

I also want to thank Philip Resnik at UMD for allowing me to attend his group’s MT
meeting in 2007, which gives me the opportunity to interact with his great students. A
special thank goes to Chris Dyer, whom I still regularly interact with.

I also want to thank all the members in the Joshua project for a great team experience.
They are: Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren Thornton, Jonathan Weese and Omar Zaidan. I also want to thank Desiree
Cleves for proofreading my dissertation.

I also want to thank my mentor at MSR, Patrick Nguyen, for hosting me as a summer

iv

intern in 2007. I have also benefitted from discussions with many non-JHU Chinese fellows
when attending conferences. They are Jianfeng Gao, Xiaodong He, Liang Huang, Mu Li,
Qun Liu, Yang Liu, Bing Zhao, Hao Zhang, and Joy Zhang.

Finally, I want to thank my wife, Zhuangxiang He, for her unconditional love and her
sacrifice for me during the many years we have lived together. I also thank my other family
members in China for their love and support.

Zhifei Li, April 2010

v

Contents

Abstract ii

Acknowledgements iv

List of Figures x

List of Tables xi

1 Summary of the Dissertation 1
1.1 Statistical Machine Translation Pipeline 1

1.1.1 Training Translation Models on Bilingual Data 1
1.1.2 Training Language Models on Monolingual Data 4
1.1.3 Discriminative Training of Relative Weights Among Models 5
1.1.4 Decoding for Test Data . 5
1.1.5 Focus of this Dissertation . 5

1.2 Ambiguity in Language Translation . 6
1.2.1 Translation-Sense Ambiguity . 6
1.2.2 Spurious Ambiguity . 7

1.3 Hypergraph to Represent Ambiguity . 8
1.3.1 Weighted Hypergraphs . 9
1.3.2 Probabilistic Hypergraphs . 11

1.4 Our Contributions . 11
1.4.1 First- and Second-order Expectation Semirings 12
1.4.2 Unsupervised Discriminative Training 13
1.4.3 Variational Decoding . 14

1.5 Roadmap . 15

2 Inference, Decoding, and Training Methods over Hypergraphs: a Review 17
2.1 Definitions, Notations and Terminologies 17
2.2 Atomic Inference Operations Over Hypergraphs 18

2.2.1 Counting Number of Derivations 18
2.2.2 Finding One-best Derivation (or Viterbi Derivation) 19

vi

2.2.3 Finding k-best Derivations . 20
2.2.4 Finding Partition Functions, Expectations, and Gradients 20
2.2.5 Integrating an n-gram model into a Hypergraph 21

2.3 Exact Inference over Hypergraphs: Semiring Parsing 23
2.3.1 What is a semiring? . 23
2.3.2 Semiring-Weighted Inside Algorithm 23

2.4 Approximate Inference over Hypergraphs 26
2.4.1 Heuristic-based Approximation 26
2.4.2 “Principled” Approximations . 27

2.5 Decoding Methods over Hypergraphs . 28
2.5.1 Maximum A Posteriori (MAP) Decoding 28
2.5.2 Minimum Bayes Risk (MBR) Decoding 30

2.6 Discriminative Training Methods over Hypergraphs 30
2.6.1 Models . 31
2.6.2 Maximizing Conditional Likelihood 32
2.6.3 Average Perceptron . 32
2.6.4 Minimum Error Rate Training . 33
2.6.5 Minimizing Risk (MR) . 34
2.6.6 MIRA . 35
2.6.7 A Comparison of Training Methods 35
2.6.8 Unsupervised Discriminative Training 37

3 First- and Second-order Expectation Semirings 38
3.1 Finding Expectations on Hypergraphs . 39

3.1.1 Problem Definitions . 39
3.1.2 Computing the Expectations . 40
3.1.3 Correctness of the Algorithms . 40

3.2 Generalizations and Speedups . 43
3.2.1 Allowing Feature Vectors and More 44
3.2.2 Inside-Outside Speedup for First-Order Expectation Semirings . . . 44
3.2.3 Lifting Trick for Second-Order Semirings 46
3.2.4 Inside-Outside Speedup for Second-Order Expectation Semirings . 46

3.3 Finding Gradients on Hypergraphs . 48
3.3.1 What Connects Gradients to Expectations? 48

3.4 Practical Applications . 50
3.4.1 First-Order Expectation Semiring 50
3.4.2 Second-Order Expectation Semirings 51
3.4.3 Summary of the Applications . 52

3.5 Implementation Details . 52
3.5.1 Preventing Underflow/Overflow 52
3.5.2 Implementation Guide . 53

3.6 Summary . 54

vii

4 Minimum Imputed Risk Training 56
4.1 Minimum Empirical Risk (for Supervised Discriminative Training) 56
4.2 Discriminative Training with Missing Input 57

4.2.1 Minimum Imputed-Risk . 57
4.2.2 The Reverse Prediction Model pφ 58
4.2.3 The Forward Translation System δθ and

the Loss Function L(δθ(xi), ỹi) . 59
4.2.4 Approximating pφ(x | ỹi) . 60

4.3 EM vs. Minimum Imputed-Risk . 63
4.4 Experimental Results . 64

4.4.1 Baseline Systems . 64
4.4.2 Feature Functions . 64
4.4.3 Data Sets for Discriminative Training 65
4.4.4 Semi-Supervised Training . 65
4.4.5 Supervised and Unsupervised Training 66
4.4.6 Unsupervised Training with Different Reverse Models 67
4.4.7 Unsupervised Training with Different k-best Sizes 67
4.4.8 Goodness of the Simulated Neighborhood 68
4.4.9 Some Translation Examples . 69

4.5 Summary . 69

5 Contrastive Language Model Estimation 72
5.1 Unsupervised Training of Global Log-Linear

Language Models . 73
5.2 Contrastive Language Model Estimation for MT 74

5.2.1 Extracting a Confusion Grammar 74
5.2.2 Generating Simulated Neighborhood 76
5.2.3 Discriminative Training . 77
5.2.4 Applying The Contrastive Language Model 78

5.3 Comparison to Related Work . 79
5.3.1 Comparison to CE . 79
5.3.2 Locally Normalized Language Model 79
5.3.3 Globally Normalized Language Model 80
5.3.4 Relation to Minimum Imputed Risk 80
5.3.5 Relation to Paraphrasing Models 81

5.4 Experimental Results . 81
5.4.1 Data Sets . 82
5.4.2 Baseline MT System . 82
5.4.3 Training Contrastive Language Models 82
5.4.4 Results on Monolingual Simulation 83
5.4.5 Results on MT Test Data . 84
5.4.6 Goodness of the Simulated Neighborhood 84

viii

5.4.7 Some Translation Examples . 85
5.4.8 Comparison to the Experiments in Section 4.4 86

5.5 Summary . 88

6 Variational Decoding 89
6.1 Variational Decoding for MT . 89

6.1.1 Parameterization of q . 90
6.1.2 Estimation of q∗ . 91
6.1.3 Decoding with q∗ . 93

6.2 Variational vs. Minimum Bayes Risk Decoding 95
6.3 Experimental Results . 97

6.3.1 Experimental Setup . 97
6.3.2 Main Results . 98
6.3.3 Results of Different Variational Decoding 99
6.3.4 KL Divergence of Approximate Models 99
6.3.5 Some Translation Examples . 100

6.4 Summary . 101

7 Conclusion 103
7.1 Future Work . 105

ix

List of Figures

1.1 A typical pipeline for a statistical machine translation system 2
1.2 A simple example to show the steps in extracting a translation model. . . . 3
1.3 Example of decoding a test sentence . 6
1.4 Different translation patterns for the same source side. 7
1.5 Examples of spurious ambiguity . 8
1.6 A toy hypergraph and the derivation trees the hypergraph encodes 10
1.7 Relations among inference, decoding and training 12

2.1 Hypergraphs with/without integrating a bigram model 22
2.2 Semiring-weighed inside algorithm . 24
2.3 Count the number of trees by using a counting semiring 25
2.4 The combinations of rules with antecedent items form a cube 27
2.5 The basic Perceptron algorithm . 33

3.1 Semiring-weighed inside algorithm . 41
3.2 Semiring-weighted outside algorithm . 41
3.3 Semiring-weighted inside-outside algorithm 42

4.1 The goodness of the simulated neighborhood by minimum imputed-risk . . 70

5.1 Confusion grammar and an example hypergraph generated by the confu-
sion grammar . 77

5.2 The goodness of the simulated neighborhood by using confusion grammar. . 86

6.1 Brute-force estimation of q∗. 92
6.2 Dynamic programming estimation of q∗ 93
6.3 MBR decoding versus variational decoding 96

x

List of Tables

2.1 Main notations used in the dissertation . 18
2.2 Algorithms for extracting one-best from an FSA or hypergraph 19
2.3 Several example semirings . 26
2.4 Comparison of different training methods from different perspectives 35

3.1 Definition of expectation semiring . 43
3.2 Definition of second-order expectation semiring 43
3.3 Constructing second-order expectation semiring as first-order 47
3.4 A summary table of the quantities that can be computed using first- and

second-order expectation semirings . 53
3.5 Storing signed values in log domain . 54

4.1 Three data sets for discriminative training 66
4.2 BLEU scores for semi-supervised training 66
4.3 BLEU scores for supervised and unsupervised training. 67
4.4 BLEU scores for unsupervised training with different reverse models 68
4.5 BLEU scores for unsupervised training with different k-best sizes 68
4.6 Precisions and recalls of simulated neighborhood’s n-grams. 69
4.7 Examples of improved translation outputs 71

5.1 Three data sets for experiments . 82
5.2 BLEU scores on English test set. 84
5.3 BLEU scores on MT test set. 85
5.4 Precisions and recalls of simulated neighborhood’s n-grams. 85
5.5 Examples of improved translation outputs 87

6.1 MBR versus variational decoding . 97
6.2 BLEU scores for Viterbi, Crunching, MBR, and variational decoding 98
6.3 BLEU scores under different variational decoders 100
6.4 Cross-entropies H(p, q) achieved by various approximations q 101
6.5 Examples of improved translation outputs 102

xi

Chapter 1

Summary of the Dissertation

In this chapter, we first review some basic background of statistical machine transla-
tion,1 and then describe the contributions and roadmap of the dissertation. In the discus-
sion, we will mainly use a translation task from Chinese to English as an example, although
the methods are mostly language interdependent.

1.1 Statistical Machine Translation Pipeline

In a statistical machine translation (SMT) task (e.g., from Chinese to English), we are
often given some bilingual training data (e.g., Chinese sentences and their corresponding
English references), monolingual training data (e.g., English text only), and some test data
(i.e., Chinese text unseen in the training data). Our goal is to first build a translation system
on the training data, and then use the system to generate good translations for the test data.
The pipeline of a typical SMT system is shown in Figure 1.1, where the upper and lower
parts correspond to training and testing, respectively. There are four major components in
the pipeline and we will describe them below.

1.1.1 Training Translation Models on Bilingual Data

Given the bilingual training data, we train translation model(s) on it and the training
usually involves several steps: data normalization, word alignment, grammar extraction,
and parameter estimation. Figure 1.2 shows an instance of the steps where we are given a
toy bilingual training corpus containing only one sentence pair.

The data normalization step converts the bilingual data to a canonical form. For exam-
ple, we may convert all the English words to lower case, and separate punctuation from
the words. For a language (e.g., Chinese) where the words are not space-separated in the
raw text, we often segment a sentence into words by adding spaces. These normalization

1For a more comprehensive introduction, please refer to Koehn (2010).

1

Decoding

Bilingual

Data

Translation

Models

Monolingual

English

Language

Models

Discriminative
Training

Optimal

Weights

Unseen

Sentences

Translation
Outputs

Generative
Training

Generative
Training

Held-out Bilingual Data

Figure 1.1: A typical pipeline for a statistical machine translation system. The upper
and lower parts correspond to training and testing, respectively. This dissertation mainly
focus on the discriminative training and decoding components. Note that the bilingual data
used for discriminative training usually has a much smaller size (but much better quality)
than the bilingual data used for generative training of the translation models.

operations are usually language dependent. Figure 1.2(a) shows the raw bilingual data and
Figure 1.2(b) shows the version after performing normalization.

The bilingual corpora provided are usually sentence-aligned,2 but seldom contain word-
alignments, which correspond the words/phrases in the two languages to each other. There-
fore, we employ a word-alignment algorithm (Brown, Pietra, Pietra, and Mercer, 1993) to
discover such correspondence. Figure 1.2(c) shows the word alignment for the illustrative
one sentence corpus.

With the word-aligned corpora, we can then extract a translation grammar. The gram-
mar can be word-based (Brown et al., 1993), phrase-based (Koehn, Och, and Marcu, 2003),
hierarchical phrase-based (Chiang, 2005, 2007), or syntax-based (e.g., Galley, Graehl,
Knight, Marcu, DeNeefe, Wang, and Thayer, 2006). In this dissertation, we use a hier-
archical phrase-based machine translation system, called Hiero (Chiang, 2007) (see more
details below). However, our methods are quite general and can also be applied to the other
kinds of MT systems just listed. The first column of Figure 1.2(d) shows the possible Hiero
translation rules we extract from the training sentence pair.

Each rule in the grammar will be associated with a probability/weight that is estimated
from the training data. One usually uses maximum likelihood estimation (or generative
training) where the probability of a rule is simply the relative frequency of the rule (i.e.,
the number of times the given rule got extracted divided by the total number of times any

2They might be only document-aligned, in which case we also need to discover the sentence alignments.

2

dianzishangdemao

A cat on the mat

!"#$%

(a) raw bi-text

dianzi shang de mao

a cat on the mat

!" # $ %

(b) bi-text after normalization

dianzi shang de mao

a cat on the mat

!" # $ %

(c) bi-text after word alignment

Rule Probability
X → 〈 dianzi shang , the mat 〉 0.2
X → 〈 mao , a cat 〉 0.2
X → 〈 dianzi shang de X0 , X0 on the mat 〉 0.2
X → 〈X0 de mao , a cat on X0 〉 0.2
X → 〈X0 de X1 , X1 on X0 〉 0.2

(d) Hiero rules extracted from the aligned bi-text. Each rule is associated with
a probability that is estimated from the training data. In our example, we use
maximum likelihood estimation and thus all the probabilities are 0.2 (= 1

5) since
we have only five rules and each of them has been seen once in the simple
training corpus. In practice, we may have thousands of training sentence pairs,
from which many more rules can be extracted.

Figure 1.2: A simple example to show the steps in extracting a translation model. The
bi-text has only one sentence pair. For the Chinese side of the bi-text, we show both the
Chinese characters and its Pinyin (for the convenience of non-Chinese speakers). We show
only the Pinyin in the rules in Table (d).

rule got extracted). In practice, one usually smoothes the probability distribution. The
second column of Figure 1.2(d) shows the rule probabilities before smoothing.

Hierarchical Phrase-based Machine Translation

In Hiero, a synchronous context-free grammar (SCFG) is extracted from automatically
word-aligned corpora. An SCFG comprises a set of source-language terminal symbols TS ,
a set of target-language terminal symbols TT , a shared set of nonterminal symbols N , and
a set of rules of the form

X → 〈γ, α,∼〉 , (1.1)

3

where X ∈ N , γ ∈ [N ∪TS]∗ is a (mixed) sequence of nonterminals and source terminals,
α ∈ [N ∪ TT]∗ is a (mixed) sequence of nonterminals and target terminals, and ∼ is a
one-to-one correspondence or alignment between the nonterminal elements of γ and α.

Two example Hiero rules for Chinese-to-English translation are

X → 〈 mao , a cat 〉

X → 〈X0 de X1 , X1 of X0 〉
In the rules above, the alignment between nonterminals, i.e ∼, is implicitly encoded by

the subscripts on the nonterminals. In Hiero, there is only a single nonterminal X , while a
syntax-based grammar (Galley et al., 2006) contains a richer set of linguistically informed
nonterminals like noun phrase (NP) and verb phrase (VP).3 The first rule shows that we can
translate the Chinese word mao to English words a cat.4 The second rule shows that the
two phrases (represented by X0 and X1) around de in Chinese will get reordered around of
in the English. Such reordering is very typical between Chinese and English.

Hiero also includes the following two glue rules such that each input string will have at
least one derivation tree that is allowed by the grammar.

S → 〈X0 , X0 〉

S → 〈S0 X1 , S0 X1 〉
where S is the goal symbol.

As mentioned above, a rule in Hiero may contain both terminal (e.g., the word of) and
nonterminal (e.g., X0) symbols. In a given rule, the number of nonterminals in the Chinese
is the same as that in the English (this is what the word synchronous implies). The arity of
a rule is defined as the number of nonterminals in the rule. For example, the arities for the
two rules shown above are zero and two, respectively, while the arity for the third and forth
rule in Figure 1.2(d) is one.

1.1.2 Training Language Models on Monolingual Data
The translation model tells us what kinds of English translations we could generate

given a Chinese input. Intuitively, we have a prior belief about what should be a good
English sentence (e.g., whether it is fluent). Therefore, to certain extent, we should be able
to judge the goodness of a translation output, even without looking at the source-language
input. For example, we have a prior belief that “a cat on the mat” should be more likely
than “a cats on the mat” since the bad bigram “a cats” is much less likely than the natural
one “a cat.” This intuition is incorporated into the SMT system through using a language
model, which assigns a probability to an English string. We usually use a so-called n-gram

3To be precise, Hiero also contains a nonterminal S, which is the goal symbol.
4More precisely, mao is the Pinyin of the Chinese word猫. Pinyin is the most commonly used romaniza-

tion system for Chinese, and we use it for the convenience of non-Chinese speakers.

4

model, under which the probability of a sentence is the product of the probabilities of the n-
grams occurring in the sentence. The n-gram probabilities are trained on the monolingual
English data by using maximum likelihood estimation (i.e., the probability of an n-gram is
its relative frequency in the training corpus), often with some smoothing.

1.1.3 Discriminative Training of Relative Weights Among Models

With the translation and language models, how much should we trust each when we
use them to score translation outputs for test data? Intuitively, we can assign a weight
to each model, and trust the model proportionally to its weight. These weights are usually
found through a training algorithm such as minimum error rate training (MERT) (e.g., Och,
2003). Note that a translation model itself may have many translation rules and each rule
has a weight (or probability) (see Figure 1.2(d)). Similarly, an n-gram language model may
have many n-grams and each has a weight. These weights (for individual rules or n-grams)
are different from the relative weights among different models. Usually, the weights inside
a translation/language model are trained in a generative way as mentioned before, while
the relative weights among models are trained in a discriminative manner, which directly
optimizes the translation performance (see Chapter 2 for more details).

1.1.4 Decoding for Test Data

Using the bilingual and monolingual training data, we have trained an SMT system (by
following the pipeline in Figure 1.1), which has translation and language models, and the
relative weights among the models. Now, we can generate translation outputs for unseen
test data by using the trained system. For example, given a test Chinese sentence “dianzi
shang de gou” (whose Chinese characters are “垫子上的狗”), we may generate a trans-
lation output “the dog on the mat” assuming that the test translation grammar contains a
rule

X → 〈 gou, the dog 〉,

in addition to those rules extracted from the training example in Figure 1.2(c).
Figure 1.3 shows the test grammar and the translation output. Note that the system

generates a derivation tree, instead of just the translation string itself. In general, a deriva-
tion tree is composed of a sequence of rules, and it contains both an input sentence and an
output sentence, which are called its yields. As an example, the tree shown in Figure 1.3(b)
is composed of the rules in the test grammar shown by Figure 1.3(a), and its Chinese and
English yields are “dianzi shang de gou” and “the dog on the mat”, respectively. Of course,
the system may consider many other candidate translations due to ambiguities in language
translation (see Section 1.2).

5

X → 〈 dianzi shang , the mat 〉
X → 〈 gou , the dog 〉
X → 〈X0 de X1 , X1 on X0 〉
S → 〈X0 , X0 〉

(a) Hiero rules in the test grammar

dianzi shang de gou

X→〈dianzi shang, the mat〉

S→〈X0,X0〉

X→〈X0 de X1,X1 on X0〉

is incorporated into the SMT system through using a language model, which is trained on
the monolingual English data.

1.1.3 Discriminatively Training of Relative Weights Among Models

With the translation and language models, how much should we trust each of them?
Intuitively, we can assign a weight to each model, and trust the model proportionally to its
weight. These weights are usually found through a discriminative training algorithms (e.g.,
Och, 2003).

1.1.4 Decoding for Test Data

With the bilingual and monolingual training data, we have trained a SMT system (by
following the pipeline in Figure 1.1), which has translation and language models, and the
relative weights among the models. Now, we can generate translation outputs for unseen
test data by using the trained SMT system. For example, we may generate a translation “the
dog on the mat” for “垫子上的狗”, assuming that the translation grammar also contains
a rule “X → 〈狗, the dog 〉” that is extracted from other training examples.

X → 〈 dianzi shang , the mat 〉
X → 〈 gou , the dog 〉
X → 〈gou, the dog 〉
X → 〈X1 de X2 , X2 on X1 〉

(a) Hiero rules in the grammar

(b) bi-text after word alignment

Figure 1.3: Steps in extraction a grammar extraction from the bi-text that contains only
one sentence pair. For the Chinese side of the bi-text, we show both the Chinese characters
and its PingYin (for the convenience of non-Chinese speaker). We show only the PingYin
in the rules in Table (d).

4

(b) derivation tree whose English yield is “the dog on the mat”.

Figure 1.3: Example of decoding a test sentence. For the test sentence “dianzi shang de
gou”, the system uses the test grammar of (a) to generate a derivation tree in (b)

1.1.5 Focus of this Dissertation

As we have already seen, the machine translation pipeline involves in many compo-
nents. In this dissertation, we will mainly focus on the discriminative training (of Sec-
tion 1.1.3) and the decoding (of Section 1.1.4). As mentioned in Section 1.1.3, tradition-
ally, the only weights that get discriminatively trained are those relative weights among
different models. The number of such weights is usually very small (e.g., less than ten).
In this dissertation, we aim to tune a large number of weights discriminatively. For exam-
ple, we may want to discriminatively tune a weight for each individual translation rule in a
translation model and a weight for each individual n-gram in a language model.

1.2 Ambiguity in Language Translation

As in many other natural language processing (NLP) problems, ambiguity is a cen-
tral issue in machine translation. Broadly speaking, there are two kinds of ambiguities in
translation: translation-sense ambiguity and spurious ambiguity.

6

1.2.1 Translation-Sense Ambiguity

In natural language, the same word may have different senses/meanings, depending
on the context. For example, the word “bank” can refer to either a financial bank or the
edge of a river. This kind of ambiguity is called word sense ambiguity. Clearly, when we
translate such an ambiguous word, different translations should be used depending on the
context. For example, a translation model (for a translation task from English to Chinese)
may contain two rules as follows,

X → 〈 bank , he an 〉

X → 〈 bank , yin hang 〉

where they have the same English side (i.e., bank), but have different Chinese sides, which
have different meaning in Chinese. Specifically, the first rule has the Chinese he an, which
means the edge of a river, while the second one has the Chinese yin hang, which means a
financial bank. We call such ambiguity translation-sense ambiguity. The example above
involves rules with arity zero. In Hiero, it is equally possible to have rules with arity one
or higher that have the same source-language side but different target-language sides. Fig-
ure 1.4 shows how different translation patterns (for the same source-side “X0 de X1”) can
be extracted from different training examples. These rules involve using different preposi-
tions (of or on) or different ordering (with or without reordering). This indicates why the
machine translation task is difficult.

1.2.2 Spurious Ambiguity

Intuitively, given an input sentence, the main job of an SMT system should be to dis-
ambiguate the input sentence and produce an appropriate translation string by carefully
choosing translation senses. However, typical MT systems (Koehn et al., 2003; Chiang,
2007) will also recover a particular derivation of the output string, which specifies a tree or
segmentation and its alignment to the input string. The competing derivations of a string
are interchangeable for a user who is only interested in the string itself, so a system that
unnecessarily tries to choose among them is said to be resolving spurious ambiguity. To
emphasize, while translation-sense ambiguity will lead to different translation strings, spu-
rious ambiguity does not.

Figure 1.5 shows two examples of spurious ambiguity. In particular, Figure 1.5(a)
shows an example of spurious segmentation ambiguity occurring in regular phrase-based
systems (e.g., Koehn et al., 2003), where different segmentations lead to the same trans-
lation string. In contrast, Figure 1.5(b) shows an example of spurious tree ambiguity that
occurs in Hiero (Chiang, 2007), where different derivation trees yield the same string.

7

dianzi shang de mao

a cat on the mat
X→〈X0 de X1,X1 on X0〉

X→〈X0 de X1,X0 X1〉

X→〈X0 de X1,X0 ’s X1〉

zhongguo de shoudu

the capital of china

wo de mao

my cat

john de mao

john ’s cat

training example translation pattern
source and target sides are English. Several example rules in the CG are as following,

X → 〈 lead to , result in 〉 ,

X → 〈X0 at beijing , beijing ’s X0 〉 ,

X → 〈X0 of X1 , X0 of the X1 〉 ,

X → 〈X0 ’s X1 , X1 of X0 〉 .

X → 〈X0 de X1, the X1 of X0〉,

Like a regular SCFG, a CG contains rules with different arities. Also, there might be
reordering in the rule as shown in the last example. These rules captures the confusion that
an MT system may have in choosing different senses or reordering patterns for a given
input. Now the question is how we get such a grammar. Below we present two ways.

Extracting Confusion Grammar from Bilingual Grammar

We can derive a confusion grammar from an existing bilingual grammar. For a particu-
lar Chinese side (say c), a bilingual grammar may have many different English translation
options (say e ∈ E). (Note that e ∈ E may contain both terminals and nonterminals.)
For each pair of such translation options (say e1 ∈ E and e2 ∈ E), we can extract two
confusion rules: X → 〈e1, e2〉 and X → 〈e2, e1〉. These rules capture the confusion that
an MT system will have when translating the Chinese-side c. For each English side e in
the bilingual grammar, we also extract an identity rule, that is X → 〈e, e〉. Clearly, we can
extract |E|2 such confusion rules given a set of translation options E (for the Chinese side
c).

The CG can be weighted as following. We assume a conditional distribution p(e | c)
given by the bilingual grammar. Each extraction event of a confusion rule X → 〈e1, e2〉
will be weighted by p(e2 | c), that is, the weight depends on only the confusion rule’s target
side (but not the source side). We scan the bilingual grammar, accumulate the weight (soft-
count) of the extraction events for each distinct confusion rule, and finally use a maximum
likelihood estimation (MLE) for the probability of the rule X → 〈e1, e2〉. The probability
is normalized by the source side of the confusion rule.

In practice, the above extraction process can be very efficient. Specifically, we read the
bilingual grammar into a Trie data structure where the prefixes correspond to the Chinese
sides of the bilingual grammar, and thus the rules at each node in the Trie will be the
different translation options for the Chinese side (i.e., the prefix at the node). In this way,
we can quickly identify the different translation options for the same Chinese side, and thus
extract the confusion grammar efficiently.

70

source and target sides are English. Several example rules in the CG are as following,

X → 〈 lead to , result in 〉 ,

X → 〈X0 at beijing , beijing ’s X0 〉 ,

X → 〈X0 of X1 , X0 of the X1 〉 ,

X → 〈X0 ’s X1 , X1 of X0 〉 .

X→ 〈X0 de X1, the X1 of X0〉,

Like a regular SCFG, a CG contains rules with different arities. Also, there might be
reordering in the rule as shown in the last example. These rules captures the confusion that
an MT system may have in choosing different senses or reordering patterns for a given
input. Now the question is how we get such a grammar. Below we present two ways.

Extracting Confusion Grammar from Bilingual Grammar

We can derive a confusion grammar from an existing bilingual grammar. For a particu-
lar Chinese side (say c), a bilingual grammar may have many different English translation
options (say e ∈ E). (Note that e ∈ E may contain both terminals and nonterminals.)
For each pair of such translation options (say e1 ∈ E and e2 ∈ E), we can extract two
confusion rules: X → 〈e1, e2〉 and X → 〈e2, e1〉. These rules capture the confusion that
an MT system will have when translating the Chinese-side c. For each English side e in
the bilingual grammar, we also extract an identity rule, that is X → 〈e, e〉. Clearly, we can
extract |E|2 such confusion rules given a set of translation options E (for the Chinese side
c).

The CG can be weighted as following. We assume a conditional distribution p(e | c)
given by the bilingual grammar. Each extraction event of a confusion rule X → 〈e1, e2〉
will be weighted by p(e2 | c), that is, the weight depends on only the confusion rule’s target
side (but not the source side). We scan the bilingual grammar, accumulate the weight (soft-
count) of the extraction events for each distinct confusion rule, and finally use a maximum
likelihood estimation (MLE) for the probability of the rule X → 〈e1, e2〉. The probability
is normalized by the source side of the confusion rule.

In practice, the above extraction process can be very efficient. Specifically, we read the
bilingual grammar into a Trie data structure where the prefixes correspond to the Chinese
sides of the bilingual grammar, and thus the rules at each node in the Trie will be the
different translation options for the Chinese side (i.e., the prefix at the node). In this way,
we can quickly identify the different translation options for the same Chinese side, and thus
extract the confusion grammar efficiently.

70

Figure 1.4: From different training examples, we can extract different translation patterns
for the same Chinese side (i.e., X0 de X1). The first two patterns involve in reordering
between X0 and X1, while the last two do not.

1.3 Hypergraph to Represent Ambiguity
Given an input sentence, an SMT system may consider a huge number of possible

candidate translations (along with the derivations), due to the two kinds of ambiguities
discussed above. Therefore, brute-force ways of storing and operating on the candidates
are not feasible, and we usually use a data structure called a hypergraph (Gallo, Longo,
Pallottino, and Nguyen, 1993).

Informally, a hypergraph is a compact data structure that can store exponentially many
different translation strings (due to translation-sense ambiguity) where each string in turn
may correspond to many distinct derivation trees (due to spurious ambiguity). Figure 1.6
shows a simple hypergraph (Figure 1.6(a)), which encodes four different derivation trees
(figures 1.6(b)–1.6(e)) generated for the input Chinese sentence “dianzi shang de mao”.
Note that this hypergraph encodes only translation-sense ambiguity, though in general it
can additionally encode spurious ambiguity.

Formally, a hypergraph is a pair 〈V,E〉, where V is a set of nodes (vertices) and E is
a set of hyperedges, with each hyperedge connecting a sequence of antecedent nodes to a
single consequent node.5

In our application, a node (alternatively called an item) is identified by the non-terminal
symbol and the source span. A hyperedge represents an SCFG rule that has been “instanti-

5Strictly speaking, making each hyperedge designate a single consequent defines a B-hypergraph (Gallo
et al., 1993).

8

machine translation software

! " # $ % &

machine translation software

! " # $ % &

(a) Segmentation ambiguity in phrase-based MT: two different
segmentations lead to the same translation string.

S->(! ", machine) S->(#$, translation) S->(%&, software)

S->(! ", machine)
#$

S->(%&, software)

S->(S0 S1, S0 S1)

S->(S0 S1, S0 S1)

S->(S0 #$ S1, S0 translation S1)

(b) Tree ambiguity in syntax-based MT: two different derivation
trees yield the same translation string.

Figure 1.5: Examples of spurious ambiguity

ated” at a particular position, and has a pointer to an antecedent item for each non-terminal
symbol in the rule. We have a goal node at the root of a hypergraph which corresponds to
the goal symbol S. In general, a node has one or more incoming hyperedges, which repre-
sent different ways of deriving the node. A node may be shared by many hyperedges. For
example, in Figure 1.6(a), the node X | 0, 2 (and the node X | 3, 4 as well) is shared by
four hyperedges that point to it. Also, a hyperedge may be shared by many different deriva-
tions. For example, in Figure 1.6(a), the hyperedge labeled with the rule S → 〈X0, X0〉
is shared by all the four derivation trees. By exploiting such sharing, a hypergraph can
compactly represent exponentially many trees.

Hypergraphs are closely related to other formalisms like packed forests, AND/OR
graphs, context-free grammars, and deductive systems (Shieber, Schabes, and Pereira,
1994; Nederhof, 2003). Also, any finite-state automaton (FSA)6 can be encoded as a hyper-

6 Informally, a finite state automaton is a graph composed of a finite number of states (or nodes) and

9

graph (in which every hyperedge is an ordinary edge that connects a single antecedent to
a consequent). Specific to MT, a hypergraph can represent the hypothesis space of a broad
range of tree-based translation system, e.g., tree-to-string (Quirk, Menezes, and Cherry,
2005; Liu, Liu, and Lin, 2006), string-to-tree (Galley et al., 2006), tree-to-tree (Eisner,
2003), or string-to-string with latent tree structures (Chiang, 2007). Therefore, the meth-
ods developed in this dissertation will have very broad applications.

