Learned Prioritization for Trading Off Accuracy and Speed

Jiarong Jiang*

Adam Teichert'

Hal Daumé I1T*

Jason Eisner’

*University of Maryland, College Park, Maryland 20783
tJohns Hopkins University, Baltimore, Maryland 21218

Abstract

Users want natural language processing (NLP)
systems to be both fast and accurate, but quali-
ty often comes at the cost of speed. The field has
been manually exploring various speed-accuracy
tradeoffs for particular problems or datasets. We
aim to explore this space automatically, focus-
ing here on the case of agenda-based syntac-
tic parsing (Kay, 1986). Unfortunately, off-
the-shelf reinforcement learning techniques fail
to learn good policies: the state space is too
large to explore naively. We propose a hybrid
reinforcement/apprenticeship learning algorithm
that, even with few inexpensive features, can au-
tomatically learn weights that achieve compet-
itive accuracies at significant improvements in
speed over state-of-the-art baselines.

1. Introduction

The nominal goal of natural language processing (NLP) is
to achieve high accuracy. Unfortunately, high accuracy of-
ten comes at the price of slow computation.

Typically one seeks a “reasonable” trade-off between ac-
curacy and speed. But what is “reasonable” for one person
might not be reasonable for another. Our goal is to optimize
a system with respect to a user-specified speed/accuracy
trade-off, on a user-specified data distribution. We formal-
ize our problem in terms of learning priority functions for
generic inference algorithms (Section 2).

Much research has been dedicated to finding exact or ap-
proximate speedups in a wide range of inference problems
including sequence tagging (Kaji et al., 2010), constituent

Presented at the International Conference on Machine Learning
(ICML) workshop on Inferning: Interactions between Inference
and Learning, Edinburgh, Scotland, UK, 2012. Copyright 2012
by the author(s)/owner(s).

JIARONG @ UMIACS.UMD.EDU
TEICHERT @JHU.EDU

HAL @UMIACS.UMD.EDU
JASON@CS.JHU.EDU

parsing (Pauls & Klein, 2009; Finkel et al., 2008), depen-
dency parsing (Goldberg & Elhadad, 2010), and machine
translation (Petrov et al., 2008). Many of the speedup s-
trategies in the literature can be expressed as pruning or
prioritization heuristics. Prioritization heuristics govern
the order in which search actions are taken while prun-
ing heuristics explicitly dictate whether particular actions
should be taken at all. Examples of prioritization include
A* (Klein & Manning, 2003; Haghighi et al., 2007) and
Hierarchical A* (Pauls & Klein, 2010) heuristics, which,
in the case of agenda-based parsing, prioritize parse ac-
tions so as to reduce work while maintaining the guarantee
that the most likely parse is found. Alternatively, classifier-
based pruning (Roark & Hollingshead, 2008), beam-width
prediction (Bodenstab et al., 2011), coarse-to-fine pruning
(Charniak et al., 2006; Petrov & Klein, 2007) and figure-of-
merit prioritization (Caraballo & Charniak, 1998; Charniak
et al., 1998) can result in even faster inference if a small
amount of search error can be tolerated.

Unfortunately, deciding which techniques to use for a spe-
cific setting can be difficult: it is impractical to “try every-
thing.” In this paper, by combining reinforcement learn-
ing and apprenticeship learning techniques, we develop a
learning algorithm that can successfully learn such a trade-
off in the context of constituency parsing. Although this
paper focuses on parsing, we expect the approach to trans-
fer to prioritization under other agenda-based inference al-
gorithms, such as in machine translation.

2. Priority-based Inference

Inference algorithms in NLP (e.g. parsers, taggers, or trans-
lation systems) as well as more broadly in artificial intelli-
gence (e.g., planners) often rely on prioritized exploration.
For concreteness, we describe inference in the context of
parsing, though it is well known that this setting captures
all the essential structure of a much larger family of “d-
eductive inference” problems (Kay, 1986; Ramakrishnan,
1991; Sikkel, 1997; Shieber et al., 1995; Goodman, 1999;

Learned Prioritization for Trading Off Accuracy and Speed

Eisner et al., 2005; Eisner & Blatz, 2007).

