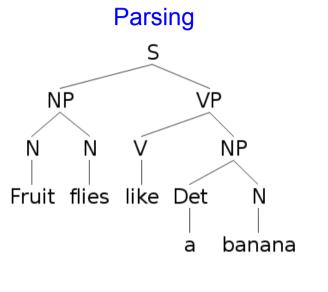
Dynamic Feature Selection for Dependency Parsing

He He, Hal Daumé III and Jason Eisner

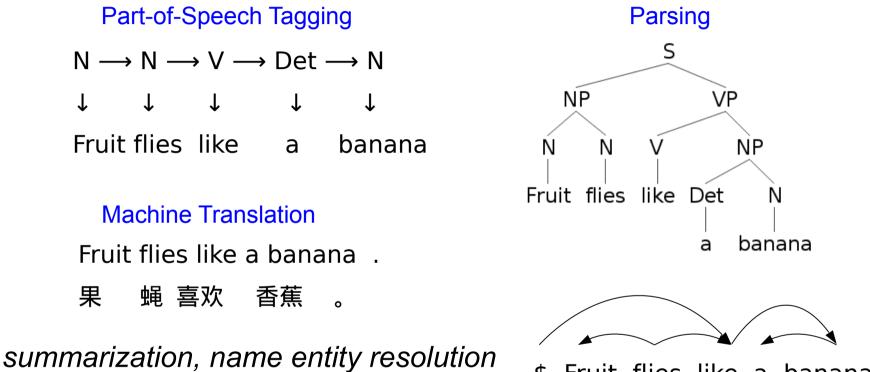
EMNLP 2013, Seattle

Part-of-Speech Tagging $N \rightarrow N \rightarrow V \rightarrow Det \rightarrow N$ \downarrow \downarrow </t

summarization, name entity resolution and many more ...



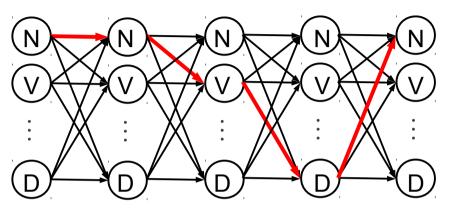
\$ Fruit flies like a banana



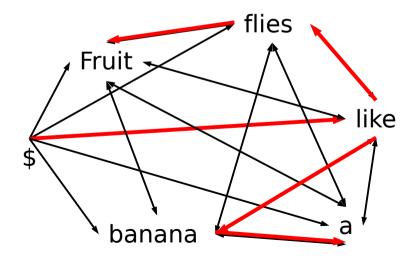
\$ Fruit flies like a banana

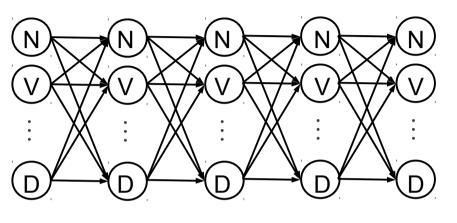
Exponentially increasing search space Millions of features for scoring

and many more ...

