
• Four Mixed-ILP libraries (# of vars:
300 - 1000; # of constrs: 100 - 500)!

• Solver implemented based on SCIP!
• Speedup with respect to SCIP

Overview Method Experiments

Learning to Search in Branch-and-Bound Algorithms
He He, Hal Daumé III University of Maryland, College Park!
Jason Eisner Johns Hopkins University

Toy example: !
knapsack problem formulated as
integer linear programming (ILP)

What is the best strategy to traverse the
search tree in branch and bound?!

• Best means to find a near-optimal
solution as early as possible !

• Different types of problems require
different search strategies!

• A single strategy usually does not
work well throughout the search tree!

• Our solution: automatically learns
searching strategies that are adapted
to a family of problems and different
solving stages within one problem

4kg!
$3M!

5kg!
$9M!

2kg!
$3M!

5kg!
$5M!

Root LP relaxation: $15M
0.6?

1 $5M is tempting. !
Try to get the
vase first! !

= $14M

0
?LP: $14.25M

$3M/4kg is not
cost-efficient.
Throw it!

0

= $12M

1

Hmm.. Doesn’t
look like I can get
a better deal
here. Let’s go! !

✔

✔

• Smart node selection/pruning
speed up the solving process!

• Good decisions come from
experience — imitation learning

−13/2
+∞

−13/3
+∞

−16/3
+∞

−3
−3

−4
−4

–22/5
+∞

INF INF

−3
−3

x = 5/2!
y = 3/2

x = 5/3!
y = 1

x = 5/3!
y = 2

x = 1!
y = 1

x = 1!
y = 12/5

x = 1!
y = 2

x = 0!
y = 3

y ≤ 1 y ≥ 2

x ≤ 1 x ≤ 1x ≥ 2 x ≥ 2

y ≤ 2 y ≥ 3

ub = +∞!
lb = −16/3

ub = −3!
lb = −22/5

ub = −4!
lb = −4

ub = −3!
lb = −16/3

min −2x − y!
s.t. 3x − 5y ≤ 0!
 3x + 5y ≤ 15!
 x ≥ 0, y ≥ 0!

 x, y ∈ Z

node expansion
order

 global lower and
upper bound
optimal node

fathomed node

Assumptions:!
• A small set of solved problems are given at training time!
• Problems to be solved at test time are of the same type!
• Finding a good feasible solution is enough — no need for proof of optimality

fathom?

rank

No

nodes

pop

root
(problem)

prune?

queue
empty?

Yes

No

Yes

push
children

solution

No

Yes

Node selection policy:!
• A node comparator!
• Node score = weight vector
× feature vector!

• Higher score means the
subtree is more likely to
contain the optimal solution!

• Always pop the node with
the highest score

Node pruning
policy:!
• A node classifier!
• Decide whether

to expand the
node or cut it off

Both policies are learned by imitation learning (Dataset Aggregation)
Oracle:!
• Expand optimal nodes first!
• Prune all non-optimal nodes!
• Provide training labels

optimal nodes contain the
optimal solution (known
during training)!

Training examples:

Policy features (dynamic):!
• Node: lower bound, estimated

objective, depth, is child/sibling!
• Branching: pseudocost,

difference between current LP
solution and root LP solution/
current bound!

• Tree: global bounds, integrality
gap, number of solution found

MIK

Regions

Hybrid

CORLAT

0 1.25 2.5 3.75 5

Prune+Select Prune SCIP

• Optimality gap compared with SCIP
(early stop at the same end time)
and Gurobi (early stop at the same #
of nodes explored)

P+S P SCIP Gurobi
MIK 0.04‰ 0.04‰ 3.02‰ 0.45‰
Regions 7.21‰ 7.68‰ 6.80‰ 21.94‰
Hybrid 0.00‰ 0.00‰ 0.79‰ 3.97‰
CORLAT 8.99% 8.91% fail fail

• Cross generalization — apply
policies learned on one dataset to
another

MIK CORLAT Regions Hybrid

Test Dataset

MIK

CORLAT

Regions

Hybrid

Po
lic

y
D

at
as

et

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1
/(tim

e
+

opt.gap)

≤10kg

0.75
• SCIP and Gurobi in their default

settings work well on some datasets
but not all; while our policy learns to
adapt to specific problems

−13/3
+∞𝜑() −16/3

+∞𝜑()−𝑤select·() = 0

−13/3
+∞𝑤prune·ψ() = 1

