Dynamic Feature Selection for Dependency Parsing

He He, Hal Daumé III and Jason Eisner
EMNLP 2013, Seattle

Structured Prediction in NLP

Machine Translation
Fruit flies like a banana ．

果 蝇 喜欢 香蕉 。
summarization，name entity resolution and many more ．．．

\＄Fruit flies like a banana

Structured Prediction in NLP

\$ Fruit flies like a banana

Exponentially increasing search space Millions of features for scoring

Structured Prediction in NLP

Fruit flies like a banana

Structured Prediction in NLP

Fruit flies like a banana

Feature templates per edge

Structured Prediction in NLP

Fruit flies like a banana

Feature templates per edge

(head_tag +mod_tag)

Structured Prediction in NLP

Fruit flies like a banana

Feature templates per edge

(head_token + mod_token)
(head_tag +mod_tag)

Structured Prediction in NLP

Fruit flies like a banana
Feature templates per edge

Do you need all features everywhere ?

Structured Prediction in NLP

Fruit flies like a banana
Feature templates per edge

Do you need all features everywhere?

Structured Prediction in NLP

Fruit flies like a banana
Feature templates per edge

Do you need all features everywhere?

Structured Prediction in NLP

Fruit flies like a banana

Feature templates per edge

Case Study: Dependency Parsing

$2 x$ to $6 x$ speedup with little loss in accuracy

Graph-based Dependency Parsing

Scoring: $\phi(E) \cdot w$

Graph-based Dependency Parsing

And hundreds more!
Scoring: $\phi(E) \cdot w$

Graph-based Dependency Parsing

Decoding: find the highest-scoring tree

MST Dependency Parsing (1st-order projective)

MST Dependency Parsing (1st-order projective)

Find highest-scoring tree $\mathbf{O}\left(\mathrm{n}^{3}\right)$

MST Dependency Parsing (1st-order projective)

~268 feature templates
~76M features

Find highest-scoring tree $O\left(n^{3}\right)$

Add features only when necessary!

score $($ This \rightarrow ready $)=$
score(the \rightarrow firms) $=$

Add features only when necessary!

score $($ This \rightarrow ready $)=-0.23$
score(the \rightarrow firms) $=0.63$

Add features only when necessary!

score $($ This \rightarrow ready $)=-0.13$
score(the \rightarrow firms) $=1.33$

Add features only when necessary!

score $($ This \rightarrow ready $)=-0.13$
score(the \rightarrow firms) $=1.33$

Add features only when necessary!

score $($ This \rightarrow ready $)=-1.33$
score(the \rightarrow firms) $=1.33$

Add features only when necessary!

score(This \rightarrow ready $=-1.88$
score(the \rightarrow firms) $=1.33$

Add features only when necessary!

score(This \rightarrow ready $=-1.88$
score(the \rightarrow firms) $=1.33$

This is a structured problem!
Should not look at scores independently.

Dynamic Dependency Parsing

1.Find the highest-scoring tree after adding some features fast non-projective decoding

Dynamic Dependency Parsing

1.Find the highest-scoring tree after adding some features fast non-projective decoding
2.Only edges in the current best tree can win

Dynamic Dependency Parsing

1.Find the highest-scoring tree after adding some features fast non-projective decoding
2.Only edges in the current best tree can win
-) are chosen by a classifier $\leq \mathrm{n}$ decisions
(-) are killed because they fight with the winners

Dynamic Dependency Parsing

1.Find the highest-scoring tree after adding some features fast non-projective decoding
2.Only edges in the current best tree can win
© are chosen by a classifier $\leq \mathrm{n}$ decisions (-) are killed because they fight with the winners
3. Add features to undetermined edges by group

Dynamic Dependency Parsing

1.Find the highest-scoring tree after adding some features fast non-projective decoding
2.Only edges in the current best tree can win (-) are chosen by a classifier $\leq \mathrm{n}$ decisions (-) are killed because they fight with the winners
3. Add features to undetermined edges by group

Max \# of iterations = \# of feature groups

+ first feature group 51 gray edges with unknown fate...
 5 features per gray edge

