A Generative Model for
Punctuation In
Dependency Parsing

Xiang Lisa Li*, Dingguan Wang®, and Jason Eisner

/
"II CENTER FOR LANGUAGE
* Equal Contribution JOHNS HOPKINS & INDSPEECH PROCESSI

IIIIIIIIII

NLP has neglectecl Punctuation

° Treebanks treat Punctuation mar|<s as
orclinarg tokens, but ARE THEY?

» The Linguistics of Punctuation, Nunberg (1990)

Punctuation is usetul

Punctuation marks are correlated with prosody and
the syntactic tree structure.

"et's eat Grandma!"

N Tree

parsef N, generation

L-——-."J

N Punctuation ™ W"

dobj
Excalibun

rel-clause
wields

| APPOS oo

g

dob

d
h..‘..
i)

—

.li......‘...‘...‘..

d
-

Point Absorption

. w Quote Transposition
: . srel-clausel.,,
. . =l APPOS } | .
Hail the king Arthur Pendragon, ,wl;xo wields ** Excalibur’”, a9

,,H, --IA. ,,9

Summarg...

e Punctuation marks are not words.

e Justas Prosoclg 's not words.

® Theg do not ,'Jelong in the tree.
® Onlg underlging Punctuation marks
are in the tree, where they surround

certamn Phrases.

J Tree
parsg7

Y, generation

Sl underlying
| punct b

The punctuation has a non-obvious correlation with the tree.

The[lile =i\ /lhlef punctuation has a more direct correlation with the tree.

Y Attach

underlying

parse generation

i punct

'} Rewriting

surface Kes
punct

Let’s exploit the underlying punctuation
under a generative model !

P (punctuated tree | unpunctuated tree)
= P(€ = |root, unpunctuated tree) Attach

rel-clause

Hail the ki:ng Arthur Penciragon who wields Excalibur

P (punctuated tree | unpunctuated tree)

= Attach

! * P(5y ylappos, unpunctuated tree)
(root =

rel-clause

(v}

g

o}
2

Hail the king Arthur Pendragon who wields Excalibur

10

P (punctuated tree | unpunctuated tree)

= Attach
!

(root =

* P(9 9 |rel-clause, unpunctuated tree)

rel-dyause

Hail the king , Arthur Pendragon, who wields Excalibur

11

P (punctuated tree | unpunctuated tree)

= Attach
!

(root =

* P(* “7|dobj, unpunctuated tree)

rel-clause

Hadil the king , Arthur Pendragon, ,wﬁo wields Excalibur y =

12

P (punctuated tree | unpunctuated tree)

= Attach

! P(y 5 lappos, unpunctuated tree)
(root =

rel-clause

Hail the king y Arthur Pendragon, ,wﬁo wields “ Excalibur”” y

13

P(4 y | appos, unpunctuated tree) =0.4

appos

left afslsj@m Prob f3 £4
punct punct

: : 04 <& 0 P

A\ V /4 0.3 4_@“ O O 0
€ ., o5 ¢ 0 0 O

: c o005 << 0 O O

€ € 0.2 4 O 0 O

of f1: indicator feature for no punctuation (€ €).
o| f2: indicator feature that checks for symmet

| f3: span length feature for attaching commas.
e| f4: indicator feature that checks for internal comma.

u 14
]

P (surface punct | punctuated tree)

Rewriting

Hail the ki:ng - Arthur Penciragon, ,wl;xo wields ™ Excaiibur”” "
Hail the king Arthur Pendragon who wields Excalibur

15

Rewriting — A Sliding Window Model

Left-absorb p(5 J > J)

Left-absorb P (3) H))

identity P ()”H)”)

Geoffrey Nunberg

swap P (77 oy, 77)

16

Summary
generative story

* Underlying punctuation is generated at each tree node
(not quite independently).

e Total underlying punctuation at each slot between words
Is rewritten into surface punctuation (independently).

17

‘ underlying"

sunct generation

sSariace
puct

In training, we observe the tree and surface punct.
Want to recover the underlying punctuation.

P (underlying punct | tree, surface punct)

18

'Method 1. A Sampling Approach

X P(underlying | tree)
* P(surface | underlying)

(nxmji\\\‘P(underlying punct| tree, surface punct)
: N

”r

rel-clause

appos :
, (3PPOS) :
: : dobj)77

Hail the ki:ng Arthur Penciragon who wields Excalibur
Hail the king Arthur Pendragon who wields Excalibur

& - = = >
Sy = = = O

— N S’

'Method 1. A Sampling Approach

(zoot), P (underlying punct| tree, surface punct)
X3 x P(underlying | tree)
. A\ |

” * P(surface | underlying)

/ap;‘)o s) ;

dob

rel-clause

Hail the ki:ng Arthur Penciragon who wields Excalibur

Hail the king Arthur Pendragon who wields Excalibur

AA AA AA AA AA

\\ // N /,/ \\ // \\ ‘4 < ‘ 4

S —— —_—_— “——— N ——

'Method 1. A Sampling Approach

(zoot), P (underlying punct| tree, surface punct)
) x P(underlying | tree)