2.1. Prioritized Parsing

Given a grammar, perhaps the simplest approach to infer-
ring the best parse tree for a given sentence is to assem-
ble the parse from the bottom up as in CKY (Younger,
1967). A standard extension of the CKY algorithm uses an
“agenda”—a priority queue of constituents built so far—to
decide what to do next (Kay, 1986).

Our goal is to learn a prioritization function that is able
to prioritize “good” actions (a high accuracy and fast solu-
tion) before “bad” actions. In order to operationalize this
approach, we need to define the test-time objective function
we wish to optimize; we choose a simple linear interpola-
tion of accuracy and speed:

quality = accuracy — A\ X time Q)

where we can choose an A that reflects our true preferences,
or investigate different values of \ to obtain a speed and
accuracy tradeoff. We halt inference as soon as the parser
pops its first complete parse and formulate this problem as
a Markov Decision Process (MDP).

2.2. Inference as a Markov Decision Process

A Markov Decision Process (MDP) is a formalization of
a memoryless search process. An MDP consists of a s-
tate space S, an action space A, and a transition function
T. For parsing, the state is the full current chart and a-
genda (and is astronomically large: roughly 10'7 states for
average sentences). The agent controls which item (con-
stituent) to “pop” from the agenda. Its possible actions cor-
respond to items currently on the agenda. When the agent
pops item y, the environment deterministically adds y to
the chart, combines y as licensed by the grammar with ad-
jacent items z in the chart, and places each resulting new
item x on the agenda. (Duplicates are merged: the highest
probability one is kept.) The only stochasticity is the initial
draw of a new sentence to be parsed.

We are interested in learning a deterministic policy that
always pops the highest-priority available action. Thus,
learning a policy corresponds to learning a priority func-
tion. We define the priority of action a in state s as the dot
product of a feature vector ¢(a, s) with the weight vector
6. Formally, our policy is

me(s) = argmax 0 - ¢(a,s) (2)

2.3. Features for Prioritized Parsing

We use a very simple set of features: (1) Viterbi inside s-
core;
(2) Does constituent touch the start of sentence;

(3) Does constituent touch the end sentence;

(4) Length of the constituent;

(5) Ratio of constituent length to sentence length;

(6) log p(constituent label | prev. word POS tag) and
log p(constituent label | next word POS tag), where the
POS tag of w is taken to be argmax, p(w | t) under the
grammar;

(7) Case pattern of first word in constituent and previ-
ous/next word: upper case, lower case, number and sym-
bol;

(8) Punctuation pattern in constituent: such as word, $
word, word $ word, etc. We use the five most indicative
features for a span not being a constituent.

The log-probability features (1) and (6) are inspired by
work on figures of merit for agenda-based parsing (Cara-
ballo & Charniak, 1998); while the case and punctuation
patterns (7) and (8) are inspired by structure-free parsing
(Liang et al., 2008).

3. Reinforcement Learning

Reinforcement learning (RL) provides a generic solution to
solving learning problems with delayed reward. In gener-
al the reward function may be stochastic, but in our case,
it is deterministic: 7(s,a) € R. The reward function we
consider is: (s, a) =

3

acc(a) — A - time(s) if a is a full parse tree
0 otherwise

Here, acc(a) measures the accuracy of the full parse
tree popped by the action a (against a gold standard) and

time(s) is a user-defined measure of time.

3.1. Boltzmann Exploration

At test time, the transition between states is determinis-
tic: our policy always chooses the action a that has highest
priority in the current state s. However, during training,
we promote exploration of policy space by running with s-
tochastic policies: mg(a | s). Thus, there is some chance
of popping a lower-priority action, to find out if it is useful
and should be given higher-priority. In particular, we use
Boltzmann exploration to construct a stochastic policy with
a Gibbs distribution. Our policy is:

1
me(a | s) = ——ex

Z(s)

That is, the log-likelihood of action a at state s is an affine
function of its priority. The temperature temp controls the
amount of exploration. As temp — 0, m approaches the
deterministic policy in Eq (2); as temp — oo, m approach-
es the uniform distribution over available actions. During
training, femp can be decreased to shift from exploration to
exploitation.

1
D o 0 0as)| @

Learned Prioritization for Trading Off Accuracy and Speed

As we have a fixed-horizon episodic task (i.e., the agen-
t does not live forever), a stochastic policy 7 gives rise to
a separate total reward R for each episode, i.e., each time
the parser parses a sentence. We want our policy to maxi-
mize the expected total reward, which is fully defined by 7
together with the distribution over the random behavior of
the environment (transitions and rewards). We can measure
this by simulation.