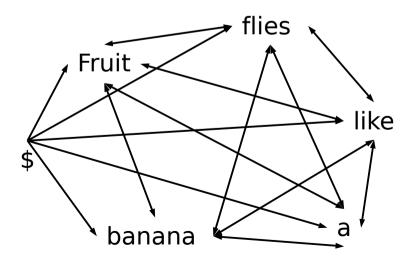


Fruit flies like a banana

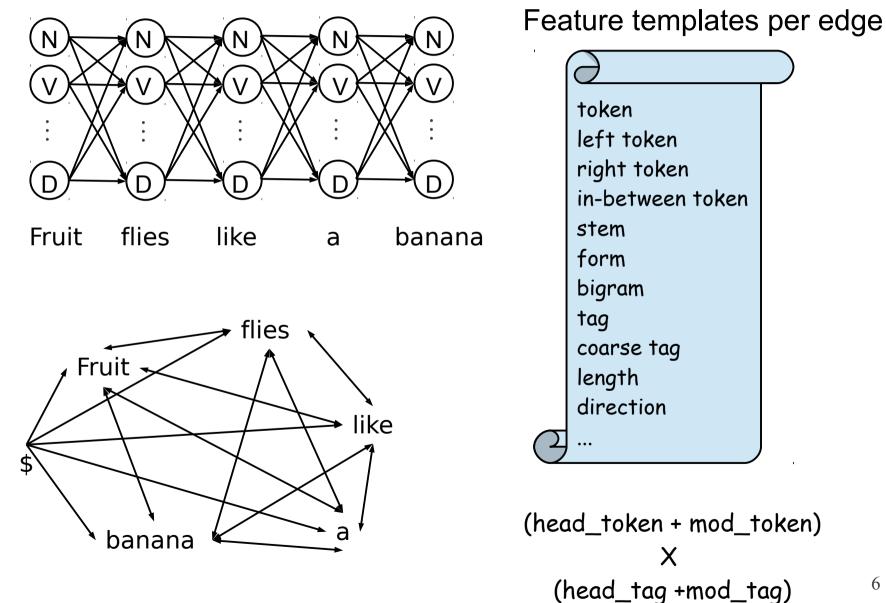


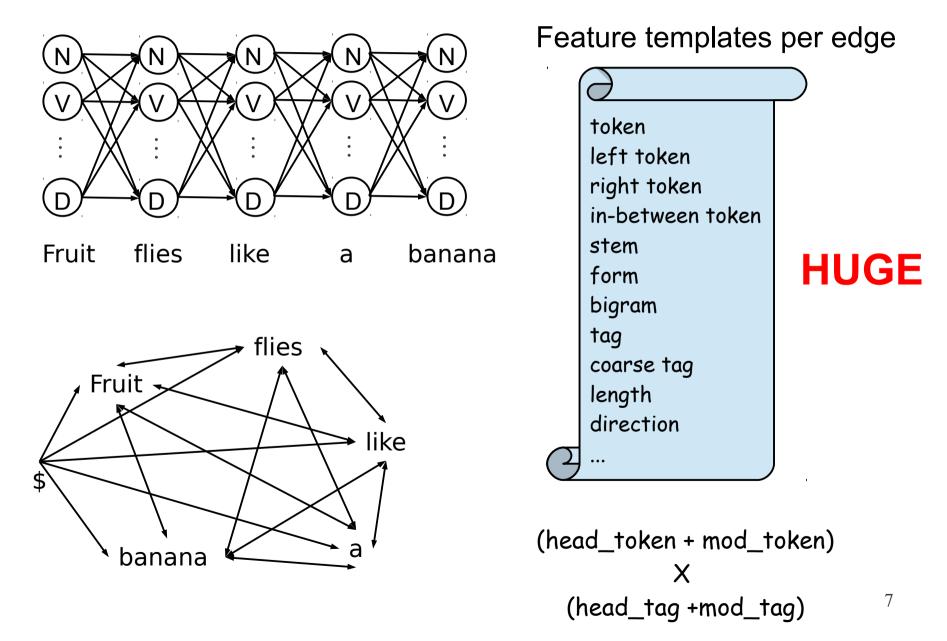


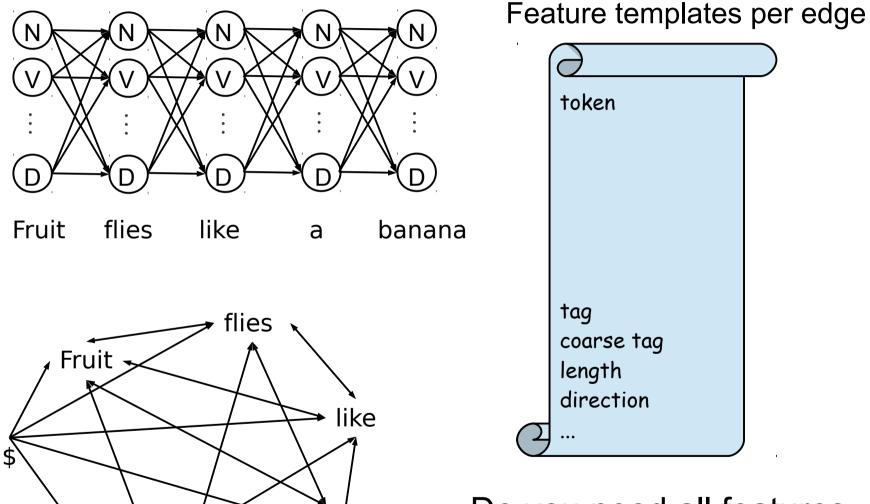
Fruit flies like a banana



Feature templates per edge



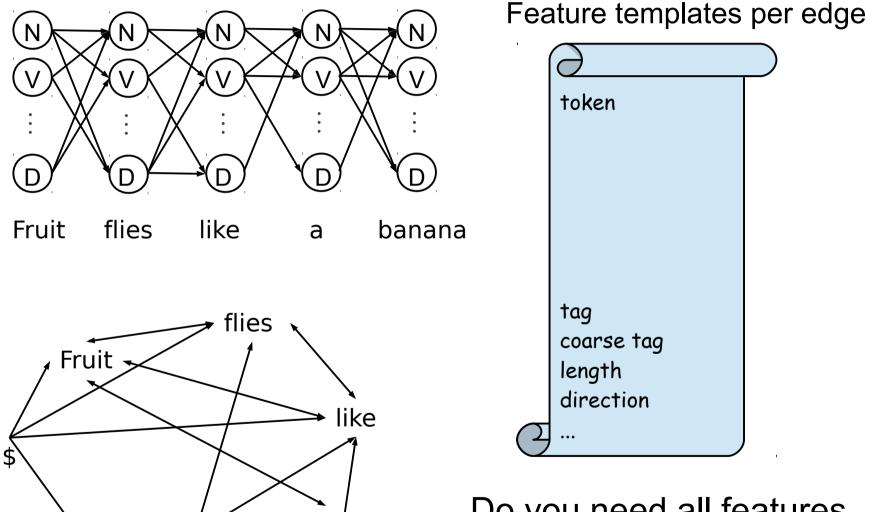




a

banana

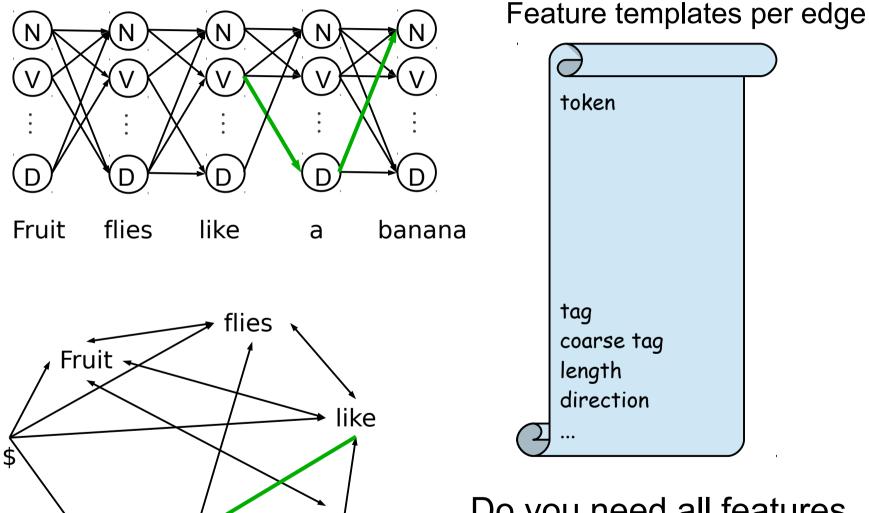
Do you need all features everywhere ?



а

banana

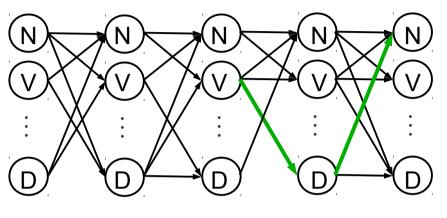
