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The talk in one slide

• Scenario: unsupervised learning under a wide variety of 
conditions (e.g., data statistics, number and interpretation of 
labels, etc.)

• Performance varies; can our knowledge of the task help?

• Approach: introduce tunable parameters into the 
unsupervised algorithm. Tune the parameters for each 
condition.

• Tuning is done in an unsupervised manner using supervised 
data from an unrelated instance (cross-instance tuning).

• Application: unsupervised document clustering.
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• STEP 1: Parameterize the unsupervised algorithm, i.e., 
convert into a supervised algorithm.

• STEP 2: Tune the parameter(s) using unrelated data; still 
unsupervised learning, since no labels of the task instance of 
interest are used.

The talk in one slide
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The talk in one slide

Applicable to any
supervised scenario where

training data ≠ test data
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Combining Labeled and
Unlabeled Data

• Semi-supervised learning: using a few labeled examples of 
the same kind as the unlabeled ones. E.g., bootstrapping 
(Yarowsky, 1995), co-training (Blum and Mitchell, 1998).

• Multi-task learning: labeled examples in many tasks, learning 
to do well in all of them.

• Special case: alternating structure optimization (Ando and 
Zhang, 2005).

• Mismatched learning: domain adaptation. E.g., (Daume and 
Marcu, 2006).
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• STEP 1: Parameterize the unsupervised algorithm, i.e., 
convert into a supervised algorithm.

• STEP 2: Tune the parameter(s) using unrelated data; still 
unsupervised learning, since no labels of the task instance of 
interest are used.

Reminder

Document clustering.
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Unsupervised Document
Clustering

• Goal: Cluster documents into a pre-specified number of 
categories.

• Preprocessing: represent documents into fixed-length vectors 
(e.g., in tf/idf space) or probability distributions (e.g., over 
words).

• Define a “distance” measure and then try to minimize the intra-
cluster distance (or maximize the inter-cluster distance).

• Some general-purpose clustering algorithms: K-means, 
Gaussian mixture modeling, etc.
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• In the “distance” measure: e.g., Lp distance instead of 
Euclidean.

• In the dimensionality reduction: e.g., constrain the projection 
in the first p dimensions.

• In Gaussian mixture modeling: e.g., constrain the rank of the 
covariance matrices.

• In the smoothing of the empirical distributions: e.g., the 
discount parameter.

• Information-theoretic clustering: generalized information 
measures.

Step I : Parameterization
Ways to parameterize the clustering algorithm:
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empirical distr.

probability simplex

Information-theoretic
Clustering

P̂x
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cluster centroids

Information-theoretic
Clustering

P̂
x|z
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Information Bottleneck

• Considered state-of-the-art in unsupervised document 
classification.

• Goal: maximize the mutual information between words and 
assigned clusters.

• In mathematical terms:

max
P̂

x|z

I(Z;Xn(Z))

= max
P̂

x|z

∑

z

P (Z = z)D(P̂x|z‖P̂x)
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• Considered state-of-the-art in unsupervised document 
classification.

• Goal: maximize the mutual information between words and 
assigned clusters.

• In mathematical terms:

max
P̂

x|z

I(Z;Xn(Z))

= max
P̂

x|z

∑

z

P (Z = z)D(P̂x|z‖P̂x)

cluster index

empirical distr.
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Integrated Sensing and
Processing Decision Trees

• Goal: greedily maximize the mutual information between 
words and assigned clusters; top-down clustering.

• Unique feature: data are projected at each node before splitting 
(corpus-dependent-feature-extraction).

• Objective optimization via joint projection and clustering. 

• In mathematical terms, at each node t :

= max
P̂

x|z

∑

z

P (Z = z|t)D(P̂
x|z‖P̂x|t)

max
P̂

x|z

I(Zt;X
n(Zt))
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• Goal: greedily maximize the mutual information between 
words and assigned clusters; top-down clustering.

• Unique feature: data are projected at each node before splitting 
(corpus-dependent-feature-extraction).

• Objective optimization via joint projection and clustering. 

• In mathematical terms, at each node t :

= max
P̂

x|z

∑

z

P (Z = z|t)D(P̂
x|z‖P̂x|t)

max
P̂

x|z

I(Zt;X
n(Zt))

projected empirical distr.

See ICASSP-07 paper
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• Of course, it makes sense to choose a parameterization that has 
the potential of improving the final result.

• Information-theoretic clustering: Jensen-Renyi divergence and 
Csiszar’s mutual information can be less sensitive to 
sparseness than regular MI.

• I.e., instead of smoothing the sparse data, we create an 
optimization objective which works equally well with sparse 
data.

Useful Parameterizations 
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• Jensen-Renyi divergence:

•

•

• Csiszar’s mutual information:

Iα(X;Z) = Hα(X) −
∑

z

P (Z = z)Hα(X|Z = z)

IC
α (X;Z) = min

Q

∑
P (Z = z)Dα(PX|Z(·|Z = z)‖Q)

0 < α ≤ 1

Useful Parameterizations 
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Useful Parameterizations 

Renyi entropy

Renyi divergence



Rosetta 

Step II : Parameter Tuning

• Tune the parameter to do well on the unrelated data; use the 
average value of this optimum parameter on the test data.