1.3.1 Weighted Hypergraphs
The hypergraph shown in Figure 1.6(a) is un-weighted. We can obtain a weighted

hypergraph by assigning a weight/score to each derivation d in the hypergraph as follows,

score(d) = f(d) · θ =
∑
j

fj(d)θj , (1.2)

where f(d) is a feature vector, θ is a weight vector, and j indexes the feature dimensions.
A feature can be any property of the derivation (and its Chinese and English yield). For
example, we may have a feature for each translation rule (or each English bigram) in the
derivation.

1.3.2 Probabilistic Hypergraphs
Going even further, we can obtain a probabilistic hypergraph by converting the scores

to probabilities as follows,

pθ(d | x) =
1

Zθ(x)
eγ·score(d) , (1.3)

where x is the input sentence, d is a derivation, γ is a scaling factor to adjust the sharpness
of the distribution (the larger γ is, the more peaked the distribution is), and Zθ(x) is a
normalization constant defined as,

Zθ(x) =
∑
d

eγ·score(d) . (1.4)

By marginalizing over the latent variable d, we can obtain

pθ(y | x) =
∑

d∈D(x,y)

pθ(d | x) , (1.5)

where D(x, y) represents the set of derivation trees that yield the input string x and the
output string y. In this way, a weighted hypergraph encodes a probability distribution
over derivation trees (and over translation strings as well).

transitions (or edges) between those states. By assigning a weight to the state/transition, we can obtain a
weighted finite state automaton (WFSA). In our presentation, we will simply use FSA regardless of whether
it is weighted or not.

10

dianzi0 shang1 de2 mao3

S 0,4

X→〈mao,a cat〉

X→〈X0 de X1,X0 X1〉

X→〈dianzi shang, the mat〉

X→〈X0 de X1,X1 on X0〉

X→〈X0 de X1,X1 of X0〉

S→〈X0,X0〉

X→〈X0 de X1,X0 ’s X1〉

X 0,4

X 0,2
X 3,4

(a) This hypergraph encodes four different derivation trees as
shown in the four figures below. Rectangles represent items (or
nodes), where each item is identified by the non-terminal symbol
and source span. An item has one or more incoming hyperedges,
which represent different ways of deriving the item. A hyper-
edge consists of a rule, and a pointer to an antecedent item for
each non-terminal symbol in the rule.

dianzi0 shang1 de2 mao3

X→〈mao,a cat〉
X→〈dianzi shang, the mat〉

S→〈X0,X0〉

X→〈X0 de X1,X1 on X0〉

(b) Translation: a cat on the mat

dianzi0 shang1 de2 mao3

X→〈mao,a cat〉

X→〈X0 de X1,X0 X1〉

X→〈dianzi shang, the mat〉

S→〈X0,X0〉

(c) Translation: the mat a cat

X→〈X0 de X1,X1 of X0〉

dianzi0 shang1 de2 mao3

X→〈mao,a cat〉
X→〈dianzi shang, the mat〉

S→〈X0,X0〉

(d) Translation: a cat of the mat

X→〈X0 de X1,X0 ’s X1〉

dianzi0 shang1 de2 mao3

X→〈mao,a cat〉
X→〈dianzi shang, the mat〉

S→〈X0,X0〉

(e) Translation: the mat ’s a cat

Figure 1.6: A toy hypergraph generated for the Chinese input “dianzi shang de mao,” and
the four derivation trees the hypergraph encodes.

11

1.4 Our Contributions
Given a weighted/probabilistic hypergraph, we might ask three questions. What atomic

operations can we perform on the weighted hypergraph? How do we set the parameter vec-
tor θ that weights the derivations in the hypergraph? Which particular translation (among
the possible translations encoded in a hypergraph) should we present to an end user? These
correspond to three fundamental problems: inference, training, and decoding, which are
the focus of the dissertation. Figure 1.7 shows the relationship between the three problems.
The atomic inference operations form a basis for the more sophisticated tasks (e.g., training
and decoding), and they can be exact or approximate.

Below, for each of the three fundamental problems, we will first give a brief review (see
Chapter 2 for a more thorough review), and then present our contributions.

 atomic inference operations
(e.g., finding one-best, k-best or expectation,
 inference can be exact or approximate)

decoding
(e.g., mbr)

training
(e.g., mert)

Figure 1.7: Relations among inference, decoding and training. Inference forms the
basis from which more sophisticated tasks like decoding and training can be performed.

1.4.1 First- and Second-order Expectation Semirings
Inference: Previous Work

Given a hypergraph, we may want to perform many atomic inference operations over
it. For example, we may want to find the most probable derivation tree (also called Viterbi
tree) in the hypergraph, or the k most probable trees. On a probabilistic hypergraph, we
may also want to compute some expectations (e.g., expected translation length or feature
expectation).

To perform the operations mentioned above, we usually use some dynamic program-
ming (DP) algorithms. We can develop a dedicated program for each operation. For ex-
ample, we may use a variant of the well-known Viterbi algorithm (Viterbi, 1967) to find
the Viterbi tree. However, a more general framework to specify DP algorithms is semiring-
weighted logic programming (Pereira and Warren, 1983; Shieber et al., 1994; Goodman,
1999; Eisner, Goldlust, and Smith, 2005; Lopez, 2009).7 Under this framework, to perform

7 In a nutshell, a semiring is a set with two operations and two identities. We write K = 〈K,⊕,⊗, 0, 1〉

12

a different inference task, we just need to use a different semiring while other components
in the framework remain unchanged. Goodman (1999) describes many useful semirings
(e.g., Viterbi and k-best). While these semirings are mainly used at “testing” time, Eisner
(2002) proposes an expectation semiring (for an FSA), which can be used for computing
expectations that are useful for training (i.e., parameter estimation).

Our Contribution

We first extend the expectation semiring (Eisner, 2002), which was originally proposed
for a finite-state machine, to a hypergraph. We then propose a novel second-order expecta-
tion semiring, nicknamed the “variance semiring.”

The first-order expectation semiring allows us to efficiently compute a vector of first-
order statistics (expectations; first derivatives) on the set of paths in an FSA or the set
of trees in a hypergraph. The second-order expectation semiring additionally computes a
matrix of second-order statistics (expectations of products; second derivatives (Hessian);
derivatives of expectations).

We present details on how to compute many interesting quantities over the hypergraph
using the expectation and variance semirings. These quantities include expected hypothe-
sis length, feature expectation, entropy, cross-entropy, Kullback-Leibler divergence, Bayes
risk, variance of hypothesis length, gradient of entropy and Bayes risk, covariance and
Hessian matrix, and so on. The variance semiring is essential for many interesting training
paradigms such as deterministic annealing (Rose, 1998), minimum risk (Smith and Eisner,
2006), active and semi-supervised learning (Grandvalet and Bengio, 2004; Jiao, Wang,
Lee, Greiner, and Schuurmans, 2006). In these settings, we must compute the gradient
of entropy or risk. The semirings can also be used for second-order gradient optimization
algorithms.

1.4.2 Unsupervised Discriminative Training
Discriminative Training: Previous Work

Given a set of training examples (e.g., bilingual data in an MT task), the goal of a
discriminative training method is to find an optimal weight vector θ∗ where optimality is
measured in terms of translation quality. This has been attempted in several works in the
context of MT, by using various discriminative procedures such as minimum error rate
training (Och, 2003; Macherey, Och, Thayer, and Uszkoreit, 2008), averaged Perceptron
(Liang, Bouchard-Côté, Klein, and Taskar, 2006), maximum conditional likelihood (Blun-
som, Cohn, and Osborne, 2008), minimum risk (Smith and Eisner, 2006; Li and Eisner,
2009), and MIRA (Watanabe, Suzuki, Tsukada, and Isozaki, 2007; Chiang, Knight, and

for a semiring with elements K, additive operation ⊕, multiplicative operation ⊗, additive identity 0, and
multiplicative identity 1. As an example, the set of non-negative real numbers is a semiring 〈R∞0 ,+,×, 0, 1〉.

13

Wang, 2009). These procedures can significantly improve MT quality, because they di-
rectly optimize a performance metric and because they allow more complex models. How-
ever, one common drawback of such work is that it relies on the existence of high-quality
in-domain supervised data (i.e., bilingual data), which is expensive to obtain, especially for
a novel domain (e.g., web blog) or a low-resource language pair (e.g., between Urdu and
English).

We present two unsupervised discriminative training methods: minimum imputed-risk
and contrastive language model estimation, which rely on monolingual English data, but
not its corresponding Chinese inputs.

Our Contribution: Minimum Imputed-Risk

When we only have monolingual English data, optimizing the performance of the trans-
lation system is a curious idea, since there is no Chinese input x to translate. Our solution
is conceptually straightforward and relies on a reverse translation model (i.e., a model for
English-to-Chinese translation). Specifically, we first guess the input x probabilistically
from the observed output y using the reverse (English-to-Chinese) model. Then we train
the discriminative Chinese-to-English system to do a “good job” at translating this imputed
x back to y, in the sense of optimizing a given performance metric (e.g., BLEU (Papineni,
Roukos, Ward, and Zhu, 2001)). Our method is theoretically sound and can be explained as
minimizing imputed risk. Our method is also intuitive: it tries to ensure that probabilistic
“round-trip” translation from the target-language sentence to the source language and back
again will have low expected loss. Our experiments show that unsupervised discrimina-
tive training performs similarly to the supervised case, and often better. Also, augmenting
supervised training with unsupervised data improves the performance.

Our Contribution: Contrastive Language Model Estimation

The minimum imputed-risk relies on a reverse translation model. We propose an-
other unsupervised method, contrastive language model estimation, which can also exploit
monolingual English data to perform discriminative training, but does not require a reverse
system. It works as follows. We first extract a confusion grammar from a bilingual gram-
mar. Specifically, whenever in the bilingual grammar we see two rules that have the same
Chinese side (say “cn1”) but two different English sides (say “eng1” and “eng2”) , we
will extract a confusion rule X → 〈eng1, eng2〉. The confusion rule is English to English
and captures the confusion that an MT system will have when translating the Chinese-side
“cn1”. Now, given a good English sentence ỹ, we use the confusion grammar to produce
many alternate English sentences y. This can be done as regular MT decoding as we can
think that we are decoding the ỹ using an English-to-English “translation” system. The set
of y generated can be thought as alternative translations generated by the SMT system if it
had known the corresponding Chinese input x. Now, we can train a discriminative model
on the generated data y (with the original English sentence ỹ as the training reference)

14

such that the original sentence ỹ will be highly liked by the model. The trained contrastive
model can then be used as a regular language model for real MT decoding (e.g., translating
Chinese to English).

Our experimental results show that the contrastive language model (CLM) performs
better than a regular n-gram LM in terms of recovering an English sentence from its neigh-
borhood (i.e., a set of alternative sentences that are generated from the English sentence).
The CLM also improves the performance of an MT system.

1.4.3 Variational Decoding

Decoding: Previous Work

Given an input sentence x, an SMT system usually generates many possible translations
y (along with the derivations d) that are encoded in a hypergraph. However, an end user
may be interested in only a single translation for the input. So, the question is which one the
system should present to the user. This is the decoding problem. In general, there are two
kinds of decoding rules: maximum a posterior (MAP) and minimum Bayes risk (MBR)
decoding.

Under the MAP decoding rule, the goodness of a translation string y is its posterior
probability p(y | x), which is the sum of the probabilities of all the derivations yielding x
and y (see the formula of (1.5)). Since a hypergraph contains exponentially many trans-
lation strings and we need to carry out the above summation for each string, the MAP
decoding problem turns out to be NP-hard as shown by Sima’an (1996) for a similar prob-
lem. Therefore, most systems (Koehn et al., 2003; Chiang, 2007) merely identify the single
most probable derivation and report the corresponding string (i.e., the English yield of the
derivation). This corresponds to a Viterbi approximation that measures the goodness of an
output string using only its most probable derivation, ignoring all the others.

On the other hand, under the MBR decoding, the badness of a translation string y is
its expected loss (or risk, see Chapter 2 for a definition), and we want to find a string that
has minimum risk. In contrast to the MAP decoding, which chooses the translation with
a maximum posterior probability, the MBR decoding will tend to choose a translation that
most resembles the rest of the translations in the hypergraph. MBR decoding has been
applied to MT for a k-best (Kumar and Byrne, 2004) or an FSA (Tromble, Kumar, Och,
and Macherey, 2008) or a hypergraph (Kumar, Macherey, Dyer, and Och, 2009).

Our Contribution

As mentioned, MAP decoding under spurious ambiguity is intractable, and one usually
uses a Viterbi approximation that ignores most of the derivations produced by the system.
We propose a variational method that considers all the derivations but still allows tractable
decoding. Given an input string, the original system produces a probability distribution p
over possible output strings and their derivations. Our method constructs a second distribu-

15

tion q ∈ Q that approximates p as well as possible, and then finds the best string according
to q. The last step is tractable because each q ∈ Q is defined (unlike p) without reference
to the hidden derivations. Notice that q here does not approximate the entire translation
process, but only the distribution over output strings for a particular input. This is why it
can be a fairly good approximation even without looking at the hidden derivations.

In practice, we approximate with several different variational familiesQ, corresponding
to n-gram (Markov) models of different orders. We geometrically interpolate the resulting
approximations q with one another (and with the original distribution p), justifying this
interpolation as similar to the minimum-risk decoding for BLEU8 proposed by Tromble
et al. (2008). Experiments show that our approach improves the state of the art.

Our method should be applicable to collapsing spurious ambiguity for other tasks as
well. Such tasks include data-oriented parsing (DOP), applications of Hidden Markov
Models (HMMs) and mixture models, and other models with latent variables.

1.5 Roadmap
The dissertation is organized as follows. In Chapter 2, we will give a thorough review

of the inference, decoding, and training methods that work for a hypergraph. The goal of
this chapter is to give the readers who know little about MT (but have a good understand-
ing on algorithms and statistical modeling in general) a global picture about the state of
the art methods developed for hypergraphs in the context of MT. Readers who are familiar
with these techniques can safely skip this chapter (although in later chapters we may refer
back to the material presented in this chapter). The four chapters following Chapter 2 will
present the main contributions of the dissertation. Specifically, Chapter 3 will present the
first- and second-order expectation semirings that can be used to compute a large number
of expectations over a hypergraph. These expectations will be useful both for the train-
ing and decoding methods presented in the three chapters followed right after Chapter 3.
Readers who are less interested in computational efficiency can safely skip this chapter if
they feel comfortable to assume that the expectations can be computed efficiently. The two
chapters followed after will present the two unsupervised discriminative training methods,
specifically, Chapter 4 for minimum imputed-risk, and Chapter 5 for contrastive language
model estimation. Then, Chapter 6 will present the variation decoding, which should be
quite independent from the other chapters. Finally, we will conclude in Chapter 7.

8BLEU (Papineni et al., 2001) is an automatic metric that measures how good a translation is compared
with some reference translations.

16

Chapter 2

Inference, Decoding, and Training
Methods over Hypergraphs: a Review

In this chapter, we present a review of the inference, decoding, and training methods
that work on hypergraphs.1 As mentioned, any finite-state automaton (FSA) can also be
encoded as a hypergraph (in which every hyperedge is an ordinary edge that connects a
single antecedent to a consequent).2 Thus, the methods reviewed here apply directly to
FSAs.

2.1 Definitions, Notations and Terminologies
Table 2.1 lists notation that will be used throughout the dissertation. Specifically, we

use x to denote the input string in the source language, ỹ to denote the reference translation
in the target language, y to denote any candidate translation considered by an SMT system,
and y∗ to denote the translation that is actually produced. We use L(y, ỹ) represents the
loss of y if the true answer is ỹ, and the loss used in this dissertation is the negated BLEU

score (Papineni et al., 2001).
We use d to represent a derivation, and X(d) and Y(d) to denote its source- and target-

language yield, respectively. We use D(x) (abbreviated as D when appropriate) to denote
a set of derivations that are considered by the system for the input x, and D(x, y) to denote
a subset of derivations that yield the input x and output y. We use T(x) to denote the set of
all possible translation strings considered by the system.

For each input sentence x, we assume a hypergraph HG(x), which encodes a proba-
bility distribution over derivations (i.e., p(d | x)) and a distribution over translation strings
(i.e., p(y | x)). Recall that a hypergraph is a pair 〈V,E〉, where V is a set of nodes (ver-
tices) and E is a set of hyperedges, with each hyperedge connecting a set of antecedent

1Readers who are familiar with these techniques can safely skip this chapter (although the notations in
Table 2.1 will be used in later chapters).

2Note that we assume the hypergraph generated is acyclic, which is true for most MT systems.

17

Notation Meaning
x input sentence
ỹ reference translation
y any candidate translation considered by an SMT system
y∗ the translation produced by an SMT system
L(y, ỹ) the loss (e.g negated BLEU) incurred by producing y if the true answer is ỹ
d a derivation tree
Y(d) the target-language yield of d
D(x) or D a set of derivations generated for x
D(x, y) a set of derivations that yield input x and output y
T(x) a set of translation strings generated for x
HG(x) a hypergraph generated for x
T (e) a set of antecedent nodes of the hyperedge e
I(v) a set of incoming hyperedges of node v

Table 2.1: Main notations used in the dissertation

nodes to a single consequent node. We write T (e) to denote the set of antecedent nodes of
a hyperedge e, and I(v) for the set of incoming hyperedges of node v (i.e., hyperedges of
which v is the consequent), which represent different ways of deriving v.

2.2 Atomic Inference Operations Over Hypergraphs

Given a weighted/probabilistic hypergraph, one might be interested in efficiently per-
forming some atomic operations over it. In this section, we will give a list of such opera-
tions.

2.2.1 Counting Number of Derivations

We might be interested in knowing how many derivations are encoded in a hypergraph.
For example, there are four derivations in the hypergraph of Figure 1.6(a). Knowing the
number of derivations may give us a sense how big the search space is and thus how com-
putationally expensive the search problem will be. Equivalently, given an FSA, we may be
interested in counting the number of paths in it. In Section 2.3, we will show how to count
the number of derivations/paths by using a counting semiring.

18

Graph Topological Best-first
no heuristic with heuristic with hierarchy

FSA Viterbi Dijkstra A∗ HA∗

Hypergraph CYK Knuth Klein and Manning Generalized A∗

Table 2.2: Algorithms for extracting one-best from an FSA or hypergraph

2.2.2 Finding One-best Derivation (or Viterbi Derivation)
Very often, we are interested in finding the best derivation in the hypergraph where the

goodness of a derivation is measured by some score, that is,

d∗ = argmax
d∈D

score(d) (2.1)

where score(d) is usually the model score assigned by θ as in (1.2) of page 9, although it
can be any other metric of d (see the oracle extraction example later).

The problem above is the same as the lightest derivation problem defined by Knuth
(1977) for a hypergraph. It is also equivalent to the shortest-path problem for an FSA (Di-
jkstra, 1959). Table 2.2 shows the classical algorithms that solve this problem. In general,
the algorithms can be classified by whether the search follows a certain topological order
or best-first. The well-known Viterbi (Viterbi, 1967) algorithm for an FSA and the Cocke-
Younger-Kasami (CYK) algorithm (alternatively called CKY) for a hypergraph search the
graph in a topological order.3 In the best-first search category, we can further classify the
algorithms by whether heuristic functions are used for estimating the cost from the current
node to the goal node. The algorithms described by Dijkstra (1959) and Knuth (1977) are
the classical ones without using a heuristic function, that is, they assume the lower bound
of the cost from the current node to the goal node is always equal to zero. The well-known
A* algorithm (Hart and Raphael, 1968) and its variant for a hypergraph (Klein and Man-
ning, 2003) follow the latter category. The A∗ algorithm can be extended to a hierarchical
version where multiple layers of heuristics are organized in a hierarchial manner. This
is called hierarchial A∗ (HA∗) (Holte, Perez, Zimmer, and Macdonald, 1996) or general-
ized A∗ for a hypergraph (Felzenszwalb and McAllester, 2007). All these algorithms are
forward-chaining (meaning the search is from the ground truths to the goal node), but it is
also possible to do backward-chaining (meaning the search starts from the goal node and
then recursively derives its support) or a combination.

Oracle Translation/Tree

While a hypergraph represents a very large set of translations, it is quite possible that
the reference translation is not contained in the hypergraph, due to pruning or the inherent

3Note that the CYK algorithm is also responsible for constructing the hypergraph itself.

19

deficiency in the translation model. In this case, we want to find the translation in the hy-
pergraph that is most similar to the reference translation, with similarity computed by some
metric such as BLEU. Such maximally similar translation will be called oracle translation,
and the process of extracting it oracle extraction. In practice, we first extract an oracle
tree, and then read its target-language yield as the oracle translation.4 Formally, the oracle
extraction problem can be defined as,

d∗ = argmax
d∈D

score(d)

= argmax
d∈D

−L(Y(d), ỹ)

where L(y′, ỹ) is the loss (e.g., negated BLEU) of y′ if the true answer is ỹ. The oracle
translation/tree will be useful for discriminative training as we will see later in Section 2.6.
Dreyer, Hall, and Khudanpur (2007); Leusch, Matusov, and Ney (2008) present oracle
extraction algorithms for an FSA while Li and Khudanpur (2009a) present a version for a
hypergraph.

2.2.3 Finding k-best Derivations
In addition to one-best, we might also be interested in finding the k-best derivations.

The k-best can be used to approximate the full hypothesis space when we perform so-
phisticated decoding (e.g., MBR decoding in Section 2.5) and discriminative training (e.g.,
MERT in Section 2.6), which it may be too expensive to perform over the full hypothesis
space. It will also be useful for reranking where we can apply more sophisticated features
on the k-best, but not on the full hypothesis space due to intractability in dynamic program-
ming. Similarly, we might also be interested in finding k-best oracle translations. Mohri
and Riley (2002) present efficient algorithms to find a k-best on an FSA, and Huang and
Chiang (2005) present versions for a hypergraph. More recently, Pauls and Klein (2009)
present an A* variant.

2.2.4 Finding Partition Functions, Expectations, and Gradients
In a weighted hypergraph, each derivation d has a weight. Essentially, it defines a

function p : D → R≥0, where p(d) specifies a probability distribution over the derivations
in the hypergraph. This probability distribution may be unnormalized, from which we can
obtain a normalized probability distribution by dividing p(d) with a normalization constant
(alternatively called the partition function), defined as,

Z
def
=

∑
d∈D

p(d) (2.2)

4It is possible that multiple translations have the same BLEU scores. Even for a particular oracle trans-
lation, there might be many distinct oracle derivation trees yielding it, due to spurious ambiguity. In these
cases, we break ties in an arbitrary manner.

20

In addition to p(d), we may also be given functions of interest, say, r, s : D → R, and
we may be interested in computing the following expectations on the hypergraph HG:

r
def
=

∑
d∈D

p(d)r(d) (2.3)

s
def
=

∑
d∈D

p(d)s(d) (2.4)

t
def
=

∑
d∈D

p(d)r(d)s(d) (2.5)

For example, r(d) (and s(d)) can be the length of the translation corresponding to derivation
d. Then r/Z (and s/Z) is the expected hypothesis length in the hypergraph, and the second-
order statistic t/Z is the second moment of the length distribution, from which we can find
the variance of hypothesis length since t/Z−(r/Z)2. A more interesting expectation might
be the entropy of the distribution p(d), that is,

H(p) = −
∑
d∈D

(p(d)/Z) log(p(d)/Z)

Chapter 3 will show more examples of expectations, and show that the gradients with re-
spect to the parameters θ that parameterize p(d) are also expectations.

The normalization constant Z and the first-order expectations r and s can be found by
using the classical forward-backward algorithm (Baum., 1972) for an FSA and the inside-
outside algorithm (Baker, 1979) for a hypergraph. However, a more general way for com-
puting them is to use an expectation semiring (Eisner, 2002) which was originally proposed
for an FSA. We extend it to a hypergraph, and propose a novel second-order expectation
semiring that can be used to additionally compute the second-order expectation t. Please
refer to Chapter 3 for details.

2.2.5 Integrating an n-gram model into a Hypergraph
All the operations above are for a single graph (e.g., a hypergraph or FSA). In some

cases, we may need to perform an operation on more than one graph. For example, we
may want to integrate an n-gram language model into a hypergraph (so that each derivation
in the hypergraph will have a language model score, in addition to the scores assigned by
other models). Figure 2.1 shows two hypergraphs, where the hypergraph of Figure 2.1(b)
integrates a bigram language model (LM), but the one of Figure 2.1(a) does not. In the
hypergraph without integrating an n-gram LM, the state information of a node includes
the nonterminal symbol (e.g., X) and the source indices (e.g., (0,4)). In contrast, in a
hypergraph with an n-gram LM, the state of a node should contain additional information
to remember the (n− 1) words on the left (or right) corner of the node (these are called n-
gram states or language model states). One way to view this is that a node in a hypergraph
without integrating an n-gram model is split into many nodes after integrating an LM.

21

dianzi0 shang1 de2 mao3

S 0,4

X→〈mao,a cat〉

X→〈X0 de X1,X0 X1〉

X→〈dianzi shang, the mat〉

X→〈X0 de X1,X1 on X0〉

X→〈X0 de X1,X1 of X0〉

S→〈X0,X0〉

X→〈X0 de X1,X0 ’s X1〉

X 0,4

X 0,2
X 3,4

(a) A hypergraph without using a bigram LM. A node
is identified by the nonterminal and source indices.

dianzi0 shang1 de2 mao3

S 0,4

X 0,4 the · · · cat X 0,4 a · · · mat

X 0,2 the · · · mat X 3,4 a · · · cat

X→〈mao,a cat〉

X→〈X0 de X1,X0 X1〉

X→〈dianzi shang, the mat〉

X→〈X0 de X1,X1 on X0〉

S→〈X0,X0〉

X→〈X0 de X1,X1 of X0〉

S→〈X0,X0〉

X→〈X0 de X1,X0 ’s X1〉

(b) A hypergraph integrated with a bigram LM. A node
is identified by the nonterminal, source indices, and the
word on the left/right corner of the node.

Figure 2.1: Hypergraphs with/without integrating a bigram model. The hypergraph of
(b) integrates a bigram LM, while the one of (a) does not.

Clearly, the hypergraph becomes bigger after integrating an n-gram LM. In the example
of Figure 2.1, the number of nodes increase from four to five, while the number of edges
increases from seven to eight. The increase of the size will be much more substantial for a
realistic hypergraph. In fact, this is a major challenge in making syntax-based MT decoding
scalable. There are several ways to reduce the size of the hypergraph with an integrated
LM. One is to collapse the n-gram states by exploiting the backoff structure of the LM
as done by Li and Khudanpur (2008a). This does the exact integration. There are also
approximate techniques such as cube-pruning (see Section 2.4.1).

22

More formally, we can think of integrating an n-gram model into a hypergraph as an
intersection between a synchronous context free grammar (SCFG) and an finite state au-
tomaton (FSA). This can be illustrated as follows. A hypergraph (see Figure 2.1(a)) that
is generated for a given input x and without integrating an n-gram model essentially rep-
resents a SCFG, except that the rules in the grammar are filtered by the input sentence x
and are “instantiated” at a particular position. Moreover, an n-gram language model can
be represented as an FSA (Allauzen, Mohri, and Roark, 2003). Therefore, integrating an
n-gram model into a hypergraph correspond to an intersection operation between an SCFG
and FSA.

2.3 Exact Inference over Hypergraphs: Semiring Parsing
One can implement a dedicated dynamic programming algorithm to solve each individ-

ual inference problem described above. In this section, we will present a more appealing
framework: seimiring parsing (Goodman, 1999), which is a unified framework to describe
such dynamic programming algorithms.

2.3.1 What is a semiring?
In a nutshell, a semiring is a set with two operations and two identities. We write

K = 〈K,⊕,⊗, 0, 1〉 for a semiring with elements K, additive operation ⊕, multiplicative
operation ⊗, additive identity 0, and multiplicative identity 1. As an example, the set of
non-negative real numbers is a semiring 〈R∞0 ,+,×, 0, 1〉.

A semring has to satisfy some axiomatic properties. Namely, ⊕ is associative and
commutative with identity 0, ⊗ is associative with two-sided identity 1, and ⊗ distributes
over ⊕ from both sides.

2.3.2 Semiring-Weighted Inside Algorithm
To compute a particular quantity (e.g., number of derivations) on a hypergraph, one can

follow the following recipe,

1. choose a semiring K

2. specify a “weight” ke ∈ K for each hyperedge e

3. run the inside algorithm (see Figure 2.2).

The quantity we are seeking will then be the inside weight at the root node (i.e, β(root)),
which is the total weight of all derivations in the hypergraph.

As shown in Figure 2.2, the ⊗ operation is used to obtain the weight of each derivation
d by multiplying the weights of its component hyperedges e, that is, kd =

⊗
e∈d ke. The ⊕

23

Name Semiring K = 〈K,⊕,⊗, 0, 1〉 Purpose
Boolean 〈{true, false},∨,∧, false, true〉 decide whether to accept a string
Viterbi score 〈R1

0,max,×, 0, 1〉 probability of best derivation
Inside score 〈R1

0,+,×, 0, 1〉 probability of a string
Counting 〈R∞0 ,+,×, 0, 1〉 count the number of derivations

Table 2.3: Several example semirings. These semirings can be used to compute different
quantities on a hypergraph.

operation is used to sum over all derivations d in the hypergraph to obtain the total weight
of the hypergraph HG, which is

⊕
d∈D kd.

As an example, to count the number of derivations in a hypergraph, one can use the
so-called counting semiring (which is the set of ordinary integers), assign every hyperedge
weight 1 (therefore each derivation also has weight 1), and run the inside algorithm of
Figure 2.2. 5 The total weight returned by the algorithm will be the number of derivations.
Figure 2.3 shows how the inside algorithm of Figure 2.2 works for this example.

In general, the total weight is a sum over exponentially many derivations d. But Fig-
ure 2.2 sums over these derivations in time only linear in the size of the hypergraph (i.e.,
number of hyperedges). Its correctness relies on axiomatic properties of the semiring. The
distributive property is what makes Figure 2.2 work. The other properties are necessary to
ensure that

⊕
d∈D

⊗
e∈d ke is well-defined.6

The algorithm in Figure 2.2 is general and can be applied with any semiring. Table 2.3
present several simple examples. Goodman (1999) shows several more semirings, e.g.,
Viterbi-derivation semiring (which computes not only the Viterbi score, but also the deriva-
tion itself) and k-best derivations semiring. In Chapter 3, we will introduce the first- and
second-order expectation semirings, which can be used to compute a large number of ex-
pectations on a hypergraph.

2.4 Approximate Inference over Hypergraphs
In some cases, exact inference (e.g., the operations discussed in Section 2.2) may not

be tractable or is just too slow. For example, as discussed in Section 2.2.5, intersecting an
SCFG grammar (e.g., the Hiero grammar) with a finite state automaton (e.g., an n-gram

5Figure 2.2 shows how to compute the total weight of an acyclic hypergraph HG, where we assume the
HG has already been built by deductive inference (Shieber et al., 1994). But in practice, the nodes’ inside
weights β(v) are usually accumulated as the hypergraph is being built, so that pruning heuristics can consult
them.

6Actually, the notation
⊗

e∈d ke assumes that ⊗ is commutative as well, as does the notation “for u ∈
T (e)” in our algorithms; neither specifies a loop order. One could however use a non-commutative semiring
by ordering each hyperedge’s antecedents and specifying that a derivation’s weight is the product of the
weights of its hyperedges when visited in prefix order.

24

INSIDE(HG,K)

1 for v in topological order on HG � each node
2 � find β(v)←⊕

e∈I(v)(ke ⊗ (
⊗

u∈T (e) β(u)))

3 β(v)← 0
4 for e ∈ I(v) � each incoming hyperedge
5 k ← ke � hyperedge weight
6 for u ∈ T (e) � each antecedent node
7 k ← k ⊗ β(u)
8 β(v)← β(v)⊕ k
9 return β(root)

Figure 2.2: Inside algorithm for an acyclic hypergraph HG, which provides hyperedge
weights ke ∈ K. This computes all “inside weights” β(v) ∈ K, and returns β(root), which
is total weight of the hypergraph, i.e.,

⊕
d∈D

⊗
e∈d ke.

language model) is very slow. When exact inference is intractable, one has to resort to
approximations. Below, we will review two flavors of approximations: heuristic-based and
“principled”-based.