Do you need all features everywhere ?



а

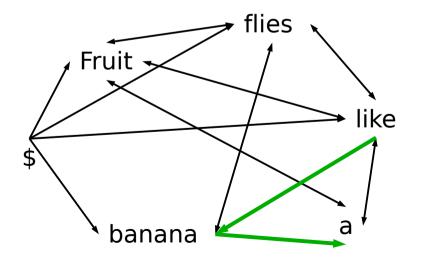
banana

Do you need all features everywhere ?

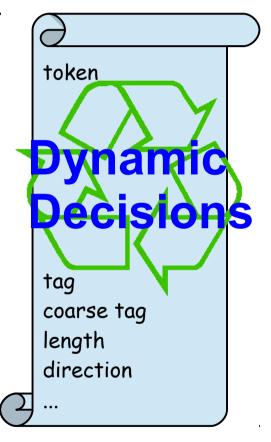


Fruit flies like a

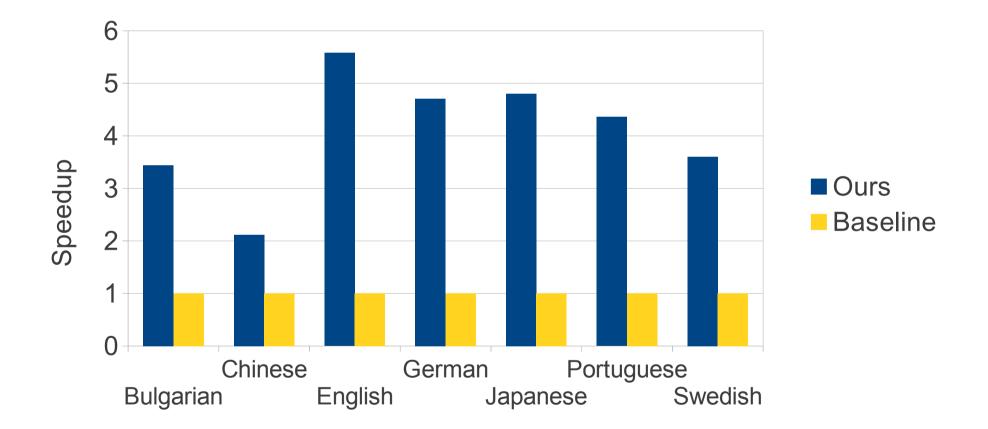
banana



Feature templates per edge

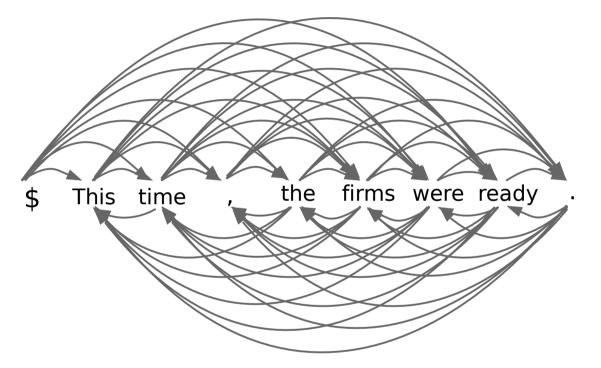


Case Study: Dependency Parsing



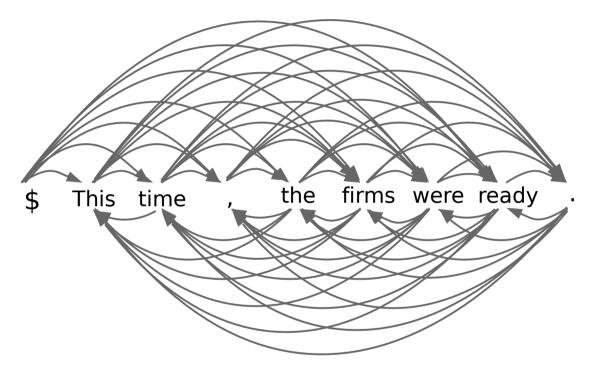
2x to 6x speedup with little loss in accuracy