Note that even in our deterministic setting, the environment
does present a little bit of randomness: at the start of each
episode, it chooses a random sentence to be parsed. At
training time, these sentences come from the training set,
and at test time they come from the test set.

A trajectory T is the complete sequence of s-
tate/action/reward triples from parsing a single sen-
tence (an “episode”). As is common, we denote

7 = (S0,a0,70,51,a1,T1,-..,ST,ar,TT), Where:
so is the starting state; a; is chosen by the agent by
mo(as | s¢); 1+ = 7r(8¢,a¢); and Sy41 is drawn by the

environment from 7'(s;11 | S¢, at), deterministically in our
case. At a given temperature, the weight vector 0 gives rise
to a distribution over trajectories through the state space
and hence to an expected reward:

T
R=TFrry [R(T)] = Errory [Z rt] . (5)
t=0

3.2. Policy Gradient

We wish to find parameters that yield the highest possible
expected reward. We carry out this optimization using a s-
tochastic gradient ascent algorithm known as policy gradi-
ent (Baxter & Bartlett, 2001; Williams, 1992; Sutton et al.,
2000). This operates by taking derivatives of the reward
with respect to 0 and taking steps in that direction:

Vope(T) = po(T)Ve logpe(T) (6)
so the gradient of the objective becomes

T

VoE-[R(r)] = E.[R(r) }_ Vologr(as | s1)] ()
t=0

Here 7 is a random trajectory chosen by policy mg, and 7
is the reward at step ¢ of 7. The expectation can be approx-
imated by sampling trajectories. It also requires computing
the gradient of each policy decision, which, by Eq (4), is:
Velogme(a | s) =

. <¢(at>5t) — > 7eld | St)qb(a’,St)) (8)

tem,
P a’€A

Combining Eq (7) and Eq (8) gives the form of the gradi-
ent with respect to a single trajectory. The policy gradient

algorithm samples one (or several) trajectory according to
the current g, and then takes a gradient step according to
Eq (7). This increases the probability of actions on high-
reward trajectories more than actions on low-reward trajec-
tories.

The main difficulty with policy gradient is that it has no
way to determine which actions were “responsible” for a
trajectory’s reward. Without causal reasoning, we need to
sample many trajectories in order to distinguish which ac-
tions are reliably associated with higher-reward. This is
a significant problem for us, since the average trajectory
length of an A* parser on a 15 word sentence is about 30k
steps, only about 40 of which (less than 0.15%) are actually
needed to successfully complete the parse optimally. This
is the credit assignment problem.

3.3. Reward Shaping

A classic approach to attenuating the credit assignmen-
t problem when one has some knowledge about the do-
main is reward shaping (Gullapalli & Barto, 1992; Matar-
ic, 1994). The goal of reward shaping is to give the agent
reward earlier in a trajectory in order to improve its con-
vergence rate. Under suitable conditions (essentially that
the reward can be written as the difference of two poten-
tial functions), one can prove that reward shaping preserves
the optimal behavior of an agent on an MDP with a fixed
reward function, while reducing the time used attempting
suboptimal actions (Ng et al., 1999).

Our shaping approach is to distribute the fully delayed re-
ward in accordance with our prior beliefs about the contri-
bution of the action to the final reward. If speed is measured
by the number of popped items and accuracy is measured
by labeled constituent recall of the first popped full tree, we
can shape the reward as:

d(a) — A if ais a full parse tree
7(s,a) =< 1—2X if @ is in the true parse ©)
—A otherwise

Here, 0(s) is a negative reward assigned to compensate for
actions which received early reward for constituents that
did not end up in the final parse. It is easy to show that
for a full trajectory that ends in a complete parse tree, this
reward coincides with the unshaped reward from Eq (3):

r(1) =7(71).

4. Apprenticeship Learning

To help guide the learning process, we would like to ex-
plore more intelligently than Boltzmann exploration, in
particular, focusing on high-reward regions of policy space.
We introduce oracle actions as a guidance. At the begin-
ning of the learning process, the parser has little knowledge
of what constituents are useful to build (i.e. which action-

Learned Prioritization for Trading Off Accuracy and Speed

s would tend to improve accuracy enough to be worth the
cost in speed). The oracle actions can give a good idea of
reasonable things to do and what subset of the enormous
search space to explore.

