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NLP has neglectecl Punctuation

° Treebanks treat Punctuation mar|<s as
orclinarg tokens, but ARE THEY?

» The Linguistics of Punctuation, Nunberg (1990)



Punctuation is usetul

Punctuation marks are correlated with prosody and
the syntactic tree structure.
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Summarg...

e Punctuation marks are not words.

e Justas Prosoclg 's not words.

® Theg do not ,'Jelong in the tree.
® Onlg underlging Punctuation marks
are in the tree, where they surround

certamn Phrases.
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The punctuation has a non-obvious correlation with the tree.

The[lile =i\ /lhlef punctuation has a more direct correlation with the tree.
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Let’s exploit the underlying punctuation
under a generative model !



P (punctuated tree | unpunctuated tree)
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P (punctuated tree | unpunctuated tree)
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P (punctuated tree | unpunctuated tree)

= Attach
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P( 4 y | appos, unpunctuated tree) =0.4

appos

left afslsj@m Prob f3 £4
punct punct
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of f1: indicator feature for no punctuation (€ €).
o| f2: indicator feature that checks for symmet

| f3: span length feature for attaching commas.
e| f4: indicator feature that checks for internal comma.
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P (surface punct | punctuated tree)

Rewriting
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Rewriting — A Sliding Window Model

Left-absorb p( 5 J > J )

Left-absorb P ( 3 ) H) )

identity P ( )”H )” )

Geoffrey Nunberg

swap P (77 oy, 77)
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Summary
generative story

* Underlying punctuation is generated at each tree node
(not quite independently).

e Total underlying punctuation at each slot between words
Is rewritten into surface punctuation (independently).
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In training, we observe the tree and surface punct.
Want to recover the underlying punctuation.

P (underlying punct | tree, surface punct)
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'Method 1. A Sampling Approach
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'Method 1. A Sampling Approach

(zoot ), P (underlying punct| tree, surface punct)
X3 x P(underlying | tree)
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'Method 1. A Sampling Approach

(zoot ), P (underlying punct| tree, surface punct)
) x P(underlying | tree)

* P(surface | underlying)
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Method 2. O(n) Dynamic Programming

Idea : Make a (weighted) CFG that generates just the possible
underlyingly punctuated trees for this sentence

Soft constraint ﬂ :Underlying punctuation fits the tree structure

Soft constraint :Underlying punctuation fits surface punctuation

Intersect €@ ¢» —» our CFG
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Method 2. O(n) Dynamic Programming

Idea : Make a (weighted) CFG that generates just the possible
underlyingly punctuated trees for this sentence

Soft constraint c :Underlying punctuation fits the tree structure

Hail the king Arthur Pendragon who wields Excalibur

Soft constraint :Underlying punctuation fits surface punctuation

Intersect € our CFG




Method 2. O(n) Dynamic Programming

Idea : Make a (weighted) CFG that generates just the possible
underlyingly punctuated trees for this sentence

Soft constraint a :Underlying punctuation fits the tree structure

PCFG
Soft constraint :Underlying punctuation fits surface punctuation
weighted FSA
? ? ? ?
Hail the king Arthur Pendragon who wields Excalibur

Intersect € our CFG



Method 2. O(n) Dynamic Programming

Idea : Make a (weighted) CFG that generates just the possible
underlyingly punctuated trees for this sentence

Soft constraint ﬂ :Underlying punctuation fits the tree structure
PCFG

Soft constraint :Underlying punctuation fits surface punctuation

| weighted FSA
Intersect €@ ¢» —» our CFG

PCFG [ ]| weighted FSA = weighted CFG
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Method 2. O(n) Dynamic Programming

Idea : Make a (weighted) CFG that generates just the possible
underlyingly punctuated trees for this sentence

Soft constraint G :Underlying punctuation fits the tree structure

Soft constraint :Underlying punctuation fits surface punctuation

Intersect € our CFG

Now we can find the best underlyingly punctuated tree
e or sum over all of them for the model likelihood in training

For our CFG, this can be done in O(n) time
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Results

Rules Learned from the Noisy Channel

Analysis of Attachment model

Punctuation Restoration

Syntactic Rephrasing
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We learn high probability for Nunberg’s English Rules

American English
British English
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Distribution over rewrite rules

28



Viterbi recovers good underlying punctuation

I Real Examples (simplified for slide)
root |,
y advmod
- J A\ Y/ 4
y | ccomp
dob 1]
,Gomod), €UasBa)e

° ° ° ¢ b ° ° ° V J 4
,Earlier’ Kerry said ,“, in fact, answered the question

Earlier Kerry said in fact answered the question
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Viterbi recovers good underlying punctuation

! Real Examples (simplified for slide)

(root =
; )\ Oxford Comma

( dob3

Section i é ? and é

Section 1 2 7 and 8
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Labeled Attachment Score (LAS)
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What if we don’t have gold parses? *BiLSTM-CRF tagger

Punctuation Restoration

average edit distance
[the Jower the better]

‘Always Period tagger

‘ Ours



root

(conj ) (punct advcl (punct dob] )

but ] #f true y the ca:per failed

Syntactically Transform Sentence from Treebank
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root

(conj) dobj ) puinct (punct) punct

but the  cgper failed = y if true
obviously ugly, and high perplexity under an LM

Syntactically Transform Sentence from Treebank
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(conj) (punct ; advcl (punct dobj ) punct

but y if true y the cgdper failed =

Syntactically Transform Sentence with our Annotation
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root

(conj) ; advcl dobj )

but if true the ca:per failed

Syntactically Transform Sentence with our Annotation
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but the caiper failed 1y #f true 7 =

but the caper failed ; 1f true
|

Syntactically Transform Sentence with our Annotation
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Implemented by
Finite State Transducer
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Implemented by
Finite State Transducer
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Implemented by
Finite State Transducer
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