Graph-based Dependency Parsing



Scoring: $\phi(E) \cdot w$

Graph-based Dependency Parsing



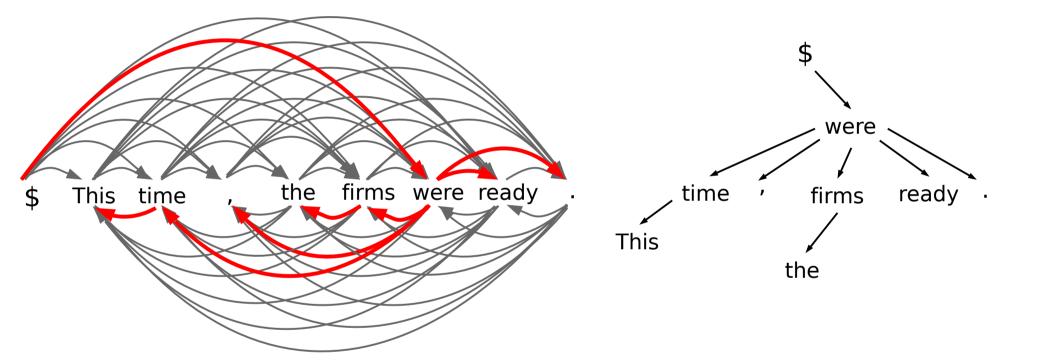
firms w	vere	
length:		1
direction:		right
modifier_tol	ken:	were
head_token:		firms
head_tag:		noun
•		
•		

•

And hundreds more!