* P(surface | underlying)

rel-clause

appos :
, (3PPOS) :
: : dobj)77

Hail the ki:ng Arthur Penciragon who wields Excalibur

Hail the king Arthur Pendragon who wields Excalibur

A A A A A A

AA

. 4 S—)
—__— S

Method 2. O(n) Dynamic Programming

Idea : Make a (weighted) CFG that generates just the possible
underlyingly punctuated trees for this sentence

Soft constraint ﬂ :Underlying punctuation fits the tree structure

Soft constraint :Underlying punctuation fits surface punctuation

Intersect €@ ¢» —» our CFG

22

Method 2. O(n) Dynamic Programming

Idea : Make a (weighted) CFG that generates just the possible
underlyingly punctuated trees for this sentence

Soft constraint c :Underlying punctuation fits the tree structure

Hail the king Arthur Pendragon who wields Excalibur

Soft constraint :Underlying punctuation fits surface punctuation

Intersect € our CFG

Method 2. O(n) Dynamic Programming

Idea : Make a (weighted) CFG that generates just the possible
underlyingly punctuated trees for this sentence

Soft constraint a :Underlying punctuation fits the tree structure

PCFG
Soft constraint :Underlying punctuation fits surface punctuation
weighted FSA
? ? ? ?
Hail the king Arthur Pendragon who wields Excalibur

Intersect € our CFG

Method 2. O(n) Dynamic Programming

Idea : Make a (weighted) CFG that generates just the possible
underlyingly punctuated trees for this sentence

Soft constraint ﬂ :Underlying punctuation fits the tree structure
PCFG

Soft constraint :Underlying punctuation fits surface punctuation

| weighted FSA
Intersect €@ ¢» —» our CFG

PCFG []| weighted FSA = weighted CFG

25

Method 2. O(n) Dynamic Programming

Idea : Make a (weighted) CFG that generates just the possible
underlyingly punctuated trees for this sentence

Soft constraint G :Underlying punctuation fits the tree structure

Soft constraint :Underlying punctuation fits surface punctuation

Intersect € our CFG

Now we can find the best underlyingly punctuated tree
e or sum over all of them for the model likelihood in training

For our CFG, this can be done in O(n) time

20

Results

Rules Learned from the Noisy Channel

Analysis of Attachment model

Punctuation Restoration

Syntactic Rephrasing

27

We learn high probability for Nunberg’s English Rules

American English
British English

1.00 -
0.8 -

0.75 -
0.6 -

0.50 -
0.4 1
02 N 025 N
0.0 - 0.00

surface)7

Distribution over rewrite rules

28

Viterbi recovers good underlying punctuation

I Real Examples (simplified for slide)
root |,
y advmod
- J A\ Y/ 4
y | ccomp
dob 1]
,Gomod), €UasBa)e

° ° ° ¢ b ° ° ° V J 4
,Earlier’ Kerry said ,“, in fact, answered the question

Earlier Kerry said in fact answered the question

29

Viterbi recovers good underlying punctuation

! Real Examples (simplified for slide)

(root =
;)\ Oxford Comma

(dob3

Section i é ? and é

Section 1 2 7 and 8

30

Labeled Attachment Score (LAS)

50 60 70 $]0. 90 100
L 1 1 LB 1 1
- 0.12
o%x
- 0.10
’QA'

I
O
o
0

Spanish® | 4

I
O
o
)

Average Edit Distance (AED)

Arabic 0
Chinese

I
O
o
D

* £0.02
Hindi ®

|
What if we don’t have gold parses? *BiLSTM-CRF tagger

Punctuation Restoration

average edit distance
[the Jower the better]

‘Always Period tagger

‘ Ours

root

(conj) (punct advcl (punct dob])

but] #f true y the ca:per failed

Syntactically Transform Sentence from Treebank

32

punct

root

(conj) dobj) puinct (punct) punct

but the cgper failed = y if true
obviously ugly, and high perplexity under an LM

Syntactically Transform Sentence from Treebank

33

oot

(conj) (punct ; advcl (punct dobj) punct

but y if true y the cgdper failed =

Syntactically Transform Sentence with our Annotation

34

root

(conj) ; advcl dobj)

but if true the ca:per failed

Syntactically Transform Sentence with our Annotation

35

but the caiper failed 1y #f true 7 =

but the caper failed ; 1f true
|

Syntactically Transform Sentence with our Annotation

36

| ks slow down e better jost

Sec nd h
{of 3 O erc. S{QP ('\ght now.

Implemented by
Finite State Transducer

ab — ab

Implemented by
Finite State Transducer

a:a a:e€
ab — a
b:e€ ' b:Db
a)
a e 7, 4 $ ".‘}3
ol o fo! $
Q) o © ©
o) - e
a: e a:a
b:Db s

39

Implemented by
Finite State Transducer

a:a a . €
b:e€ e
4 a |k
2, (” $ "";3 | ab — ba
ol o Q e $
Q) o © ©
o) - e
a . € a.a
b:Db s

41

