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summarization, name entity resolution 
and many more ...

Machine Translation

ParsingPart-of-Speech Tagging

$  Fruit  flies  like  a  banana

Exponentially increasing search space

Millions of features for scoring
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Case Study: Dependency Parsing
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Graph-based Dependency Parsing

.This time , the firms were ready$

Scoring: 
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Graph-based Dependency Parsing

.This time , the firms were ready$

Scoring: 

firms were

⋮

length: 1
direction: right

modifier_token: were
head_token: firms

head_tag: noun

And hundreds more!
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Graph-based Dependency Parsing

.This time , the firms were ready$

Decoding: find the highest-scoring tree 

the

$

This

time , firms

were

ready .
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total
time

MST Dependency Parsing 
(1st-order projective) 
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? ? ? ?

Find highest-scoring tree O(n3)

MST Dependency Parsing 
(1st-order projective) 
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Average Sentence
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find edge scores 

Find highest-scoring tree O(n3)

Find edge scores 

~268 feature templates
~76M features

MST Dependency Parsing 
(1st-order projective) 
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Add features only when necessary!
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Add features only when necessary!

This the firms ready

score(This → ready) = -1.88 

score(the → firms) = 1.33 

-0.23

+0.1

-1.2

- 0.55

+0.63 +0.7

This is a structured problem! 
Should not look at scores independently.

WINNER

LOSER
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Dynamic Dependency Parsing

1.Find the highest-scoring tree after adding some 
features   fast non-projective decoding

2.Only edges in the current best tree can win 

       are chosen by a classifier   ≤ n decisions

       are killed because they fight with the 
winners

3. Add features to undetermined edges  by group

Max # of iterations = # of feature groups
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.This time , the firms were ready$

+ first feature group 51 gray edges with unknown fate...
5 features per gray edge

Current 1-best tree
Winner edge

Loser edge

Undetermined edge

(permanently in 1-best tree)
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(permanently in 1-best tree)
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(permanently in 1-best tree)
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.This time , the firms were ready$

28 gray edges with unknown fate...
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Current 1-best tree
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(permanently in 1-best tree)

Classifier picks winners 
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.This time , the firms were ready$

8 gray edges with unknown fate...
74 features per gray edge

Current 1-best tree
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(permanently in 1-best tree)

Remove losers in conflict 
with the winners
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.This time , the firms were ready$

8 gray edges with unknown fate...
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Remove losers in conflict 
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.This time , the firms were ready$

8 gray edges with unknown fate...
107 features per gray edge

Current 1-best tree
Winner edge

Loser edge

Undetermined edge

(permanently in 1-best tree)

Non-projective decoding to 
find new 1-best tree
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.This time , the firms were ready$
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Classifier picks winners 
among the blue edges



49

.This time , the firms were ready$
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.This time , the firms were ready$

3 gray edges with unknown fate...
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Current 1-best tree
Winner edge
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(permanently in 1-best tree)

Remove losers in conflict 
with the winners
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.This time , the firms were ready$

+ last feature group 3 gray edges with unknown fate...
268 features per gray edge

Current 1-best tree
Winner edge

Loser edge

Undetermined edge

(permanently in 1-best tree)
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.This time , the firms were ready$

0 gray edge with unknown fate...
268 features per gray edge

Current 1-best tree
Winner edge

Loser edge

Undetermined edge

(permanently in 1-best tree)

Projective decoding to find 
final 1-best tree
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What Happens During the Average Parse?
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or lose early
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Some edges win late

Linear increase in runtime

Most edges win
or lose early

Later features are helpful

What Happens During the Average Parse?
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Summary: How Early Decisions Are Made

● Winners
– Will definitely appear in the 1-best tree

● Losers 
– Have the same child as a winning edge
– Form cycle with winning edges
– Cross a winning edge (optional)
– Share root ($) with a winning edge (optional)

● Undetermined
– Add the next feature group to the remaining 

gray edges
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Feature Template Ranking

● Forward selection
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Feature Template Ranking

● Forward selection

A&B   0.80
A&C   0.85

A C
A&C&B   0.9

1 A

3 B
2 C

A 0.60
B 0.49
C 0.55

● Grouping
head cPOS+ mod cPOS + in-between punct #      0.49

in-between cPOS                       0.59

head POS + mod POS + in-between conj #    0.71

head POS + mod POS + in-between POS + dist   0.72

head token + mod cPOS + dist         0.80

⋮

⋮

⋮

+ ~0.1

+ ~0.1
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Partition Feature List Into Groups
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How to pick the winners?
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● Learn a classifier
● Features

– Currently added parsing features 
– Meta-features -- confidence of a prediction
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How to pick the winners?