Scoring: $\phi(E) \cdot w$

Graph-based Dependency Parsing

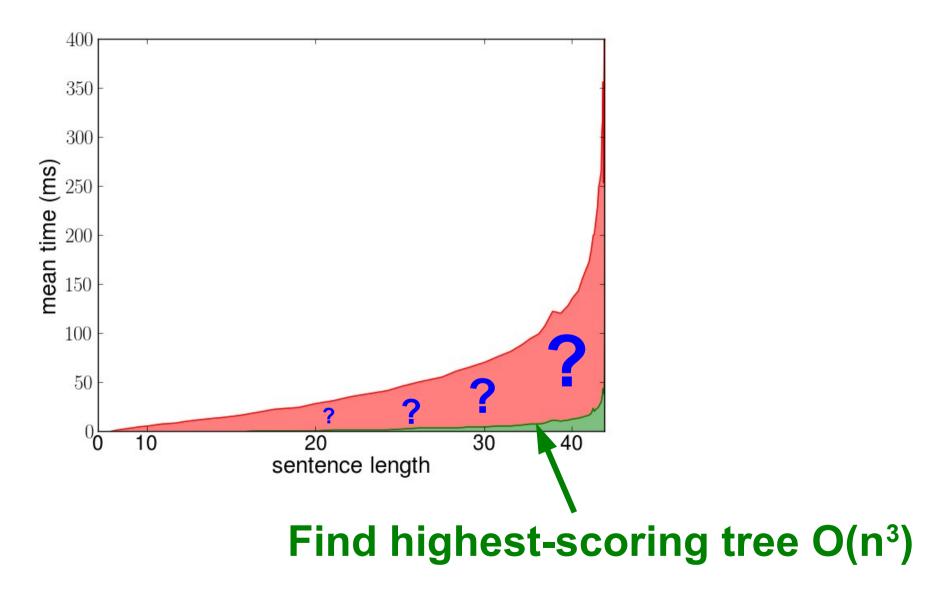


Decoding: find the highest-scoring tree

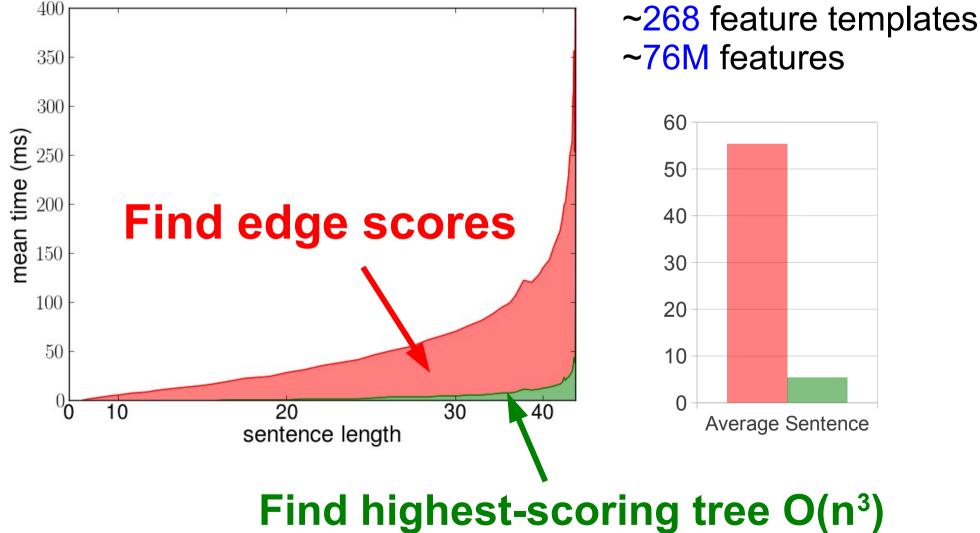
MST Dependency Parsing (1st-order projective)

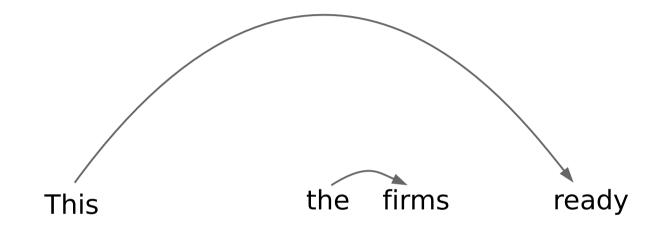


MST Dependency Parsing (1st-order projective)

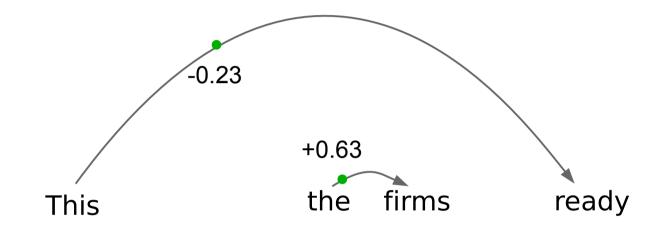


MST Dependency Parsing (1st-order projective)

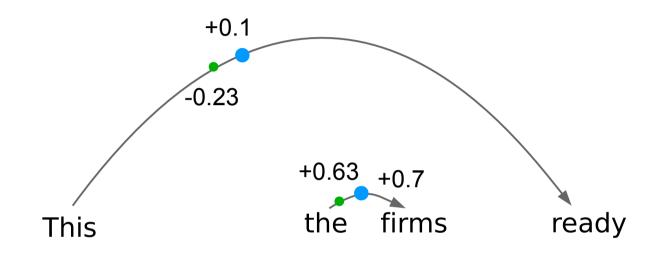




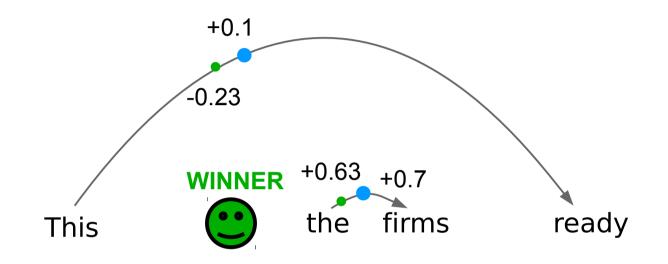
score(This \rightarrow ready) = score(the \rightarrow firms) =



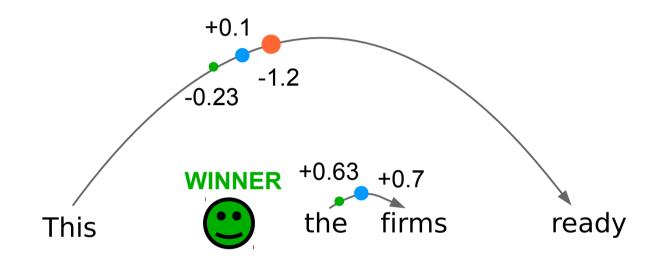
score(This \rightarrow ready) = -0.23



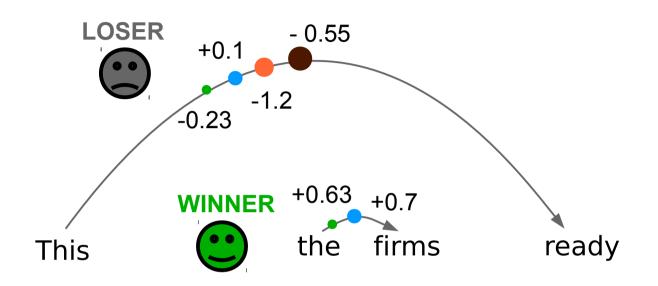
score(This \rightarrow ready) = -0.13



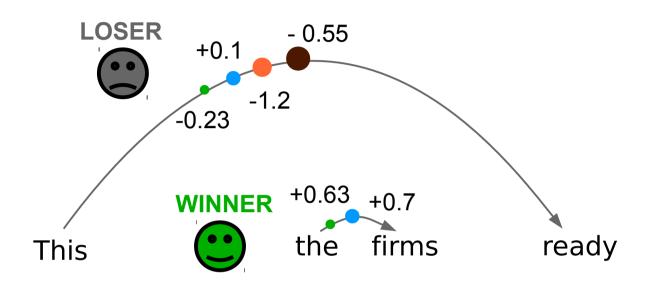
score(This \rightarrow ready) = -0.13



score(This \rightarrow ready) = -1.33



score(This \rightarrow ready) = -1.88



score(This \rightarrow ready) = -1.88

score(the \rightarrow firms) = 1.33

This is a **structured** problem! Should not look at scores independently.