An oracle action should be one that leads to a maximum-
reward tree, where reward is defined in terms of accuracy
and speed (Eq (3)). However, several oracle actions may
be available at once. First, our agenda-based algorithm has
some freedom in how it orders its actions: e.g., it can ar-
rive at the optimal tree by building either the subject noun-
phrase first or the main verb-phrase first. Second, there may
be multiple optimal trees with equal reward: e.g., for state-
of-the-art grammars like the ones we use (Petrov & Klein,
2008), the grammar produces fine-grained parses, but ac-
curacy is only measured against the coarse-grained parses
provided in labeled data. Thus, two fine-grained parses are
equally accurate if they disagree only on latent variables.

There are many different ways to get oracle trees. For sim-
plicity, in the experiments, we use the ground truth of a
sentence as the oracle tree (Details in experiment section).
Alternatively, if the full set of possible parses of a sentence
is accessible, we can find out the exact parse with the best
speed-accuracy tradeoff and use that as the oracle tree. Or,
we can run the agenda-based parser but with the pushed-
back reward as the priority to get the oracle tree. However,
these initial choices should not influence the results at the
end of reinforcement learning if we gradually increase the
ability of stochastic exploration for the parser.

We address this problem by letting the current policy de-
cide which of the many possible oracle actions it likes
the bestWe let our oracle actions be those that build con-
stituents in the gold parse tree since this tends to result in
both fast and accurate parsing in most cases.

4.1. Apprenticeship Learning via Classification

Given access to a shaped reward that assigns a cost at each
step (Eq (9)) and a notion of oracle actions, a straightfor-
ward approach is to train a classifier to make search de-
cisions, a popular approach in incremental parsing (Rat-
naparkhi, 1999; Collins & Roark, 2004; Charniak, 2010),
and the initial iteration of the state-of-the-art apprentice-
ship learning algorithm, DAGGER (Ross et al., 2011).

We train a classifier as follows. Trajectories are generated
by following oracle actions. At each step in the trajectory,
(8¢, az), aclassification example is generated, where the ac-
tion taken by the oracle (a;) is considered the correct class
and all other available actions are incorrect. The classifi-
er that we train on these examples is a maximum entropy
classifier. In fact, the gradient of this classifier is nearly
identical to the gradient of policy gradient (Eq (7)) excep-
t that the total reward R(T) is replaced by the immediate

reward 7, which is constant for all oracle steps.

An obvious practical issue with the classification-based ap-
proach is that it trains the classifier only at states visited by
the oracle. This leads to the well-known problem that it is
unable to learn to recover from past errors (Bagnell, 2005;
Daumé III & Marcu, 2005; Xu & Fern, 2007; Xu et al.,
2007; Ratliff et al., 2009; Daumé III et al., 2009; Ross et al.,
2011). An additional issue is that not all errors are creat-
ed equal. Some incorrect actions are more expensive than
others, if they create constituents that can get combined in
many locally-attractive ways. But our classifier does not
know this. A final issue has to do with the nature of the
oracle.Our oracle action selector ignores the trade-off be-
tween accuracy and speed, and only focuses on accuracy.

5. Oracle-Infused Policy Gradient

The failure of both standard reinforcement learning al-
gorithms and standard apprenticeship learning algorithms
on our problem leads us to develop a new approach. To
achieve this, we define the notion of an oracle-infused poli-
cy. Let 7 be an arbitrary policy and let 6 € [0, 1]. We define
the oracle infused policy 7r(§Ir as follows:

mi(a|s)=0dn"(als)+(1—8m(a|s) (10)

In other words, when choosing an action, 775F explores the
policy space with probability 1 — 4, and with probability 4,
we force it to take an oracle action.

Our algorithm proceeds by taking policy gradient steps
with respect to trajectories drawn from 77; rather than .
Because of this, it is theoretically important to ensure that
in the limit of learning, § — 0 so that trajectories are being
drawn from the actual learned policy. We use § = 0.8°P°ch,
where epoch is the total number of passes made through the
training set at that point. Note that if § = 1, this reduces
to the classifier-based approach; and if § = 0, this reduces
to policy gradient. By selecting delayed reward and 6 = 1,
this can be regarded as an approximation to Searn that uses
random roll-outs rather than “all possible” roll-outs.

