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Dynamic Feature Selection

Feature selection in real life is a sequential decision-making process.

Observation cost Decision

coughing free cold flu H1N1

sore throat free cold flu H1N1

headache free cold flu H1N1

temperature (101◦) $1 cold flu H1N1
nasal swab test () $10 cold

viral culture test (pos.) $50 cold H1N1
molecular test (pos.) $100 cold flu H1N1
blood test (pos.) $100 cold flu H1N1
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Cost-sensitive Dynamic Feature Selection

Feature Cost

• Computation time
• Data acquisition expense

Dynamic Selection

• Based on previous selected features and their values
• Compute features on-the-run

Given a pretrained classifier and feature cost,

Goal

• Sequentially select features for each instance at test time
• Achieve a user-specified accuracy-cost trade-off
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Dynamic Feature Selection as an MDP

At time step t, for one example,

State st

Selected features and their values

Action at ∈ At

Acquire some features or stop

Policy π

Map from state to action: π(st) = at

Reward r

r(st , at) = margin(st , at)− λ · cost(st , at)
margin: score of the true class - highest
score of other classes
λ: trade-off parameter
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Imitation Learning

Oracle

• Demonstrate optimal actions π∗(s) = a∗t

Agent

• Learn a policy to mimic the oracle’s behavior
• π(st) = at

Imitation via Supervised Classification

• Training examples {(φ(sπ∗), π
∗(s))}

• Feature:φ(s) label:π∗(s) classifier: π̂
• Minimize a surrogate loss `(s, π) w.r.t. to π∗, e.g. hinge loss in

SVM.

He He, Hal Daumé III and Jason Eisner Cost-sensitive Dynamic Feature Selection June 30, 2012 5 / 14



Forward Selection Oracle

• Select the feature that yields the maximum immediate reward

• Stop in the global maximum-reward state
free → nasal swab test → temperature → viral culture test → stop

• Have access to the ground truth, only available during training

r(st , at) = margin(st , at)− cost(st , at)
λ = 1, cost scaled to [0, 1], H1N1=positive

order feat. marg. cost reward

1 coughing, sore throat, headache -0.20 0.00 -0.10

3

temperature

(101◦)

2

nasal swab test

(pos.)

4

viral culture test

(pos.)

6

molecular test

(pos.)

5

blood test

(pos.)
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Forward Selection Oracle
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He He, Hal Daumé III and Jason Eisner Cost-sensitive Dynamic Feature Selection June 30, 2012 6 / 14



Forward Selection Oracle

• Select the feature that yields the maximum immediate reward

• Stop in the global maximum-reward state
free → nasal swab test → temperature → viral culture test → stop

• Have access to the ground truth, only available during training

r(st , at) = margin(st , at)− cost(st , at)
λ = 1, cost scaled to [0, 1], H1N1=positive

order feat. marg. cost reward

1 coughing, sore throat, headache -0.20 0.00 -0.10

3 temperature (101◦) 0.55 0.05 0.50

2 nasal swab test (pos.) 0.50 0.04 0.46

4 viral culture test (pos.) 0.80 0.24 0.56

6

molecular test

(pos.)

5 blood test (pos.) 0.90 0.62 0.28
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He He, Hal Daumé III and Jason Eisner Cost-sensitive Dynamic Feature Selection June 30, 2012 6 / 14



Policy Features

• selected features
e.g. free = coughing, sore

throat, headache;
nasal swab test = pos.

• confidence score and its change
e.g. 0.04, 0.23, 0.73;
−0.16,−0.27, 0.43

• Does the guess change?
e.g. Yes

• cost and its change
e.g. 0.04; 0.04

• cost divided by confidence score
e.g. 1.00, 5.75, 18.25

• current guess
e.g. H1N1

At step 2, compute φ(s2)

feat. cold flu H1N1 cost

free 0.20 0.50 0.30 0.00

swab 0.04 0.23 0.73 0.04
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He He, Hal Daumé III and Jason Eisner Cost-sensitive Dynamic Feature Selection June 30, 2012 7 / 14



Policy Features

• selected features
e.g. free = coughing, sore

throat, headache;
nasal swab test = pos.

• confidence score and its change
e.g. 0.04, 0.23, 0.73;
−0.16,−0.27, 0.43

• Does the guess change?
e.g. Yes

• cost and its change
e.g. 0.04; 0.04

• cost divided by confidence score
e.g. 1.00, 5.75, 18.25

• current guess
e.g. H1N1

At step 2, compute φ(s2)

feat. cold flu H1N1 cost

free 0.20 0.50 0.30 0.00

swab 0.04 0.23 0.73 0.04
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Imitation Learning via Classification

sπ: states visited by π T : task horizon
J(π): task loss (negative reward) of π

Theorem

Ross & Bagnell (2010) Let Esπ∗ [`(s, π)] = ε, then J(π) ≤ J(π∗) + T 2ε.

Why do we have quadratically increasing loss?

/

• Trains only under states the oracle visited
• Ignores the difference between the oracle’s and the agent’s state

distribution
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Dataset Aggregation (DAgger) (Ross et al. (2011))

Let π1 = π∗. In iteration i ,
execute policy πi and collect dataset Di = {(φ(sπi ), π

∗(s))};
learn πi+1 from the aggregated dataset D1

⋃
D2

⋃
· · ·

⋃
Di .

Return the best policy evaluated on validation set.

Qπ′
t (s, π): t-step cost of executing π initially then running π′

εN = minπ∈Π
1
N

∑N
i=1 Esπi

[`(s, π)]

Theorem

Ross et al. (2011) For DAgger, if Qπ∗
T−t+1(s, π)− Qπ∗

T−t+1(s, π∗) ≤ u and

N is Õ(uT ), there is a policy π ∈ π1:N s.t. J(π) ≤ J(π∗) + uT εN + O(1).
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Coaching

The oracle’s policy can be too good to learn!

• Far from the agent’s learning space

use kernels Overhead!

• Policy features are insufficient

more descriptive features

“Hope” action (McAllester et al. (2010); Chiang et al. (2009))

Combines the current policy’s preference and the reward:

ã∗t = arg max
a∈At

η · scoreπi (a) + r(st , a)

instead of a∗t = arg max
a∈At

r(st , a)
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Experimental Results

Baselines (|w |/cost, Forward): add feature statically from a ranked list
Trade-off: λ = (0, 0.1, 0.25, 0.5, 1, 1.5, 2)
Coaching: initialize η to 1 and decrease by e−1 in each iteration
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Figure: Radar (binary).
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Figure: Digit (10 classes).
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Figure: Segmentation (7 classes).
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Conclusion and Future Work

Conclusion

• Feature selection as an MDP

• Imitation learning techniques

• Iterative policy training

• Coaching as a ”local update”
method

Future Work

• Include feature dependency using
feature templates

• Learn feature weights jointly with
the policy

• Apply to ensemble learning (select
model dynamically)

• Structured prediction problem
where

− policy features might require
inference under features selected
so far

− feature cost may need to be
inferred at runtime
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