2.4.1 Heuristic-based Approximation
When exact inference is intractable for a particular task, a researcher who has a good

understanding of the task will be able to identify key heuristics that are useful for finding
approximate solutions. Below, we present two examples of heuristics that aim to speed up
intersection between an SCFG and an n-gram model.

Cube-pruning

In parsing, a common operation is to combine small items (in the parse chart) to obtain
bigger items by applying some rules. For example, the rule X → 〈X0, X1〉 can combine
two small items X0 and X1 to get a bigger one. As mentioned in Section 2.2.5, when
intersecting an SCFG with an n-gram model, the item will contain the n-gram states in
addition to the nonterminal and source indices. Therefore, the number of such items will be
very big. Also, there might be a large number of rules that can be used to combine items.
Figure 2.4 shows that the space of combinations (of items using rules) form a cube. An
exact intersection algorithm will compute all the possible combinations in the cube. This is
too expensive. In contrast, the cube-pruning algorithm (Chiang, 2007) will explore a small
corner of the cube. It works as follows. It first sorts the rules and the items along each
axis of the cube (see Figure 2.4), then explores the combinations in a best-first manner, and
stops whenever the cost of a new combination is worse than that of the best combination

25

dianzi0 shang1 de2 mao3

v3
v4

v2

v5

e2

e6e5

e4

e7 e8

v3

e3

v4

v1 v2

v5

e1 e2

e6e5

e4

e7 e8

! !

!!

!!

!!

(a) each edge is set with a weight of 1

dianzi0 shang1 de2 mao3

v3
v4

v2

v5

e2

e6e5

e4

e7 e8

v3

e3

v4

v1 v2

v5

e1 e2

e6e5

e4

e7 e8

k(v1)=!

! !

!!

!!

!!

(b) compute the weight at node v1

dianzi0 shang1 de2 mao3

v3
v4

v2

v5

e2

e6e5

e4

e7 e8

v3

e3

v4

v1 v2

v5

e1 e2

e6e5

e4

e7 e8

k(v1)=!

! !

!!

!!

!!

k(v2)=!

(c) compute the weight at node v2

dianzi0 shang1 de2 mao3

v3
v4

v2

v5

e2

e6e5

e4

e7 e8

v3

e3

v4

v1 v2

v5

e1 e2

e6e5

e4

e7 e8

k(v1)=!

! !

!!

!!

!!

k(v2)=!

k(v3)="

(d) compute the weight at node v3

dianzi0 shang1 de2 mao3

v3
v4

v2

v5

e2

e6e5

e4

e7 e8

v3

e3

v4

v1 v2

v5

e1 e2

e6e5

e4

e7 e8

k(v1)=!

! !

!!

!!

!!

k(v2)=!

k(v3)=" k(v4)="

(e) compute the weight at node v4

dianzi0 shang1 de2 mao3

v3
v4

v2

v5

e2

e6e5

e4

e7 e8

v3

e3

v4

v1 v2

v5

e1 e2

e6e5

e4

e7 e8

k(v1)=!

! !

!!

!!

!!

k(v2)=!

k(v3)=" k(v4)="

k(v5)=#

(f) compute the weight at node v5

Figure 2.3: These figures show how the inside algorithm from Figure 2.2 can be used to
compute the number of trees by using a counting semiring.

explored so far by a margin. This is based on the heuristic that if an item falls outside the
beam, then any item that would be generated due to a combination using a lower-scoring

26

Rule

Item1

Item0

Figure 2.4: There are three axes (i.e., “Rule”, “Item0”, and “Item1”) in parsing, and many
possibilities along each axis. A rule will combine two small antecedent items to create a
new bigger item. Such combinations form a cube.

rule or a lower-scoring antecedent item is also assumed to fall outside the beam. In this
way, the vast majority of combinations gets pruned, and thus the intersection speeds up
significantly. Huang and Chiang (2007) propose an extended version called cube-growing,
and Hopkins and Langmead (2009) generalize cube-pruning as heuristic search.

Coarse To Fine Decoding

Another way to speed up the intersection between an SCFG and an n-gram model is the
so-called coarse to fine decoding (Zhang and Gildea, 2008; Petrov, Haghighi, and Klein,
2008). It works as follows. Suppose we want to intersect an SCFG with a 5-gram LM.
Instead of directly intersecting the SCFG with the 5-gram LM, we will first intersect the
hypergraph with a unigram LM (for which we do not need to maintain any language model
state). Then, we will run inside-outside on the hypergraph to compute the posterior/Viterbi
probability of each hyperedge and node in the hypergraph, and prune out any hyperedge
or node that has a low probability. Then, we will intersect the pruned hypergraph with a
bigram LM. Again, we can prune the intersected hypergraph, after which we will integrate
a trigram LM. This process continues until the 5-gram LM is integrated. The key intuition
here is that if a hyperedge/node has a very low probability under a coarse model (e.g., a
lower-order n-gram model) then it may not be worth considering it under the refined model
(e.g., a high-order n-gram model).

27

2.4.2 “Principled” Approximations
In machine learning, there are several popular approaches to approximate inference

when exact inference is intractable or too difficult. These methods are general and can be
applied to a broad class of problems. They fall broadly into two classes: stochastic and
deterministic (Bishop, 2006). Stochastic techniques such as Markov Chain Monte Carlo
(MCMC) sampling are exact in the limit of infinite runtime, but tend to be too slow for large
problems. By contrast, deterministic variational methods (Jordan, Ghahramani, Jaakkola,
and Saul, 1999), including message-passing such as belief propagation (Minka, 2005), are
inexact but scale up well. They approximate the original intractable distribution with one
that factorizes better or has a specific parametric form (e.g., Gaussian).

Examples of using these techniques to solve difficult machine translation problems in-
clude MCMC sampling for maximum a posterior decoding and minimum Bayes risk decod-
ing (Arun, Dyer, Haddow, Blunsom, Lopez, and Koehn, 2009), and variational inference
for maximum a posterior decoding (Li, Eisner, and Khudanpur, 2009b). We will describe
variational decoding in Chapter 6. Here we briefly review how to apply the MCMC sam-
pling for MT. In a nutshell, it uses a sampler to draw some sample derivations from the
hypergraph (that defines a probability distribution of derivations), and then perform infer-
ence on the samples (instead of on the original hypergraph). For example, we can find the
Viterbi derivation in the samples, or compute some expectations on the samples. This is
quite similar to the idea of using a k-best to approximate the full hypothesis space when
performing inference (see Section 2.2.3). In particular, the samples can be thought as ran-
domized k-“best” derivations.

Examples of using approximate inference to solve NLP problems other than MT in-
cludes belief propagation for dependency parsing (Smith and Eisner, 2008) and for mor-
phology analysis (Dreyer and Eisner, 2009).

2.5 Decoding Methods over Hypergraphs
Given an input sentence x, an SMT system usually generates many possible translations

y (along with their derivations d), which are encoded in a compact manner in a hypergraph.
However, an end user may be interested in only a single translation of the input. So, the
question is which translation the system should present to the user. This is the decoding
problem. In general, there are two kinds of decoding rules: maximum a posteriori or its
generalization (see footnote 8), minimum Bayes risk, as we will describe below.

2.5.1 Maximum A Posteriori (MAP) Decoding
The maximum a posteriori (MAP) decision rule is

y∗ = arg max
y∈T(x)

p(y | x) (2.6)

28

Under MAP, the goodness of a translation string y is its posterior probability p(y | x),
which we can obtain from p(d | x) by marginalizing out d. Therefore, the MAP decision
rule becomes

y∗ = arg max
y∈T(x)

∑
d∈D(x,y)

p(d | x) (2.7)

where D(x, y) is the set of derivations d that yield x and y. Our derivation set D(x) is
encoded in polynomial space, using a hypergraph or FSA. However, both |D(x)| and |T(x)|
may be exponential in |x|. Since the marginalization needs to be carried out for each
member of T(x), the decoding problem of (2.7) turns out to be NP-hard,7 as shown by
Sima’an (1996) for the similar problem of fending the most probable tree under the data
oriented parsing (DOP) framework.

Viterbi Approximation

To approximate the intractable decoding problem of (2.7), most MT systems (Koehn
et al., 2003; Chiang, 2007) use a simple Viterbi approximation,

y∗ = argmax
y∈T(x)

pViterbi(y | x) (2.8)

= argmax
y∈T(x)

max
d∈D(x,y)

p(d | x) (2.9)

= Y

(
argmax
d∈D(x)

p(d | x)

)
(2.10)

where Y(·) denotes the yield of the Viterbi derivation. Clearly, (4.6) replaces the sum in
(2.7) with a max. In other words, it approximates the probability of a translation string by
the probability of its most-likely derivation. (4.6) is found quickly via (2.10). The Viterbi
approximation is simple and tractable, but it ignores most derivations.

k-best Approximation (or Crunching)

Another popular approximation enumerates the k best derivations in D(x), a set that
we call KD(x). Modifying (2.7) to sum over only these derivations is called crunching by
May and Knight (2006):

y∗ = argmax
y∈T(x)

pcrunch(y | x) (2.11)

= argmax
y∈T(x)

∑
d∈D(x,y)∩KD(x)

p(d | x).

7Note that the marginalization for a particular y would be tractable; it is used at training time in cer-
tain training objective functions, e.g., maximizing the conditional likelihood of a reference translation (see
Section 2.6).

29

Variational Decoding

The Viterbi and crunching methods approximate the intractable decoding of (2.7) by
ignoring most of the derivations. In Chapter 6, we will present a novel variational approxi-
mation, which considers all the derivations but still allows tractable decoding. Essentially,
it approximates the intractable distribution p in the MAP decoding with a simpler distribu-
tion q, and then uses q as a surrogate for decoding.

2.5.2 Minimum Bayes Risk (MBR) Decoding
In place of the MAP decoding, another commonly used decision rule is minimum Bayes

risk (MBR):

y∗ = argmin
y

R(y) (2.12)

= argmin
y

∑
y′

L(y, y′)p(y′ | x) (2.13)

where L(y, y′) represents the loss of y if the true answer is y′, and the risk of y is its
expected loss.8 Statistical decision theory shows MBR is optimal if p(y′ | x) is the true
distribution, while in practice p(y′ | x) is given by a model at hand. In contrast to the MAP
decoding, which chooses the translation with a maximum posterior probability, the MBR
decoding will tend to choose a translation that most resembles the rest of the candidate
translations.

Applying MBR to a hypergraph

While applying MBR to a k-best list, as done by Kumar and Byrne (2004), is relatively
simple, its application to a compact data structure (e.g., FSA or hypergraph) is more in-
volved. Tromble et al. (2008) describe a method on an FSA, while DeNero, Chiang, and
Knight (2009); Kumar et al. (2009) apply it to a hypergraph.

The methods that work on a hypergraph have to use an approximate BLEU since the
original BLEU is not linearly decomposable with respect to the hyperedges on the hyper-
graph. Tromble et al. (2008) propose the following loss function, of which a linear approx-
imation to BLEU is a special case:

L(y, ỹ) = −(θ0|y|+
∑
w∈N

θ|w|cw(y)δw(ỹ)) (2.14)

where w is an n-gram type, N is a set of n-gram types with n ∈ [1, 4], cθ(y) is the number
of occurrences of the n-gram w in y, δθ(ỹ) is an indicator function to check if ỹ contains at

8The MBR becomes the MAP decision rule of (2.6) if a so-called zero-one loss function is used:
L(y, y′) = 0 if y = y′; otherwise L(y, y′) = 1.

30

least one occurrence of w, and θn is the weight that decides the relative importance of an
n-gram match. If the hypergraph has already been annotated with n-gram (n ≥ 4) language
model states, the above loss function is additively decomposable and thus we are able to
compute the risk (or expected loss).

2.6 Discriminative Training Methods over Hypergraphs
Given a set of training examples (xi, ỹi) indexed by i. the training task is to find an

optimal weight vector θ∗ by maximizing/minimizing some objective function. Below, we
first review the models we use, and then present different training methods along with their
applications to a hypergraph.

2.6.1 Models
We have already defined the models in Section 1.3, and here we restate them for con-

venience of presentation.

Global Linear Model

We assume a model will assign a score to a derivation d as follows,

score(d) = f(d) · θ =
∑
j

fj(d)θj , (2.15)

where f(d) is a feature vector depending on d (and its yields x and y). This is a global
linear model, and can be used for non-probabilistic training methods such as MERT (Och,
2003), Structured Perceptron (Collins, 2002), and MIRA (Crammer, Dekel, Keshet, Shalev-
Shwartz, and Singer, 2006).

Global Log-linear Model

We can also define a probabilistic model as follows,

pθ(d | x) =
1

Zθ(x)
eγ·score(d) , (2.16)

where γ is a scaling factor to adjust the sharpness of the distribution (the larger γ is, the
more peaky the distribution is), andZθ(x) is a normalization constant (or partition function)
defined as,

Zθ(x) =
∑
d∈D(x)

eγ·score(d) . (2.17)

This is a global log-linear model, and can be applied to probabilistic training methods such
as conditional random field (CRF) (Lafferty, McCallum, and Pereira, 2001) and minimum-
risk training (Smith and Eisner, 2006).

31

Latent-variable Model

Recall that in machine translation, for a given observed pair (x, ỹ), there might be many
hidden/latent derivations d that yield x and ỹ due to spurious ambiguity. We can obtain the
marginal distribution pθ(ỹ | x) as follows,

pθ(ỹ | x) =
∑

d∈D(x,ỹ)

pθ(d | x) , (2.18)

where D(x, ỹ) represents the set of derivation trees that yield x and ỹ. This is a model with
a latent variable (i.e., d), and can be applied to a probabilistic method.

2.6.2 Maximizing Conditional Likelihood

We can maximize the conditional likelihood (Lafferty et al., 2001) of the training
examples as follows,

θ∗ = arg max
θ

∑
i

log pθ(ỹi | xi) (2.19)

This is commonly referred as a conditional random field (CRF). To address the issue of
overfitting, we often add a regularization term (e.g, a Gaussian prior on θ) in the objective.
Due to the use of the latent variable d, the objective function above is not convex, and thus
the maximization may suffer from local-maximum problems.

To find the optimal θ∗, we can use a gradient descent method since the objective func-
tion is differentiable. The gradient of the log-likelihood (LL) of (2.19) with respect to the
j-th parameter θj is,

∂LL
∂θj

=
N∑
i=1

{
∑

d∈D(xi,ỹi)

pθ(d | xi)fj(d)−
∑

d∈D(xi)

pθ(d | xi)fj(d)} . (2.20)

Maximizing Conditional Likelihood on a Hypergraph

To apply the method above to a hypergraph, the main challenge is to compute the log-
likelihood and its gradients on the hypergraph. These quantities can be computed by using
an expectation semiring (as we shall see in Chapter 3).

Also, when the reference translation ỹ is not in the hypergraph (which is very likely in
practice), we need to use an oracle translation as a surrogate. The oracle translation can be
found by the algorithms mentioned in Section 2.2.2.

32

Perceptron(x ,D(x), y)

1 θ ← ~0 � initialize as zero vector
2 for t ← 1 toT
3 for i ← 1 toN
4 d∗i ← arg max

d∈D(xi)
f(d)· θ

5 if (d∗i 6= d̃i)

6 θ ← θ + f(d̃i)− f(d∗i)
7 return θ

Figure 2.5: The basic Perceptron algorithm

2.6.3 Average Perceptron

Unlike a CRF, the perceptron training (Collins, 2002) does not have an explicit ob-
jective to optimize.9 Instead, it is a simple procedure that can learn optimal parameters.
Specifically, given a set of training examples, the Perceptron algorithm sequentially iter-
ates over the examples, and adjusts the parameter vector θ, as illustrated in Figure 2.5. In
particular, whenever the one-best d∗i = arg max f(d)· θ under the current model θ is not
the same as the reference derivation d̃i, the parameter vector θ is incremented by the dif-
ference of the feature vectors between d̃i and d∗i . After iterating over the training data a
few times, an averaged model, θ = 1

T

∑T
t=1

1
N

∑N
i=1 θ

i
t, is computed and is used for testing,

where θit represents the parameter vector after seeing the i-th example in the t-th iteration,
N represents the size of the training set, and T is the number of iterations of the Perceptron
algorithm.

Applying Perceptron Training to a Hypergraph

To apply Perceptron training on a hypergraph, two algorithms are needed: oracle ex-
traction and decoding. In particular, we need to find an oracle derivation tree d̃i when the
reference translation is not in the hypergraph (see Section 2.2.2). Note that an oracle tree,
instead of an oracle translation, is needed since Perceptron is not able to sum over latent
derivations.

As indicated by line-4 of Figure 2.5, a decoding algorithm is needed. We can use the
Viterbi decoding as in Figure 2.5. But, in general, any other decoding rule described in
Section 2.5 can be employed as long as the decoder also produces a feature vector (in
addition to the translation output). Perceptron training has been applied to MT for a k-best
list (Liang et al., 2006) and a hypergraph (Li and Khudanpur, 2009b).

9However, Perceptron training could be viewed as stochastic gradient descent (SGD) optimization of the
loss function of errors.

33

2.6.4 Minimum Error Rate Training
Intuitively, the CRF and the Perceptron are somewhat limited since they do not directly

incorporate an MT metric (e.g., BLEU) in the training. Therefore, we may prefer to directly
minimize the one-best error as in Och (2003),

θ∗ = arg min
θ

∑
i

L(Y(arg max
d∈D(xi)

f(d) · θ), ỹi) (2.21)

(2.22)

where L(y, ỹ) represents the loss of y if the true answer is ỹ, and can be the negated BLEU

score.10 This objective matches the training with the test condition, i.e., finding a translation
having minimum error with respect to the reference translation. However, it is piecewise
constant and cannot be optimized using the general gradient descent method. Och (2003)
developed a specialized line search to solve the optimization problem. This is not scalable
when the model has a large number of parameters as the optimization needs to perform a
line search along each dimension of the parameters, one by one.

Applying MERT to a Hypergraph

The original MERT (Och, 2003) procedure was proposed for a k-best list. Macherey
et al. (2008) extend it to work for a FSA, while Kumar et al. (2009) further extend it to
the case of a hypergraph. The main difficult computation for the latter two approaches is
to find the upper envelope of the translation hypotheses (e.g., encoded in a hypergraph or
FSA) for the line search (see Macherey et al. (2008) for details).

2.6.5 Minimizing Risk (MR)
Instead of minimizing the one-best error as in MERT (Och, 2003), we can also minimize

the risk (or expected loss) on the training examples,

θ∗ = arg min
θ

∑
i

Riskθ(ỹi) (2.23)

= arg min
θ

∑
i

∑
y

L(y, ỹi)pθ(y | xi) (2.24)

= arg min
θ

∑
i

∑
d∈D(xi)

L(Y(d), ỹi)pθ(d | xi). (2.25)

10One might argue that an MT metric such as BLEU may not correlate perfectly well with the MT quality
perceived by humans (Callison-Burch, Osborne, and Koehn, 2006b). However, that is an orthogonal issue.
Any improvement of the MT metric itself can be directly reflected in the training objective. Future met-
rics should ideally be decomposed and quick to compute, in addition to strongly correlating with human
judgements.

34

The objective above can be thought as a generalized version of two of the previous
objectives. For example, as the scaling factor γ → +∞, the probability mass (see (2.16))
will be mostly on the one-best and thus the objective function becomes the minimization of
the one-best error objective of (2.21). On the other hand, the minimum risk objective will
resemble the maximum conditional likelihood objective (or CRF) of (2.19) if the following
zero-one loss function is used in MR,

L(y, ỹ) =

{
0 if y = ỹ

1 otherwise.
(2.26)

Applying MR to a Hypergraph

The objective function of (2.25) is differentiable and can be optimized using a general
gradient descent method. It is relatively easy to compute the expected loss and its gradient
if the hypothesis space is a k-best list as in Smith and Eisner (2006). In contrast, it is
much more challenging to compute these quantities on a compact data structure such as a
hypergraph or an FSA. In Chapter 3, we will show how to use a second-order expectation
semiring to compute these quantities.

2.6.6 MIRA

MIRA (Crammer et al., 2006) is another method that can directly incorporate a loss
metric into its objective. It is an online method. Given a current parameter vector θ′ that
is learnt from previous training examples, it updates the parameter vector to θ∗ defined as
follows,

θ∗ = arg min
θ

1

2
||θ − θ′||2 + C

∑
i

max
d∈D(xi)

{L(Y(d), ỹi)− (f(d̃i)− f(d))· θ} (2.27)

where ỹi is an oracle translation and d̃i is the corresponding oracle derivation tree, and C
is called capacity and can be tuned on a held out data set. The training example index i has
the values corresponding to the indices of those examples in the current batch. The term
under max corresponds to the most violated constraint (i.e., the maximum value by which
the loss is greater than the margin (f(d̃i)− f(d))· θ). The above optimization problem can
be solved using a variant of sequential minimal optimization (Platt, 1999).

Watanabe et al. (2007); Chiang, Marton, and Resnik (2008); Chiang et al. (2009) all
apply the above method (or its variants) to MT. For efficiency, they use a set D(x) that is a
k-best list (instead of a hypergraph). Moreover, Chiang et al. (2008, 2009) use not only a
k-best list ranked by the current model θ′, but also a k-best ranked by a combination of the
model score and the loss (which they call loss-augmented inference).

35

Factor Min-Risk MERT Perceptron CRF MIRA
Is scalable? X X X X

Integrates an MT metric? X X X
Handles latent variables? X X
Does not need an oracle? X X

Easy to regularize? X X X X

Table 2.4: Comparison of different training methods from different perspective

Applying MIRA to a Hypergraph

It is quite challenging to apply the above method to a hypergraph since we need to find
the most violated constraint (i.e., the max in (2.27)) in the hypergraph for each possible
value of θ. An alternative is to use the method described by Taskar, Chatalbashev, Koller,
and Guestrin (2005), where we use dynamic programming to solve the optimization prob-
lem.

2.6.7 A Comparison of Training Methods
Table 2.4 gives a comparison for different methods from several perspectives.

Is the method scalable in tuning a large number of parameters?

All the methods except MERT are, in principle, scalable. To be more precise, online
methods like MIRA and Perceptron will be the most scalable as the training generally
involves finding the max, CRF will be a little more expensive due to the computation of
the partition function and its gradient (a first-order expectation), and minimum-risk will be
even more expensive since we need to compute a second-order expectation.

Can the method integrate an MT metric (e.g., BLEU) during training?

While MERT, minimum-risk, and MIRA are able to incorporate an approximate BLEU

(such as the one of (2.14)), CRF and Perceptron are not. The latter two approaches essen-
tially use the zero-one loss function of (2.26), which may not be optimal for a task like MT
as the reference translation is seldom in the (pruned) hypergraph.

Can the model handle latent variables (e.g., derivation trees)?

As shown by Blunsom et al. (2008), summing over the latent derivations as in (2.18)
during training is very helpful for improving translation quality. CRF and minimum-risk
use a probabilistic model, and thus can handle latent variables very easily (by marginalizing

36

out them during training). In contrast, non-probabilistic methods like MERT, Perceptron,
and MIRA have no natural way to incorporate the latent variables.

Does the method require an oracle translation/tree when the reference is unreachable?

As mentioned before, in a realistic MT task, it is very likely that the reference trans-
lation is not in the hypergraph due to pruning or inherent deficiencies of the translation
model. However, methods like Perceptron, CRF and MIRA require knowing the feature
vector of the training target. Therefore, we have to use an oracle (along with its associated
feature vector) as a surrogate. Finding such an oracle will be quite time consuming (see Li
and Khudanpur (2009a)). Also the true quality (not in terms of BLEU score) of the oracle
varies quite a lot. For example, a tiny change in the reference (which is used to guide the
search of an oracle) may lead to a very different oracle. Therefore, we prefer a training
method that does not rely on such arbitrary oracle. MERT and minimum-risk satisfy this
requirement.

Can the model be regularized easily?

The goodness of a training method can be measured by how well the learnt model can
perform on unseen test data. Therefore, regularizing the model during training is essen-
tial for any training method. It is very convenient to add an L2 regularization term on the
weights in MIRA, CRF, and minimum-risk. Perceptron uses an averaged model for test-
ing as mentioned before, which can be thought as model regularization. In contrast, it is
not straightforward to perform regularization in MERT (although see Cer, Jurafsky, and
Manning (2008) for an exploration).

2.6.8 Unsupervised Discriminative Training
While the above methods can significantly improve MT quality, because they directly

optimize a performance metric (e.g., in MERT, minimum-risk, and MIRA) and because
they allow more complex models (i.e., arbitrary features). However, one common drawback
of such work is that it relies on the existence of high-quality in-domain supervised data (i.e.,
bilingual text), which is expensive to obtain, especially for a novel domain (e.g., weblogs)
or a low-resource language pair (e.g., between Urdu and English). In Chapter 4, we will
introduce a unsupervised method.

37

Chapter 3

First- and Second-order Expectation
Semirings

Much of this chapter is based on Li and Eisner (2009). We first extend the expecta-
tion semiring (Eisner, 2002), which was originally proposed for an FSA, to a hypergraph.
We then propose a novel second-order expectation semiring, nicknamed the “variance
semiring.” These semirings, within the framework of semiring parsing (see Section 2.3
on page 23), can be used to compute a large number of expectations on a hypergraph,
including those that will be used in the following three chapters.

Specifically, the first-order expectation semiring allows us to efficiently compute a vec-
tor of first-order statistics (expectations; first derivatives) on the set of paths in an FSA
or the set of trees in a hypergraph. The second-order expectation semiring additionally
computes a matrix of second-order statistics (expectations of products; second derivatives
(Hessian); derivatives of expectations).

We present details on how to compute many interesting quantities over the hypergraph
using the expectation and variance semirings. These quantities include expected hypothe-
sis length, feature expectation, entropy, cross-entropy, Kullback-Leibler divergence, Bayes
risk, variance of hypothesis length, gradient of entropy and Bayes risk, covariance and
Hessian matrix, and so on. The variance semiring is essential for many interesting training
paradigms such as deterministic annealing (Rose, 1998), minimum risk (Smith and Eis-
ner, 2006), active and semi-supervised learning (Grandvalet and Bengio, 2004; Jiao et al.,
2006). In these settings, we must compute the gradient of entropy or risk. The semirings
can also be used for second-order gradient optimization algorithms.

This chapter is organized as follows. In Section 3.1, we will present the expectation
and variance semirings, and show how to use them to compute a single expectation. In
Section 3.2, we will generalize them in computing a vector/matrix of expectations, and
present speed-up tricks in these cases. We will then discuss how to compute gradients
(which are essentially expectations) of several interesting functions in Section 3.3. In Sec-
tion 3.4, we will present many example applications using the expectation and variance
semirings. We will present some implementation details in Section 3.5, and summarize

38

this chapter in Section 3.6.

3.1 Finding Expectations on Hypergraphs
We now introduce the computational problems of this chapter and the semirings we use

to solve them.

3.1.1 Problem Definitions
Recall that D represents the set of derivations encoded in a hypergraph. We are given

a function p : D → R≥0, which decomposes multiplicatively over component hyperedges
e of a derivation d ∈ D: that is, p(d)

def
=
∏

e∈d pe. (For a particular way of parameterizing
p(d), please refer to Section 2.6.1 on page 31.) In practice, p(d) will specify a probability
distribution over the derivations in the hypergraph. It is often convenient to permit this
probability distribution to be unnormalized, i.e., one may have to divide it through by some
Z to get a proper distribution that sums to 1.

We are also given two functions of interest r, s : D → R, each of which decomposes
additively over its component hyperedges e: that is, r(d)

def
=
∑

e∈d re, and s(d)
def
=
∑

e∈d se.
We are now interested in computing the following quantities on the hypergraph HG:

Z
def
=

∑
d∈D

p(d) (3.1)

r
def
=

∑
d∈D

p(d)r(d) (3.2)

s
def
=

∑
d∈D

p(d)s(d) (3.3)

t
def
=

∑
d∈D

p(d)r(d)s(d) (3.4)

Note that r/Z, s/Z, and t/Z are expectations (under p) of r(d), s(d), and r(d)s(d), re-
spectively. More formally, the probabilistic interpretation is that D is a discrete sample
space (consisting of all derivations in the hypergraph), p is a measure over this space,
and r, s : D → R are random variables. Then r/Z and s/Z give the expectations of
these random variables, and t/Z gives the expectation of their product t = rs, so that
t/Z − (r/Z)(s/Z) gives their covariance.

Example 1: r(d) is the length of the translation corresponding to derivation d (arranged
by setting re to the number of target-side terminal words in the SCFG rule associated with
e). Then r/Z is the expected hypothesis length.

Example 2: r(d) evaluates the loss of d compared to a reference translation, using some
additively decomposable loss function (e.g., the one of (2.14) on page 30). Then r/Z is the
risk (expected loss), which is useful in minimum-risk training.

39

Example 3: r(d) is the number of times a certain feature fires is presented in d. Then
r/Z is the expected feature count, which is useful in maximum-likelihood training. We
will generalize later in Section 3.2 to allow r(d) to be a vector of features.

Example 4: Suppose r(d) and s(d) are identical and both compute hypothesis length.
Then the second-order statistic t/Z is the second moment of the length distribution, so the
variance of hypothesis length can be calculated as t/Z − (r/Z)2.

3.1.2 Computing the Expectations
We will use the semiring parsing framework (see Section 2.3 on page 23) to compute

the quantities (3.1)–(3.4). Although each is a sum over exponentially many derivations,
we will compute it in O(|HG|) time using the inside algorithm in Figure 3.1. Recall that
the recipe (see Section 2.3.2 on page 23) to compute a quantity in the semiring framework
is as follows: choose a semiring, specify a weight for each hyperedge, and run the inside
algorithm.

In the simplest case, let the semiring K = 〈R,+,×, 0, 1〉, and define ke = pe for each
hyperedge e. Then the algorithm in Figure 3.1 reduces to the classical inside algorithm
(Baker, 1979) and computes Z.

Next suppose K is the expectation semiring (Eisner, 2002), shown in Table 3.1. Define
ke = 〈pe, pere〉. Then Figure 3.1 will return 〈Z, r〉.

Finally, suppose K is our novel second-order expectation semiring, which we introduce
in Table 3.2. Define ke = 〈pe, pere, pese, perese〉. Then the algorithm of Figure 3.1 returns
〈Z, r, s, t〉. Note that, to compute t, one cannot simply construct a first-order expectation
semiring by defining t(d)

def
= r(d)s(d) because t(d), unlike r(d) and s(d), is not additively

decomposable over the hyperedges in d.1 Also, when r(d) and s(d) are identical, the
second-order expectation semiring allows us to compute variance as t/Z − (r/Z)2, which
is why we may call our second-order expectation semiring the variance semiring.

3.1.3 Correctness of the Algorithms
To prove our claim about the first-order expectation semiring, we first observe that the

definitions in Table 3.1 satisfy the semiring axioms. With a valid semiring, we then simply
observe that the inside algorithm of Figure 3.1 returns the total weight

⊕
d∈D

⊗
e∈d ke. So,

we just need to show that the following equality is true,⊕
d∈D

⊗
e∈d

ke = 〈Z, r〉. (3.5)

To show this, we need first prove the following is true,⊗
e∈d

ke = 〈p(d), p(d)r(d)〉. (3.6)

1However, in a more tricky way, the second-order expectation semiring can be constructed using the
first-order expectation semiring, as will be seen in Section 3.2.3.

40

INSIDE(HG,K)

1 for v in topological order on HG � each node
2 � find β(v)←⊕

e∈I(v)(ke ⊗ (
⊗

u∈T (e) β(u)))

3 β(v)← 0
4 for e ∈ I(v) � each incoming hyperedge
5 k ← ke � hyperedge weight
6 for u ∈ T (e) � each antecedent node
7 k ← k ⊗ β(u)
8 β(v)← β(v)⊕ k
9 return β(root)

Figure 3.1: Inside algorithm to compute all “inside weights” β(v). Note that this is the
same algorithm as in Figure 2.2 on page 24, and we repeat it here for convenience.