- Undetermined edge
- Current 1-best tree

51 gray edges with unknown fate... 5 features per gray edge

- Undetermined edge

Non-projective decoding to find new 1-best tree

50 gray edges with unknown fate... 5 features per gray edge

- Undetermined edge
- Current 1-best tree

Classifier picks winners among the blue edges

44 gray edges with unknown fate... 5 features per gray edge

- Undetermined edge

Remove losers in conflict with the winners

- Undetermined edge
- Current 1-best tree

Remove losers in conflict with the winners

+ next feature group 44 gray edges with unknown fate... 27 features per gray edge

- Undetermined edge
- Current 1-best tree

+ next feature group 44 gray edges with unknown fate... 27 features per gray edge

- Undetermined edge

Non-projective decoding to find new 1-best tree

42 gray edges with unknown fate... 27 features per gray edge

- Undetermined edge
- Current 1-best tree

Classifier picks winners among the blue edges

31 gray edges with unknown fate... 27 features per gray edge

- Undetermined edge
- Current 1-best tree

Remove losers in conflict with the winners

31 gray edges with unknown fate... 27 features per gray edge

- Undetermined edge
- Current 1-best tree
(- - Winner edge
(permanently in 1-best tree)
Remove losers in conflict with the winners
+ next feature group 31 gray edges with unknown fate... 74 features per gray edge

- Undetermined edge
- Current 1-best tree

31 gray edges with unknown fate... 74 features per gray edge

- Undetermined edge
- Current 1-best tree

(-) - Winner edge

(permanently in 1-best tree)
Non-projective decoding to find new 1-best tree

28 gray edges with unknown fate... 74 features per gray edge

- Undetermined edge
- Current 1-best tree
- Winner edge \quad (permanently in 1-best tree)

Classifier picks winners among the blue edges

8 gray edges with unknown fate... 74 features per gray edge

- Undetermined edge
- Current 1-best tree
(- Winner edge (permanently in 1-best tree)

Remove losers in conflict with the winners

8 gray edges with unknown fate...

 74 features per gray edge

- Undetermined edge
- Current 1-best tree
- - Winner edge
(permanently in 1-best tree)
Remove losers in conflict with the winners

+ next feature group 8 gray edges with unknown fate...

 107 features per gray edge

- Undetermined edge
- Current 1-best tree
- Winner edge \quad (permanently in 1-best tree)
(\because) - - Loser edge

8 gray edges with unknown fate... 107 features per gray edge

- Undetermined edge
- Current 1-best tree
- - Winner edge
(permanently in 1-best tree)
Non-projective decoding to find new 1-best tree

7 gray edges with unknown fate...

 107 features per gray edge

- Undetermined edge
- Current 1-best tree
- - Winner edge (permanently in 1-best tree)

Classifier picks winners among the blue edges

3 gray edges with unknown fate... 107 features per gray edge

- Undetermined edge
- Current 1-best tree
(•) - Winner edge (permanently in 1-best tree)

Remove losers in conflict with the winners

- Undetermined edge
- Current 1-best tree
(- - Winner edge
(permanently in 1-best tree)
Remove losers in conflict with the winners

+ last feature group 3 gray edges with unknown fate...

 268 features per gray edge

- Undetermined edge
- Current 1-best tree
(- - Winner edge
(permanently in 1-best tree)

0 gray edge with unknown fate... 268 features per gray edge

- Undetermined edge
- Current 1-best tree
(- - Winner edge
(permanently in 1-best tree)
Projective decoding to find final 1-best tree

What Happens During the Average Parse?

What Happens During the Average Parse?

What Happens During the Average Parse?

Feature selection stage Some edges win late

What Happens During the Average Parse?

Feature selection stage Some edges win late

What Happens During the Average Parse?