● Learn a classifier
● Features

– Currently added parsing features 
– Meta-features -- confidence of a prediction

● Training examples
– Input: each blue edge in current 1-best tree
– Output: is the edge in the gold tree? If so, 

we want it to win!
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Classifier Features

● Currently added parsing features 
● Meta-features

–                   : …, 0.5, 0.8, 0.85    

(scores are normalized by the sigmoid function)

– Margins to the highest-scoring competing edge

– Index of the next feature group

the firms

.This time the firms were$

0.72
0.65 0.30

0.23

0.12



73

Classifier Features

● Currently added parsing features 
● Meta-features

–                   : …, 0.5, 0.8, 0.85    

(scores are normalized by the sigmoid function)

– Margins to the highest-scoring competing edge

– Index of the next feature group

the firms

.This time the firms were$

0.72
0.65 0.30

0.23

0.12



74

Classifier Features

● Currently added parsing features 
● Meta-features

–                   : …, 0.5, 0.8, 0.85    

(scores are normalized by the sigmoid function)

– Margins to the highest-scoring competing edge

– Index of the next feature group

the firms

.This time the firms were$

0.72
0.65 0.30

0.23

0.12

Dynamic Features
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How To Train With Dynamic Features

● Training examples are not fixed in advance!
● Winners/losers from stages < k affect:

– Set of edges to classify at stage k

– The dynamic features of those edges at stage k

● Bad decisions can cause future errors
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How To Train With Dynamic Features

● Training examples are not fixed in advance!!
● Winners/losers from stages < k affect:

– Set of edges to classify at stage k

– The dynamic features of those edges at stage k

● Bad decisions can cause future errors 

Reinforcement / Imitation Learning

● Dataset Aggregation (DAgger) (Ross et al., 2011)

– Iterates between training and running a model

– Learns to recover from past mistakes 
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Upper Bound of Our Performance 

● “Labels”
– Gold edges always win

– 96.47% UAS with 2.9% first-order features

.This time , the firms were ready$ .This time , the firms were ready$
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How To Train Our Parser

1.Train parsers (non-projective, projective) 
using all features

2.Rank and group feature templates

3.Iteratively train a classifier to decide 
winners/losers
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Experiment

● Data
– Penn Treebank: English

– CoNLL-X: Bulgarian, Chinese, German, Japanese, 
Portuguese, Swedish 

● Parser
– MSTParser (McDonald et al., 2006)

● Dynamically-trained Classifier
– LibLinear (Fan et al., 2008)
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Dynamic Feature Selection Beats 
Static Forward Selection
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Dynamic Feature Selection Beats 
Static Forward Selection

Add features 
as needed

Always add the next feature 
group to all edges



82

Experiment: 1st-order
2x to 6x speedup
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Experiment: 1st-order
~0.2% loss in accuracy
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100.2%
100.3%

DynFS
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relative accuracy=
accuracy of the pruning parser
    accuracy of the full parser
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Second-order Dependency Parsing

were ready .

● Features depend on the 
siblings as well

● First-order: 
● O(n2) substructure to score

● Second-order: 
● O(n3) substructure to score

   ~380 feature templates
   ~96M features

● Decoding: still O(n3)  

the

$

This

time , firms

were

ready .
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Experiment: 2nd-order
2x to 8x speedup
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Experiment: 2nd-order
~0.3% loss in accuracy
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Ours vs Vine Pruning (Rush and Petrov, 2012) 

● Vine pruning: a very fast parser that speeds 
up using orthogonal techniques
– Start with short edges (fully scored)

– Add long edges in if needed

● Ours
– Start with all edges (partially scored)

– Quickly remove unneeded edges

● Could be combined for further speedup!
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VS Vine Pruning: 1st-order
comparable performance
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VS Vine Pruning: 2nd-order
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VS Vine Pruning: 2nd-order
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Conclusion

● Feature computation is expensive in 
structured prediction

● Commitment should be made dynamically

● Early commitment to edges reduce both 
searching and scoring time 

● Can be used in other feature-rich models for 
structured prediction 
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Backup Slides
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Static dictionary pruning (Rush and Petrov, 2012)

VB  CD:→ 18
VB  CD:← 3
NN  VBG:→ 22
NN  VBG:← 11
...

.This time , the firms were ready$
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Reinforcement Learning 101

● Markov Decision Process (MDP)
– State: all the information helping us to make 

decisions

– Action: things we choose to do 

– Reward: criteria for evaluating actions

– Policy: the “brain” that makes the decision

● Goal
– Maximize the expected future reward 
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Policy Learning

π (               + context) = add / lock

● Markov Decision Process (MDP)

– reward = accuracy + λ∙speed

● Reinforcement learning
– Delayed reward

– Long time to converge

● Imitation learning
– Mimic the oracle

– Reduced to supervised classification problem

the firms



97

Imitation Learning

● Oracle
– (near) optimal performance

– generate target action in any given state

π (               + context) = lockthe firms

time , theπ (                      + context) = add

...

Binary classifier
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Dataset Aggregation (DAgger)

● Collect data from the oracle only
– Different distribution at training and test time

● Iterative policy training

● Correct the learner's mistake
● Obtain a policy performs well under its own policy 

distribution
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Experiment (1st-order)

Bulgarian
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cost=
                   # feature templates used
total # feature templates on the statically pruned graph
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Experiment (2nd-order)

Bulgarian
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Second-order Parsing

.
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Second-order Parsing

.
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