OUTSIDE(HG,K)

1 for v in HG
2 α(v)← 0
3 α(root)← 1
4 for v in reverse topological order on HG
5 for e ∈ I(v) � each incoming hyperedge
6 for u ∈ T (e) � each antecedent node
7 α(u)← α(u)⊕ (α(v)⊗ ke⊗
8

⊗
w∈T (e),w 6=u β(w))

Figure 3.2: Computes the “outside weights” α(v). Note that this can only be run after
INSIDE(HG,K) of Figure 3.1 has already computed the inside weights β(v).

This can be shown from the definitions of ⊗, ke, p(d), and r(d). The main intuition is that
⊗ can be used to build up 〈p(d), p(d)r(d)〉 inductively from the ke: if d decomposes into
two disjoint subderivations d1, d2, then,

〈p(d1), p(d1)r(d1)〉 ⊗ 〈p(d2), p(d2)r(d2)〉
= 〈p(d1)p(d2), p(d1)p(d2)r(d2) + p(d2)p(d1)r(d1))〉 (3.7)
= 〈p(d1)p(d2), p(d1)p(d2)(r(d1) + r(d2))〉 (3.8)
= 〈p(d), p(d)r(d)〉. (3.9)

Note that (3.7) follows from the definition of ⊗ of Table 3.1, while (3.9) follows from the
definition of p(d) and r(d). The base cases are where d is a single hyperedge e, in which

41

INSIDE-OUTSIDE(HG,K,X)

1 � Run inside and outside on HG with only ke weights
2 k̂ ← INSIDE(HG,K) � see Figure 3.1
3 OUTSIDE(HG,K) � see Figure 3.2
4 � Do a single linear combination to get x̂
5 x̂← 0
6 for v in HG � each node
7 for e ∈ I(v) � each incoming hyperedge
8 ke ← α(v)
9 for u ∈ T (e) � each antecedent node

10 ke ← ke β(u)

11 x̂← x̂+ (ke xe)

12 return 〈k̂, x̂〉

Figure 3.3: If every hyperedge specifies a weight 〈ke, xe〉 in some expectation semiring
EK,X , then this inside-outside algorithm is a more efficient alternative to Figure 3.1 for
computing the total weight 〈k̂, x̂〉 of the hypergraph, especially if the xe are vectors. First,
at lines 2–3, the inside and outside algorithms are run using only the ke weights, obtaining
only k̂ (without x̂) but also obtaining all inside and outside weights β, α ∈ K as a side
effect. Then the second component x̂ of the total weight is accumulated in lines 5–11 as
a linear combination of all the xe values, namely x̂ =

∑
e kexe, where ke is computed at

lines 8–10 using α and β weights. The linear coefficient ke is the “exclusive weight” for
hyperedge e, meaning that the product keke is the total weight in K of all derivations d ∈ D
that include e. Note that ke itself does not include ke as one might expect. Rather, xe is
defined to include ke when computing expectations (see Section 3.1.2). However, when
computing gradients, the definition of xe does not have ke (see Section 3.3).

case 〈p(d), p(d)r(d)〉 = ke (thanks to our choice of ke), and where d is empty, in which
case 〈p(d), p(d)r(d)〉 = 1. Therefore, it follows by induction that (3.6) holds.

Now, substitute (3.6) into (3.5), we obtain,⊕
d∈D

⊗
e∈d

ke =
⊕
d∈D

〈p(d), p(d)r(d)〉 (3.10)

= 〈
∑
d∈D

p(d),
∑
d∈D

p(d)r(d)〉 (3.11)

= 〈Z, r〉. (3.12)

Note that (3.11) follows from the definition of ⊕ (in Table 3.1), while (3.12) follows from
the definition of Z (of (3.1)), and r (of (3.2)). This completes the proof for the first-order
expectation semiring.

42

Element 〈p, r〉
〈p1, r1〉 ⊗ 〈p2, r2〉 〈p1p2, p1r2 + p2r1〉
〈p1, r1〉 ⊕ 〈p2, r2〉 〈p1 + p2, r1 + r2〉

〈p, r〉∗ 〈p∗, p∗p∗r〉
0 〈0, 0〉
1 〈1, 0〉

Table 3.1: Expectation semiring: Each element in the semiring is a pair 〈p, r〉. The second
and third rows define the operations between two elements 〈p1, r1〉 and 〈p2, r2〉, and the last
two rows define the identities. Note that the multiplicative identity 1 has an r component
of 0.

Element 〈p, r, s, t〉
〈p1, r1, s1, t1〉 ⊗ 〈p2, r2, s2, t2〉 〈p1p2, p1r2 + p2r1, p1s2 + p2s1,

p1t2 + p2t1 + r1s2 + r2s1〉
〈p1, r1, s1, t1〉 ⊕ 〈p2, r2, s2, t2〉 〈p1 + p2, r1 + r2, s1 + s2, t1 + t2〉

〈p, r, s, t〉∗ 〈p∗, p∗p∗r, p∗p∗s, p∗p∗(p∗rs+ p∗rs+ t)〉
0 〈0, 0, 0, 0〉
1 〈1, 0, 0, 0〉

Table 3.2: Second-order expectation semiring (variance semiring): Each element in the
semiring is a 4-tuple 〈p, r, s, t〉. The second and third rows define the operations between
two elements 〈p1, r1, s1, t1〉 and 〈p2, r2, s2, t2〉, while the last two rows define the identities.
Note that the multiplicative identity 1 has r,s and t components of 0.

The proof for the second-order expectation semiring is similar. In particular, one mainly
needs to show that,⊗

e∈d

ke = 〈p(d), p(d)r(d), p(d)s(d), p(d)r(d)s(d)〉. (3.13)

3.2 Generalizations and Speedups

In this section, we generalize beyond the case above where p, r, s are R-valued. In
general, p may be an element of some other semiring, and r and s may be vectors or other
algebraic objects. When r and s are vectors, especially high-dimensional vectors, the basic
“inside algorithm” of Figure 3.1 will be slow. We will show how to speed it up with an
“inside-outside algorithm.”

43

3.2.1 Allowing Feature Vectors and More
In general, for P,R, S, T , we can define the first-order expectation semiring EP,R =

〈P × R,⊕,⊗, 0, 1〉 and the second-order expectation semiring EP,R,S,T = 〈P × R × S ×
T,⊕,⊗, 0, 1〉, using the definitions from Tables 3.1–3.2. But do those definitions remain
meaningful, and do they continue to satisfy the semiring axioms?

Indeed they do when P = R, R = Rn, S = Rm, T = Rn×m, with rs defined as the
outer product rsT (a matrix) where sT is the transpose of s. In this way, the second-order
semiring EP,R,S,T lets us take expectations of vectors and outer products of vectors. So we
can find means and covariances of any number of linearly decomposable quantities (e.g.,
feature counts) defined on the hypergraph.

We will consider some other choices in Sections 3.2.3–3.2.4 below. Thus, for gen-
erality, we conclude this subsection by stating the precise technical conditions needed to
construct EP,R and EP,R,S,T :

• P is a semiring;

• R is a P -module (e.g, a vector space), meaning that it comes equipped with an as-
sociative and commutative addition operation with an identity element 0, and also a
multiplication operation P ×R→ R, such that p(r1 + r2) = pr1 + pr2, (p1 + p2)r =
p1r + p2r, and p1(p2r) = (p1p2)r;

• S and T are also P -modules;

• there is a multiplication operation R × S → T that is bilinear, i.e., (r1 + r2)s =
r1s+ r2s, r(s1 + s2) = rs1 + rs2, (pr)s = p(rs), and r(ps) = p(rs).

As a matter of notation, note that above and in Tables 3.1–3.2, we overload “+” to denote
any of the addition operations within P,R, S, T ; overload “0” to denote their respective ad-
ditive identities; and overload concatenation to denote any of the multiplication operations
within or between P,R, S, T . “1” refers to the multiplicative identity of P . We continue to
use distinguished symbols⊕,⊗, 0, 1 for the operations and identities in our “main semiring
of interest,” EP,R or EP,R,S,T .

To compute equations (3.1)–(3.4) in this more general setting, we must still require
multiplicative or additive decomposability, defining p(d)

def
=
∏

e∈d pe, r(d)
def
=
∑

e∈d re,
s(d)

def
=
∑

e∈d se as before. But the
∏

and
∑

operators here now denote appropriate
operations within P , R, and S respectively (rather than the usual operations within R).

3.2.2 Inside-Outside Speedup for First-Order Expectation Semirings
Under the first-order expectation semiring ER,Rn , the inside algorithm of Figure 3.1 will

return 〈Z, r〉 where r is a vector of n feature expectations.
However, Eisner (2002, section 5) observes that this is inefficient when n is large. Why?

The inside algorithm takes the trouble to compute an inside weight β(v) ∈ R×Rn for each

44

node v in the hypergraph (or FSA). The second component of β(v) is a presumably dense
vector of all features that fire in all subderivations rooted at node v. Moreover, as β(v) is
computed in lines 3–8 of Figure 3.1, that vector is built up (via the ⊗ and ⊕ operations of
Table 3.1) as a linear combination of other dense vectors (the second components of the
various β(u)). These vector operations can be slow.

A much more efficient approach (usually) is the traditional inside-outside algorithm
(Baker, 1979).2 Figure 3.3 generalizes the inside-outside algorithm to work with any ex-
pectation semiring EK,X .3 We are given a hypergraph HG whose edges have weights
〈ke, xe〉 in this semiring. So now ke ∈ K denotes only part of the edge weight, not all
of it. More specifically, for the first-order expectation semiring, in Section 3.1.2 we have
ke

def
= 〈pe, pere〉, but now ke

def
= pe and xe

def
= pere. INSIDE-OUTSIDE(HG,K, X) finds⊕

d∈D

⊗
e∈d〈ke, xe〉, which has the form 〈k̂, x̂〉.

But, INSIDE(HG,EK,X) of Figure 3.1 could accomplish the same thing. So what makes
the inside-outside algorithm (of Figure 3.3) more efficient? It turns out that x̂ can be found
quickly as a single linear combination

∑
e kexe of just the feature vectors xe that appear

on individual hyperedges—typically a sum of very sparse vectors! And the linear coef-
ficients ke, as well as k̂, are computed entirely within the cheap semiring K. They are
based on β and α values obtained by first running INSIDE(HG,K) (of Figure 3.1) and
OUTSIDE(HG,K) (of Figure 3.2), which use only the ke part of the weights and ignore the
more expensive xe.

Why do we still need the expectation semiring?

It is noteworthy that the expectation semiring is not used at all by Figure 3.3. Although
the return value 〈k̂, x̂〉 is in the expectation semiring, it is built up not by ⊕ and ⊗ but
rather by computing k̂ and x̂ separately. One might therefore wonder why the expectation
semiring and its operations (in Table 3.1) are still needed. One reason is that the input to
Figure 3.3 consists of hyperedge weights 〈ke, xe〉 in the expectation semiring—and these
weights may well have been constructed using ⊗ and ⊕. For example, Eisner (2002) uses
finite-state operations such as composition, which do combine weights entirely within the
expectation semiring before their result is passed to the forward-backward algorithm. A
second reason is that when we work with a second-order expectation semiring in Sec-
tion 3.2.4 below, the k̂, β, and α values in Figure 3.3 will turn out to be elements of a
first-order expectation semiring, and they must still be constructed by first-order ⊗ and ⊕,
via calls to Figures 3.1–3.2.

2Note, however, that the expectation semiring requires only the forward/inside pass to compute expecta-
tions, and thus it is more efficient than the traditional inside-outside algorithm (which requires two passes) if
we are interested in computing only a small number of quantities.

3This follows Eisner (2002), who similarly generalized the forward-backward algorithm.

45

Why does inside-outside work?

Whereas the inside algorithm computes
⊕

d∈D

⊗
e∈d ke in any semiring (e.g., the count-

ing semiring), the inside-outside algorithm exploits the special structure of an expectation
semiring. By that semiring’s definitions of ⊕ and ⊗ (Table 3.1), the following is true,⊕

d∈D

⊗
e∈d

〈ke, xe〉 = 〈
∑
d∈D

∏
e∈d

ke,
∑
d∈D

∑
e∈d

(
∏

e′∈d,e′ 6=e

ke′)xe〉, (3.14)

where the first component (giving k̂) is found by calling the inside algorithm on just the ke
part of the weights. The second component (giving x̂) can be rearranged into∑

e

∑
d: e∈d

(
∏

e′∈d,e′ 6=e

ke′)xe =
∑
e

kexe, (3.15)

where ke
def
=
∑

d: e∈d(
∏

e′∈d,e′ 6=e ke′) is found from β and α.
The application described at the start of this subsection is the classical inside-outside

algorithm. Here 〈ke, xe〉 def
= 〈pe, pere〉, and the algorithm returns 〈k̂, x̂〉 = 〈Z, r〉. In fact,

that x̂ = r can be seen directly as follows,

r =
∑
d

p(d)r(d) =
∑
d

p(d)(
∑
e∈d

re) =
∑
e

∑
d: e∈d

p(d)re =
∑
e

(keke)re =
∑
e

kexe = x̂.

This uses the fact that keke =
∑

d: e∈d p(d).

3.2.3 Lifting Trick for Second-Order Semirings
We now observe that the second-order expectation semiring EP,R,S,T can be obtained in-

directly by nesting one first-order expectation semiring inside another! First “lift” P to ob-
tain the first-order expectation semiring K def

= EP,R. Then lift this a second time to obtain the
“nested” first-order expectation semiring EK,X = E(EP,R),(S×T), where we equipX def

= S×T
with the operations 〈s1, t1〉+〈s2, t2〉 def

= 〈s1+s2, t1+t2〉 and 〈p, r〉〈s, t〉 def
= 〈ps, pt+rs〉. The

resulting first-order expectation semiring has elements of the form 〈〈p, r〉, 〈s, t〉〉. Table 3.3
shows that it is indeed isomorphic to EP,R,S,T , with corresponding elements 〈p, r, s, t〉.

This construction of the second-order semiring as a first-order semiring is a useful bit of
abstract algebra, because it means that known properties of first-order semirings will also
apply to second-order ones. First of all, we are immediately guaranteed that the second-
order semiring satisfies the semiring axioms. Second, we can directly apply the inside-
outside algorithm there, as we see below.

3.2.4 Inside-Outside Speedup for Second-Order Expectation Semir-
ings

Given a hypergraph weighted by a second-order expectation semiring EP,R,S,T . By
recasting this as the first-order expectation semiring EK,X where K = EP,R and X =

46

〈〈p1, r1〉, 〈s1, t1〉〉 ⊕ 〈〈p2, r2〉, 〈s2, t2〉〉 = 〈〈p1, r1〉+ 〈p2, r2〉, 〈s1, t1〉+ 〈s2, t2〉〉
= 〈〈p1 + p2, r1 + r2〉, 〈s1 + s2, t1 + t2〉〉

〈〈p1, r1〉, 〈s1, t1〉〉 ⊗ 〈〈p2, r2〉, 〈s2, t2〉〉 = 〈〈p1, r1〉〈p2, r2〉, 〈p1, r1〉〈s2, t2〉+ 〈p2, r2〉〈s1, t1〉〉
= 〈〈p1p2, p1r2 + p2r1〉, 〈p1s2 + p2s1, p1t2 + p2t1 + r1s2 + r2s1〉〉

Table 3.3: Constructing second-order expectation semiring as first-order. Here we
show that the operations in EK,X are isomorphic to Table 3.2’s operations in EP,R,S,T ,
provided that K def

= EP,R and X
def
= S × T is a K-module, in which addition is de-

fined by〈s1, t1〉 + 〈s2, t2〉 def
= 〈s1 + s2, t1 + t2〉, and left-multiplication by K is defined

by 〈p, r〉〈s, t〉 def
= 〈ps, pt+ rs〉.

(S × T), we can again apply INSIDE-OUTSIDE(HG,K, X) to find the total weight of all
derivations. For example, to speed up the computation described in Section 3.1.2, we may
define 〈ke, xe〉 = 〈〈pe, pere〉, 〈pese, perese〉〉 for each hyperedge e. Then the inside-outside
algorithm of Figure 3.3 will compute 〈k̂, x̂〉 = 〈〈Z, r〉, 〈s, t〉〉, more quickly than the inside
algorithm of Figure 3.1 computed 〈Z, r, s, t〉.

Figure 3.3 in this case will run the inside and outside algorithms in the semiring EP,R,
so that ke, k̂, α, β, and ke will now be elements of P × R (not just elements of P as in the
first-order case). Finally it finds x̂ =

∑
e kexe, where xe ∈ S × T .4

This is a particularly effective speedup over the inside algorithm when R consists of
scalars (or small vectors) whereas S, T are sparse high-dimensional vectors. We will see
exactly this case in our minimum-risk training in subsequent chapters of this dissertation,
where our weights 〈p, r, s, t〉 denote (probability, risk, gradient of probability, gradient of
risk), or (probability, entropy, gradient of probability, gradient of entropy).

4Figure 3.3 was already proved generally correct in Section 3.2.2. To understand more specifically how
〈s, t〉 gets computed, observe in analogy to the end of Section 3.2.2 that,

〈s, t〉 =
∑
d〈p(d)s(d), p(d)r(d)s(d)〉

=
∑
d〈p(d), p(d)r(d)〉〈s(d), 0〉

=
∑
d〈p(d), p(d)r(d)〉∑e∈d〈se, 0〉

=
∑
e

∑
d: e∈d〈p(d), p(d)r(d)〉〈se, 0〉

=
∑
e(keke)〈se, 0〉

=
∑
e ke〈pe, pere〉〈se, 0〉

=
∑
e ke〈pese, perese〉

=
∑
e kexe

= x̂.

47

3.3 Finding Gradients on Hypergraphs
In sections 3.1.2 and 3.2.1, we saw how our semirings helped find the sum Z of all

p(d), and compute expectations r, s, t of r(d), s(d), and r(d)s(d). It turns out that these
semirings can also compute first- and second-order partial derivatives of all the above
quantities, with respect to a parameter vector θ ∈ Rm. That is, we ask how they are
affected when θ changes slightly from its current value. The elementary values pe, re, se
are now assumed to implicitly be functions of θ.

Case 1: Recall that Z def
=
∑

d p(d) is computed by INSIDE(HG,R) if each hyper-
edge e has weight pe. “Lift” this weight to 〈pe,∇pe〉, where ∇pe ∈ Rm is a gradient
vector. Now 〈Z,∇Z〉 will be returned by INSIDE(HG,ER,Rm)— or, more efficiently, by
INSIDE-OUTSIDE(HG,R,Rm).

Case 2: To differentiate a second time, we can “lift” the above weights again to ob-
tain 〈〈pe,∇pe〉,∇〈pe,∇pe〉〉 = 〈〈pe,∇pe〉, 〈∇pe,∇2pe〉〉, where ∇2pe ∈ Rm×m is the
Hessian matrix of second-order mixed partial derivatives. These weights are in a second-
order expectation semiring.5 Now 〈Z,∇Z,∇Z,∇2Z〉 will be returned at the root node
of a hypergraph by running INSIDE(HG,ER,Rm,Rm,Rm×m), or more efficiently by running
INSIDE-OUTSIDE(HG,ER,Rm ,Rm × Rm×m).

Case 3: We may need to find expectations and their partial derivatives (e.g., in the
minimum-risk training described in Section 2.6.5 on page 34). Recall that 〈Z, r〉 is com-
puted by INSIDE(HG,ER,Rn) when the edge weights are 〈pe, pere〉 with re ∈ Rn. Lift
these weights to 〈〈pe, pere〉,∇〈pe, pere〉〉 = 〈〈pe, pere〉, 〈∇pe, (∇pe)re + pe(∇re)〉〉. Now
〈Z, r,∇Z,∇r〉 will be returned at the root node by running INSIDE(HG,ER,Rn,Rm,Rn×m)
or by INSIDE-OUTSIDE(HG,ER,Rn ,Rm × Rn×m).6

3.3.1 What Connects Gradients to Expectations?
In Case 1, we claimed that the same algorithm will compute either gradients 〈Z,∇Z〉 or

expectations 〈Z, r〉, if the hyperedge weights are set to 〈pe,∇pe〉 or 〈pe, pere〉 respectively.
Cases 2–3 relied on the fact that this relationship still holds even when the scalars Z, pe ∈
R are replaced by more complex objects that we wish to differentiate. Our discussion
below sticks to the scalar case for simplicity, but would generalize fairly straightforwardly.
Pearlmutter and Siskind (2007) give the relevant generalizations of dual numbers.

5Modulo the trivial isomorphism from 〈〈p, r〉, 〈s, t〉〉 to 〈p, r, s, t〉 (see Section 3.2.3), the intended semir-
ing both here and in Case 3 is the one that was defined at the start of Section 3.2.1, in which r, s are vectors
and their product is defined to be rsT, a matrix. However, when using this semiring to compute second
derivatives (Case 2) or covariances, one may exploit the invariant that r = s, e.g., to avoid storing s and to
compute r1s2 + s1r2 in multiplication simply as 2 · r1r2.

6Or, if n > m, it is faster to instead use INSIDE-OUTSIDE(HG,ER,Rm ,Rn×Rm×n), swapping the second
and third components of the 4-tuple and transposing the matrix in the fourth component. Algebraically,
this changes nothing because ER,Rn,Rm×Rn×m and ER,Rm,Rn×Rm×n are isomorphic, thanks to symmetries in
Table 3.2. This method computes the expectation of the gradient rather than the gradient of the expectation—
they are equal.

48

This may seem wonderful and mysterious. We now show in two distinct ways why
this follows from our setup of Section 3.1.1. At the end, we derive as a special case the
well-known relationship between gradients and expectations in log-linear models.

From Expectations to Gradients

One perspective is that our semiring fundamentally finds expectations. Thus, we must
be finding∇Z by formulating it as a certain expectation r. Specifically,

∇Z = ∇
∑
d

p(d) =
∑
d

∇p(d) =
∑
d

p(d)r(d) = r,

provided that r(d) = (∇p(d))/p(d). That can be arranged by defining re
def
= (∇pe)/pe,

and that is why the input weights 〈pe, pere〉 take the form 〈pe,∇pe〉. This can be proved as
follows,

r(d) =
∑
e∈d

re =
∑
e∈d

(∇pe)/pe (3.16)

=
∑
e∈d

∇ log pe = ∇
∑
e∈d

log pe = ∇ log
∏
e∈d

pe (3.17)

= ∇ log p(d) = (∇p(d))/p(d). (3.18)

From Gradients to Expectations

An alternative perspective is that our semiring fundamentally finds gradients. Indeed,
pairs like 〈p,∇p〉 have long been used for this purpose (Clifford, 1873) under the name
“dual numbers.” Operations on dual numbers, including those in Table 3.1, compute a
result in R along with its gradient. For example, our ⊗ multiplies dual numbers, since
〈p1,∇p1〉 ⊗ 〈p2,∇p2〉 = 〈p1p2, p1(∇p2) + (∇p1)p2〉 = 〈p1p2,∇(p1p2)〉.

The inside algorithm thus computes both Z and ∇Z in a single “forward” or “inside”
pass—known as automatic differentiation in the forward mode. The inside-outside algo-
rithm instead uses the reverse mode (a.k.a. back-propagation), where a separate “back-
ward” or “outside” pass is used to compute∇Z.

How can we modify this machinery to produce expectations r̄ given some arbitrary
re of interest? Automatic differentiation may be used on any function (e.g., a neural net),
but for our simple sum-of-products function Z, it happens that ∇Z = ∇(

∑
d

∏
e pe) =∑

d

∑
e∈d(

∏
e′∈d,e′ 6=e pe′)∇pe. Our trick is to surreptitiously replace the ∇pe in the input

weights 〈pe,∇pe〉with pere. Then the output changes similarly: the algorithms will instead
find

∑
d

∑
e∈d(

∏
e′∈d,e′ 6=e pe′)pere, which reduces to

∑
d

∑
e∈d p(d)re =

∑
d p(d)

∑
e∈d re

=
∑

d p(d)r(d) = r̄.

49

Log-linear Models as a Special Case

Replacing ∇pe with pere is unnecessary if ∇pe already equals pere. That is the case
in log-linear models, where pe

def
= exp(re · θ) for some feature vector re associated with

e. So there, ∇Z already equals r̄—yielding a key useful property of log-linear models,
that ∇ logZ = (∇Z)/Z = r̄/Z, the vector of feature expectations (Lau, Rosenfeld, and
Roukos, 1993).

3.4 Practical Applications
We are given a hypergraph HG whose hyperedges e are annotated with values pe, and

want to compute many quantities on it that are useful for different applications. Recall
from Section 3.1.1 that the HG defines a probability distribution over all derivations d in
the hypergraph, namely p(d)/Z where p(d)

def
=
∏

e∈d pe.

3.4.1 First-Order Expectation Semiring
In Section 3.1, we show how to compute the expected hypothesis length or expected

feature counts, using the algorithm of Figure 3.1 with a first-order expectation semiring
ER,R. In general, given hyperedge weights 〈pe, pere〉, the algorithm computes 〈Z, r〉 and
thus r/Z, the expectation of r(d)

def
=
∑

e∈d re. We now show how to compute a few other
quantities by choosing re appropriately.

Entropy on a Hypergraph

The entropy (more precisely, derivational entropy) of the distribution of derivations d
in a hypergraph is7

Hd(p) = −
∑
d∈D

(p(d)/Z) log(p(d)/Z) (3.19)

= logZ − 1

Z

∑
d∈D

p(d) log p(d)

= logZ − 1

Z

∑
d∈D

p(d)r(d) = logZ − r

Z

provided that we define re
def
= log pe (so that r(d) =

∑
e∈d re = log p(d)). Of course, we

can compute 〈Z, r〉 as explained in Section 3.1.2.

7Unfortunately, it is intractable to compute the entropy of the distribution over strings (each string’s
probability is a sum over several derivations). But in Section 6.3.4 on page 99 we will estimate the gap
between derivational and string entropies.

50

Cross-Entropy and KL Divergence

We may be interested in computing the cross-entropy or KL divergence between two
distributions p and q. For example, in variational decoding for machine translation (see
Chapter 6), p is a distribution represented by a hypergraph, while q, represented by a finite
state automaton, is an approximation to p. The cross entropy between p and q is defined as

H(p, q) = −
∑
d∈D

(p(d)/Zp) log(q(d)/Zq) (3.20)

= logZq −
1

Zp

∑
d∈D

p(d) log q(d)

= logZq −
1

Zp

∑
d∈D

p(d)r(d) = logZq −
r

Zp

where the first term Zq can be computed using the inside algorithm with hyperedge weights
qe, and the numerator and denominator of the second term using an expectation semiring
with hyperedge weights 〈pe, pere〉 with re

def
= log qe.

The KL divergence to p from q can be computed as KL(p ‖ q) = H(p, q) − Hd(p). As
we will see in Chapter 6, the KL divergence can be used to measure how close the two
distributions p and q are.

Expected Loss (Risk)

Given a reference sentence ỹ, the expected loss (i.e., Bayes risk) of the hypotheses in
the hypergraph is defined as,

Risk(p) =
∑
d∈D

(p(d)/Z)L(Y(d), ỹ) (3.21)

where Y(d) is the target yield of d and L(y, ỹ) is the loss of the hypothesis y with respect
to the reference ỹ. The popular machine translation metric, BLEU (Papineni et al., 2001),
is not additively decomposable, and thus we are not able to compute the expected loss for
it. Instead, we can use the loss function defined in (2.14) on page 30, which is additively
decomposable if the hypergraph is already annotated with n-gram (n ≥ 4) language model
states. Using re

def
= Le where Le is the loss for a hyperedge e, we compute the expected loss,

Risk(p) =

∑
d∈D p(d)L(Y(d), ỹ)

Z
=

r

Z
(3.22)

3.4.2 Second-Order Expectation Semirings
With second-order expectation semirings, we can compute from a hypergraph the ex-

pectation and variance of hypothesis length; the feature expectation vector and covariance

51

matrix; the Hessian (matrix of second derivatives) of Z; and the gradients of entropy and
expected loss. The computations should be clear from earlier discussion. Below we com-
pute gradient of entropy or Bayes risk.

Gradient of Entropy or Risk

It is easy to see that the gradient of entropy (3.19) is

∇Hd(p) =
∇Z
Z
− Z∇r − r∇Z

Z2
(3.23)

We may compute 〈Z, r,∇Z,∇r〉 as explained in Case 3 of Section 3.3 by using ke
def
=

〈pe, pere,∇pe, (∇pe)re + pe∇re〉 def
= 〈pe, pe log pe,∇pe, (1 + log pe)∇pe〉, where ∇pe de-

pends on the particular parameterization of the model. For example, in a log-linear model,
pe

def
= ef(e)·θ and thus ∇pe = pef(e), where θ is a parameter vector and f(e) is a feature

vector depending on the hyperedge e.
Similarly, the gradient of risk of (3.22) is

∇Risk(p) =
Z∇r − r∇Z

Z2
(3.24)

We may compute 〈Z, r,∇Z,∇r〉 using ke
def
= 〈pe, peLe,∇pe,Le∇pe〉.

3.4.3 Summary of the Applications
Table 3.4 summarizes the list of quantities we can compute using first- and second-order

expectation semirings. For each quantity, it specifies the weight (i.e., ke) for a hyperedge
e, the weight (i.e., kroot) returned at the root node after running the inside algorithm of
Figure 3.1 (or the inside-outside speedup of Figure 3.3), and the final value we should use
for the quantity we are seeking.

3.5 Implementation Details

3.5.1 Preventing Underflow/Overflow
In Tables 3.1–3.2, we do not discuss how to store p, r, s, and t. If p is a probability, it

often suffers from the underflow problem. r, s, and t may suffer from both underflow and
overflow problems, depending on their scales.

To address these, we could represent p in the log domain as usual. However, r, s, and
t can be positive or negative, and we cannot directly take the log of a negative number.
Therefore, we represent real numbers as ordered pairs. Specifically, to represent a = sae

`a ,
we store 〈sa, `a〉, where the sa ∈ {+,−} is the sign bit of a and the floating-point number
`a is the natural logarithm of |a|.8 Table 3.5 shows the “·” and “+”operations.

8An alternative that avoids log and exp is to store a = fa2ea as 〈fa, ea〉, where fa is a floating-point

52

Quantity ke kroot Final
Expectation 〈pe, pere〉 〈Z, r〉 r/Z

Entropy re
def
= log pe, so ke = 〈pe, pe log pe〉 〈Z, r〉 logZ − r/Z

Cross- 〈qe〉 〈Zq〉 logZq − r/Zp
entropy re

def
= log qe, so ke = 〈pe, pe log qe〉 〈Zp, r〉

Bayes risk re
def
= Le, so ke = 〈pe, peLe〉 〈Z, r〉 r/Z

First-order 〈pe,∇pe〉 〈Z,∇Z〉 ∇Zgradient
Covariance 〈pe, pere, pese, perese〉 〈Z, r, s, t〉 t

Z
− r sT

Z2matrix
Hessian 〈pe,∇pe,∇pe,∇2pe〉 〈Z,∇Z,∇Z,∇2Z〉 ∇2Zmatrix
Gradient of 〈pe, pere,∇pe, (∇pe)re + pe(∇re)〉 〈Z, r,∇Z,∇r〉 Z∇r−r∇Z

Z2expectation
Gradient of 〈pe, pe log pe,∇pe, (1 + log pe)∇pe〉 〈Z, r,∇Z,∇r〉 ∇Z

Z
− Z∇r−r∇Z

Z2entropy
Gradient of 〈pe, peLe,∇pe,Le∇pe〉 〈Z, r,∇Z,∇r〉 Z∇r−r∇Z

Z2risk

Table 3.4: A summary table of the quantities that can be computed using first- and
second-order expectation semirings. For each quantity, the table specifies the weight
(i.e., ke) for each hyperedge e, the weight (i.e., kroot) returned at the root node after running
the inside algorithm of Figure 3.1 (or the inside-outside speedup of Figure 3.3), and the
final value we should use for the quantity. In the column of “Quantity”, we boldface those
quantities that are general, while the quantities not boldfaced are specific examples of the
general quantity above (e.g., entropy is an example of expectation). The form of pe and
∇pe depends on the particular parameterization of the model. For example, in a log-linear
model, pe

def
= ef(e)·θ and thus ∇pe = pef(e), where θ is a parameter vector and f(e) is a

feature vector depending on the hyperedge e.