6. Experiments

All of our experiments are based on the Wall Street Journal
portion of the Penn Treebank (Marcus et al., 1993). We use
a latent-variable context-free grammar for parsing (Petrov
& Klein, 2007). In the model selection, we estimate this
grammar using 5 split-merge iterations on sections 2-20 of
the Treebank, reserving section 22 for learning the param-
eters of our policy. In particular, for Section 6.1, the same
100 sentences of at most 15 words from section 22 were
used for training and test. We measure accuracy in terms of
labeled recall (including preterminals) and measure speed
in terms of the number of pops/pushes performed on the a-

Learned Prioritization for Trading Off Accuracy and Speed

Model [#ofpops [Recall [FI |
D- 686641 56.35 | 58.74
I- 187403 76.48 | 76.92
D+ 1275292 | 84.17 | 83.38
I+ 682540 91.16 | 91.33

[UC (no pruning) [1496080 | 93.34 [93.19 |

Table 1. Performance on 100 sentences with A = 1076,

genda. The limitation to relatively short sentences is purely
for improved efficiency at training time.

Our baselines are: (HA*) a Hierarchical A* parser (Pauls
& Klein, 2009) with same pruning threshold at each hi-
erarchy level; (UC) an A* parser with a 0 heuristic func-
tion and pruning; (A;) a UC variant, on which we decrease
the pruning threshold if no tree is returned;' and (CTF) an
agenda-based coarse-to-fine parser (Petrov & Klein, 2007).

6.1. Learned Prioritization Approaches

We specifically evaluate four variants of our learned prior-
itization approach:

D- delayed reward in a classifier (sec. 3.2)
I- immediate reward in a classifier (sec. 3.3)
D+ delayed reward with oracle-infusion (sec. 5)

I+ immediate reward with oracle-infusion (sec. 5)

Table 1 shows the result on the 100 sentences. We can see
that the classifier-based approaches perform poorly. When
the training trajectory consists of only oracle actions, the
we suffer from a biased set of training trajectories; hence,
the model cannot learn useful test-time weights. On the
other hand, without any help from the oracle actions, we
suffer from large variance in training trajectories: it takes
days to train the parser and training does not converge. Our
“oracle-infused” compromise uses some oracle actions, and
after several passes through the data, the parser learns to
make good decisions without help from the oracle.

6.2. Pareto Frontier

Our final evaluation is on the held-out test set (length-
limited sentences from Section 23). A 5-split grammar
trained on section 2-21 is used. Given our previous results
in Table 1, we only consider the I+ model. To investigate
different points of speed-accuracy tradeoff, we learn and
then evaluate a policy for each of several settings of A\. We
train our policy using sentences of at most 15 words from
Section 22. We measured accuracy in recall points while
we evaluate speed in terms of the number of pops/pushes
performed on the agenda.

!"This forces the parser to return some tree, just like our pars-
er. When the UC parser with heavy pruning fails to find a tree,
we reparse at the next lighter pruning level, similar to iterative-
deepening search (Russell & Norvig, 1995). The runtime is as-
sessed cumulatively.

5 x 107 Change of recall and # of pops

— |+
uc

2

8 . UCp
©

**

[Ty

e CTF
——t= HA*

Dd
<
Lo ===t

—

(9.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96
Recall

Figure 1. Pareto frontiers: Our I+ parser at different values of A,
against the baselines at different pruning levels.

Figure 1 shows the baselines at different pruning thresholds
as well as the performance of our policies trained using I+
for A € {1073,107%,...,1078}, using agenda pops as the
measure of time. I+ is 3 times as fast as UC at the cost of
about 1% drop in accuracy (F-score from 94.58 to 93.56).
I+ can achieve the same accuracy as the pruned version of
UC while still being twice as fast. I+ also improves upon
HA™ and UC, with respect to speed and eliminates at 60%
of the pops. I+ always does better than the coarse-to-fine
parser (CTF) in terms of both speed and accuracy, though
using the number of agenda pops as our measure of speed
puts both hierarchical methods at a disadvantage.

We also ran experiments using the number of agenda push-
es as the measure of time, again sweeping over settings of
M. With 1% recall (F-score from 94.58 to 93.54), it is at
least four times as fast as UC (pushes from around 8 billion
to 2 billion). While pruning speeds up UC significantly, we
can also employ the same pruning in I+.