Feature selection stage Some edges win late

Summary: How Early Decisions Are Made

- Winners (-)
- Will definitely appear in the 1-best tree
- Losers
- Have the same child as a winning edge
- Form cycle with winning edges
- Cross a winning edge (optional)
- Share root (\$) with a winning edge (optional)
- Undetermined
- Add the next feature group to the remaining gray edges

Feature Template Ranking

- Forward selection

Feature Template Ranking

- Forward selection

A 0.60
B 0.49
C 0.55

Feature Template Ranking

- Forward selection
$\begin{array}{ll}\mathrm{A} & 0.60 \\ \mathrm{~B} & 0.49 \\ \mathrm{C} & 0.55\end{array}$

1	A

Feature Template Ranking

- Forward selection
$\begin{array}{llll}\mathrm{A} & 0.60 \\ \mathrm{~B} & 0.49 \\ \mathrm{C} & 0.55\end{array} \longrightarrow \begin{array}{ll}\mathrm{A} \\ \text { A\&B } & 0.80 \\ \text { A\&C } & 0.85\end{array}$

Feature Template Ranking

- Forward selection
$\begin{array}{llll}\mathrm{A} & 0.60 \\ \mathrm{~B} & 0.49 \\ \mathrm{C} & 0.55\end{array} \xrightarrow{\mathrm{~A}} \begin{aligned} & \text { A\&B } \\ & \text { A\&C }\end{aligned} 0.80 \mathrm{O.85} \xrightarrow{\mathrm{C}}$

Feature Template Ranking

- Forward selection
$\begin{array}{llll}\mathrm{A} & 0.60 \\ \mathrm{~B} & 0.49 \\ \mathrm{C} & 0.55\end{array} \longrightarrow \begin{array}{ll}\mathrm{A} \\ \mathrm{A} \& \mathrm{~B} & 0.80 \\ \text { A\&C } & 0.85\end{array} \xrightarrow{\mathrm{C}}$ A\&C\&B 0.9

$$
\begin{array}{ll}
1 & A \\
2 & C \\
3 & B
\end{array}
$$

Feature Template Ranking

- Forward selection
$\begin{array}{llll}\mathrm{A} & 0.60 \\ \mathrm{~B} & 0.49 \\ \mathrm{C} & 0.55\end{array} \longrightarrow \begin{array}{lll}\mathrm{A} \\ \text { A\&B } & 0.80 \\ \text { A\&C } & 0.85\end{array} \xrightarrow{C}$ A\&C\&B 0.9
C 0.55
- Grouping

$$
\text { head cPOS+ mod cPOS + in-between punct \# } 0.49
$$

$$
\text { in-between cPOS } 0.59
$$

$$
\text { head POS + mod POS + in-between conj \# } 0.71
$$

$$
\text { head POS + mod POS + in-between POS + dist } 0.72
$$

$$
\text { head token }+\bmod c P O S+\text { dist }
$$

$$
0.80
$$

Feature Template Ranking

- Forward selection

$$
\begin{array}{llll}
\mathrm{A} & 0.60 \\
\mathrm{~B} & 0.49 \\
\mathrm{C} & 0.55
\end{array} \longrightarrow \begin{array}{ll}
\mathrm{A} & \mathrm{~A} B \\
\mathrm{~A} \& \mathrm{C} & 0.80 \\
0.85
\end{array} \xrightarrow{\mathrm{C}} \mathrm{~A} \mathrm{\& C} \mathrm{\& B} 0.9
$$

- Grouping

Partition Feature List Into Groups

How to pick the winners?

How to pick the winners?

- Learn a classifier

How to pick the winners?

- Learn a classifier
- Features
- Currently added parsing features
- Meta-features -- confidence of a prediction

How to pick the winners?

- Learn a classifier
- Features
- Currently added parsing features
- Meta-features -- confidence of a prediction
- Training examples
- Input: each blue edge in current 1-best tree
- Output: is the edge in the gold tree? If so, we want it to win!