3.5.2 Implementation Guide

While the presentation of this chapter might look quite dense and technical, the imple-
mentation may not be that difficult. In general, there are three kinds of concepts that need
to be instantiated in the implementation: algorithms, semirings, and applications.

To use a semiring to compute a quantity, we need to at least implement the inside algo-

number and ea is a sufficiently wide integer. E.g., combining a 32-bit fa with a 32-bit ea will in effect extend
fa’s 8-bit internal exponent to 32 bits by adding ea to it. This gives much more dynamic range than the 11-bit
exponent of a 64-bit double-precision floating-point number, if vastly less than in Table 3.5.

53

sa sb
a+ b a · b

sa+b `a+b sa·b `a·b
+ + + `a + log(1 + e`b−`a) + `a + `b
+ - + `a + log(1− e`b−`a) - `a + `b
- + - `a + log(1− e`b−`a) - `a + `b
- - - `a + log(1 + e`b−`a) + `a + `b

Table 3.5: Storing signed values in log domain: each value a (= sae
`a) is stored as a pair

〈sa, `a〉 where sa and `a are the sign bit of a and natural logarithm of |a|, respectively.
This table shows the operations between two values a = sa2

`a and b = sb2
`b , assuming

`a ≥ `b. Note: log(1 + x) (where |x| < 1) should be computed by the Mercator series
x− x2/2 + x3/3− · · · , e.g., using the math library function log1p.

rithm of Figure 3.1, which works for any semiring (including the expectation and variance
semirings). If we need to compute expectations and use the speed-up trick described in
Section 3.2, we also need to implement the outside algorithm of Figure 3.2 (which requires
the inside algorithm), and the inside-outside algorithm of Figure 3.3 (which will call both
the inside and outside algorithms as sub-routines).

In terms of semirings, if we do not use the inside-outside speedup, we need to imple-
ment the operations both for expectation semiring (see Table 3.1) and for variance semir-
ing (see Table 3.2). In contrast, if we use the speedup, we just need to implement the
operations for expectation semiring in Table 3.1, and also implement a multiplication op-
eration for kexe on line-11 of Figure 3.3. For the second-order expectation semiring, such
a product operation is defined in Section 3.2.3. In any case, to store the semiring values in
log-domain, we need to implement Table 3.5.

For specific applications, we can follow the semiring parsing recipe described in Sec-
tion 2.3.2 on page 23: choose a semiring, specify a weight for each edge, and run the inside
algorithm (or the inside-outside for speedup). Table 3.4 gives many examples on choosing
a semiring and specifying a weight for computing many different expectations.

For an example of implementation, please see the open-source software Joshua (Li,
Callison-Burch, Dyer, Ganitkevitch, Khudanpur, Schwartz, Thornton, Weese, and Zaidan,
2009a).

3.6 Summary
We presented first-order expectation semirings and inside-outside computation, and de-

veloped extensions to higher-order expectation semirings. This enables efficient compu-
tation of many interesting quantities over the exponentially many derivations encoded in
a hypergraph: second derivatives (Hessian), expectations of products (covariances), and
expectations such as risk and entropy along with their derivatives. To our knowledge, algo-

54

rithms for these problems have not been presented before.
Our approach is theoretically elegant, like other work in this vein (Goodman, 1999;

Lopez, 2009; Gimpel and Smith, 2009). We used it practically to enable a new form of
minimum-risk training in the next chapters. Our implementation was released within the
open-source MT toolkit Joshua (Li et al., 2009a).

55

Chapter 4

Minimum Imputed Risk Training

In this chapter, we describe an unsupervised method for discriminative training. Our
method assumes that we are given some output data ỹ (e.g., English sentences), but not
the corresponding input data x (e.g., Chinese sentences). It also assumes that we have a
reasonably good reverse conditional model pφ(x | ỹ) parameterized by φ. Our goal is to
learn a good forward conditional model pθ(y | x) by tuning θ.

In the case of an MT task, our method works as follows. First guess x probabilistically
from the observed ỹ using a reverse (English-to-Chinese) model. Then train the discrimi-
native Chinese-to-English system to do a “good job” at translating this imputed x back to
ỹ, in the sense of optimizing the given performance metric.

Our method is theoretically sound and can be explained as minimizing imputed risk.
Our method is also intuitive: it tries to ensure that probabilistic “round-trip” translation
(from the target-language sentence to the source language and back again) will have low
expected loss.

We perform experiments by using the open-source MT toolkit Joshua (Li et al., 2009a).
Our experiments show that unsupervised discriminative training performs similarly to (and
often better than) the supervised case. Also, adding unsupervised data into the supervised
training improves the performance.

4.1 Minimum Empirical Risk (for Supervised Discrimina-
tive Training)

Let us first review discriminative training in the supervised setting—as used in MERT
(Och, 2003) and other methods discussed in Section 2.6 on page 30.

One wishes to tune the parameters θ of some complex translation system δθ(x). The
function δθ, which translates Chinese x to English y, may have any form and need not
be probabilistic. For example, the parameters θ may define a scoring function along with
pruning and decoding heuristics for extracting a high-scoring translation y.

56

The goal of discriminative training is to choose θ to minimize the expected loss of this
function, as defined by a given task-specific loss function L(y, ỹ) that measures how bad
it would be to output y when the correct output is ỹ. (For example, for an MT system that
will be judged by the BLEU metric (Papineni et al., 2001), the loss might be a negated BLEU

score.) To be precise, we hope to find θ with low Bayes risk, that is,1

θ∗ = arg min
θ

∑
x,y

p(x, y)L(δθ(x), y) (4.1)

where p(x, y) is the true distribution over (input,output) pairs.2

Of course p(x, y) is not known. In practice, one typically does empirical risk mini-
mization. This means replacing p(x, y) above with the empirical distribution p̃(x, y) given
by the supervised training set. Therefore,

θ∗ = arg min
θ

∑
x,y

p̃(x, y)L(δθ(x), y)

= arg min
θ

1

N

N∑
i=1

L(δθ(xi), ỹi) (4.2)

where i ∈ [1, N] indexes the supervised training examples (xi, ỹi). The optimal θ∗ can be
obtained using numerical methods.3

4.2 Discriminative Training with Missing Input

4.2.1 Minimum Imputed-Risk

We now turn to the question of how to make use of unsupervised data—specifically,
training examples i for which we know only ỹi but not xi. For such i, we cannot compute
the summand L(δθ(xi), ỹi) in (4.2). Instead we propose to replace L(δθ(xi), ỹi) with the

1One should not confuse this with the minimum risk training described in Section 2.6.5 on page 34. In
both cases, the term risk means expected loss, but the expectation is taken under different distributions. In
particular, the expectation in (2.24) on page 34 is taken under the conditional distribution p(y | x), while here
the expectation is taken under the joint distribution p(x, y).

2In the terminology of statistical decision theory, p(x, y) is a distribution over states of nature. We seek a
decision rule δθ(x) that will incur low expected loss on observations x that are generated from unseen states
of nature.

3To compensate for the shortcut of using the unsmoothed empirical distribution rather than a posterior
estimate of p(x, y) (Minka, 2000), it is common to add a regularization term ||θ||22 in the objective of (4.2).
The added regularization term can prevent overfitting to a training set that is not large enough to learn all
parameters. A recent alternative regularizes θ more indirectly, by minimizing the empirical risk subject to
constraints that ensure that δθ not only outputs low-loss translations on the training set, but internally prefers
them to high-loss translations by a comfortable margin (Taskar et al., 2005; Crammer et al., 2006).

57

expectation (∑
x

pφ(x | ỹi)L(δθ(x), ỹi)

)
, (4.3)

where pφ is a “reverse prediction model” that attempts to impute the missing xi data. The
resulting variant of (4.2), what we called minimum imputed empirical risk (abbreviated
as minimum imputed-risk), is4

θ∗ = arg min
θ

1

N

N∑
i=1

∑
x

pφ(x | ỹi)L(δθ(x), ỹi)

(4.4)

Our minimum imputed-risk objective of (4.4) could be evaluated by brute force as fol-
lows.

1. For each example ỹi, use the reverse model pφ to impute its possible reverse transla-
tions {xi1, xi2, . . .}, and add each (xij, ỹi) pair (weighted by pφ(xij | ỹi) ≤ 1) to an
imputed training set .

2. Now do ordinary supervised training (as of (4.2)) on the (weighted) imputed training
data.

The second step means that we must use δθ to forward-translate each imputed xij , evalu-
ate the loss of the translations against the corresponding true translation ỹi, and choose the θ
that minimizes the weighted sum of these losses (i.e., the empirical risk when the empirical
distribution p̃(x, y) is derived from the imputed training set). Specific to our MT task,5 this
tries to ensure that probabilistic “round-trip” translation (from the target-language sentence
to the source language and back again) will have a low (expected) loss.

The trouble is that a typical reverse model pφ will generate a weighted lattice or hyper-
graph Xi encoding exponentially many translations of ỹi. It is computationally infeasible
to forward-translate each of the xij ∈ Xi. We will present several approximations in Sec-
tion 4.2.4.

4.2.2 The Reverse Prediction Model pφ
The crucial ingredient here is pφ, a “reverse prediction model” that attempts to impute

the missing xi data. We will train this pφ model in advance (before we tune θ), doing the

4 We can also exploit both supervised and unsupervised data to perform semi-supervised training by using
an interpolated version of (4.2) and (4.4). We will do this in our experiments.

5Our method may be used for other tasks as well. For example, in a speech recognition task, δθ is a speech
recognizer that produces text, whereas pφ is a kind of speech synthesizer that must produce a distribution over
audio (or at least over acoustic features or phone sequences) (Huang, Li, and Acero, 2010).

58

best job we can from available data—including our bilingual (xi, ỹi) data as well as any
available monolingual x data.6 Note that φ is fixed when we tune θ.

In the MT setting, δθ and pφ may have similar parameterization. One translates Chinese
to English; the other translates English to Chinese.

Yet the setup is not quite symmetric. Whereas δθ is a translation system that aims to
produce a single, low-loss translation, the reverse version pφ is rather a probabilistic model.
It is supposed to give an accurate probability distribution over possible values of the missing
input sentence xi. All of these values will be taken into account in (4.4), without regard to
the loss that they would incur if they were evaluated in a reverse MT competition.

Thus, φ does not need to be trained discriminatively itself (so there is no circularity).
Ideally, it should be trained to match the actual conditional distribution of x given y, by
achieving a low conditional cross-entropy, as follows7

φ∗ = arg min
φ

Hφ(Y | X) (4.5)

= arg min
φ
−
∑
x,y

p(x, y) log pφ(x | y)

It may be tolerable for pφ to impute mediocre translations xij . All that is necessary is
that δθ(xij) resembles the hypotheses in D(xi). In other words, the hypergraph generated in
the forward translation of the imputed xij should “simulate” the hypergraph that we would
see if we were translating the correct Chinese sentence xi.

4.2.3 The Forward Translation System δθ and
the Loss Function L(δθ(xi), ỹi)

The minimum empirical risk objective of (4.2) is quite general and various popular
supervised training methods (Lafferty et al., 2001; Collins, 2002; Och, 2003; Crammer
et al., 2006; Smith and Eisner, 2006) can be formalized in this framework by choosing
different functions for δθ and L(δθ(xi), ỹi). The generality of (4.2) extends to our minimum
imputed-risk objective of (4.4). Below, we specify the δθ and L(δθ(xi), ỹi) we considered
in our investigation.

Deterministic Decoding

A simple translation rule would define

δθ(x) = argmax
y

pθ(y | x) (4.6)

6In a translation task from x to y, one usually does not make use of monolingual x data. But, in our case,
we can use x data to train a language model that will be useful for the reverse system. In particular, it will
make the imputed xi look more like true Chinese inputs.

7Empirically, a standard method for this is to minimize − 1
N

∑N
i=1 log pφ(xi | ỹi) + 1

2σ2 ||φ||22, where the
regularization coefficient σ2 is tuned on some held out bitext.

59

where pθ(y | x) is a log-linear model as defined in (2.18) on page 31. Note that in practice,
solving (4.6) is intractable due to spurious ambiguity and we use a Viterbi approximation
(see Section 2.5.1 on page 29 for more details). If this δθ(x) function is used together with a
loss function L(δθ(xi), ỹi) that is negated BLEU score, our minimum imputed-risk objective
of (4.4) is equivalent to MERT (Och, 2003) on the (weighted) imputed training data.8

However, this would not yield a differentiable objective function. Infinitesimal changes
to θ could result in discrete changes to the winning output string δθ(x), and hence to the
loss L(δθ(x), ỹi). Och (2003) developed a specialized line search to solve the optimization
problem. This is not scalable when δθ has a large number of parameters θ.

Randomized Decoding

Instead of using the arg max of (4.6), we assume during training that δθ(x) is itself a
random quantity: the system randomly outputs a translation, choosing y with probability
pθ(y | x). As a result, we will modify our objective function to take yet another expectation
over an unknown quantity, replacing L(δθ(x), ỹi) in (4.4) with∑

y

pθ(y | x) L(y, ỹi) (4.7)

Now, our final minimum imputed-risk objective of (4.4) becomes,

θ∗ = argmin
θ

1

N

N∑
i=1

∑
x,y

pφ(x | ỹi)pθ(y | x)L(y, ỹi) (4.8)

If the loss function L(y, ỹi) is the negated BLEU, this is equivalent to performing minimum-
risk training (see Section 2.6.5 on page 34)9 on the (weighted) imputed data.10

The objective function of (4.8) is now differentiable (since each coefficient pθ(y | x)
is a differentiable function of θ), and thus we are able to optimize θ by a gradient-based
method. The gradients can be computed by using a second-order expectation semiring (see
Section 3.4 on page 50 for details).

4.2.4 Approximating pφ(x | ỹi)
As mentioned at the end of Section 4.2.1, it is computationally infeasible to forward-

translate each of the xij ∈ Xi (imputed by the reverse model pφ), since both the reverse and
forward sysmtems we use are Hiero (Chiang, 2007) that uses a SCFG. We suggest three
approximations that are computationally more feasible. Each can be regarded as a different
approximation of pφ(x | ỹi) in equation (4.4).

8One can manipulate the loss function to support other methods (such as Perceptron (Collins, 2002) and
MIRA (Crammer et al., 2006)) that use deterministic decoding.

9One should not confuse this with the minimum risk training of (4.1).
10Again, one may manipulate the loss function to support other probabilistic methods (such as CRF (Laf-

ferty et al., 2001)) that use randomized decoding.

60

4.2.4.1 k-best

For each ỹi, add to the imputed training set only the k most probable translations
{xi1, . . . xik} according to pφ(x | ỹi). (These can be extracted from Xi using standard
algorithms (Huang and Chiang, 2005).) Rescale their weights to sum to 1.

4.2.4.2 Sampling

For each ỹi, add to the training set k independent random samples {xi1, . . . xik} from
the distribution pφ(x | ỹi), each with weight 1/k. (These can be sampled from Xi using
standard algorithms (Johnson, Griffiths, and Goldwater, 2007).) This method is known in
the literature as multiple imputation (Rubin, 1987).

4.2.4.3 Lattice

Under certain circumstances it is possible to compute the quantity in equation (4.3)
exactly via dynamic programming. Although Xi does contain exponentially many transla-
tions, it uses a “packed” representation in which these translations share structure. Thus, it
is sometimes possible to share work and efficiently forward-translate the entire set of im-
puted translations in Xi, obtaining a distribution over translations y—and then to measure
the expected loss under that distribution as required by equation (4.3).

This appears to be possible, by a construction due to Jason Eisner (p.c.), if (a) the
posterior distribution pφ(x | ỹi) is represented by an unambiguous weighted finite-state
automaton Xi, (b) the forward translation system δθ is structured in a certain way as a
weighted synchronous context-free grammar, and (c) the loss function decomposes in a
way that is amenable to dynamic programming.

In our experimental setting described below, (b) is true (using Joshua), and (c) is true
(since we use a loss function of (2.14) on page 30, which is an approximation to BLEU

and decomposable). While (a) is not true in our setting because Xi is a hypergraph (which
is ambiguous), we will show in Chapter 6 on page 89 how to approximate a hypergraph
representation of pφ(x | ỹi) by an unambiguous WFSA.11 With this approximation, we can
then compute (4.3), and thus find optimal weight vector θ in (4.4).

4.2.4.4 Rule-level Composition

In the previous subsection, we employed a weighted finite-state approximation to the
distribution Xi over imputed Chinese sentences. Typically, however, our reverse translation
model pφ will have the same architecture as our forward system pθ—the Hiero model–and
thus will have the form of a weighted synchronous context-free grammar (SCFG). As a
result, it will produce a Xi that is structured like a weighted hypergraph. Just as in the

11Note that the forward translation of a WFSA is possible by using a lattice-based decoder (Dyer, Muresan,
and Resnik, 2008).

61

forward system, the hyperedges consider both the English-to-Chinese translation score and
the Chinese language model score; this means that they must be specialized according to
the Chinese language model state.

Since a hypergraph is a generalization of a finite-state automaton, would it be possible
to forward-translate this hypergraph, just as we forward-translated its finite-state approxi-
mation in the previous subsection, and thus compute equation (4.3) exactly?

Unfortunately not. If the reverse and forward systems were arbitrary SCFGs, then this
problem would be a generalization of the intersection of context-free languages, which
is known to be undecidable. The situation here is actually not quite that bad—a Hiero
system will always produce an acyclic hypergraph Xi, so that (4.3) could be computed
exactly by individually translating each of the finitely though exponentially many xi ∈ Xi.
Nonetheless, we know of no efficient way to compute (4.3) exactly.

It may seem surprising that the structure-sharing in the hypergraph Xi cannot be ex-
ploited as it was in the finite-state automaton of the previous section. Intuitively, the reason
is that when the forward Hiero system translates a string xi ∈ Xi, it must parse it into re-
cursive phrases. But the structure-sharing within the hypergraph of Xi has already parsed
xi into recursive phrases, in a way determined by the reverse Hiero system; each phrase
correspondings to a hyperedge.

To exploit structure-sharing, we must use a forward translation system that decomposes
according to that existing parse of xi. We can do that by considering only forward transla-
tions that respect the hypergraph structure of Xi. The simplest way to do this is to require
complete isomorphism of the SCFG trees used for the reverse and forward translations.

To implement this approximation, consider one of the hyperedges 〈e1, c, Lc〉 in Xi,
which represents a possible reverse translation of a possible English phrase e1 to a Chi-
nese phrase c, in a Chinese context Lc. Here Lc represents a state of the Chinese lan-
guage model used in the reverse translation; the weight of the hyperedge is sensitive to
this. When the forward-translation system wishes to forward-translate any of the imputed
Chinese sentences xi that can be derived with the help of this hyperedge, it is required
(under our proposed approximation) to forward-translate c as a phrase rather than parsing
xi in some other way that may not use c. The construction for forward-translating Xi un-
der this constraint can simply replace this hyperedge with several hyperedges of the form
〈e1, c, Lc, e2, Le〉, each of which represents a round-trip phrasal translation from e1 to c and
back to some e2.

HereLe represents a state of the English language model used in the forward translation,
so we do have a substantial expansion of the number of hyperedges: every hyperedge is
annotated with states Lc, Le from two language models. One can, however, approximate
further by simplifying or eliminating either the English or the Chinese language model.
This reduces the number of states.

Computing equation (4.3) correctly under this approximation requires reweighting the
hyperedges using a construction similar to the one mentioned in the previous subsection
(Eisner, p.c.). However, it is worth noting that if the English language model is dropped
altogether—quite a crude approximation—then it is possible to give

62

4.3 EM vs. Minimum Imputed-Risk
The notion of imputing missing data is familiar from other settings (Little and Rubin,

1987)—in particular the EM algorithm, which is widely used in NLP. It is therefore in-
structive to compare our minimum imputed-risk method to that generative approach.

One can train a joint model pθ(x, y) by maximizing the log-likelihood of the data,

argmax
θ

1

N

N∑
i=1

log pθ(xi, ỹi) (4.9)

Where xi is missing, one replaces pθ(xi, ỹi) with just pθ(ỹi) =
∑

x pθ(x, ỹi).
A closely related approach would be to impute the missing xi precisely as we did in

Section 4.2.1, obtaining the maximization problem

argmax
θ

1

N

N∑
i=1

∑
x

pφ(x | ỹi) log pθ(x, ỹi) (4.10)

After this maximization (an “M step”), one commonly updates the imputation model pφ
to be the conditionalization of the new joint model pθ (an “E step”), and then repeats the
process. (Note that θ here parameterizes a joint model, not a conditional model as in Sec-
tion 4.2.1. Also note that the imputation model φ is derived from θ and changes along with
the change of θ, not a separate and static φ as in Section 4.2.1.) This iterative Expectation-
Maximization (EM) procedure converges to a local maximum (or other critical point) of
the log-likelihood

∑
ỹi

log pθ(ỹi).
So why not simply use these maximum-likelihood training procedures for MT? One

reason is that they are not discriminative: the loss function is ignored during training. 12

A second reason is that training good joint models is computationally expensive. Con-
temporary MT makes heavy use of log-linear probability models, which allows the system
designer to inject linguistic intuitions or prior knowledge through a careful choice of fea-
tures. Computing the M-step objective (4.10) in closed form is difficult if pθ is an arbitrary
log-linear model, because the joint probability pθ(xi, ỹi) is then defined as a ratio whose
denominator Zθ involves a sum over all possible sentence pairs (x, y) of any length.

12 While we could still exploit the loss function at test time, by defining our translation system via the
minimum Bayes risk (MBR) decoding (as discussed in Section 2.5.2 on page 30),

δθ(x) = arg min
y

∑
y′

L(y, y′)pθ(y
′ | x) (4.11)

this would make translation computationally expensive at test time: although (4.11) is tractable (for some loss
functions) by dynamic programming, it is still more complex than a Viterbi decoder and so cannot exploit A∗

or coarse-to-fine decoding techniques. More importantly, under (4.11), the system would still not be tuned
to minimize its actual error. (While the rule (4.11) attempts to predict the error of the output y, it may do so
inaccurately if pθ is a poor model, and there is no opportunity to adjust θ to compensate for such modeling
flaws.) For this reason, we think it is important to consider loss at training time.

63

By contrast, our discriminative framework will only require us to work with conditional
models. While conditional probabilities such as pφ(x | y) and pθ(y | x) are also ratios,
computing their denominators only requires us to sum over a packed forest of possible
translations of a given y or x. Analogously, discriminative CRFs have become more popular
than generative HMMs because they permit efficient training even with a wide variety of
log-linear features (Lafferty et al., 2001).

In summary, EM would impute missing data using pθ(x | y) and predict outputs using
pθ(y | x), both being conditionalizations of the same joint model pθ(x, y). Our minimum
imputed-risk training method is similar, but it instead uses a pair of separately parameter-
ized, separately trained models pφ(x | y) and pθ(y | x). By sticking to conditional models,
we can efficiently use more sophisticated model features, and we can incorporate the loss
function when we train θ, which should improve both efficiency and accuracy at test time.

4.4 Experimental Results
We report results on a Chinese-to-English translation task using Joshua (Li et al.,

2009a) for both the forward and reverse translation.

4.4.1 Baseline Systems

We train both reverse and forward baseline systems. The translation models are built on
a corpus for IWSLT 2005 Chinese to English translation task (Eck and Hori, 2005), which
consists of 40k pairs of transcribed utterances in the travel domain.13 We use a 5-gram
language model with modified Kneser-Ney smoothing (Chen and Goodman, 1998), trained
on the English (or Chinese) side of the bitext. We use the standard pipeline (see Section 1.1
on page 1) and pruning settings (Chiang, 2007).

4.4.2 Feature Functions

We use two classes of features for discriminative training (cf. Figure 1.1 on page 2).

Regular Hiero Features

We include ten features that are standard in Hiero (Chiang, 2007). In particular, these
include one baseline language model feature, three baseline translation models, one word
penalty feature, three features to count how many rules with an arity of zero/one/two are
used in a derivation, and two features to count how many times the unary and binary glue
rules (see page 4 in Section 1.1.1) are used in a derivation.

13This task is relatively small, compared with a more realistic task (e.g., the NIST one). We use such a task
for computational efficiency.

64

Target-rule Bi-gram Features

For each bilingual rule, we extract bi-gram features over the target-side symbols (in-
cluding non-terminals and terminals). For example, if a bilingual rule’s target side is “on
the X1 issue of X2” where X1 and X2 are non-terminals (with a position index), we can
extract bi-gram features including: “on the”, “the X1”, “X1 issue”, “issue of”, and “of X2”.
We consider only those terminal symbols (i.e., regular English words) that occur frequently
in the English text. Moreover, for the terminal symbols, we will use their dominant POS
tags (instead of the symbol itself). For example, “on the” becomes“prep det”. We use 541
such bi-gram features.

4.4.3 Data Sets for Discriminative Training
We use three bilingual data sets (see Table 4.1): one to train the inverse model pφ14

(which uses only the 10 standard Hiero features as described in Section 4.4.2),15 one to
train the forward model δθ (which uses both classes of features described in Section 4.4.2,
i.e., 551 features in total), and one for test.

In all three data sets, each Chinese sentence xi has 16 English reference sentences, so
the gold-standard translation ỹi is actually a set of 16 translations. The loss L(y, ỹi) is
defined as the negated BLEU metric, which is able to evaluate a single output sentence y
against this set {ỹi}.

When we impute data from ỹi, we impute a one-best translation xi for each y ∈ {ỹi}.
This effectively adds 16 pairs of the form (xi, ỹi) to the training set (see Section 4.2.4),
where each xi is a different input sentence in each case, but ỹi is always the original set of
16 references.16

4.4.4 Semi-Supervised Training
Table 4.2 shows the main results of this chapter, which show how our method performs

in a semi-supervised training scenario (which is the most likely setting in practice).
We compare three discriminatively trained systems. The supervised system (“Sup”)

carries out discriminative training on an in-domain bilingual data set having 200 Chinese
sentences and 200*16 English references. The other two are semi-supervised: they also
use some unsupervised in-domain data (i.e., monolingual English) during discriminative
training.

14 In our experiments, for simplicity, we use a dedicated data set for training the reverse model. But in
practice, this may not be what someone would really do, especially when only a small amount of bilingual
data is available. Instead, one may use this precious data across training both the reverse and forward models.

15In the present results, we trained φ discriminatively to minimize risk, for implementation convenience.
In future work, we will instead train φ to minimize the conditional cross-entropy (4.5) as recommended by
Section 4.2.2.

16 In practice, one may not have multiple references. We take the unrealistic advantage of our data set
(which has 16 references) for stability of the minimum risk training.

65

Data set Purpose
of sentences

Chinese English
Set1 training φ 503 503*16
Set2 training θ 503 503*16
Set3 testing 506 506*16

Table 4.1: Three data sets for discriminative training. Note, related to Figure 1.1 on
page 2, that additional bitext (40k sentence pairs) are used to train the (generative) transla-
tion model and language model.

Training scenario Test BLEU

Sup, (200, 200*16) 47.6
+Unsup, 101*16 Eng sentences 49.0
+Unsup, 202*16 Eng sentences 48.9
+Unsup, 303*16 Eng sentences 49.7

Table 4.2: BLEU scores for semi-supervised training. The supervised system (“Sup”)
is trained on a bilingual data set having 200 Chinese sentences and 200*16 English ref-
erences. “+Unsup” means that we add unsupervised data (i.e., monolingual English sen-
tences) for training. For each English sentence, we impute a one-best Chinese translation
using the reverse translation system.

Clearly, adding unsupervised data improves over the supervised case, by at least 1.3
BLEU points. However, it is not necessarily true that more unsupervised data is always
better.

4.4.5 Supervised and Unsupervised Training

Though the semi-supervised training scenario is the most likely scenario in practice,
we are interested in knowing how our unsupervised discriminative method performs when
compared with supervised discriminative training, under different training data sizes. Ta-
ble 4.3 shows relevant results. Surprisingly, our unsupervised method actually performs
better than the supervised training in most cases. Also, using more unsupervised data is
better in general.

A possible explanation for the high performance of the unsupervised method is that the
training set is considerably larger and more diverse in this case. Whereas the supervised
method learns to translate only a single observed xi sentence into something resembling the
ỹi set, the unsupervised method learns to translate each of 16 imputed xi sentences back
into something resembling the ỹi set (as explained above). These imputed xi sentences can
use different vocabulary and sentence structure derived from the different references.

66

Data size
Test BLEU

Sup Unsup
101 48.6 48.5
202 48.2 48.9
303 47.7 48.8
403 48.2 49.6
503 48.6 49.2

Table 4.3: BLEU scores for supervised and unsupervised training. For supervised train-
ing (“Sup”), a data size of 101 means that we use a bilingual data set having 101 Chinese
sentences and 101*16 English references. For unsupervised training (“Unsup”), a data size
of 101 means that we use an English monolingual data set having 101*16 sentences, and for
each English sentence we will impute a one-best Chinese translation by using the reverse
translation system.

4.4.6 Unsupervised Training with Different Reverse Models
A critical component of our unsupervised method is the reverse translation model

pφ(x | ỹi). We wonder how the performance of our unsupervised method changes when the
quality of the reverse system varies. To answer this question, we used two different reverse
translation systems, one with a language model trained on the Chinese side of the bitext
(“WLM”), and the other one without using such a Chinese LM (“NLM”). It is well known
that using a language model is critical to the translation performance. This is evident from
the BLEU scores of the imputed Chinese translation in Table 4.4. Note that the BLEU scores
for the imputed Chinese are quite low, because only one Chinese reference is available for
scoring. Clearly, to make our unsupervised method work, we need to have a reasonably
good reverse translation system.

4.4.7 Unsupervised Training with Different k-best Sizes
In all the experiments so far, we used the reverse translation system to impute only

a single Chinese translation for each English monolingual sentence. (This is the k-best
approximation of section 4.2.4 with k = 1.)

Table 4.5 shows (in the fully unsupervised case) that the performance does not change
much as we increase k.17 However, even the 5-best sentences are likely to be quite similar
to one another (May and Knight, 2006). Imputing a longer k-best list, a sample, or a
lattice for xi (see Section 4.2.4) might achieve more diversity in the training inputs, which
might make the system more robust, just as diversity apparently helped performance in
section 4.4.5.

17In the present experiments, however, we simply weighted all k imputed translations equally, rather than
in proportion to their posterior probabilities as in section 4.2.4.

67

Data size
Imputed-ZH BLEU Test BLEU

WLM NLM WLM NLM
101 11.8 3.0 48.5 46.7
202 11.7 3.2 48.9 47.6
303 13.4 3.5 48.8 47.9

Table 4.4: BLEU scores for unsupervised training with/without using a language model
in the reverse system. “WLM” means a Chinese language model is used in the reverse
system, while “NLM” means no Chinese language model is used. A data size of 101 means
that we use an English monolingual data set having 101*16 sentences, and for each English
sentence we will impute a one-best Chinese translation by using the reverse translation
system. In addition to reporting the test BLEU (of the English translations) as usual, we
also report the “Imputed-CN BLEU”, which is the BLEU score of the imputed Chinese
sentence computed using the true Chinese sentence as a reference.

Training scenario Test BLEU

Unsup, k=1 48.5
Unsup, k=2 48.4
Unsup, k=3 48.9
Unsup, k=4 48.5
Unsup, k=5 48.4

Table 4.5: BLEU scores for unsupervised training with different k-best sizes. We use
101*16 monolingual English sentences, and for each English sentence we impute k-best of
Chinese translations using the reverse system.

4.4.8 Goodness of the Simulated Neighborhood

In supervised training, for a given Chinese input sentence, the forward system will
generate many English sentences, among which the training will learn to discriminate.
This set of English sentences can be thought as a neighborhood of the English reference
translation for the given Chinese input. In the unsupervised case, the Chinese input is
missing, and so the minimum imputed-risk training imputes the missing Chinese input
for each observed English sentence and then forward-translates the imputed Chinese input
back to many English sentences. This can be thought as a simulated neighborhood of the
original English sentence. For the minimum imputed-risk training to work well, we expect
that the simulated neighborhood will have some overlap with the true neighborhood that is
generated from the true Chinese input.