One limitation of our current model is that our policy ex-
plicitly returns the first tree that is found. This makes it
hard to learn good weights when A is too small. As A — 0,
we should learn to simply parse exhaustively by not return
a parse until the chart has been entirely filled in.

7. Conclusions and Future Work

In this paper, we considered the application of both rein-
forcement learning and apprenticeship learning to priori-
tize search in a way that is sensitive to a user-defined trade-
off between speed and accuracy. We found that a novel
oracle-infused variant of the policy gradient algorithm for
reinforcement learning is effective for learning a fast and
accurate parser with only a simple set of features. In ad-
dition, we uncovered many properties of this problem that
separate it from more standard learning scenarios, and de-
signed experiments to determine the reasons off-the-shelf
learning algorithms fail.

An important avenue for future work is to consider richer
feature sets, including “dynamic” features that depend on
both the action and the state of the chart and agenda.They
can also be used to decide when to halt.

Learned Prioritization for Trading Off Accuracy and Speed

References

Abbeel, Pieter and Ng, Andrew. Apprenticeship learning via in-
verse reinforcement learning. In /CML, 2004.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. A
survey of robot learning from demonstration. In Robotics and
Autonomous Systems, 2009.

Bagnell, J. Andrew. Robust supervised learning. In AAAIL 2005.

Baxter, J. and Bartlett, P. Infinite-horizon policy-gradient estima-
tion. JAIR, 15:319-350, 2001.

Bodenstab, Nathan, Dunlop, Aaron, Hall, Keith, and Roark, Bri-
an. Beam-width prediction for efficient CYK parsing. In ACL,
2011.

Boyd, S., Ghaoui, L. El, Feron, E., and Balakrishnan, V. Linear
matrix inequalities in system and control theory. SIAM, 15,
1994.

Branavan, S.R.K., Chen, Harr, Zettlemoyer, Luke, and Barzilay,
Regina. Reinforcement learning for mapping instructions to
actions. In ACL, 2009.

Caraballo, Sharon A. and Charniak, Eugene. New fig-
ures of merit for best-first probabilistic chart pars-
ing. Computational Linguistics, 24(2):275-298, 1998.
URL http://www.cs.brown.edu/people/sc/
NewFiguresofMerit.ps.Z.

Charniak, E., Goldwater, S., and Johnson, M. Edge-based best-
first chart parsing. In Proceedings of the Workshop on Very
Large Corpora, pp. 127-133, 1998.

Charniak, E., Johnson, M., Elsner, M., Austerweil, J., Ellis, D.,
Haxton, 1., Hill, C., Shrivaths, R., Moore, J., Pozar, M., et al.
Multilevel coarse-to-fine PCFG parsing. In NAACL/HLT, pp.
168-175. Association for Computational Linguistics, 2006.

Charniak, Eugene. Top-down nearly-context-sensitive parsing. In
EMNLP, 2010.

Collins, Michael and Roark, Brian. Incremental parsing with the
perceptron algorithm. In ACL, 2004.

Daumé III, Hal and Marcu, Daniel. Learning as search optimiza-
tion: Approximate large margin methods for structured predic-
tion. In ICML, 2005.

Daumé III, Hal, Langford, John, and Marcu, Daniel. Search-
based structured prediction. Machine Learning, 75(3):297—
325, 2009. ISSN 0885-6125.

Eisner, Jason and Blatz, John. Program transformations for opti-
mization of parsing algorithms and other weighted logic pro-
grams. In Wintner, Shuly (ed.), Proceedings of the Confer-
ence on Formal Grammar (FG), pp. 45-85. CSLI Publication-
s,2007. URL http://cs. jhu.edu/~jason/papers/
#£906.

Eisner, Jason, Goldlust, Eric, and Smith, Noah A. Compiling
comp ling: Weighted dynamic programming and the Dyna lan-
guage. In HLT/EMNLP, pp. 281-290, Vancouver, October
2005. Association for Computational Linguistics. URL http:
//cs.jhu.edu/~Jjason/papers/#emnlp05-dyna.

Finkel, J.R., Kleeman, A., and Manning, C.D. Efficient, feature-
based, conditional random field parsing. In ACL, pp. 959-967,
2008.