1.Find the highest-scoring tree after adding some features *fast non-projective decoding*

1.Find the highest-scoring tree after adding some features *fast non-projective decoding*

2. Only edges in the current best tree can win

- 1. Find the highest-scoring tree after adding some features fast non-projective decoding
- 2. Only edges in the current best tree can win

 \bigcirc are chosen by a classifier \leq n *decisions*

(are killed because they fight with the winners

- 1. Find the highest-scoring tree after adding some features fast non-projective decoding
- 2. Only edges in the current best tree can win

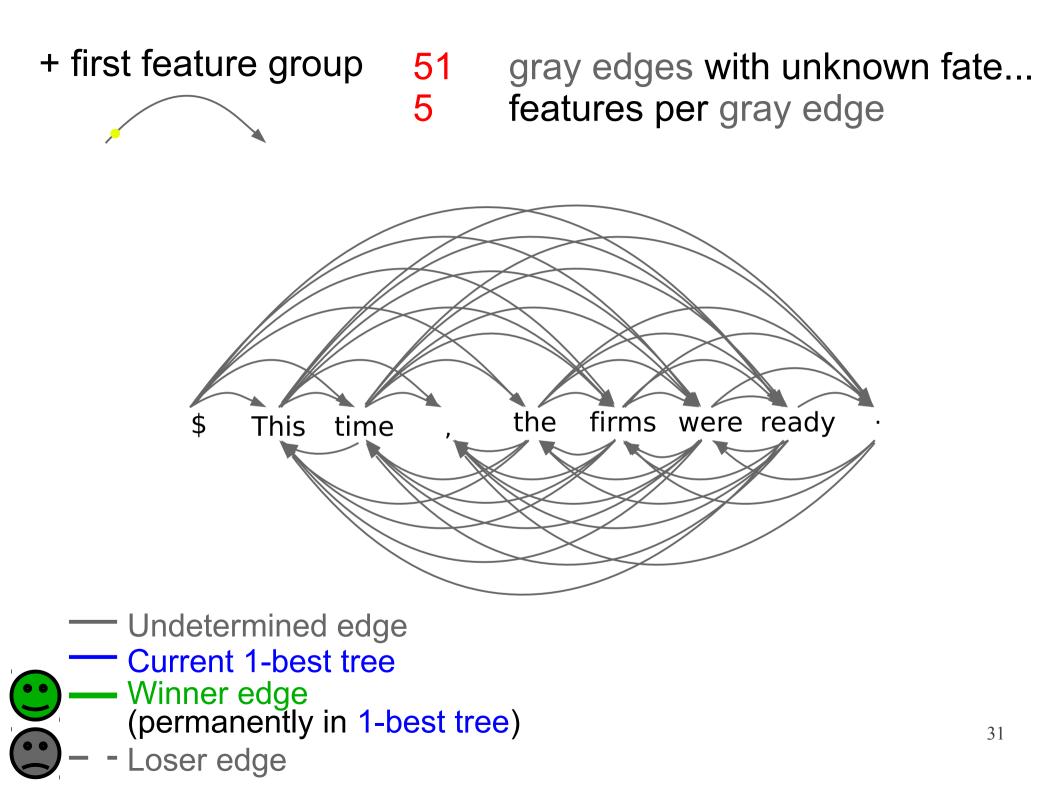
 \bigcirc are chosen by a classifier \leq n *decisions*