To measure the goodness of the simulated neighborhood, we obtain the sets of n-gram
types in the two neighborhoods, and then compute the ratio between the number of n-gram

68

n-gram Precision Recall
unigram 43.2% 41.2%
bigram 15.2% 14.3%
trigram 6.8% 5.9%
4-gram 3.7% 2.8%

Table 4.6: Precisions and recalls of simulated neighborhood’s n-grams. The n-grams are
collected from k-best strings where k = 100, which corresponds to the first data point in
Figure 4.1.

types in the intersection and that in the union. Figure 4.1 shows the results when comparing
different sizes of k-best English strings in the neighborhoods. In general, the ratio decreases
when n is larger. Also, the ratio does not change much along with the change of k.

Table 4.6 presents the simulated neighborhood’s precisions and recalls of the n-grams
in the true neighborhood. The n-grams are collected from k-best strings where k = 100,
which corresponds to the first data point in Figure 4.1 We would conclude that the simulated
neighborhood does a reasonably well job in simulating the true neighborhood.

4.4.9 Some Translation Examples
Table 4.7 presents several examples of translations which a semi-supervised system

(i.e., the system of the last row in Table 4.2) performs better than a supervised one (i.e., the
system of the first row in Table 4.2).

4.5 Summary
In this chapter, we have presented an unsupervised discriminative training method that

works with missing inputs. Our method first uses a reverse model to impute the missing
input, and then optimizes the parameters of the forward system such that the imputed risk
is minimized.

We have applied our method to a Chinese to English machine translation task. Super-
vised data are used to train baseline models, which are then combined with one another
and with additional features by discriminative training. We show that unsupervised train-
ing in the discriminative phase performs as well as supervised training, and often better.
Furthermore, augmenting supervised data with unsupervised data improves performance.

69

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.267

0.268

0.269

0.27

0.271

0.272

0.273

0.274

R
a
ti
o

Kbest size

(a) unigram overlap

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.0795

0.08

0.0805

0.081

0.0815

0.082

0.0825

0.083

R
a

ti
o

Kbest size

(b) bigram overlap

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.032

0.0322

0.0324

0.0326

0.0328

0.033

0.0332

0.0334

0.0336

0.0338

0.034

R
a
ti
o

Kbest size

(c) trigram overlap

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.0156

0.0158

0.016

0.0162

0.0164

0.0166

0.0168

0.017

0.0172

0.0174

0.0176

R
a
ti
o

Kbest size

(d) 4-gram overlap

Figure 4.1: The goodness of the simulated neighborhood by minimum imputed-risk.
We use the neighborhoods generated by the last two systems (supervised and unsupervised)
in Table 4.3. In the unsupervised case, for each test English sentence, we impute a one-best
Chinese, and then use the trained forward system to translate it back to English. For each
true (or imputed) Chinese, we generate a k-best English strings. We then obtain two sets
of n-gram types (that occur in the two k-best strings), and compute the ratio between the
number of n-gram types in the intersection and that in the union. Finally, we obtain the
average ratio among different sentences in the test set (i.e., set3).

70

System Output
Chinese 我们应该什么时候来？
Reference what time shall we come ?
Supervised when should we ?
Semi-supervised what time should we come ?
Chinese 我要吃鱼。
Reference i ’ll have the fish .
Supervised i like fish .
Semi-supervised i ’d like to have fish .
Chinese 预约柜台在哪？
Reference where is the reservation counter ?
Supervised where reservation counter ?
Semi-supervised where is the reservation counter ?
Chinese 我想试一下本地葡萄酒
Reference i ’d like to try some local wine .
Supervised i try local wine .
Semi-supervised i ’d like to try a local wine .
Chinese 我房间的热水没了。
Reference the hot water does n’t work in my room .
Supervised my room nothing hot water .
Semi-supervised the hot water is not in my room .
Chinese 哪天和我一起吃午饭怎么样？

我在我的旅馆附近发现了一家好餐馆。
Reference how about having lunch with me some day ?

i found a good restaurant near my hotel .
Supervised what day how lunch with me ?

i ’m my hotel found a restaurant around here .
Semi-supervised how about lunch with me what day ?

i found a good restaurant near at my hotel .

Table 4.7: Examples of translation outputs which a semi-supervised system (i.e., the sys-
tem of the last row in Table 4.2) performs better than a supervised one (i.e., the system of
the first row in Table 4.2).

71

Chapter 5

Contrastive Language Model Estimation

The minimum imputed-risk training presented in the previous chapter requires to use
two full-scale MT systems: the backward and the forward systems. In this chapter, we pro-
pose another unsupervised method, contrastive language model estimation, which can also
exploit monolingual English data to perform discriminative training, but does not require
a reverse system. The method proposed in this chapter can be thought as an approxima-
tion to the intractable minimum imputed-risk objective of (4.8) on page 60. In particular,
it resembles the rule-level composition approximation in Section 4.2.4.4 on page 61 (for a
detailed comparison, see Section 5.3.4).

Our method works as follows. We first extract a confusion grammar from a bilingual
grammar. Specifically, whenever in the bilingual grammar we see two rules that have the
same Chinese side (say c) but two different English sides (say e1 and e2), we will extract
a confusion rule X → 〈e1, e2〉. The confusion rule is English to English and captures the
confusion that an MT system may have when translating the Chinese-side c. Now, given a
good English sentence ỹ, we use the confusion grammar to produce many alternative En-
glish sentences y. This can be done as regular MT decoding, as the confusion grammar can
be treated as a “translation” model in an English-to-English “translation” system. The set of
y thus generated can be thought as alternative translations generated by the SMT system if
it had known the corresponding Chinese input x. Now, we can train a discriminative model
on the generated data y (with the original English sentence ỹ as the training reference) such
that the original sentence ỹ will be highly preferred by the model. The model trained can
then be used as a regular language model for actual MT decoding (e.g., translating Chinese
to English).

We again perform experiments by using the open-source MT toolkit Joshua (Li et al.,
2009a). We show that the contrastive language model (CLM) performs better than a regular
n-gram LM in terms of recovering an English sentence from its neighborhood (i.e., a set
of alternative sentences that are generated from the English sentence). The CLM also
improves the performance of an MT system.

72

5.1 Unsupervised Training of Global Log-Linear
Language Models

We have a set of training examples ỹi, where each ỹi is a sequence of English words.
We aim to train a language model pθ(y) (parameterized by θ) over the examples. The model
will be used to assign a probability to any English sentence. We can obtain such a model
by maximizing the likelihood of the training examples as follows,

θ∗ = arg max
θ

∏
i

pθ(ỹi) (5.1)

Now, the question is: what is the form of pθ(ỹi)? We can specify pθ as a globally
normalized log-linear model as follows,

pθ(y) =
ef(y)·θ

Z(∗) (5.2)

where f(y) is a feature vector depending on y, θ is the corresponding weight vector, and
Z(∗) def

=
∑

y′∈Σ∗ e
f(y′)·θ is a normalization constant. This is called as a whole-sentence

maximum entropy language model (Rosenfeld, Chen, and Zhu, 2001).1

Training with the above log-linear model requires computing the normalization con-
stant Z(∗), which is computationally challenging as it requires to sum over y ∈ Σ∗ (which
is the set of all possible English sentences with any length!). To address the computa-
tional difficulty issue, Rosenfeld et al. (2001) approximately compute Z(∗) using a set of
sentences sampled randomly from Σ∗.

In addition to the computational disadvantage, the model above also has modeling limi-
tation. In particular, in a task like MT, the point of an LM is to discriminate between ỹ from
a confusion set, which contains alternative translations considered by the MT system for a
given Chinese input. In the model above, the confusion set is Σ∗, which is unrealistic for
an MT system. A better way to train an LM is to use a real confusion set that is generated
by an MT system. However, this requires bilingual training data. Therefore, we propose
the following model,

pθ(ỹ | N (ỹ)) =
ef(ỹ)·θ

Z(ỹ)
(5.3)

=
ef(ỹ)·θ∑

y′∈N (ỹ) e
f(y′)·θ (5.4)

where N (ỹ) is a simulated confusion set of ỹ and can be obtained by applying a confusion
grammar (see Section 5.2) on ỹ. Our hope is that the simulated confusion set resembles

1One should not confuse this with a regular maximum entropy language model of (5.9), where the nor-
malization is done for each n-gram history (i.e., locally normalized).

73

the actual confusion set an MT system will generate if it were given the Chinese input
corresponding to ỹ. Our method is quite similar to the contrastive estimation (CE) by
Smith and Eisner (2005), but which several important differences (see Section 5.3.1).

5.2 Contrastive Language Model Estimation for MT
Training a contrastive language model for MT involves in the following steps.

• First, extract a confusion grammar (CG), which is an English-to-English grammar
and captures the confusion an MT system might have when choosing different trans-
lation options for a given Chinese input.

• Then, for each English sentence in our monolingual corpus, use the confusion gram-
mar (as a “translation” model) to generate a neighborhood (i.e., many alternative
English sentences).

• Finally, train a contrastive language model on the neighborhoods (with their corre-
sponding original English sentences as references) by using a discriminative training
method.

The trained model can then be used for actual MT decoding. Below, we present details
for each step.

5.2.1 Extracting a Confusion Grammar
We will first define the form of the confusion grammar and then describe ways in ex-

tracting such a grammar.

Confusion Grammar: Monolingual SCFG

We assume a formalism of synchronous context free grammar (SCFG) for the confusion
grammar (CG). While a typical SCFG is bilingual, our CG is monolingual since both the
source and target sides are English. Some example rules in the CG are as following,

X → 〈 a cat , the cat 〉 ,

X → 〈X0 at beijing , beijing ’s X0 〉 ,
X → 〈X0 of X1 , X0 of the X1 〉 ,
X → 〈X0 ’s X1 , X1 of X0 〉 .

Like a regular SCFG, a CG contains rules with different arities. Also, there might be
reordering in the rule as shown in the last example. These rules captures the confusion that
an MT system may have in choosing different senses or reordering patterns for a given
input. Now the question is how to acquire such a grammar. Below we present two ways.

74

Extracting Confusion Grammar from Bilingual Grammar

We can derive a confusion grammar from an existing bilingual grammar. For a particu-
lar Chinese side (say c), a bilingual grammar may have many different English translation
options (say e ∈ E). (Note that e ∈ E may contain both terminals and nonterminals.)
For each pair of such translation options (say e1 ∈ E and e2 ∈ E), we can extract two
confusion rules: X → 〈e1, e2〉 and X → 〈e2, e1〉. These rules capture the confusion that
an MT system will have when translating the Chinese-side c. Clearly, we can extract |E|2
such confusion rules given a set of translation options E (for the Chinese side c). Note that
for each English side e in the bilingual grammar, we also extract an identity rule, that is
X → 〈e, e〉. Also note that the rules in the CG are unweighted.

In practice, the above extraction process can be very efficient. Specifically, we read the
bilingual grammar into a Trie data structure where the prefixes correspond to the Chinese
sides of the bilingual grammar, and thus the rules at each node in the Trie will be the
different translation options for the Chinese side (i.e., the prefix at the node). In this way,
we can quickly identify the different translation options for the same Chinese side, and thus
extract the confusion grammar efficiently.

Extracting Test-set Specific Confusion Grammar

In the procedure described above, the bilingual grammar contains all the rules that are
extractable from the bilingual training corpora, and thus the confusion grammar derived
from it might be very big. A standard trick is to use a test-set specific grammar. That is,
we can first extract a bilingual grammar that is specific to the test set, and then derive a
confusion grammar from the bilingual grammar.

Even further, one may extract a CG from the hypergraphs that are generated for the
test-set.2 Recall that a node in a hypergraph corresponds to the same source span and thus
the same Chinese in the input, and that a node has many incoming hyperedges each of
which is associated with a bilingual rule. Clearly, all the bilingual rules associated with the
incoming hyperedges of a given node will have the same Chinese side. Therefore, at each
node, we will extract confusion rules for those English sides (which are the target sides
of the bilingual rules associated with the node’s incoming hyperedges) that have the same
arity.

The CG extracted from the test-set hypergraphs might be different from the one derived
directly from the test bilingual grammar. This is true since we often perform pruning when
generating the hypergraphs and the pruning might be guided by some other models (e.g., a
regular n-gram language model) in addition to the bilingual grammar. Such pruning might
already remove much confusion that exists in the bilingual grammar but is resolved by
other models during the actual MT decoding. Therefore, the CG extracted from the test-set
hypergraphs will tend to be smaller and may be more precise in term of capturing confusion
in actual MT decoding.

2Note that we do not need to look at the English reference translations of the test-set during the extraction.

75

5.2.2 Generating Simulated Neighborhood

Now, given a good English sentence ỹ, we use the confusion grammar to produce many
alternative English sentences (i.e., a neighborhoodN (ỹ)). This can be done as regular MT
decoding as we can treat the CG as a regular “translation” model in an English-to-English
“translation” system.

To make sure that we produce at least one derivation for each ỹ. We first need to add
into CG the standard glue rules as in Hiero (Chiang, 2007).

S → 〈X0 , X0 〉 ,

S → 〈S0 X1 , S0 X1 〉 ,

We also need to add an out of vocabulary (OOV) rule X → 〈word, oov〉 for each word in ỹ
and set the cost of such rule at a maximum value such that the OOV rule will get used only
when the CG does not know how to “translate” the word. Note that the CG does contain
identity rules for English words and phrases that occur in the bilingual grammar. But, this
does not guaranty that the rules in CG alone are able to cover all the words in ỹ since some
English words may not be in the English vocabulary of the CG. Therefore, we may need to
use the OOV rules. 3

Since the CG is an SCFG, the neighborhood N (ỹ) generated for the observed ỹ is
a hypergraph, encoding not only the alternative sentences of ỹ but also the hierarchical
process (e.g., which phrase in ỹ has been replaced with what) about how the alternative
sentences are generated. The hierarchical process is represented in a derivation tree. As
usual, many different derivation trees may correspond to the same string/sentence due to
spurious ambiguity. We use D(ỹ) to represent the set of derivations in the hypergraph
(that is generated for ỹ). The set of generated y can be thought as a simulation of the
alternative translations that would have been generated by the MT system if it had known
the corresponding Chinese input x for ỹ. Figure 5.1 presents an example of hypergraph,
which contains four alternative strings the cat the mat, the cat ’s the mat, the mat of the cat,
and the mat on the cat that are generated by CG for the English sentence a cat on the mat.

3 Note that the use of the glue and OOV rules together with the test-set specific confusion grammar (see
Section 5.2.1), our SCFG parsing may lead to degenerate behavior. Imagine we have the following English
sentence,

John walked home by a different route that evening.
If our test-set specific confusion grammar only has confusion rules X → 〈walked home, drove homeward〉
and X → 〈a, the〉. The confusion set that the parsing produces will include,

oov [walked home] oov [a] oov oov oov oov
oov [drove homeward] oov [the] oov oov oov oov

But training the contrastive LM to discriminate between the examples above will get almost identical results
to simply counting the number of phrasal matches on the English without any parsing. So, parsing might be
a waste of time in this case (although parsing might be as fast as pattern matching of the phrases in English
in this case).

76

X → 〈 a cat , the cat 〉
X → 〈 the mat , the mat 〉
X → 〈X0 on X1 , X0 X1 〉
X → 〈X0 on X1 , X0 ’s X1 〉
X → 〈X0 on X1 , X1 on X0 〉
X → 〈X0 on X1 , X1 of X0 〉
S → 〈X0 , X0 〉

(a) An example confusion grammar.

a0 cat1 on2 the3 mat4

S→〈X0,X0〉

X 0,5

X 0,2
X 3,5

X → 〈 a cat , the cat 〉 X → 〈 the mat , the mat 〉

X → 〈X0 on X1 , X0 X1 〉
X → 〈X0 on X1 , X0 ’s X1 〉

X → 〈X0 on X1 , X1 of X0 〉

X → 〈X0 on X1 , X1 on X0 〉

S 0,5

(b) An example hypergraph generated by the confusion gram-
mar of (a).

Figure 5.1: Confusion grammar and an example hypergraph generated by the confu-
sion grammar. Given an input sentence “a cat on the mat”, the confusion grammar of (a)
may generate a hypergraph (i.e., a neighborhood) for the input sentence, where the hyper-
graph contains four alternative sentences “the cat the mat”, “the cat ’s the mat”, “the mat
on the cat”, and “the mat of the cat”.

5.2.3 Discriminative Training

With the observed sentence ỹ and its neighborhood N (ỹ) (and D(ỹ)), we can then
perform the regular discriminative training. We use the minimum risk training (see also

77

Section 2.6.5 on page 34)4 that is,

θ∗ = arg min
θ

∑
i

Riskθ(ỹi) (5.5)

= arg min
θ

∑
i

∑
y∈N (ỹi)

L(y, ỹi)pθ(y | N (ỹi))

= arg min
θ

∑
i

∑
d∈D(ỹi)

L(Y(d), ỹi)pθ(d | D(ỹi)),

where pθ(d | ỹi) is defined as,

pθ(d | D(ỹi)) =
ef(d)·θ∑

d∈D(ỹi)
ef(d)·θ (5.6)

where θ is the contrastive model we aim to train, and f(d) is a feature vector over d,
which we will specify in Section 5.4. In general, the feature functions should be defined
in a way such that the training will be efficient and the actual MT decoding can use them
conveniently.

The objective of (5.5) is differentiable and thus we can optimize θ by a gradient-based
method. The risk and its gradient can be computed by using a second-order expectation
semiring (see Section 3.4 on page 50 for details).

In practice, the full contrastive set N (ỹ) defined by a confusion grammar (CG) may
be too large and we have to perform pruning during training. But, the pruning itself may
depend on the contrastive model that we aim to train. How do we solve this circular de-
pendency problem? We adopt the following procedure. Given an initial contrastive model
θ, we generate a hypergraph (with pruning) for each ỹ, and train an optimal θ∗ of (5.5) on
these hypergraphs. Then, we use the optimal θ∗ to regenerate a hypergraph for each ỹ, and
do the training again. This iterates until convergence. This procedure is quite similar to the
k-best MERT (Och, 2003) where the training involves a few iterations and each iteration
uses a new k-best list that is generated using the latest model.

5.2.4 Applying The Contrastive Language Model

First, we can measure the goodness of the CLM in a simulated task to see how well it
can recover ỹ from its neighborhood D(ỹ). This is merely a proof of concept, and may be
useful in deciding which features to employ for discriminative training.

The intended use of the CLM is, of course, for actual MT decoding (e.g., translating
Chinese to English). Specifically, we can add the contrastive model into an MT pipeline,
and tune its weight relative to other existing models in the MT system.

4One can also use other discriminative training methods described in Section 2.6.

78

5.3 Comparison to Related Work

5.3.1 Comparison to CE
Our method is similar to the contrastive estimation (CE) (Smith and Eisner, 2005). In

particular, our confusion grammar is like a neighborhood function in CE. Also, our goal
is to improve both efficiency and accuracy, just as CE does. However, there are several
important differences. First, the setup is quite different. While CE is originally proposed
for unsupervised prediction of x from y (e.g., predicting a part of speech (POS) sequence
from an observed English sentence),5 our goal is to purely train a language model (i.e.,
p(y)) on y. (That is, we do not aim to predict a x from y.) Secondly, the neighborhood
function in CE is manually created and independent from any particular task, while our
neighborhood function (i.e., the confusion grammar) is automatically learnt (e.g., from the
bilingual grammar) and is specific to our MT task. Therefore, our neighborhood function
might be more informative and adaptive to a given task. Thirdly, when tuning θ, CE uses
the maximum likelihood training of (5.1), but we use the minimum risk training of (5.5).
Since our training uses a task-specific loss function, it is expected to perform better than
the maximum likelihood training.

5.3.2 Locally Normalized Language Model
Since our contrastive model can be used as a language model p(y), it is instructive to

compare our method to other language modeling techniques. The most commonly used
LM is the so-called n-gram model parameterized as follows,

p(y) =
∏
w∈Wn

p(r(w) | h(w))cw(y) (5.7)

where Wn is a set of n-gram types. Each w ∈ Wn is an n-gram, which occurs cw(y) times
in the string y, and w may be divided into an (n− 1)-gram prefix h(w) (the history) and a
uni-gram suffix r(w) (the rightmost or current word). For example, for a trigram “on the
table”, the history is “on the” and the current word is “table”.

In the n-gram model of (5.7), p(r(w) | h(w)) is a proper probability distribution nor-
malized by the history h(w), and thus the model is locally normalized, while our contrastive
language model is globally normalized.

What are the parameters θ in the model? One can treat p(r(w) | h(w)) directly as
the parameters that we aim to learn. A usual way to estimate such parameters is to use a
maximum likelihood estimation, that is,

p(r(w) | h(w)) =
c(w)

c(h(w))
(5.8)

5Note that our use of x and y is different from that by Smith and Eisner (2005) (i.e., our x is their y, and
vice versa).

79

where c(·) is the occurrence frequency in the training corpora. This model may assign
a zero-probability to a sentence that contains unseen n-gram(s). Thus, the art of n-gram
language modeling is about how to smooth the distribution (Chen and Goodman, 1998).

Another choice of parameters θ is to define a log-linear model for p(r(w) | h(w)) as
follows,

pθ(r(w) | h(w)) =
ef(h(w),r(w))·θ

Z(h(w))
(5.9)

=
ef(h(w),r(w))·θ∑
r′∈Σ e

f(h(w),r′)·θ

where f(·, ·) is a feature vector depending on the history and the current word, and Σ is the
vocabulary of words. This corresponds to a maximum entropy language model (Rosenfeld,
1996; Khudanpur and Wu, 2000). Note that the model here is still locally normalized (by
the n-gram history), and one should not confuse this with the whole-sentence maximum
entropy language model of (5.2).

5.3.3 Globally Normalized Language Model
While our contrastive language model is a global log-linear model trained in an un-

supervised way, one can also train such a model in a supervised way (Roark, Saraclar,
Collins, and Johnson, 2004; Li and Khudanpur, 2008b). To recall, in supervised training,
we know the corresponding xi for each ỹi, and we can maximize the conditional likelihood
as follows,

θ∗ = arg max
θ

∏
i

pθ(ỹi | xi) (5.10)

= arg max
θ

∏
i

ef(xi,ỹi)·θ

Z(xi)
(5.11)

where the normalization constant Z(xi) =
∑

y e
f(xi,y)·θ requires to sum over only the

outputs y for the given input xi. In MT, this corresponds to different translation outputs
y ∈ T(xi) for a Chinese input xi.

In the above setting, if the features f(xi, y) (e.g., the English-side n-gram features) are
defined in a way such that they look at only the output y, we can train a discriminative
language model. The downside of these approaches is that they rely on bilingual data for
discriminative training. Note that all these models are globally normalized (as in the whole-
sentence maximum entropy model of (5.2)), but avoid computing the very expensive Z(∗)
that is required in (5.2).

5.3.4 Relation to Minimum Imputed Risk
Conceptually, the method proposed in this chapter is quite similar to the minimum

imputed-risk training in Chapter 4 on page 56. In particular, both try to simulate the con-

80

fusion set of an observed English sentence ỹ.

More concretely, the method here can be thought as an approximation to the intractable
minimum imputed-risk objective of (4.8) on page 60. In particular, it is the same as the
rule-level composition approximation discussed in Section 4.2.4.4 on page 61 except that
our neighborhood is unweighted6 (since the confusion rules are unweighted) and that we
do not use a Chinese/English language model in the construction.7 Due to these approxi-
mations, the method proposed in this chapter is much faster than the one in Section 4.2.4.4
(but not faster than the method used in the experiments there, which uses the k-best ap-
proximation described in Section 4.2.4.1). On the other hand, with these approximations,
our method may do a less good job of approximating the actual confusion sets.8 To address
this limitation, we try to get closer back to the actual confusion sets by pruning back the
confusion grammar to just the confusions that show up in the pruned hypergraphs generated
from the Chinese test set (although see footnote 3).

5.3.5 Relation to Paraphrasing Models

Our method is also related to those of training paraphrasing models (Quirk, Brockett,
and Dolan, 2004; Bannard and Callison-Burch, 2005; Callison-Burch, Koehn, and Osborne,
2006a; Madnani, Ayan, Resnik, and Dorr, 2007). Specifically, the form of our confusion
grammar is similar to that of the paraphrase model they use, and the way of extracting the
grammar/model is also similar as both are derived by using a language (e.g., Chinese in
our case) as a pivot. However, while a “translation” rule in a paraphrase model is expected
to contain a pair of phrases (i.e., source- and target-side phrases) that are paraphrases (i.e.,
good alternates) of each other, a confusion rule in our confusion grammar may contain a
pair of phrases that are typical bad alternates of each other proposed by an MT system.

The motivations and goals are also different. For example, the goal of Bannard and
Callison-Burch (2005) is to extract paraphrases with the help of parallel corpora. Callison-
Burch et al. (2006a) aim to improve MT quality by adding paraphrases in the translation
table, while Madnani et al. (2007) aim to improve the minimum error rate training by
adding the automatically generated paraphrases into the English reference sets. In contrast,
our motivation is to train a better discriminative language model (by using the confusion
grammar to decide what alternates the model should learn to discriminative), which will
then be used to help MT.

6This is also true in contrastive estimation (Smith and Eisner, 2005).
7Note that the experiments in Chapter 4 also uses an approxiamtion, that is., the k-best approximation

described in Section 4.2.4.1.
8It is worth emphasizing our unweighted neighborhood is still better than just Σ∗, which is what a gener-

ative LM would use.

81

Data Purpose
of sentences

Chinese English
Set0 training baseline translation/language models 40k 40k

Set1
discriminative training (for relative weights among models)

1006 1006×16
contrastive language model training∗∗

Set2 testing 506 506×16

Table 5.1: three data sets for experiments. In the column of “Purpose”, ∗∗ indicates only
the English data is needed for training. Note that for each Chinese sentence in Set1 and
Set2, there are 16 English references.

5.4 Experimental Results

We report results on a Chinese-to-English translation task using Joshua (Li et al.,
2009a).

5.4.1 Data Sets

We use three data sets (see Table 5.1): one to build a baseline translation/language
model, one to perform discriminative training (to find relative weights among models) and
perform contrastive language model estimation, and one for testing.

5.4.2 Baseline MT System

Our translation model is built on a bilingual corpus (i.e., Set0 of Table 5.1) for IWSLT
2005 Chinese to English translation task (Eck and Hori, 2005) and it consists of 40k pairs
of transcribed utterances in the travel domain.9 We use a 5-gram language model with
modified Kneser-Ney smoothing (Chen and Goodman, 1998), trained on the English side
of Set0 of Table 5.1.

The baseline MT system includes ten features that are standard in Hiero (Chiang, 2007).
In particular, these include one baseline language model feature, three baseline translation
model features, one word penalty feature, and five arity features (three to count how many
rules with an arity of zero/one/two are used in a derivation, and two to count how many
times the unary and binary glue rules are used in a derivation). The relative weights are
tuned using minimum risk training on the bilingual data Set1 of Table 5.1.

9This task is relatively small, compared with a more realistic task (e.g., the NIST one). We use such a task
for computational efficiency.

82

5.4.3 Training Contrastive Language Models
We extract a confusion grammar (CG) from the bilingual grammar (that is specific to

test data Set1 and Set2 of Table 5.1). The number of rules in the bilingual and confusion
grammar are about 167k and 1583k, respectively. The CG will be the “translation” model
for an English-to-English “translation” system. It defines the hypothesis space (before
pruning). Note that the rules in CG is unweighted.

We train several contrastive models (with different features described below) on the
English data of Set1, by using the iterative training procedure described at the end of Sec-
tion 5.2.3. Specifically, at each iteration, we use the current contrastive model to generate
a pruned hypergraph (i.e., a contrastive set) for each English sentence of Set1. These hy-
pergraphs will be used to train a new contrastive model, which will be used for decoding
in the next iteration. Note that each English sentence in Set1 has 15 paraphrase sentences.
We generate a separate hypergraph for each English sentence (say ỹ), but for each such
hypergraph we use both ỹ and its 15 paraphrase sentences as the corresponding references
during training. 10

We consider two classes of features:

• Regular Language Model Features: We consider two regular language model fea-
tures: one baseline 5-gram language model feature (“BLM”) and one word penalty
feature (“WP”).

• Target-rule Bigram Features (“RuleBigram”): For each confusion rule, we extract
bigram features over the target-side symbols (including non-terminals and terminals).
For example, if a confusion rule’s target side is “on the X1 issue of X2” where X1

and X2 are non-terminals (with a position index), we can extract bigram features
including: “on the”, “the X”, “X issue”, “issue of”, and “of X”. Note that the index
under the nonterminal of the rule has been removed in the features. We consider
only those terminal symbols (i.e., regular English words) that occur frequently in the
English text. Moreover, for the terminal symbols, we will use their dominant POS
tags (instead of the symbol itself). We use 525 such bigram features. 11

5.4.4 Results on Monolingual Simulation
We are first interested in seeing how our contrastive language model (CLM) performs

as a language model itself. One usually uses the perplexity of the LM on some unseen
English data to measure the goodness of an LM. We are mainly interested in how the
model performs in picking a good English sentence within its neighborhood (defined by
the confusion grammar). The test is performed as follows. For each test English sentence

10 In practice, one may not have multiple references. We take the unrealistic advantage of our data set
(which has 16 references) for stability of the minimum risk training.

11Note that the number of features here is smaller than that of Section 4.4.2 on page 65 since the features
here remove the indices of the non-terminals in the rules.

83

System ID
Features

BLEU
BLM WP RuleBigram

1 X 12.8

2 X X 14.2

3 X X X 25.3

Table 5.2: BLEU scores on English test set. Each system uses a different set of features
(see Section 5.4.3) in the contrastive estimation. In the table, we use“BLM” to denote the
regular n-gram language model, “WP” to denote the word penalty feature, and “RuleBi-
gram” to denote the target-rule bigram features.

ỹ of Set2, the confusion grammar defines a full contrastive set N (ỹ) (i.e., an un-pruned
hypergraph). We use a contrastive model to pick the best y from N (ỹ), and then compute
its BLEU score by using ỹ and its 15 paraphrase sentences as references.

Table 5.2 shows the results under a regular n-gram LM and different CLMs (which vary
in the features used during contrastive training). (Note that a CLM includes the baseline
n-gram LM (i.e., BLM) as a feature.) Clearly, the CLMs perform better than the regular
n-gram model (i.e., system-1), in terms of picking one-best from a neighborhood. These
show that our contrastive language model performs well as a language model alone.

Note that the BLEU scores in Table 5.2 are relatively small (e.g., compared with those
scores that will be shown in Table 5.3). This is mainly because the CLM model, which is
the only model used to rank the hypotheses in the neighborhood (i.e., a hypergraph), looks
at only the target-side of the confusion rules. In other words, the “channel” model that will
look at both the source- and target-side of a confusion rule is missing in the English-to-
English “translation” system.

5.4.5 Results on MT Test Data

We are also interested in seeing how the contrastive language model (CLM) performs
during actual MT decoding. To incorporate the CLM into MT decoding, we add the model
as an additional feature in the baseline system, and then tune the relative weights (now, we
have eleven weights, instead of ten as in the baseline MT system) on the bilingual data Set1
of Table 5.1.

Table 5.3 shows the results for several systems. Note that the MT system already has
its own “BLM” and “WP” features, as discussed in Section 5.4.2. Therefore, when inte-
grating a CLM model into MT decoding, we only use its “RuleBigram” features. However,
these “RuleBigram”features might get trained along with other features during contrastive
estimation, as we have shown in Table 5.2. Table 5.3 shows that the CLM helps to improve
the baseline MT system.

84

System ID
Features

BLEU
BLM WP RuleBigram

baseline not applicable 48.1
3 X X X 49.5

Table 5.3: BLEU scores on MT test set. The baseline MT system has ten models/features,
and the other system has eleven models/features, where the additional model is the con-
trastive language model (CLM). Note that, for the CLM, only the “RuleBigram” features
will be used in the MT decoding, but these features get trained along with other features
(e.g., the BLM) during the contrastive estimation.

5.4.6 Goodness of the Simulated Neighborhood

In supervised training, for a given Chinese input sentence, the forward system will gen-
erate many English sentences, among which the training will learn to discriminate. This set
of English sentences can be thought as a neighborhood of the English reference translation
for the given Chinese input. In the unsupervised case, the Chinese input is missing, and
so the contrastive LM applies the confusion grammar to “translate” each observed English
sentence to many alternative English sentences. This set can be thought as a simulated
neighborhood of the original English sentence. For the CLM to work well, we expect
that the simulated neighborhood will have some overlap with the true neighborhood that is
generated from the true Chinese input.

