Learned Prioritization for Trading Off Accuracy and Speed
Jiarong Jiang Adam Teichert Hal Daumeé lll Jason Eisner

Take Home Summary Attempt 1: Policy Gradient with Boltzmann Exploration
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» Main Objective: structured prediction (search) L EIR() = E. | R(-)7, o A e A . loa =(als 5 1. Width of partial parse

» Search Method: agenda based dynamic programming AR T{ (T)Vslog pul )} T{ ( ); vlogn(a t)} (@) 2. Viterbi inside score

» Knob To Tune: prioritization heuristic 3. Touches start of sentence?

» Preliminary Results: Recall = 56.4, Relative # of pops = 0.46x

» Main difficulty: no attempt to determine which actions were
“responsible” for a trajectory’s reward (i.e. reward outside of sum)

» Bad: try different known heuristics by hand :(
» Good: learn a heuristic for your input distribution, grammar, and

4. Touches end of sentence?
5. Ratio of width to sentence length

speed/accuracy needs 6.log p(label | prev POS) and log p(label | next POS)
» How?: hybrid reinforcement/apprenticeship learning!

(statistics extracted from labeled trees, word POS assumed to be
most frequent)

Agenda Based Parsing _ Push back reward to actions: /. Case pattern of first word in partial parse and previous/next word

5(a) — X\ if ais a full parse tree 8. Punctuation pattern in partial parse (five most frequent)

Attempt 2: Policy Gradient With Reward Shaping
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~Goal: find lightest weight parse s s v 1;A;§EEDA r(s,a)=q1-AX tais ir.1 the true parse (3) Final Experiments
» Extend already built partial Ve vee 8 0% —A otherwise

2 VP _ VP PP
1 NP - DetN

parses 2 NP - e e 5(s): a negative reward for actions which received early reward for = * Final Results Setup: | |
» Reuse work via dynamic R SO constituents that were not in the final parse. R(7) = 3/ , 7(s, a). ~ Berkeley latent variable PCFG trained on sections 2-21
. . _ B » RL (if any) trained on section 22
programming i3 NP 10 » Gradient step:

) » evaluated on section 23

» Extend most promising partial Va3 Ved VS et N . [ » Baselines:
. o Time 1 flies 2 lik 4 — — =t '
solutions first via agenda 0 Time 8 ke 3 an 4 arows Vil R(7)] = VA R(r)] = E- ; — 7T | Velogm(a | s) (4) » (HA*) a Hierarchical A*parser [3] with same pruning threshold at each
- | . - hierarchy level
_ _ » Preliminary Results: Recall = 76.5, Relative # of pops = 0.13x . (UC) an A*parser with a 0 heuristic function and pruning
Speed/Accuracy in Agenda Based Parsing » Main difficulty: state space (still) too big compared to number of ~ (UC;) an A*variant, on which we decrease the pruning threshold if no tree is
reasonable trajectories returned |

» All experiments on Penn Treebank WSJ (sentence length < 15) > (CTF) an agenda-based coarse-to-fine parser [4].

» Preliminary Results Setup:
» Berkeley latent variable PCFG trained on sections 2-20

Attempt 3: Apprenticeship Learning » Note: CTF and HA™ perform much better when evaluated on number of

pushes; also, adapting the pruning threshold among grammar levels might
» RL (if any) trained on 100 sentences from section 21 _ , , _ . . .
) Eva(luate)clj)on same 100 sentences » Oracle action: actions that leads to a maximum-reward tree (break further help; future work includes adding coarse-to-fine features to our set
Method Recall Relative # of Pops  ties by current policy) X 10° Change of recall and # of pops
(B1): Exhaustive Search (CKY order) = 93.3 3.0x ~ Apprenticeship learning via classification: it . f
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(B3): Pruned Unitorm Cost Search (UCp) 92.0 0.33x » classifier objective: maximize number of time policy matches oracle action § o UGy ¢ H
_ - - Preliminary Results: Recall = 84.2, Relative # of pops = 0.85x w1 L é
Agenda Based ParSIng as a Markov Decision Process » Main d|ff|cu|ty too hard to imitate oracle with our features (eg P RSRIUIIRRRRPPTE PO
oracle trajectory length ~ 40, policy trajectory length ~ 30, 000 0 —————————— ", '
» State Space: full current chart and agenda J y1eng POTICY Tl y1eng ) 082 084 08 088 09 092 094 0.96
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Action: choose a partial parse from N : :
i P P agenda Attempt 4: Oracle-Infused Policy Gradient (1+) Figure: Pareto frontiers: Our I+ parser at different values of ), against the

» Transitions: given the chosen action, deterministically updates
chart and builds and pushes other partial (or full) parses to
agenda

baselines at different pruning levels.

» Let 7 be an arbitrary policy and let o € [0, 1].

- Def i cy _ RelatedWork
» Policy: deterministically pops highest-priority available action Detfine the oracle infused policy ; as Related Work
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