Goldberg, Y. and Elhadad, M. An efficient algorithm for easy-first
non-directional dependency parsing. In NAACL/HLT, pp. 742—
750. Association for Computational Linguistics, 2010. ISBN
1932432655.

Goodman, Joshua. Semiring parsing. Computational Linguistics,
25(4):573-605, December 1999. URL http://research.
microsoft.com/~joshuago/finalring.ps.

Gullapalli, V. and Barto, A. G. Shaping as a method for accel-
erating reinforcement learning. In Proceedings of the IEEE
International Symposium on Intelligent Control, 1992.

Haghighi, Aria, DeNero, John, and Klein, Dan. Approximate fac-
toring for A* search. In NAACL/HLT, pp. 412-419, Rochester,
New York, April 2007. Association for Computational Linguis-
tics. URL http://www.aclweb.org/anthology/N/
NO7/N07-1052.

Kaji, N., Fujiwara, Y., Yoshinaga, N., and Kitsuregawa, M. Ef-
ficient staggered decoding for sequence labeling. In ACL, pp.
485-494. Association for Computational Linguistics, 2010.

Kalman, R. Contributions to the theory of optimal control. Bol.
Soc. Mat. Mexicana, 5:558-563, 1968.

Kay, Martin. Algorithm schemata and data structures in syntactic
processing. In Grosz, B. J., Sparck Jones, K., and Webber, B. L.
(eds.), Readings in Natural Language Processing, pp. 35-70.
Kaufmann, 1986. First published (1980) as Xerox PARC TR
CSL-80-12.

Klein, Dan and Manning, Chris. Parsing and hypergraphs. In
Proceedings of the International Workshop on Parsing Tech-
nologies (IWPT), 2001.

Klein, Dan and Manning, Chris. A* parsing: Fast exact Viterbi
parse selection. In NAACL/HLT, 2003.

Liang, Percy, Daumé III, Hal, and Klein, Dan. Structure com-
pilation: Trading structure for features. In ICML, Helsinki,
Finland, 2008.

Marcus, M.P., Marcinkiewicz, M.A., and Santorini, B. Building a
large annotated corpus of English: The Penn Treebank. Com-
putational linguistics, 19(2):330, 1993. ISSN 0891-2017.

Mataric, M. J. Reward functions for accelerated learning. In /CM-
L, 1994.

Natarajan, S., Joshi, S., Tadepalli, P., Kersting, K., and Shavlik, J.
Imitation learning in relational domains: A functional-gradient
boosting approach. In IJCAI 2011.

Nederhof, Mark-Jan. Weighted deductive parsing and Knuth’s
algorithm. Computational Linguistics, 29(1):135-143, 2003.
doi: http://dx.doi.org/10.1162/089120103321337467.

Neu, G. and Szepesviri, Cs. Training parsers by inverse reinforce-
ment learning. Machine Learning, 77, 2009.

Ng, A. Y., Harada, D., and Russell, S. J. Policy invariance un-
der reward transformations: Theory and application to reward
shaping. In ICML, 1999.

http://www.cs.brown.edu/people/sc/NewFiguresofMerit.ps.Z
http://www.cs.brown.edu/people/sc/NewFiguresofMerit.ps.Z
http://cs.jhu.edu/~jason/papers/#fg06
http://cs.jhu.edu/~jason/papers/#fg06
http://cs.jhu.edu/~jason/papers/#emnlp05-dyna
http://cs.jhu.edu/~jason/papers/#emnlp05-dyna
http://research.microsoft.com/~joshuago/finalring.ps
http://research.microsoft.com/~joshuago/finalring.ps
http://www.aclweb.org/anthology/N/N07/N07-1052
http://www.aclweb.org/anthology/N/N07/N07-1052

Learned Prioritization for Trading Off Accuracy and Speed

Ng, Andrew and Russell, Stuart. Algorithms for inverse reinforce-
ment learning. In /CML, 2000.

Pauls, A. and Klein, D. Hierarchical search for parsing. In NAA-
CL/HLT, pp. 557-565. Association for Computational Linguis-
tics, 2009.

Pauls, A. and Klein, D. Hierarchical A* parsing with bridge out-
side scores. In ACL, pp. 348-352. Association for Computa-
tional Linguistics, 2010.

Petrov, S. and Klein, D. Improved inference for unlexicalized
parsing. In NAACL/HLT, pp. 404-411, 2007.