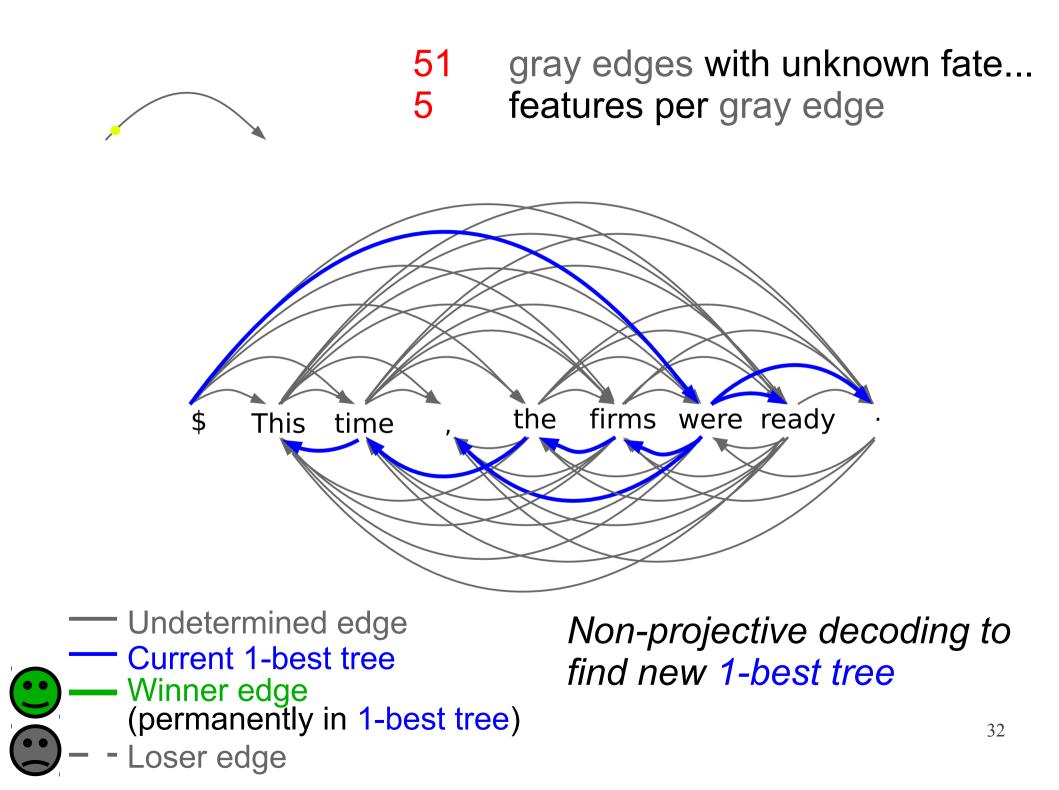
- (C) are killed because they fight with the winners
- 3. Add features to undetermined edges by group

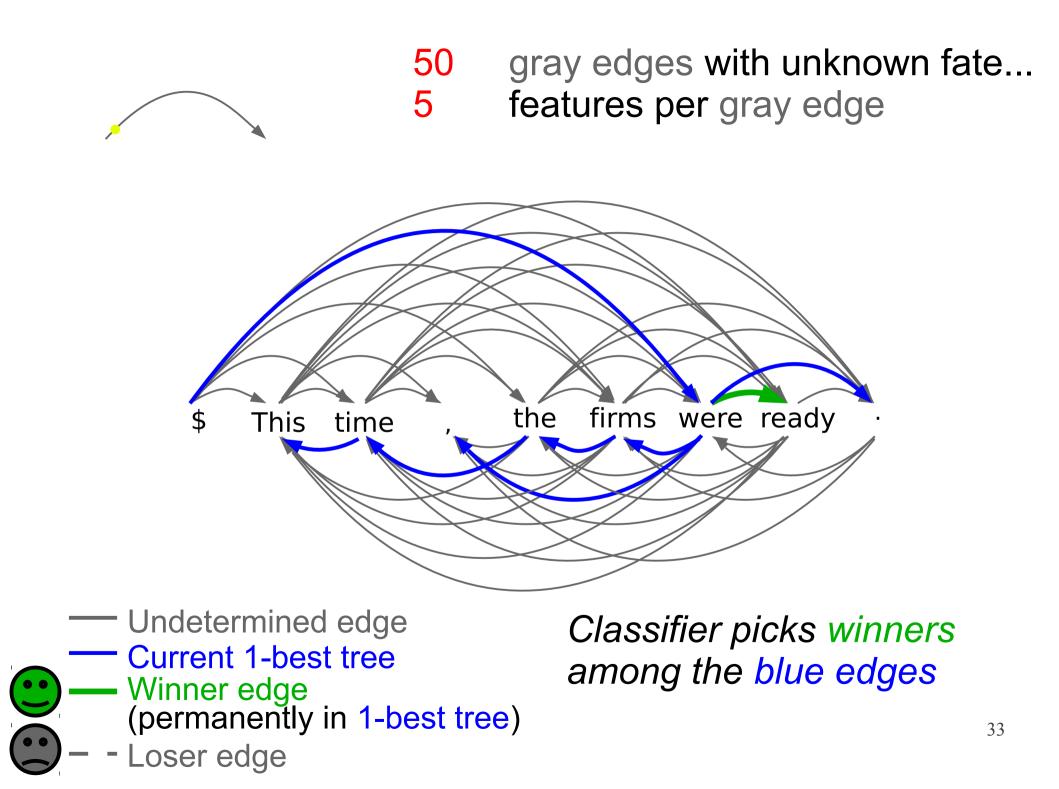
- 1. Find the highest-scoring tree after adding some features fast non-projective decoding
- 2. Only edges in the current best tree can win

