
• Four Mixed-ILP libraries (# of vars: 
300 - 1000; # of constrs: 100 - 500)!

• Solver implemented based on SCIP!
• Speedup with respect to SCIP
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Toy example: !
knapsack problem formulated as 
integer linear programming (ILP)

What is the best strategy to traverse the 
search tree in branch and bound?!

• Best means to find a near-optimal 
solution as early as possible !

• Different types of problems require 
different search strategies!

• A single strategy usually does not 
work well throughout the search tree!

• Our solution: automatically learns 
searching strategies that are adapted 
to a family of problems and different 
solving stages within one problem
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• Smart node selection/pruning 
speed up the solving process!

• Good decisions come from 
experience — imitation learning
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Assumptions:!
• A small set of solved problems are given at training time!
• Problems to be solved at test time are of the same type!
• Finding a good feasible solution is enough — no need for proof of optimality 
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Node selection policy:!
• A node comparator!
• Node score = weight vector 
× feature vector!

• Higher score means the 
subtree is more likely to 
contain the optimal solution!

• Always pop the node with 
the highest score

Node pruning 
policy:!
• A node classifier!
• Decide whether 

to expand the 
node or cut it off

Both policies are learned by imitation learning (Dataset Aggregation)
Oracle:!
• Expand optimal nodes first!
• Prune all non-optimal nodes!
• Provide training labels

optimal nodes contain the 
optimal solution (known 
during training)!

Training examples:

Policy features (dynamic):!
• Node: lower bound, estimated 

objective, depth, is child/sibling!
• Branching: pseudocost, 

difference between current LP 
solution and root LP solution/
current bound!

• Tree: global bounds, integrality 
gap, number of solution found
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• Optimality gap compared with SCIP 
(early stop at the same end time) 
and Gurobi (early stop at the same # 
of nodes explored) 

P+S P SCIP Gurobi
MIK 0.04‰ 0.04‰ 3.02‰ 0.45‰
Regions 7.21‰ 7.68‰ 6.80‰ 21.94‰
Hybrid 0.00‰ 0.00‰ 0.79‰ 3.97‰
CORLAT 8.99% 8.91% fail fail

• Cross generalization — apply 
policies learned on one dataset to 
another 
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• SCIP and Gurobi in their default 

settings work well on some datasets 
but not all; while our policy learns to 
adapt to specific problems
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