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Introduction

Introduction

Fast and accurate structured prediction

Manual exploration of speed/accuracy tradeoff
Prioritization heuristics

A* [Klein and Manning, 2003]
Hierarchical A* [Pauls and Klein, 2010]

Pruning heuristics
Coarse-to-fine pruning [Charniak et al., 2006; Petrov and Klein, 2007]
Classifier-based pruning [Roark and Hollingshead, 2008]

Goal: learn a heuristic for your input distribution, grammar, and
speed/accuracy needs
Objective measure

quality = accuracy− λ× time
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Priority-based Inference

Agenda-based Parsing
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Priority-based Inference

Speed Accuracy for Agenda-based Parsing

All experiments are on Penn Treebank WSJ with sentence length
≤ 15.
Preliminary results setup:

Berkeley latent variable PCFG trained on section 2-20
Training set: 100 sentences from section 21
Evaluated on the same 100 sentences

Baseline 1: Exhaustive Search
Recall: 93.3; Relative number of pops: 3.0x
Baseline 2: Uniform Cost Search (UC)
Recall: 93.3; Relative number of pops: 1.0x
Baseline 3: Pruned Uniform Cost Search
Recall: 92.0; Relative number of pops: 0.33x
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Priority-based Inference

Agenda-based Parsing as a Markov Decision Process

State space: current chart and agenda
Action: pop a partial parse from the agenda
Transition: Given the chosen action, deterministically updates
chart and pushes other parses to the agenda
Policy: computes action priorities from extracted features

πθ(s) = arg max
a

θ · φ(a, s)

(Delayed) Reward

reward = accuracy− λ× time

accuracy = labeled span recall
time = # of pops from agenda
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Priority-based Inference

Decoding as a Markov Decision Process (MDP)
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Attempt 1: Policy Gradient with Boltzmann Exploration

Boltzmann Exploration

Transition at test time: deterministic
Transition at training time: exploration with stochastic policies:
π~θ(a | s).
Boltzmann exploration:

π~θ(a | s) =
1

Z (s)
exp

[
1

temp
~θ · ~φ(a, s)

]
Temperature→ 0, exploration→ exploitation
A trajectory τ = 〈s0,a0, r0, s1,a1, r1, . . . , sT ,aT , rT 〉.
Expected future reward:

R = Eτ∼π~θ [R(τ)] = Eτ∼π~θ

[
T∑

t=0

rt

]
.
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Attempt 1: Policy Gradient with Boltzmann Exploration

Policy Gradient

Find parameters that maximize the expected reward with respect
to the induced distribution over trajectories
Policy gradient [Sutton et al., 2000]
The gradient of the objective

∇~θEτ [R(τ)] = Eτ
[
R(τ)

T∑
t=0

∇~θ logπ(at | st)
]

where

∇~θ logπ~θ(a | s) =
1

temp

(
~φ(at , st)−

∑
a′∈A

π~θ(a
′ | st)~φ(a′, st)

)
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Attempt 1: Policy Gradient with Boltzmann Exploration

Features

1 Width of partial parse
2 Viterbi inside score
3 Touches start of sentence?
4 Touches end of sentence?
5 Ratio of width to sentence length
6 log p(label | prev POS) and log p(label | next POS)

(statistics extracted from labeled trees, word POS assumed to be
most frequent)

7 Case pattern of first word in partial parse and previous/next word
8 Punctuation pattern in partial parse (five most frequent)
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Attempt 1: Policy Gradient with Boltzmann Exploration

Policy Gradient with Boltzmann Exploration

Preliminary results:

Method Recall Relative # of pops
Policy Gradient w/

Boltzmann Exploration
56.4 0.46x

Uniform cost search 93.3 1.0x
Pruned uniform cost search 92.0 0.33x

Main Difficulty:
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Jiang, Teichert, Daumé, Eisner (UMD, JHU) 10 / 21



Attempt 2: Policy Gradient with Reward Shaping

Reward Shaping

Goal: give the agent reward earlier in a trajectory in order to
improve its convergence rate
Push back reward to actions

r̃(s,a) =


ξ(a)/n − λ if a is a full parse tree
1/n − λ if a is in the true parse
−λ otherwise

ξ(s): a negative reward for actions which received early reward for
constituents that were not in the final parse
Property: R(τ) =

∑T
t=0 r̃(s,a)
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Attempt 2: Policy Gradient with Reward Shaping

Reward Shaping

Gradient step:

∇θEτ [R(τ)] = ∇θEτ [R̃(τ)] = Eτ
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t ′=t
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Attempt 3: Apprenticeship Learning

Oracle Actions

Focus on high-reward regions of policy space

Oracle action: an action that leads to a maximum-reward tree,
where reward is defined in terms of accuracy and speed
How to get oracle actions?

Ground truth of a sentence
Exact parse with the best speed-accuracy tradeoff

Apprenticeship learning via classification
1 Generate classification examples (st ,at) labeled according to

oracle actions
2 Train a maximum entropy classifier
3 Classifier objective: maximize number of times policy matches

oracle action
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Attempt 3: Apprenticeship Learning

Apprenticeship Learning via Classification

Preliminary results:

Method Recall Relative # of pops
Apprenticeship Learning

via Classification
84.2 0.85x

Policy Gradient w/
Reward Shaping

76.5 0.13x

Policy Gradient w/
Boltzmann Exploration

56.4 0.46x

Uniform cost search 93.3 1.0x
Pruned uniform cost search 92.0 0.33x

Main difficulty:�� ��Too hard to imitate oracle with our features!
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Attempt 4: Oracle-Infused Policy Gradient

Oracle-Infused Policy Gradient

Goal: “interleaving” oracle actions with policy actions both feasible
and sensible
Let π be an arbitrary policy and let δ ∈ [0,1]. The oracle infused
policy π+δ is defined as follows:

π+δ (a | s) = δπ∗(a | s) + (1− δ)π(a | s)

δ = 1: the classifier-based approach
δ = 0: policy gradient
δ = 0.8epoch
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Experiments

Pareto Frontier

Final Results Setup:
Berkeley latent variable PCFG trained on sections 2-21
RL (if any) trained on section 22
evaluated on section 23

Baselines:
(HA∗) a Hierarchical A∗ parser [3] with same pruning threshold at
each hierarchy level
(UC) uniform cost search
(UCp) pruned uniform cost search
(A∗

p) an A∗ variant, on which we decrease the pruning threshold if
no tree is returned
(CTF) an agenda-based coarse-to-fine parser [4].
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Experiments

Pareto Frontier
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Figure: Pareto frontiers: Our I+ parser at different values of λ, against the
baselines at different pruning levels. Lower and further right is better.
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Discussion and Conclusion

Discussion and Conclusion

A novel oracle-infused variant of the policy gradient algorithm for
reinforcement learning
Learn a fast and accurate parser with only a simple set of features
Limitation of the model:

Feature effectiveness v.s. cost
Stop criteria
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