To measure the goodness of the simulated neighborhood, we obtain the sets of n-gram
types in the two neighborhoods, and then compute the ratio between the number of n-gram
types in the intersection and that in the union. Figure 5.2 shows the results when comparing
different sizes of k-best English strings in the neighborhoods. In general, the ratio decreases
when n is larger. Also, the ratio does not change much along with the change of k.

Table 5.4 presents the simulated neighborhood’s precisions and recalls of the n-grams
in the true neighborhood. The n-grams are collected from k-best strings where k = 100,
which corresponds to the first data point in Figure 5.2. We would conclude that the simu-
lated neighborhood does a reasonably well job in simulating the true neighborhood.

5.4.7 Some Translation Examples

Table 5.5 presents several examples of translations which the system incorporating a
contrastive LM (i.e., the system3 in Table 5.3) performs better than the baseline system in
Table 5.3.

85

n-gram Precision Recall
unigram 36.5% 48.2%
bigram 10.1% 12.8%
trigram 3.7% 4.6%
4-gram 2.0% 2.4%

Table 5.4: Precisions and recalls of simulated neighborhood’s n-grams. The n-grams are
collected from k-best strings where k = 100, which corresponds to the first data point in
Figure 5.2.

System Output
Chinese 预约柜台在哪？
Reference where is the reservation counter ?
Baseline where did counter ?
WithCLM where is the reservation counter ?
Chinese 为什么？我已经预订了。
Reference why ? i made a reservation .
Baseline why ? i ’ve reserved .
WithCLM i have a reservation . why ?
Chinese 到成田机场还要多长时间？
Reference how much longer will it take to get to narita ?
Baseline how long does it take to narita airport ?
WithCLM how long will it take to narita airport ?
Chinese 恐怕这趟航班已经订满了。
Reference i ’m afraid this flight is booked solid .
Baseline afraid fully booked on this flight .
WithCLM afraid this flight is fully booked .
Chinese 你认识她多久了？
Reference how long have you known her ?
Baseline you know how her ?
WithCLM how long do you know her ?

Table 5.5: Examples of translation outputs which the system incorporating a contrastive
LM (i.e., the system3 in Table 5.3) performs better than the baseline system in Table 5.3.

5.4.8 Comparison to the Experiments in Section 4.4

The setup and the use of data sets are quite different between this section and Section 4.4
in Chapter 4. In particular, in Chapter 4, we split the 1006 sentences into two equal sets,

86

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.261

0.262

0.263

0.264

0.265

0.266

0.267

0.268

0.269
R

a
ti
o

Kbest size

(a) unigram overlap

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.0592

0.0593

0.0594

0.0595

0.0596

0.0597

0.0598

0.0599

0.06

0.0601

R
a
ti
o

Kbest size

(b) bigram overlap

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.0206

0.0207

0.0208

0.0209

0.021

0.0211

0.0212

0.0213

0.0214

R
a
ti
o

Kbest size

(c) trigram overlap

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.0099

0.01

0.0101

0.0102

0.0103

0.0104

0.0105

R
a

ti
o

Kbest size

(d) 4-gram overlap

Figure 5.2: The goodness of the simulated neighborhood by using confusion grammar.
We compare the two neighborhoods, one is generated from the Chinese input by the super-
vised baseline in Table 5.3, and the other is the simulated neighborhood generated from the
English by using the CLM with a system ID of 3 in Table 5.2. To measure the goodness of
the simulated neighborhood, we obtain the sets of n-gram types in the two neighborhoods,
and then compute the ratio between the number of n-gram types in the intersection and that
in the union. Finally, we obtain the average ratio among different sentences in the test set
(i.e., set3).

one to train the reverse model, and the other to train the forward model (in a supervised,
unsupervised, or semi-superivsed manner). In comparison, in this chapter we do not require
a reverse model, so all 1006 sentences are used for training the forward system. Below, we
give a rough comparison.

87

Best BLEU Score

The best BLEU score in Section 4.4 is 49.7 as shown in Table 4.2 on page 66, while the
best BLEU score is 49.5 as shown in Table 5.3.

Goodness of the Simulated Neighborhoods

One can compare the goodness of the two different simulated neighborhoods by com-
paring between Figure 4.1 on page 70 and Figure 5.2 on page 86, and between Table 4.6
on page 69 and Table 5.4 on page 85. As we can see, these two simulated neighborhoods
have similar quality.

Running Time

In terms of running time of the two kinds of experiments, they are similar, although the
pipleline of the imputed-risk training will be a little bit more involved as we also need to
train the reverse model.

5.5 Summary
We apply a similar idea as contrastive estimation to train a globally normalized log-

linear language model for MT. Our method relies on a confusion grammar, which is an
English-to-English SCFG and captures the confusion that an MT system may have when
choosing different translations for a given input. We derive such a grammar from a bilingual
grammar. For each English sentence, we then use the confusion grammar to generate a
contrastive set, from which we train a contrastive language model (CLM). Our experiments
show that the CLM is able to help a regular n-gram LM to pick a better one-best within a
neighborhood of alternative sentences that are generated for an English sentence in a test
set. The CLM also improves the performance of an MT system.

88

Chapter 6

Variational Decoding

As discussed in Section 2.5, due to spurious ambiguity, the maximum a posterior
(MAP) decoding of (2.7) on page 28 is intractable. The Viterbi and crunching methods
described there approximate the intractable decoding by ignoring most of the derivations.
In this chapter, we will present a novel variational approximation, which considers all the
derivations but still allows tractable decoding. Much of this chapter is based on Li et al.
(2009b).

Our variational decoding works as follows. Given an input string, the original system
produces a probability distribution p over possible output strings and their derivations. Our
method constructs a second distribution q ∈ Q that approximates p as well as possible, and
then finds the best string according to q. The last step is tractable because each q ∈ Q is
defined (unlike p) without reference to the hidden derivations. Notice that q here does not
approximate the entire translation process, but only the distribution over output strings for
a particular input. This is why it can be a fairly good approximation even without looking
at the hidden derivations.

In practice, we approximate with several different variational familiesQ, corresponding
to n-gram (Markov) models of different orders. We geometrically interpolate the resulting
approximations q with one another (and with the Viterbi approximation of the original
distribution p), justifying this interpolation as similar to the minimum-risk decoding for
BLEU proposed by Tromble et al. (2008). Experiments show that our approach improves
the state of the art.

The methods presented in this chapter should be applicable to collapsing spurious ambi-
guity for other tasks as well. Such tasks include data-oriented parsing (DOP), applications
of Hidden Markov Models (HMMs) and mixture models, and other models with latent vari-
ables. Indeed, our methods were inspired by past work on variational decoding for DOP
(Goodman, 1996) and for latent-variable parsing (Matsuzaki, Miyao, and Tsujii, 2005).

89

6.1 Variational Decoding for MT
Variational methods generally work as follows. When exact inference under a complex

model p is intractable, one can approximate the posterior p(y | x) by a tractable model
q(y), where q ∈ Q is chosen to minimize some information loss such as the KL diver-
gence KL(p ‖ q). The simpler model q can then act as a surrogate for p during inference.
Below we will discuss how to apply this general method to solve the intractable MAP de-
coding problem of (2.7) on page 28. In the discussion, we will use the notations defined in
Table 2.1 on page 18.

For each input sentence x, we assume that a baseline MT system generates a hypergraph
HG(x) that defines a probability distribution p(d | x) over the derivations d ∈ D(x).1

For any single y ∈ T(x), it would be tractable using HG(x) to compute p(y | x) =∑
d∈D(x,y) p(d | x). However, as mentioned, it is intractable to find argmaxy p(y | x) as

required by the MAP decoding (2.7) on page 28, so we seek an approximate distribution
q(y) ≈ p(y | x).2

For a given x, we seek a distribution q ∈ Q that minimizes the KL divergence from p
to q (both regarded as distributions over y):3

q∗ = argmin
q∈Q

KL(p ‖ q) (6.1)

= argmin
q∈Q

∑
y∈T(x)

(p log p− p log q) (6.2)

= argmax
q∈Q

∑
y∈T(x)

p log q (6.3)

So far, in order to approximate the intractable optimization problem (2.7), we have
defined another optimization problem (6.3). If computing p(y | x) during decoding is com-
putationally intractable, one might wonder if the optimization problem (6.3) is any simpler.
We will show this is the case. The trick is to parameterize q as a factorized distribution
such that the estimation of q∗ and decoding using q∗ are both tractable through efficient
dynamic programs. In the next three subsections, we will discuss the parameterization,
estimation, and decoding, respectively.

6.1.1 Parameterization of q
In (6.3),Q is a family of distributions. If we select a large familyQ, we can allow more

complex distributions, so that q∗ will better approximate p. If we select a smaller familyQ,
1The baseline system may return a pruned hypergraph, which has the effect of pruning D(x) and T(x) as

well.
2Following the convention in describing variational inference, we write q(y) instead of q(y | x), even

though q(y) always depends on x implicitly.
3To avoid clutter, we denote p(y | x) by p, and q(y) by q. We drop p log p from (6.2) because it is constant

with respect to q. We then flip the sign and change argmin to argmax.

90

we can guarantee that q∗ will have a simple form with many conditional independencies,
so that q∗(y) and y∗ = argmaxy q

∗(y) are easier to compute.
Since each q(y) is a distribution over output strings, a natural choice forQ is the family

of n-gram models. To obtain a small KL divergence (6.1), we should make n as large as
possible. In fact, q∗ → p as n → ∞. Of course, this last point also means that our com-
putation becomes intractable as n → ∞.4 However, if p(y | x) is defined by a hypergraph
HG(x) whose structure explicitly incorporates an m-gram language model, both training
and decoding will be efficient when m ≥ n. We will give algorithms for this case that are
linear in the size of HG(x).5

Formally, each n-gram model qn ∈ Q takes the form

qn(y) =
∏
w∈Wn

q(r(w) | h(w))cw(y) (6.4)

where Wn is a set of n-gram types. Each w ∈ W is an n-gram, which occurs cw(y) times
in the string y, and w may be divided into an (n− 1)-gram prefix h(w) (the history) and a
1-gram suffix r(w) (the rightmost or current word).

The parameters that specify a particular qn ∈ Q are the (normalized) conditional prob-
ability distributions q(r(w) | h(w)). We will now see how to estimate these parameters to
approximate p(· | x) for a given x at test time.

4Blunsom et al. (2008) effectively do take n = ∞, by maintaining the whole translation string in the dy-
namic programming state. They alleviate the computation cost somehow by using aggressive beam pruning,
which might be sensible for their relatively small task (e.g., input sentences of < 10 words) like IWSLT. But,
we are interested in improving the performance for a large-scale system, and thus their method is not a viable
solution. Moreover, we observe in our experiments that using a larger n does not improve much over n = 2.

5One might ask how our method interacts with backed-off language models. The issue is that the most
compact finite-state representations of these (Allauzen et al., 2003), which exploit backoff structure, are not
purely m-gram for any m. They yield more compact hypergraphs (Li and Khudanpur, 2008a), but unfor-
tunately those hypergraphs might not be treatable by Fig. 6.2—since where they back off to less than an
n-gram, e is not informative enough for line 8 to find w.

We sketch a method that works for any language model given by a weighted FSA, L. The variational
family Q can be specified by any deterministic weighted FSA, Q, with weights parameterized by φ. One
seeks φ to minimize (6.1).

Intersect HG(x) with an “unweighted” version of Q in which all arcs have weight 1, so that Q does not
prefer any string to another. By lifting weights into an expectation semiring (Eisner, 2002), it is then possible
to obtain expected transition counts inQ (where the expectation is taken under p), or other sufficient statistics
needed to estimate φ.

This takes only time O(|HG(x)|) when L is a left-to-right refinement of Q (meaning that any two prefix
strings that reach the same state in L also reach the same state in Q), for then intersecting L or HG(x) with
Q does not split any states. That is the case when L and Q are respectively pure m-gram and n-gram models
with m ≥ n, as assumed in (6.5) and Figure 6.2. It is also the case when Q is a pure n-gram model and L
is constructed not to back off beyond n-grams; or when the variational family Q is defined by deliberately
taking the FSA Q to have the same topology as L.

91

6.1.2 Estimation of q∗

Note that the objective function (6.1)–(6.3) asks us to approximate p as closely as pos-
sible, without any further smoothing. (It is assumed that p is already smoothed appropri-
ately, having been constructed from channel and language models that were estimated with
smoothing from finite training data.)

In fact, if p were the empirical distribution over strings in a training corpus, then q∗ of
(6.3) is just the maximum-likelihood n-gram model—whose parameters, trivially, are just
unsmoothed ratios of the n-gram and (n − 1)-gram counts in the training corpus. That is,
q∗(r(w) | h(w)) = c(w)

c(h(w))
.

Our actual job is exactly the same, except that p is specified not by a corpus but by the
hypergraph HG(x). The only change is that the n-gram counts c̄(w) are no longer integers
from a corpus, but are expected counts under p:6

q∗(r(w) | h(w)) =
c̄(w)

c̄(h(w))
(6.5)

=

∑
y cw(y)p(y | x)∑

y ch(w)(y)p(y | x)

=

∑
d cw(Y(d))p(d | x)∑

d ch(w)(Y(d))p(d | x)

Now, the question is how to efficiently compute (6.5) from the hypergraph HG(x). To
develop the intuition, we first present a brute-force algorithm in Figure 6.1. The algorithm
is brute-force since it first needs to unpack the hypergraph and enumerate each possible
derivation in the hypergraph (see line 1), which is computationally intractable. The algo-
rithm then enumerates each n-gram and (n − 1)-gram in y and accumulates its soft count
into the expected count, and finally obtains the parameters of q∗ by taking count ratios via
(6.5).

Figure 6.2 shows an efficient version that exploits the packed-forest structure of HG(x)
in computing the expected counts. Specifically, it first runs the inside-outside procedure,
which annotates each node (say v) with both an inside weight β(v) and an outside weight
α(v). The inside-outside also finds Z(x), the total weight of all derivations. With these
weights, the algorithm then explores the hypergraph once more to collect the expected
counts. For each hyperedge (say e), it first gets the posterior weight ce (see lines 4-6).
Then, for each n-gram type (say w), it increments the expected count by cw(e) · ce, where
cw(e) is the number of copies of n-gram w that are added by hyperedge e, i.e., that appear
in the yield of e but not in the yields of any of its antecedents u ∈ T (e).

While there may be exponentially many derivations, the hypergraph data structure rep-
resents them in polynomial space by allowing multiple derivations to share subderivations.

6One can prove (6.5) via Lagrange multipliers, with q∗(· | h) constrained to be a normalized distribution
for each h.

92

Brute-Force-MLE(HG(x))

1 for d in HG(x) � each derivation
2 forw in Y(d) � each n-gram type in the yilt of d
3 � accumulate soft count
4 c̄(w) + = cw(Y(d)) · p(d | x)
5 c̄(h(w)) + = cw(Y(d)) · p(d | x)
6 q∗ ← MLE using formula (6.5)
7 return q∗

Figure 6.1: Brute-force estimation of q∗.

Dynamic-Programming-MLE(HG(x))

1 run inside-outside on the hypergraph HG(x)
2 for v in HG(x) � each node
3 for e ∈ I(v) � each incoming hyperedge
4 ce ← pe · α(v)/Z(x)
5 for u ∈ T (e) � each antecedent node
6 ce ← ce · β(u)
7 � accumulate soft count
8 forw in e � each n-gram type
9 c̄(w) + = cw(e) · ce

10 c̄(h(w)) + = cw(e) · ce
11 q∗ ← MLE using formula (6.5)
12 return q∗

Figure 6.2: Dynamic programming estimation of q∗. I(v) represents the set of incoming
hyperedges of node v; pe represents the weight of the hyperedge e itself; T (e) represents
the set of antecedent nodes of hyperedge e. Please refer to the text for the meanings of
other notations.

The algorithm of Figure 6.2 may be run over this packed forest in time O(|HG(x)|) where
|HG(x)| is the hypergraph’s size (number of hyperedges).

Note that the lines 1–10 of Figure 6.2 is a specific version of the general inside-outside
algorithm of Figure 3.3 on page 42. Indeed, the expected n-gram counts can be computed
by using a first-order expectation semiring in the algorithm of Figure 3.3, where the weight
for a hyperedge e is 〈pe, pecw(e)〉.

93

6.1.3 Decoding with q∗

When translating x at runtime, the q∗n constructed from HG(x) will be used as a surro-
gate for p during decoding. We want its most probable string:

y∗ = argmax
y

q∗n(y) (6.6)

Since q∗n is an n-gram model, finding y∗ is equivalent to a shortest-path problem in a certain
graph whose edges correspond to n-grams (weighted with negative log-probabilities) and
whose vertices correspond to (n− 1)-grams.

However, because q∗n only approximates p, y∗ of (6.6) may be locally appropriate but
globally inadequate as a translation of x. Observe, e.g., that an n-gram model q∗n(y) will
tend to favor short strings y, regardless of the length of x. Suppose x = le chat chasse la
souris (“the cat chases the mouse”) and q∗ is a bigram approximation to p(y | x). Presum-
ably q∗(the | START), q∗(mouse | the), and q∗(END | mouse) are all large in HG(x). So
the most probable string y∗ under q∗ may be simply “the mouse,” which is short and has a
high probability but fails to cover x.

Therefore, a better way of using q∗ is to restrict the search space to the original hyper-
graph, i.e.:

y∗ = argmax
y∈T(x)

q∗n(y) (6.7)

This ensures that y∗ is a valid string in the original hypergraph HG(x), which will tend to
rule out inadequate translations like “the mouse.”

If our sole objective is to get a good approximation to p(y | x), we should just use a
single n-gram model q∗n whose order n is as large as possible, given computational con-
straints. This may be regarded as favoring n-grams that are likely to appear in the reference
translation (because they are likely in the derivation forest). However, in order to score
well on the BLEU metric for MT evaluation, which gives partial credit, we would also like
to favor lower-order n-grams that are likely to appear in the reference, even if this means
picking some less-likely high-order n-grams. For this reason, it is useful to interpolate
different orders of variational models,

y∗ = argmax
y∈T(x)

∑
n

θn · log q∗n(y) (6.8)

where n may include the value of zero, in which case log q∗0(y)
def
= |y|, corresponding to

a conventional word penalty feature. In the geometric interpolation above, the weight θn
controls the relative veto power of the n-gram approximation and can be tuned by any
discriminative method presented in Section 2.6 on page 30.

Lastly, note that Viterbi and variational approximation are different ways to approx-
imate the exact probability p(y | x), and each of them has pros and cons. Specifically,
Viterbi approximation (see Section 2.5.1 on page 29) uses the correct probability of one

94

complete derivation, but ignores most of the derivations in the hypergraph. In comparison,
the variational approximation considers all the derivations in the hypergraph, but uses only
aggregate statistics of fragments of derivations. Therefore, it is desirable to interpolate
further with the Viterbi approximation when choosing the final translation output:7

y∗ = argmax
y∈T(x)

θv · log pViterbi(y | x) +
∑
n

θn · log q∗n(y) (6.9)

where the first term corresponds to the Viterbi decoding of (2.8) on page 29 and the second
term corresponds to the interpolated variational decoding of (6.8).8 Assuming θv > 0, the
first term penalizes translations with no good derivation in the hypergraph.9

For n ≤ m, any of these decoders (6.7)–(6.9) may be implemented efficiently by us-
ing the n-gram variational approximations q∗ to rescore HG(x)—preserving its hypergraph
topology, but modifying the hyperedge weights.10 While the original weights gave deriva-
tion d a score of log p(d | x), the weights as modified for (6.9) will give d a score of
θv · log p(d | x)+

∑
n θn · log q∗n(Y(d)). We then find the best-scoring derivation and output

its target yield; that is, we find argmaxy∈T(x) via Y(argmaxd∈D(x)).

6.2 Variational vs. Minimum Bayes Risk Decoding
In a high-level, variational and minimum Bayes risk (MBR) decoding aim to solve

different problems as shown in Figure 6.3: one is to approximate the intractable MAP
decoding (due to spurious ambiguity), and the other is to find a consensus translation.

Now, we formally derive the connection between our variational decoding and the MBR
decoding of Tromble et al. (2008). Recall that the MBR decision rule is,

y∗ = argmin
y

R(y) = argmin
y

∑
y′

L(y, y′)p(y′ | x) (6.10)

7It would also be possible to interpolate with the k-best approximation (see Section 2.5.1), with some
complications.

8Zens and Ney (2006) use a similar decision rule as here and they also use posterior n-gram probabilities
as feature functions, but their model estimation and decoding are over a k-best, which is trivial in terms of
computation.

9Already at (6.7), we explicitly ruled out translations y having no derivation at all in the hypergraph.
However, suppose the hypergraph were very large (thanks to a large or smoothed translation model and
weak pruning). Then (6.7)’s heuristic would fail to eliminate bad translations (“the mouse”), since nearly
every string y ∈ Σ∗ would be derived as a translation with at least a tiny probability. The “soft” version
(6.9) solves this problem, since unlike the “hard” (6.7), it penalizes translations that appear only weakly
in the hypergraph. As an extreme case, translations not in the hypergraph at all are infinitely penalized
(log pViterbi(y) = log 0 = −∞), making it natural for the decoder not to consider them, i.e., to do only
argmaxy∈T(x) rather than argmaxy∈Σ∗ .

10One might also want to use the q∗n or smoothed versions of them to rescore additional hypotheses, e.g.,
hypotheses proposed by other systems or by system combination.

95

spurious ambiguity
co

n
se

n
su

s

VD

MBR

Interpolated
Variational Decoding

Figure 6.3: MBR decoding versus variational decoding. While the variational decoding
(VD) is mainly to approximate the intractable MAP decoding problem due to spurious
ambiguity, the main goal of minimum Bayes risk (MBR) decoding is to find a consensus
translation. In comparison, the VD decoding with interpolations of different order of n-
gram approximations addresses both the spurious ambiguity and consensus problems.

where L(y, y′) represents the loss of y if the true answer is y′, and the risk of y is its
expected loss. As mentioned before, the MBR decoding is intractable if we use the negated
BLEU (Papineni et al., 2001) as a loss function. Therefore, Tromble et al. (2008) use the
following loss function, of which a linear approximation to BLEU a special case,

L(y, y′) = −(θ0|y|+
∑
w∈N

θwcw(y)δw(y′)) (6.11)

where w is an n-gram type, N is a set of n-gram types with n ∈ [1, 4], cw(y) is the number
of occurrence of the n-gram w in y, and δw(y′) is an indicator function to check if y′

contains at least one occurrence of w. With the above loss function, Tromble et al. (2008)
derive the MBR rule11

y∗ = argmax
y

(θ0|y|+
∑
w∈N

θwcw(y)g(w | x)) (6.12)

where g(w | x) is a specialized “posterior” probability of the n-gram w, and is defined as

g(w | x) =
∑
y′

δw(y′)p(y′ | x) (6.13)

Now, let us divide N , which contains n-gram types of different n, into several subsets
Wn, each of which contains only the n-grams with a given length n. We can now rewrite
(6.12) as follows,

y∗ = argmax
y

∑
n

θn · gn(y | x) (6.14)

11Note that Tromble et al. (2008) only consider MBR for a lattice without hidden structures, though their
method can be in principle applied in a hypergraph with spurious ambiguity.

96

Decoding MBR Variational (Interpolated)
Decision rule y∗ = argmax

y

∑
n

θn · gn(y) y∗ = argmax
y

∑
n

θn · log qn(y)

n-gram model gn(y) =
∑
w∈Wn

g(w)cw(y) qn(y) =
∏
w∈Wn

q(r(w) | h(w))cw(y)

n-gram g(w) =
∑
y′

δw(y′)p(y′) q(r(w) | h(w)) =

∑
y′ cw(y′)p(y′)∑

y′ ch(w)(y′)p(y′)

probability

Table 6.1: MBR versus variational decoding. Note that all the probability of y (or y′)
should depend on a given input x, but we do not explicitly write that for convenience.

by assuming θw = θ|w| and,

gn(y | x)=

{
|y| if n = 0∑

w∈Wn
g(w | x)cw(y) if n > 0

(6.15)

Clearly, their rule (6.14) has a quite similar form to our rule (6.8), and we can relate
(6.13) to (6.5) and (6.15) to (6.4). This justifies the use of interpolation in Section 6.1.3.
However, there are several important differences (see Table 6.1). First, the n-gram “pos-
terior” of (6.13) is very expensive to compute. In fact, it requires an intersection between
each n-gram in the lattice and the lattice itself, as is done by Tromble et al. (2008). In com-
parison, the optimal n-gram probabilities of (6.5) can be computed using the inside-outside
algorithm, once and for all. Also, g(w | x) of (6.13) is not normalized over the history of
w, while q∗(r(w) | h(w)) of (6.5) is. Lastly, the definition of the n-gram model is different.
While the model (6.4) is a proper probabilistic model, the function of (6.15) is simply an
approximation of the average n-gram precisions of y.

A connection between variational decoding and minimum-risk decoding has been noted
before (e.g., Matsuzaki et al. (2005)), but the derivation above makes the connection formal.

6.3 Experimental Results
We report results using an open source MT toolkit Joshua (Li et al., 2009a).

6.3.1 Experimental Setup
We work on a Chinese to English translation task. Our translation model was trained

on about 1M parallel sentence pairs (about 28M words in each language), which are sub-
sampled from corpora distributed by LDC for the NIST MT evaluation using a sampling

97

method based on the n-gram matches between training and test sets in the foreign side.
We also used a 5-gram language model with modified Kneser-Ney smoothing (Chen and
Goodman, 1998), trained on a data set consisting of a 130M words in English Gigaword
(LDC2007T07) and the English side of the parallel corpora. We use GIZA++ (Och and
Ney, 2000), a suffix-array Hiero grammar extractor (Lopez, 2007), SRILM (Stolcke, 2002),
and risk-based deterministic annealing (Smith and Eisner, 2006)12 to obtain word align-
ments, translation models, language models, and the optimal weights for combining these
models, respectively. We use standard beam-pruning and cube-pruning parameter settings,
following Chiang (2007), when generating the hypergraphs.

The NIST MT’03 set is used to tune model weights (e.g. those of (6.9)) and the scaling
factor γ of (2.17),13 and MT’04 and MT’05 are blind test-sets. We will report results for
lowercase BLEU-4, using the shortest reference translation in computing brevity penalty.

6.3.2 Main Results

Table 6.2 presents the BLEU scores under Viterbi of (2.8) on page 29, crunching of
(2.11) on page 29, K-best MBR, and variational decoding. Both crunching and MBR
show slight significant improvements over the Viterbi baseline; variational decoding gives
a substantial improvement.

The difference between MBR and Crunching+MBR lies in how we approximate the
distribution p(y′ | x) in (6.10).14 For MBR, we take p(y′ | x) to be proportional to
pViterbi(y

′ | x) if y′ is among the K best distinct strings on that measure, and 0 other-
wise. For Crunching+MBR, we take p(y′ | x) to be proportional to pcrunch(y′ | x), which is
based on the N best derivations.

6.3.3 Results of Different Variational Decoding

Table 6.3 presents the BLEU results under different ways in using the variational models,
as discussed in Section 6.1.3. As shown in Table 6.3(a), decoding with a single variational
n-gram model (VM) as per (6.7) improves the Viterbi baseline (except the case with a
unigram VM), though often not statistically significant. Moreover, a bigram (i.e., “2gram”)
achieves the best BLEU scores among the four different orders of VMs.

The interpolation between a VM and a word penalty feature (“wp”) improves over the
unigram VM dramatically, but does not improve higher-order VMs (Table 6.3(b)). Adding
the Viterbi feature (“vt”) into the interpolation further improves the lower-order models

12We have also experimented with MERT (Och, 2003), and found that the deterministic annealing gave
results that were more consistent across runs and often better.

13We found the BLEU scores are not very sensitive to γ, contrasting to the observations by Tromble et al.
(2008).

14We also restrict T(x) to {y : p(y | x) > 0}, using the same approximation for p(y | x) as we did for
p(y′ | x).

98

Decoding scheme MT’04 MT’05
Viterbi 35.4 32.6
MBR (K=1000) 35.8 32.7
Crunching (N=10000) 35.7 32.8
Crunching+MBR (N=10000) 35.8 32.7
Variational (1to4gram+wp+vt) 36.6 33.5

Table 6.2: BLEU scores for Viterbi, Crunching, MBR, and variational decoding. All the
systems improve significantly over the Viterbi baseline (paired permutation test, p < 0.05).
In each column, we boldface the best result as well as all results that are statistically in-
distinguishable from it. In MBR, K is the number of unique strings. For Crunching and
Crunching+MBR, N represents the number of derivations. On average, each string has
about 115 distinct derivations. The variational method “1to4gram+wp+vt” is our full inter-
polation (6.9) of four variational n-gram models (“1to4gram”), the Viterbi baseline (“vt”),
and a word penalty feature (“wp”).

(Table 6.3(c)), and all the improvements over the Viterbi baseline become statistically sig-
nificant. At last, interpolation of several variational models does not yield much further im-
provement over the best previous model, but makes the results more stable (Table 6.3(d)).

6.3.4 KL Divergence of Approximate Models
While the BLEU scores reported show the practical utility of the variational models, it is

also interesting to measure how well each individual variational model q(y) approximates
the distribution p(y | x). Ideally, the quality of approximation should be measured by the
KL divergence KL(p ‖ q) def

= H(p, q)−H(p), where the cross-entropy H(p, q)
def
= −∑y p(y |

x) log q(y), and the entropy H(p)
def
= −∑y p(y | x) log p(y | x). Unfortunately H(p) (and

hence KL = H(p, q) − H(p)) is intractable to compute. But, since H(p) is the same for
all q, we can simply use H(p, q) to compare different models q. Table 6.4 reports the
cross-entropies H(p, q) for various models q.

We also report the derivational entropy Hd(p)
def
= −∑d p(d | x) log p(d | x).15 From

this, we obtain an estimate of H(p) by observing that the “gap” Hd(p) − H(p) equals
Ep(y)[H(d | y)], which we estimate from our 10000-best list.

Table 6.4 confirms that higher-order variational models (drawn from a larger family Q)
approximate p better. This is necessarily true, but it is interesting to see that most of the im-
provement is obtained just by moving from a unigram to a bigram model. Indeed, although
Table 6.4 shows that better approximations can be obtained by using higher-order models,
the best BLEU score in Tables 6.3(a) and 6.3(c) was obtained by the bigram model. After

15Both H(p, q) and Hd(p) involve an expectation over exponentially many derivations, but they can be
computed in time only linear in the size of HG(x) using an expectation semiring (see Section 3.4) on page 50.

99

(a) decoding with a single variational model

Decoding scheme MT’04 MT’05
Viterbi 35.4 32.6
1gram 25.9 24.5
2gram 36.1 33.4
3gram 36.0∗ 33.1
4gram 35.8∗ 32.9

(b) interpolation between a single variational
model and a word penalty feature

1gram+wp 29.7 27.7
2gram+wp 35.5 32.6
3gram+wp 36.1∗ 33.1
4gram+wp 35.7∗ 32.8∗

(c) interpolation of a single variational model,
the Viterbi model, and a word penalty feature

1gram+wp+vt 35.6∗ 32.8∗

2gram+wp+vt 36.5∗ 33.5∗
3gram+wp+vt 35.8∗ 32.9∗

4gram+wp+vt 35.6∗ 32.8∗

(d) interpolation of several n-gram VMs, the
Viterbi model, and a word penalty feature

1to2gram+wp+vt 36.6∗ 33.6∗
1to3gram+wp+vt 36.6∗ 33.5∗

1to4gram+wp+vt 36.6∗ 33.5∗

Table 6.3: BLEU scores under different variational decoders discussed in Section 6.1.3. A
star ∗ indicates a result that is significantly better than Viterbi decoding (paired permutation
test, p < 0.05). We boldface the best system and all systems that are not significantly
worse than it. The brevity penalty BP in BLEU is always 1, meaning that on average y∗

is no shorter than the reference translation, except for the “1gram” systems in (a), which
suffer from brevity penalties of 0.826 and 0.831.

all, p cannot perfectly predict the reference translation anyway, hence may not be worth
approximating closely; but p may do a good job of predicting bigrams of the reference
translation, and the BLEU score rewards us for those.