Classifier Features

- Currently added parsing features
- Meta-features
- the firms : ..., 0.5, 0.8, 0.85 (scores are normalized by the sigmoid function)
- Margins to the highest-scoring competing edge

- Index of the next feature group

Classifier Features

- Currently added parsing features
- Meta-features
- the firms : ..., 0.5, 0.8, 0.85 (scores are normalized by the sigmoid function)
- Margins to the highest-scoring competing edge

- Index of the next feature group

Classifier Features

- Currently added parsing features
- Meta-features

Dynamic Features

- the firms : ..., 0.5, 0.8, 0.85 (scores are normalized by the sigmoid function)
- Margins to the highest-scoring competing edge

- Index of the next feature group

How To Train With Dynamic Features

- Training examples are not fixed in advance!
- Winners/losers from stages < k affect:
- Set of edges to classify at stage k
- The dynamic features of those edges at stage k
- Bad decisions can cause future errors

How To Train With Dynamic Features

- Training examples are not fixed in advance!!
- Winners/losers from stages < k affect:
- Set of edges to classify at stage k
- The dynamic features of those edges at stage k
- Bad decisions can cause future errors

Reinforcement / Imitation Learning

- Dataset Aggregation (DAgger) (Ross et al., 2011)
- Iterates between training and running a model
- Learns to recover from past mistakes

Upper Bound of Our Performance

- "Labels"
- Gold edges always win
- 96.47\% UAS with 2.9\% first-order features

How To Train Our Parser

1.Train parsers (non-projective, projective) using all features
2.Rank and group feature templates
3. Iteratively train a classifier to decide winners/losers

Experiment

- Data
- Penn Treebank: English
- CoNLL-X: Bulgarian, Chinese, German, Japanese, Portuguese, Swedish
- Parser
- MSTParser (McDonald et al., 2006)
- Dynamically-trained Classifier
- LibLinear (Fan et al., 2008)

Dynamic Feature Selection Beats Static Forward Selection

Dynamic Feature Selection Beats Static Forward Selection

Experiment: 1st-order $2 x$ to $6 x$ speedup

Experiment: 1st-order $\sim 0.2 \%$ loss in accuracy

relative accuracy $=\frac{\text { accuracy of the pruning parser }}{\text { accuracy of the full parser }}$

Second-order Dependency Parsing

- Features depend on the siblings as well
- First-order:
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ substructure to score
- Second-order:
- $\mathrm{O}\left(\mathrm{n}^{3}\right)$ substructure to score
~380 feature templates
~96M features
- Decoding: still $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Experiment: 2nd-order $2 x$ to $8 x$ speedup

Experiment: 2nd-order $\sim 0.3 \%$ loss in accuracy

Ours vs Vine Pruning (Rush and Petrov, 2012)

- Vine pruning: a very fast parser that speeds up using orthogonal techniques
- Start with short edges (fully scored)
- Add long edges in if needed
- Ours
- Start with all edges (partially scored)
- Quickly remove unneeded edges
- Could be combined for further speedup!

VS Vine Pruning: 1st-order comparable performance

■ DynFS
■ VineP

- Baseline

VS Vine Pruning: 1st-order

■ DynFS

- VineP

Baseline

VS Vine Pruning: 2nd-order

VS Vine Pruning: 2nd-order

Conclusion

- Feature computation is expensive in structured prediction
- Commitment should be made dynamically
- Early commitment to edges reduce both searching and scoring time
- Can be used in other feature-rich models for structured prediction

Backup Slides

Static dictionary pruning (Rush and Petrov, 2012)

Reinforcement Learning 101

- Markov Decision Process (MDP)
- State: all the information helping us to make decisions
- Action: things we choose to do
- Reward: criteria for evaluating actions
- Policy: the "brain" that makes the decision
- Goal
- Maximize the expected future reward

Policy Learning

- Markov Decision Process (MDP)
π (the firms + context $)=$ add $/$ lock
- Reinforcement learning
- Delayed reward
- Long time to converge
- Imitation learning
- Mimic the oracle
- Reduced to supervised classification problem

Imitation Learning

- Oracle
- (near) optimal performance
- generate target action in any given state $\pi($ the firms + context $)=$ lock π (time, the + context $)=$ add $\left\{\psi(s), \pi^{*}(s)\right\}$

Binary classifier

Dataset Aggregation (DAgger)

- Collect data from the oracle only
- Different distribution at training and test time
- Iterative policy training

- Correct the learner's mistake
- Obtain a policy performs well under its own policy distribution

Experiment (1st-order)

■ DynFS
\# feature templates used
$\operatorname{cost}=\overline{\text { total \# feature templates on the statically pruned graph }}$

Experiment (2nd-order)

Second-order Parsing

Second-order Parsing