• Use a regularized version of the above: instead of the 
“optimum” parameter, use an average over many “good” 
values. 

• Use various “clues” to learn a meta-classifier that 
distinguishes good from bad parameters, i.e., ”Strapping” 
(Eisner and Karakos, 2005).

Options for tuning the parameter(s) using labeled unrelated data
(cross-instance tuning):
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Experiments

• Test data sets have the same labels as the ones used by (Slonim 
et al., 2002).

• “Binary”: talk.politics.mideast, talk.politics.misc

• “Multi5”: comp.graphics, rec.motorcycles, 
rec.sport.baseball, sci.space, talk.politics.mideast,

• “Multi10”: alt.atheism, comp.sys.mac.hardware, 
misc.forsale, rec.autos, rec.sport.hockey, sci.crypt, 
sci.electronics, sci.med, sci.space, talk.politics.guns.

Unsupervised document clustering from the “20 Newsgroups” corpus:
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• Training data sets have different labels from the corresponding 
test set labels.

• Collected training documents from newsgroups which are 
close (in the tf/idf space) to the test newsgroups (in an 
unsupervised manner).

• For example, for the test set “Multi5” (with documents from 
the test newsgroups comp.graphics, rec.motorcycles, 
rec.sport.baseball, sci.space, talk.politics.mideast) we 
collected documents from the newsgroups sci.electronics, 
rec.autos, sci.med, talk.politics.misc, talk.religion.misc).

Unsupervised document clustering from the “20 Newsgroups” corpus:

Experiments
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• Option 1: Used the average α that gave the lowest error on the 
training data.

• Option 2: Regularized least squares to approximate the probability 
that an α is the best:

Tuning of α (rounded-off to 0.1, 0.2, ... 1.0) using the labeled data

where 

p̂ = K(λI + K)−1
p

p = (0, . . . , 1, . . . , 0)

K(i, j) = exp(−(E(αi) − E(αj))
2/σ2)

Value used:  α̂ =

10∑

i=1

p̂i αi

Experiments
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• Option 3: “Strapping”: from each training clustering, build a feature 
vector with clues that measure clustering goodness. Then, learn a 
model which predicts the best clustering from these clues.

• Clues: 

• 1 - avg. cosine of angle between documents and cluster centroid 
(in tf/idf space).

• Avg. Renyi divergence between empirical distributions and 
assigned cluster centroid.

• A value per α, which is decreasing with the avg. ranking of the 
clustering (as predicted by the above clues).

Tuning of α (rounded-off to 0.1, 0.2, ... 1.0) using the labeled data

Experiments



Rosetta 

• Option 3: “Strapping”: from each training clustering, build a feature 
vector with clues that measure clustering goodness. Then, learn a 
model which predicts the best clustering from these clues.

• Clues: 

• 1 - avg. cosine of angle between documents and cluster centroid 
(in tf/idf space).

• Avg. Renyi divergence between empirical distributions and 
assigned cluster centroid.

• A value per α, which is decreasing with the avg. ranking of the 
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Tuning of α (rounded-off to 0.1, 0.2, ... 1.0) using the labeled data

Experiments

Do not require any knowledge of the true labels
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Results
Algorithm Method Binary Multi5 Multi10

ISPDT

MI (α=1) 11.3% 9.9% 42.2%

avg. best α 9.7% (α=0.3) 10.4% (α=0.8) 42.5% (α=0.5)

RLS 10.1% 10.4% 42.7%

Strapping 10.4% 9.2% 39.0%

IB

MI (α=1) 12.0% 6.8% 38.5%

avg. best α 11.4% (α=0.2) 7.2% (α=0.8) 36.1% (α=0.8)

RLS 11.1% 7.4% 37.4%

Strapping 11.2% 6.9% 35.8%
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Results
Algorithm Method Binary Multi5 Multi10

ISPDT

MI (α=1) 11.3% 9.9% 42.2%

avg. best α 9.7%* (α=0.3) 10.4% (α=0.8) 42.5% (α=0.5)

RLS 10.1%* 10.4% 42.7%

Strapping 10.4%* 9.2% 39.0%*

IB

MI (α=1) 12.0% 6.8% 38.5%

avg. best α 11.4% (α=0.2) 7.2% (α=0.8) 36.1% (α=0.8)

RLS 11.1% 7.4% 37.4%

Strapping 11.2% 6.9% 35.8%*

* : significance at p < 0.05
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• Appropriate parameterization of unsupervised algorithms is 
helpful.

• Tuning the parameters requires (i) a different (unrelated) task 
instance and (ii) a method of selecting the parameter.

• “Strapping”, which learns a meta-classifier for distinguishing 
good from bad classifications has the best performance (7-8% 
relative error reduction).

Conclusions