6.3.5 Some Translation Examples
Table 6.5 presents several examples of translations which the interpolated variational

decoding (i.e., the system of the last row in Table 6.2) performs better than the Viterbi

100

Measure H(p, ·) Hd(p) H(p)
bits/word q∗1 q∗2 q∗3 q∗4 ≈
MT’04 2.33 1.68 1.57 1.53 1.36 1.03
MT’05 2.31 1.69 1.58 1.54 1.37 1.04

Table 6.4: Cross-entropies H(p, q) achieved by various approximations q. The notation H
denotes the sum of cross-entropies of all test sentences, divided by the total number of test
words. A perfect approximation would achieve H(p), which we estimate using the true
Hd(p) and a 10000-best list.

decoding (i.e., the system of the first row in Table 6.2).

6.4 Summary
We have successfully applied the general variational inference framework to a large-

scale MT task, to approximate the intractable problem of MAP decoding in the presence of
spurious ambiguity. We also showed that interpolating variational models with the Viterbi
approximation can compensate for poor approximations, and that interpolating them with
one another can reduce the Bayes risk and improve BLEU. Our empirical results improve
the state of the art.

101

System Output
Chinese 美与日韩磋商后对与北韩复谈非常乐观
Reference u . s . optimistic on new talks with north korea after discussions with

japan and south korea
Viterbi the united states and south korea consultations to resume negotiations

with north korea is very optimistic about
Variational us after consultation with south korea is very optimistic about resuming

talks with north korea
Chinese 卡苏里高度评价中国为促进南亚地区的和平与发展所

发挥的建设性作用。
Reference kasuri spoke highly of china’s constructive role in promoting peace and

development in the south asia region .
Viterbi kasuri spoke highly of china ’s south asia to promote the constructive

role played by the peace and development of the region .
Variational kasuri spoke highly of china to promote peace and development in the

south asian region played a constructive role .
Chinese 在许多公司持续整顿以确保获利之际 ,日本的失业率

仍高于百分之五。
Reference japan’s jobless rate remains above five percent as many companies

continue their restructuring efforts to secure profits .
Viterbi in many companies continued to rectify the profits in order to ensure that

japan ’s unemployment rate , still higher than 5 percent .
Variational in many companies continued rectification to ensure profits ,

japan ’s unemployment rate is still higher than 5 percent .

Table 6.5: Examples of translation outputs which the interpolated variational decoding
(i.e., the system of the last row in Table 6.2) performs better than the Viterbi decoding (i.e.,
the system of the first row in Table 6.2).

102

Chapter 7

Conclusion

In machine translation, a hypergraph can be used to compactly represent exponentially
many possible translations (and their derivations as well). In this dissertation, we have
presented novel training and decoding methods and new algorithms to carry out the needed
computation on a hypergraph. More specifically, we have presented:

• First- and second-order expectation semirings (Chapter 3): These semirings can
be used in a semiring parsing framework to compute many interesting expectations
(e.g., risk and its gradient) over hypergraphs. They have enabled minimum-risk train-
ing over a hypergraph, which is used in both chapters of 4 and 5. The expectation
semiring also enables computing the expected n-gram counts and (cross-)entropy
that are used in Chapter 6.

• Minimum imputed-risk training (Chapter 4): This is an unsupervised method that
can exploit monolingual English data to perform discriminative training. It uses a
reverse translation model to impute the missing inputs, and then trains a discrimina-
tive forward model by minimizing the expected loss of the forward translations of
the missing inputs.

• Contrastive language model estimation (Chapter 5): This is another unsupervised
method, which can also exploit monolingual English data to perform discriminative
training, but does not require a reverse system. It first extracts a confusion grammar,
then generates a contrastive set for each English sentence using the confusion gram-
mar, and finally trains a discriminative language model on the contrastive sets such
that the model will prefer the original English sentences (over the sentences in the
contrastive sets).

• Variational decoding (Chapter 6): It approximates the intractable maximum a pos-
terior (MAP) decoding problem (the intractability is due to spurious ambiguity) using
a variational principle. In particular, given an intractable distribution p, it estimates

103

a simpler distribution q (i.e., an n-gram model), which will serve as a surrogate of p
during decoding.

There are several novel contributions presented in the dissertation. Specifically, the
contributions of Chapter 3 are:

• extending the first-order expectation semiring, which was originally proposed by Eis-
ner (2002) for an FSA, to a hypergraph,

• proposing a novel second-order expectation semiring,

• presenting an inside-outside speedup trick when the elements of the semirings are
vectors or matrices,

• and presenting many examples/applications that use the semirings (see Table 3.4 on
page 53).

The main contributions in Chapter 4 include:

• presenting the minimum imputed-risk objective,

• applying it to MT and presenting approximations that are required in the training,

• and performing supervised, unsupervised, and semi-supervised experiments.

The contributions in Chapter 5 include:

• presenting a pipeline to train a discriminative language model for MT,

• proposing the notion of confusion grammar, and presenting ways in extracting it,

• and performing experiments to verify the goodness of a contrastive language model.

Finally, Chapter 6 includes contributions such as,

• presenting a variation inference procedure to approximate the intractable MAP de-
coding,

• formally deriving the connection between variational and MBR decoding,

• and performing experiments to show that variational decoding improves state of the
art MT performance.

104

7.1 Future Work
We have already exploited the first- and second-order expectation semirings to enable

several interesting applications. For example, the core computation of minimum risk train-
ing (used in both chapters of 4 and 5) is computing risk (and its gradient) using these
semirings. It remains to explore more applications that are feasible now by using these
semirings. For example, the second-order expectation semiring allows us to compute the
covariance matrix of the features on a hypergraph, enabling us to capture the feature inter-
action during discriminative training. This might help to improve the state of the art of MT
performance since feature interaction (e.g., the interaction between an n-gram model and
a word penalty feature) is largely ignored now. Also, since the computation of many in-
formation theoretical quantities (e.g., entropy, cross-entropy, and KL divergence) and their
gradients over a hypergraph is feasible now by using these semirings, one may investigate
augmenting many current training/decoding objectives with these quantities. This might
lead to new and theoretical sounding training/decoding methods for MT.

In chapters 4 and 5, we have presented two unsupervised training methods, which can
exploit monolingual English data for discriminative training. The advantage of our methods
over a generative language model (e.g., an n-gram model) is that they can easily incorpo-
rate features into the log-linear model. Compared with supervised discriminative training,
our methods have the advantage that they can use monolingual data (instead of bilingual
data) for training. In this dissertation, we have built a good understanding and a solid infras-
tructure (within Joshua) for these unsupervised training methods. However, we have only
performed experiments on a relatively small task (i.e., the IWSLT task) with a relatively
small number of features (i.e., about 500), due to computational limitations. It remains to
apply our method to a large-scale task (e.g., the NIST Chinese-to-English task) and a task
with relatively few bilingual resources (e.g., the NIST translation task between Urdu and
English). It may also be worth exploring more novel features in the training.

In Chapter 6, we have successfully applied the variational inference framework to a
large-scale MT task, to approximate the intractable problem of MAP decoding in the pres-
ence of spurious ambiguity. Many interesting research directions remain open. For exam-
ple, one may also attempt to minimize KL(q ‖ p) rather than KL(p ‖ q) (see Section 6.1 on
page 89), in order to approximate the mode (which may be preferable since we care most
about the 1-best translation under p) rather than the mean of p (Minka, 2005). Variational
inference is a general framework for approximate inference and thus it can be applied to
many other intractable (or computationally expensive) problems in MT. For example, one
may apply it to approximate the expensive intersection between an SCFG and an n-gram
model (see Section 2.2.5 on page 21). One may also be interested in applying our method
for tasks beyond MT. For example, one may use it to approximate the intractable MAP
decoding inherent in systems using HMMs (e.g. speech recognition).

105

For Future Reference
The latest version of this dissertation, including the inevitable errata, can be found at

http://www.cs.jhu.edu/˜zfli/. This will also serve as the home for software
implementing the algorithms described herein.

106

http://www.cs.jhu.edu/~zfli/

Bibliography

Cyril Allauzen, Mehryar Mohri, and Brian Roark. Generalized algorithms for construct-
ing statistical language models. In ACL, pages 40–47, 2003. URL http://www.
aclweb.org/anthology/P03-1006.

Abhishek Arun, Chris Dyer, Barry Haddow, Phil Blunsom, Adam Lopez, and Philipp
Koehn. Monte carlo inference and maximization for phrase-based translation. In CoNLL
’09: Proceedings of the Thirteenth Conference on Computational Natural Language
Learning, pages 102–110, Morristown, NJ, USA, 2009. Association for Computational
Linguistics. ISBN 978-1-932432-29-9.

J. K. Baker. Trainable grammars for speech recognition. In Jared J. Wolf and Den-
nis H. Klatt, editors, Speech Communication Papers Presented at the 97th Meeting of
the Acoustical Society of America, MIT, Cambridge, MA, June 1979.

Colin Bannard and Chris Callison-Burch. Paraphrasing with bilingual parallel corpora.
In ACL ’05: Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, pages 597–604, Morristown, NJ, USA, 2005. Association for Computational
Linguistics. doi: http://dx.doi.org/10.3115/1219840.1219914.

L. E. Baum. An inequality and associated maximization technique in statistical estimation
of probabilistic functions of markov processes. In Inequalities, number 3, pages 1–8,
1972.

Christopher M. Bishop. Pattern recognition and machine learning. Springer, 2006.

Phil Blunsom, Trevor Cohn, and Miles Osborne. A discriminative latent variable model for
statistical machine translation. In ACL, pages 200–208, 2008.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. The
mathematics of statistical machine translation: parameter estimation. Comput. Linguist.,
19(2):263–311, 1993. ISSN 0891-2017.

Chris Callison-Burch, Philipp Koehn, and Miles Osborne. Improved statistical machine
translation using paraphrases. In Proceedings of the main conference on Human Lan-
guage Technology Conference of the North American Chapter of the Association of Com-

107

http://www.aclweb.org/anthology/P03-1006
http://www.aclweb.org/anthology/P03-1006

putational Linguistics, pages 17–24, Morristown, NJ, USA, 2006a. Association for Com-
putational Linguistics. doi: http://dx.doi.org/10.3115/1220835.1220838.

Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluating the role of bleu
in machine translation research. In In EACL, pages 249–256, 2006b.

Daniel Cer, Dan Jurafsky, and Christopher D. Manning. Regularization and search for min-
imum error rate training. In Proceedings of the Third Workshop on Statistical Machine
Translation, pages 26–34, Columbus, Ohio, June 2008. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/W/W08/W08-0304.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for
language modeling. Technical report, 1998.

David Chiang. A hierarchical phrase-based model for statistical machine translation. In
ACL ’05: Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, pages 263–270, Morristown, NJ, USA, 2005. Association for Computational
Linguistics. doi: http://dx.doi.org/10.3115/1219840.1219873.

David Chiang. Hierarchical phrase-based translation. Computational Linguistics, 33(2):
201–228, 2007. ISSN 0891-2017. doi: http://dx.doi.org/10.1162/coli.2007.33.2.201.

David Chiang, Yuval Marton, and Philip Resnik. Online large-margin training of syntactic
and structural translation features. In Proceedings of EMNLP, 2008.

David Chiang, Kevin Knight, and Wei Wang. 11,001 new features for statistical machine
translation. In NAACL, pages 218–226, 2009.

W. K. Clifford. Preliminary sketch of bi-quaternions. Proceedings of the London Mathe-
matical Society, 4:381–395, 1873.

Michael Collins. Discriminative training methods for hidden markov models: theory
and experiments with perceptron algorithms. In EMNLP ’02: Proceedings of the
ACL-02 conference on Empirical methods in natural language processing, pages 1–
8, Morristown, NJ, USA, 2002. Association for Computational Linguistics. doi: http:
//dx.doi.org/10.3115/1118693.1118694.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. On-
line passive-aggressive algorithms. J. Mach. Learn. Res., 7:551–585, 2006. ISSN 1532-
4435.

John DeNero, David Chiang, and Kevin Knight. Fast consensus decoding over translation
forests. In ACL-IJCNLP, 2009.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. In Numerische
Mathematik, number 1, pages 267–271, 1959.

108

http://www.aclweb.org/anthology/W/W08/W08-0304

Markus Dreyer and Jason Eisner. Graphical models over multiple strings. In Proceedings
of the 2009 Conference on Empirical Methods in Natural Language Processing, pages
101–110, Singapore, August 2009. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/D/D09/D09-1011.

Markus Dreyer, Keith Hall, and Sanjeev Khudanpur. Comparing reordering constraints
for smt using efficient bleu oracle computation. In Proceedings of SSST, NAACL-HLT
2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pages 103–
110, Rochester, New York, April 2007. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W/W07/W07-0414.

Christopher Dyer, Smaranda Muresan, and Philip Resnik. Generalizing word lattice
translation. In Proceedings of ACL-08: HLT, pages 1012–1020, Columbus, Ohio,
June 2008. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/P/P08/P08-1115.

Matthias Eck and Chiori Hori. Overview of the iwslt 2005 evaluation campaign. In In
Proc. of the International Workshop on Spoken Language Translation, 2005.

Jason Eisner. Parameter estimation for probabilistic finite-state transducers. In ACL, pages
1–8, 2002.

Jason Eisner. Learning non-isomorphic tree mappings for machine translation. In ACL,
pages 205–208, 2003.

Jason Eisner, Eric Goldlust, and Noah A. Smith. Compiling comp ling: practical weighted
dynamic programming and the dyna language. In HLT/EMNLP, pages 281–290, 2005.

Pedro F. Felzenszwalb and David McAllester. The generalized a* architecture. J. Artif. Int.
Res., 29(1):153–190, 2007. ISSN 1076-9757.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang,
and Ignacio Thayer. Scalable inference and training of context-rich syntactic translation
models. In ACL, pages 961–968, 2006.

Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Directed hyper-
graphs and applications. Discrete Appl. Math., 42(2-3):177–201, 1993. ISSN 0166-
218X. doi: http://dx.doi.org/10.1016/0166-218X(93)90045-P.

Kevin Gimpel and Noah A. Smith. Cube summing, approximate inference with non-local
features, and dynamic programming without semirings. In EACL, pages 318–326, 2009.

Joshua Goodman. Efficient algorithms for parsing the DOP model. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, pages 143–152,
1996.

109

http://www.aclweb.org/anthology/D/D09/D09-1011
http://www.aclweb.org/anthology/W/W07/W07-0414
http://www.aclweb.org/anthology/P/P08/P08-1115
http://www.aclweb.org/anthology/P/P08/P08-1115

Joshua Goodman. Semiring parsing. Computational Linguistics, 25(4):573–605, 1999.
ISSN 0891-2017.

Y Grandvalet and Y Bengio. Semi-supervised learning by entropy minimization. In NIPS,
pages 529–536, 2004.

Nilsson N. Hart, P. and B. Raphael. A formal basis for the heuristic determination of min-
imal cost paths. In IEEE Transactions on Systems Science and Cybernetics, number 2,
pages 100–107, 1968.

R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. Macdonald. Hierarchical a*: Search-
ing abstraction hierarchies efficiently. In In Proceedings of the National Conference on
Artificial Intelligence, pages 530–535, 1996.

Mark Hopkins and Greg Langmead. Cube pruning as heuristic search. In Proceedings of
the 2009 Conference on Empirical Methods in Natural Language Processing, pages 62–
71, Singapore, August 2009. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/D/D09/D09-1007.

Jui-Ting Huang, Xiao Li, and Alex Acero. Discriminative training methods for language
models using conditional entropy criteria. In ICASSP, 2010.

Liang Huang and David Chiang. Better k-best parsing. In IWPT, pages 53–64, 2005.

Liang Huang and David Chiang. Forest rescoring: Faster decoding with integrated lan-
guage models. In ACL, pages 144–151, 2007.

Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell Greiner, and Dale Schuurmans. Semi-
supervised conditional random fields for improved sequence segmentation and labeling.
In ACL, pages 209–216, 2006.

Mark Johnson, Thomas Griffiths, and Sharon Goldwater. Bayesian inference for PCFGs
via Markov chain Monte Carlo. In Human Language Technologies 2007: The Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics; Proceedings of the Main Conference, pages 139–146, Rochester, New York,
April 2007. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/N/N07/N07-1018.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to
variational methods for graphical models. In Learning in Graphical Models. MIT
Press, 1999. URL http://research.microsoft.com/en-us/um/people/
minka/papers/message-passing/.

Sanjeev Khudanpur and Jun Wu. Maximum entropy techniques for exploiting syntactic,
semantic and collocational dependencies in language modeling. In Computer Speech
and Language, number 4, pages 355–372, 2000.

110

http://www.aclweb.org/anthology/D/D09/D09-1007
http://www.aclweb.org/anthology/D/D09/D09-1007
http://www.aclweb.org/anthology/N/N07/N07-1018
http://www.aclweb.org/anthology/N/N07/N07-1018
http://research.microsoft.com/en-us/um/people/minka/papers/message-passing/
http://research.microsoft.com/en-us/um/people/minka/papers/message-passing/

Dan Klein and Christopher D. Manning. A* parsing: fast exact viterbi parse selection.
In NAACL ’03: Proceedings of the 2003 Conference of the North American Chapter of
the Association for Computational Linguistics on Human Language Technology, pages
40–47, Morristown, NJ, USA, 2003. Association for Computational Linguistics. doi:
http://dx.doi.org/10.3115/1073445.1073461.

Donald Knuth. A generalization of dijkstra’s algorithm. In Information Processing Letters,
number 1, 1977.

Philipp Koehn. Statistical Machine Translation. Cambridge University Press, 2010. ISBN
0521874157.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In
NAACL, pages 48–54, 2003.

Shankar Kumar and William Byrne. Minimum bayes-risk decoding for statistical machine
translation. In Daniel Marcu Susan Dumais and Salim Roukos, editors, HLT-NAACL
2004: Main Proceedings, pages 169–176, Boston, Massachusetts, USA, May 2 - May 7
2004. Association for Computational Linguistics.

Shankar Kumar, Wolfgang Macherey, Chris Dyer, and Franz Och. Efficient minimum error
rate training and minimum bayes-risk decoding for translation hypergraphs and lattices.
In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP, pages
163–171, Suntec, Singapore, August 2009. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/P/P09/P09-1019.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In ICML, 2001.

Raymond Lau, Ronald Rosenfeld, and Salim Roukos. Adaptive language modelling us-
ing the maximum entropy principle. In Proc. ARPA Human Language Technologies
Workshop, pages 81–86, 1993. URL http://www.sls.lcs.mit.edu/raylau/
publications.html#HLTW.

Gregor Leusch, Evgeny Matusov, and Hermann Ney. Complexity of finding the BLEU-
optimal hypothesis in a confusion network. In Proceedings of the 2008 Confer-
ence on Empirical Methods in Natural Language Processing, pages 839–847, Hon-
olulu, Hawaii, October 2008. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/D08-1088.

Zhifei Li and Jason Eisner. First- and second-order expectation semirings with applications
to minimum-risk training on translation forests. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing, pages 40–51, Singapore, Au-
gust 2009. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/D/D09/D09-1005.

111

http://www.aclweb.org/anthology/P/P09/P09-1019
http://www.sls.lcs.mit.edu/raylau/publications.html#HLTW
http://www.sls.lcs.mit.edu/raylau/publications.html#HLTW
http://www.aclweb.org/anthology/D08-1088
http://www.aclweb.org/anthology/D08-1088
http://www.aclweb.org/anthology/D/D09/D09-1005
http://www.aclweb.org/anthology/D/D09/D09-1005

Zhifei Li and Sanjeev Khudanpur. A scalable decoder for parsing-based machine trans-
lation with equivalent language model state maintenance. In ACL SSST, pages 10–18,
2008a.

Zhifei Li and Sanjeev Khudanpur. Large-scale discriminative n-gram language models for
statistical machine translation. In AMTA, pages 133–142, 2008b.

Zhifei Li and Sanjeev Khudanpur. Efficient extraction of oracle-best translations from
hypergraphs. In Proceedings of NAACL, 2009a.

Zhifei Li and Sanjeev Khudanpur. Forest reranking for machine translation with the per-
ceptron algorithm. In GALE book chapter on ”MT From Text”, 2009b.

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren Thornton, Jonathan Weese, and Omar. Zaidan. Joshua: An open source
toolkit for parsing-based machine translation. In WMT09, pages 26–30, 2009a.

Zhifei Li, Jason Eisner, and Sanjeev Khudanpur. Variational decoding for statistical ma-
chine translation. In ACL, 2009b.

Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and Ben Taskar. An end-to-end dis-
criminative approach to machine translation. In ACL-44: Proceedings of the 21st Inter-
national Conference on Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pages 761–768, Morristown, NJ, USA, 2006.
Association for Computational Linguistics. doi: http://dx.doi.org/10.3115/1220175.
1220271.

R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. J. Wiley & Sons,
New York, 1987.

Yang Liu, Qun Liu, and Shouxun Lin. Tree-to-string alignment template for statistical
machine translation. In ACL, pages 609–616, 2006.

Adam Lopez. Hierarchical phrase-based translation with suffix arrays. In EMNLP-CoNLL,
pages 976–985, 2007.

Adam Lopez. Translation as weighted deduction. In EACL, pages 532–540, 2009.

Wolfgang Macherey, Franz Och, Ignacio Thayer, and Jakob Uszkoreit. Lattice-based
minimum error rate training for statistical machine translation. In Proceedings of the
2008 Conference on Empirical Methods in Natural Language Processing, pages 725–
734, Honolulu, Hawaii, October 2008. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/D08-1076.

112

http://www.aclweb.org/anthology/D08-1076

Nitin Madnani, Necip Fazil Ayan, Philip Resnik, and Bonnie J. Dorr. Using paraphrases
for parameter tuning in statistical machine translation. In Proceedings of the Workshop
on Statistical Machine Translation, Prague, Czech Republic, June 2007. Association for
Computational Linguistics.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. Probabilistic CFG with latent an-
notations. In ACL, pages 75–82, 2005.

Jonathan May and Kevin Knight. A better n-best list: practical determinization of weighted
finite tree automata. In NAACL, pages 351–358, 2006.

Thomas Minka. Empirical risk minimization is an incomplete inductive principle. In MIT
Media Lab note, 2000.

Tom Minka. Divergence measures and message passing. In Microsoft Re-
search Technical Report (MSR-TR-2005-173). Microsoft Research, 2005. URL
http://research.microsoft.com/en-us/um/people/minka/
papers/message-passing/.

Mehryar Mohri and Michael Riley. An efficient algorithm for the n-best-strings problem.
In In Proceedings of the International Conference on Spoken Language Processing 2002
(ICSLP’02, 2002.

Mark-Jan Nederhof. Weighted deductive parsing and knuth’s algorithm. Comput.
Linguist., 29(1):135–143, 2003. ISSN 0891-2017. doi: http://dx.doi.org/10.1162/
089120103321337467.

Franz Josef Och. Minimum error rate training in statistical machine translation. In ACL,
pages 160–167, 2003.

Franz Josef Och and Hermann Ney. Improved statistical alignment models. In ACL, pages
440–447, 2000.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A method for
automatic evaluation of machine translation. In ACL, pages 311–318, 2001.

Adam Pauls and Dan Klein. K-best a* parsing. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages 958–966, Suntec, Singapore, Au-
gust 2009. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/P/P09/P09-1108.

B. A. Pearlmutter and J. M. Siskind. Lazy multivariate higher-order forward-mode ad. In
Proceedings of the 34th Annual Symposium on Principles of Programming Languages
(POPL), pages 155–160, 2007.

113

http://research.microsoft.com/en-us/um/people/minka/papers/message-passing/
http://research.microsoft.com/en-us/um/people/minka/papers/message-passing/
http://www.aclweb.org/anthology/P/P09/P09-1108
http://www.aclweb.org/anthology/P/P09/P09-1108

Fernando C. N. Pereira and David H. D. Warren. Parsing as deduction. In ACL, pages
137–144, 1983.

Slav Petrov, Aria Haghighi, and Dan Klein. Coarse-to-fine syntactic machine translation
using language projections. In EMNLP ’08: Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 108–116, Morristown, NJ, USA, 2008.
Association for Computational Linguistics.

John C. Platt. Fast training of support vector machines using sequential minimal optimiza-
tion. pages 185–208, 1999.

Chris Quirk, Chris Brockett, and William Dolan. Monolingual machine translation for
paraphrase generation. In In Proceedings of the 2004 Conference on Empirical Methods
in Natural Language Processing, pages 142–149, 2004.

Chris Quirk, Arul Menezes, and Colin Cherry. Dependency treelet translation: syntactically
informed phrasal smt. In ACL, pages 271–279, 2005.

Brian Roark, Murat Saraclar, Michael Collins, and Mark Johnson. Discriminative language
modeling with conditional random fields and the perceptron algorithm. In Proceedings
of the 42nd Meeting of the Association for Computational Linguistics (ACL’04), Main
Volume, pages 47–54, Barcelona, Spain, July 2004.

Kenneth Rose. Deterministic annealing for clustering, compression, classification, regres-
sion, and related optimization problems. In Proceedings of the IEEE, pages 2210–2239,
1998.

Roni Rosenfeld. A maximum entropy approach to adaptive statistical language modeling.
In Computer Speech and Language, number 3, pages 187–228, 1996.

Roni Rosenfeld, Stanley F. Chen, and Xiaojin Zhu. Whole-sentence exponential language
models: a vehicle for linguistic-statistical integration. Computers Speech and Language,
15(1), 2001.

D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. J. Wiley & Sons, New York,
1987.

Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles and implementa-
tion of deductive parsing. Journal of Logic Programming, 24:3–36, 1994.

Khalil Sima’an. Computational complexity of probabilistic disambiguation by means of
tree-grammars. In ACL, pages 1175–1180, 1996.

David Smith and Jason Eisner. Dependency parsing by belief propagation. In Proceedings
of the 2008 Conference on Empirical Methods in Natural Language Processing, pages
145–156, Honolulu, Hawaii, October 2008. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/D08-1016.

114

http://www.aclweb.org/anthology/D08-1016

David A. Smith and Jason Eisner. Minimum risk annealing for training log-linear models.
In ACL, pages 787–794, 2006.

Noah A. Smith and Jason Eisner. Contrastive estimation: Training log-linear models on
unlabeled data. In Proceedings of the Association for Computational Linguistics (ACL
2005), Ann Arbor, Michigan, 2005.

Andreas Stolcke. SRILM—an extensible language modeling toolkit. In Proceedings of the
International Conference on Spoken Language Processing, pages 901–904, 2002.

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin. Learning structured
prediction models: a large margin approach. In ICML ’05: Proceedings of the 22nd
international conference on Machine learning, pages 896–903, New York, NY, USA,
2005. ACM. ISBN 1-59593-180-5. doi: http://doi.acm.org/10.1145/1102351.1102464.

Roy Tromble, Shankar Kumar, Franz Och, and Wolfgang Macherey. Lattice minimum-
Bayes-risk decoding for statistical machine translation. In EMNLP, pages 620–629,
2008.

AJ Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. In IEEE Transactions on Information Theory, number 2, pages 260–269,
1967.

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki Isozaki. Online large-margin
training for statistical machine translation. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages 764–773, Prague, Czech Republic,
June 2007. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/D/D07/D07-1080.

Richard Zens and Hermann Ney. N-gram posterior probabilities for statistical machine
translation. In WMT06, pages 72–77, 2006.

Hao Zhang and Daniel Gildea. Efficient multi-pass decoding for synchronous context free
grammars. In ACL, pages 209–217, 2008.

115

http://www.aclweb.org/anthology/D/D07/D07-1080
http://www.aclweb.org/anthology/D/D07/D07-1080

Vita

Zhifei Li was born in Hunan province of China, in August, 1976. He obtained a B.S.
degree (majored in Thermal Engineering) from Nanjing University of Science and Technol-
ogy in 1999, and a master degree (majored in Computer Science) from Nanjing University
of Aeronautics and Astronautics in 2002.

Zhifei is currently a Ph.D. candidate in Johns Hopkins University’s Computer Science
Department and Center for Language and Speech Processing (CLSP). His research interests
are in machine translation, speech recognition, machine learning, applied algorithms, and
wireless networks. He is the primary creator of Joshua, an open-source toolkit for parsing-
based machine translation. His work was nominated for a best paper award in ACL 2009.
He was also a finalist for a Microsoft Research Ph.D. fellowship.

116

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Summary of the Dissertation
	Statistical Machine Translation Pipeline
	Training Translation Models on Bilingual Data
	Training Language Models on Monolingual Data
	Discriminative Training of Relative Weights Among Models
	Decoding for Test Data
	Focus of this Dissertation

	Ambiguity in Language Translation
	Translation-Sense Ambiguity
	Spurious Ambiguity

	Hypergraph to Represent Ambiguity
	Weighted Hypergraphs
	Probabilistic Hypergraphs

	Our Contributions
	First- and Second-order Expectation Semirings
	Unsupervised Discriminative Training
	Variational Decoding

	Roadmap

	Inference, Decoding, and Training Methods over Hypergraphs: a Review
	Definitions, Notations and Terminologies
	Atomic Inference Operations Over Hypergraphs
	Counting Number of Derivations
	Finding One-best Derivation (or Viterbi Derivation)
	Finding k-best Derivations
	Finding Partition Functions, Expectations, and Gradients
	Integrating an n-gram model into a Hypergraph

	 Exact Inference over Hypergraphs: Semiring Parsing
	What is a semiring?
	Semiring-Weighted Inside Algorithm

	Approximate Inference over Hypergraphs
	Heuristic-based Approximation
	``Principled" Approximations

	Decoding Methods over Hypergraphs
	Maximum A Posteriori (MAP) Decoding
	Minimum Bayes Risk (MBR) Decoding

	Discriminative Training Methods over Hypergraphs
	Models
	Maximizing Conditional Likelihood
	Average Perceptron
	Minimum Error Rate Training
	Minimizing Risk (MR)
	MIRA
	A Comparison of Training Methods
	Unsupervised Discriminative Training

	First- and Second-order Expectation Semirings
	Finding Expectations on Hypergraphs
	Problem Definitions
	Computing the Expectations
	Correctness of the Algorithms

	Generalizations and Speedups
	Allowing Feature Vectors and More
	Inside-Outside Speedup for First-Order Expectation Semirings
	Lifting Trick for Second-Order Semirings
	Inside-Outside Speedup for Second-Order Expectation Semirings

	Finding Gradients on Hypergraphs
	What Connects Gradients to Expectations?

	Practical Applications
	First-Order Expectation Semiring
	Second-Order Expectation Semirings
	Summary of the Applications

	Implementation Details
	Preventing Underflow/Overflow
	Implementation Guide

	Summary

	Minimum Imputed Risk Training
	Minimum Empirical Risk (for Supervised Discriminative Training)
	Discriminative Training with Missing Input
	Minimum Imputed-Risk
	The Reverse Prediction Model p
	The Forward Translation System and the Loss Function L((xi),i)
	Approximating p(xi)

	EM vs. Minimum Imputed-Risk
	Experimental Results
	Baseline Systems
	Feature Functions
	Data Sets for Discriminative Training
	Semi-Supervised Training
	Supervised and Unsupervised Training
	Unsupervised Training with Different Reverse Models
	Unsupervised Training with Different k-best Sizes
	Goodness of the Simulated Neighborhood
	Some Translation Examples

	Summary

	Contrastive Language Model Estimation
	Unsupervised Training of Global Log-Linear Language Models
	Contrastive Language Model Estimation for MT
	Extracting a Confusion Grammar
	Generating Simulated Neighborhood
	Discriminative Training
	Applying The Contrastive Language Model

	Comparison to Related Work
	Comparison to CE
	Locally Normalized Language Model
	Globally Normalized Language Model
	Relation to Minimum Imputed Risk
	Relation to Paraphrasing Models

	Experimental Results
	Data Sets
	Baseline MT System
	Training Contrastive Language Models
	Results on Monolingual Simulation
	Results on MT Test Data
	Goodness of the Simulated Neighborhood
	Some Translation Examples
	Comparison to the Experiments in Section 4.4

	Summary

	Variational Decoding
	Variational Decoding for MT
	Parameterization of q
	Estimation of q*
	Decoding with q*

	Variational vs. Minimum Bayes Risk Decoding
	Experimental Results
	Experimental Setup
	Main Results
	Results of Different Variational Decoding
	KL Divergence of Approximate Models
	Some Translation Examples

	Summary

	Conclusion
	Future Work