Petrov, S., Haghighi, A., and Klein, D. Coarse-to-fine syntactic
machine translation using language projections. In EMNLP,
pp. 108-116. Association for Computational Linguistics, 2008.

Petrov, Slav and Klein, Dan. Sparse multi-scale grammars for
discriminative latent variable parsing. In EMNLP, pp. 867—
876, Honolulu, Hawaii, October 2008. Association for Com-
putational Linguistics. URL http://www.aclweb.org/
anthology/D08-1091.

Ramakrishnan, Raghu. Magic templates: a spellbinding approach
to logic programs. Journal of Logic Programming, 11(3-4):
189-216, 1991. ISSN 0743-1066. doi: http://dx.doi.org/10.
1016/0743-1066(91)90026-L.

Ratliff, Nathan, Bradley, David, Bagnell, J. Andrew, and Chest-
nutt, Joel. Boosting structured prediction for imitation learn-
ing. In NIPS, 2007.

Ratliff, Nathan, Silver, David, and Bagnell, J. Andrew. Learning
to search: Functional gradient techniques for imitation learn-
ing. In Peters, Jan and Ng, Andrew Y. (eds.), Autonomous
Robots, volume 27, pp. 25-53. Springer, July 2009.

Ratnaparkhi, A. Learning to parse natural language with max-
imum entropy models. Machine learning, 34(1):151-175,
1999.

Roark, Brian and Hollingshead, Kristy. Classifying chart cells for
quadratic complexity context-free inference. In COLING, p-
p. 745-752, Manchester, UK, August 2008. Coling 2008 Or-
ganizing Committee. URL http://www.aclweb.org/
anthology/C08-1094.

Ross, Stephane and Bagnell, J. Andrew. Efficient reductions for
imitation learning. In A/-Stats, 2010.

Ross, Stephane, Gordon, Geoff J., and Bagnell, J. Andrew. A
reduction of imitation learning and structured prediction to no-
regret online learning. In Al-Stats, 2011.

Russell, Stuart and Norvig, Peter. Artificial Intelligence: A Mod-
ern Approach. Prentice Hall, New Jersey, 1995.

Shieber, Stuart M., Schabes, Yves, and Pereira, Fernan-
do. Principles and implementation of deductive pars-
ing. Journal of Logic Programming, 24(1-2):3-36, 1995.
URL http://www.eecs.harvard.edu/~shieber/
Biblio/Papers/infer.pdf.

Sikkel, Klaus. Parsing Schemata: A Framework for Specifica-
tion and Analysis of Parsing Algorithms. Texts in Theoretical
Computer Science. Springer-Verlag, 1997.

Sutton, Richard and Barto, Andrew. Reinforcement Learning: An
Introduction. MIT Press, 1998.

Sutton, Richard S., McAllester, David, Singh, Satinder, and Man-
sour, Yishay. Policy gradient methods for reinforcement learn-
ing with function approximation. In NIPS, pp. 1057-1063.
MIT Press, 2000.

Syed, Umar and Schapire, Robert E. A reduction from appren-
ticeship learning to classification. In NIPS, 2011.

Williams, R.J. Simple statistical gradient-following algorithms
for connectionist reinforcement elarning. Machine Learning, 8
(23), 1992.

Xu, Yuehua and Fern, Alan. On learning linear ranking functions
for beam search. In ICML, pp. 1047-1054, 2007.

Xu, Yuehua, Fern, Alan, and Yoon, Sung Wook. Discriminative
learning of beam-search heuristics for planning. In IJCAI, pp.
2041-2046, 2007.

Younger, D. H. Recognition and parsing of context-free languages
in time n®. Information and Control, 10(2):189-208, February
1967.

Ziebart, Brian, Maas, Andrew, Bagnell, J. Andrew, and Dey,
Anind. Maximum entropy inverse reinforcement learning. In
AAAI 2008.

http://www.aclweb.org/anthology/D08-1091
http://www.aclweb.org/anthology/D08-1091
http://www.aclweb.org/anthology/C08-1094
http://www.aclweb.org/anthology/C08-1094
http://www.eecs.harvard.edu/~shieber/Biblio/Papers/infer.pdf
http://www.eecs.harvard.edu/~shieber/Biblio/Papers/infer.pdf