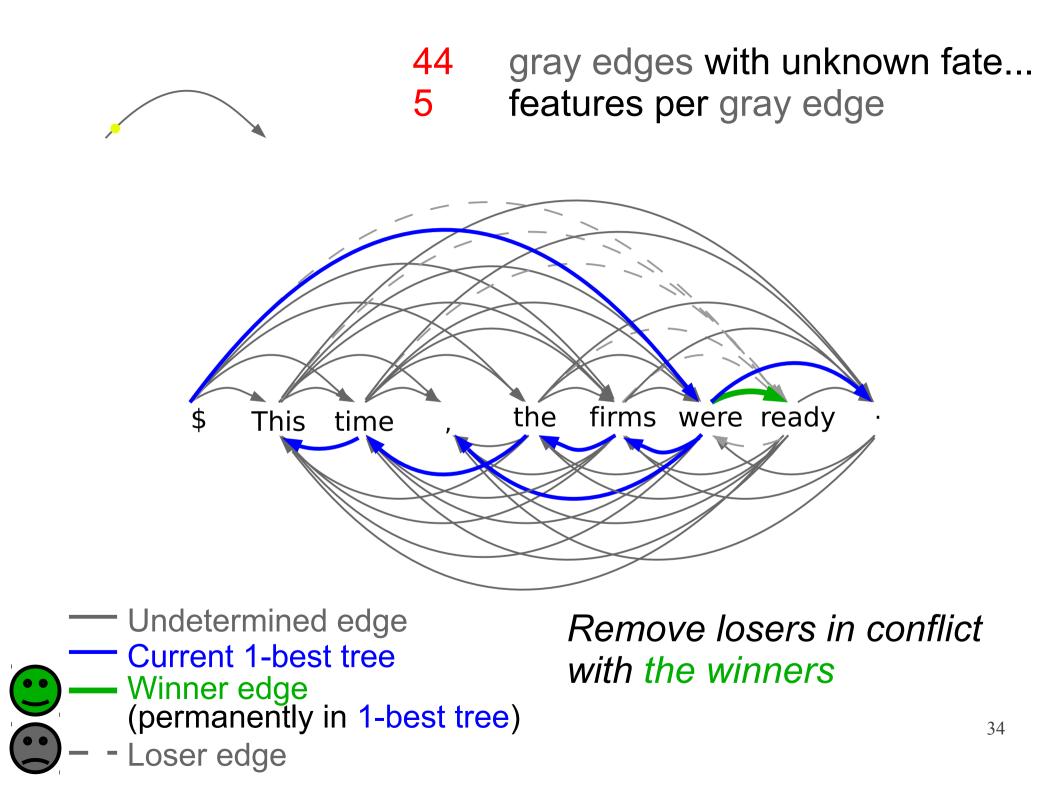
- \bigcirc are chosen by a classifier \leq n *decisions*
- are killed because they fight with the winners
- 3. Add features to undetermined edges by group

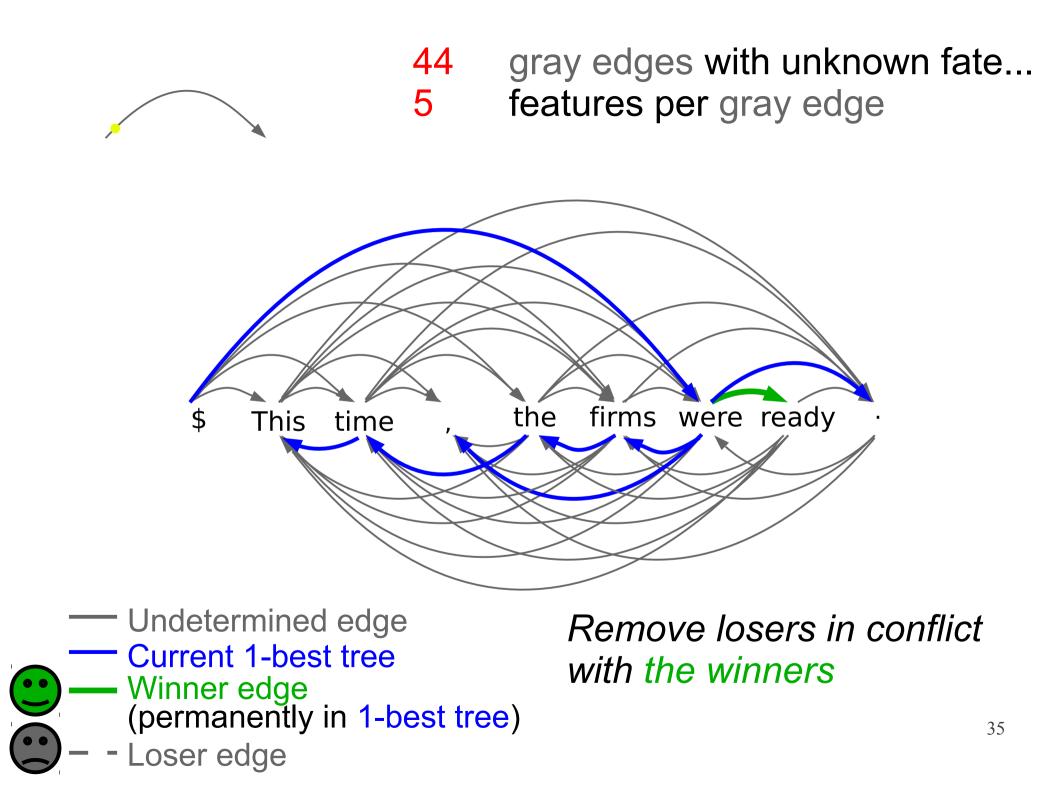
Max # of iterations = # of feature groups

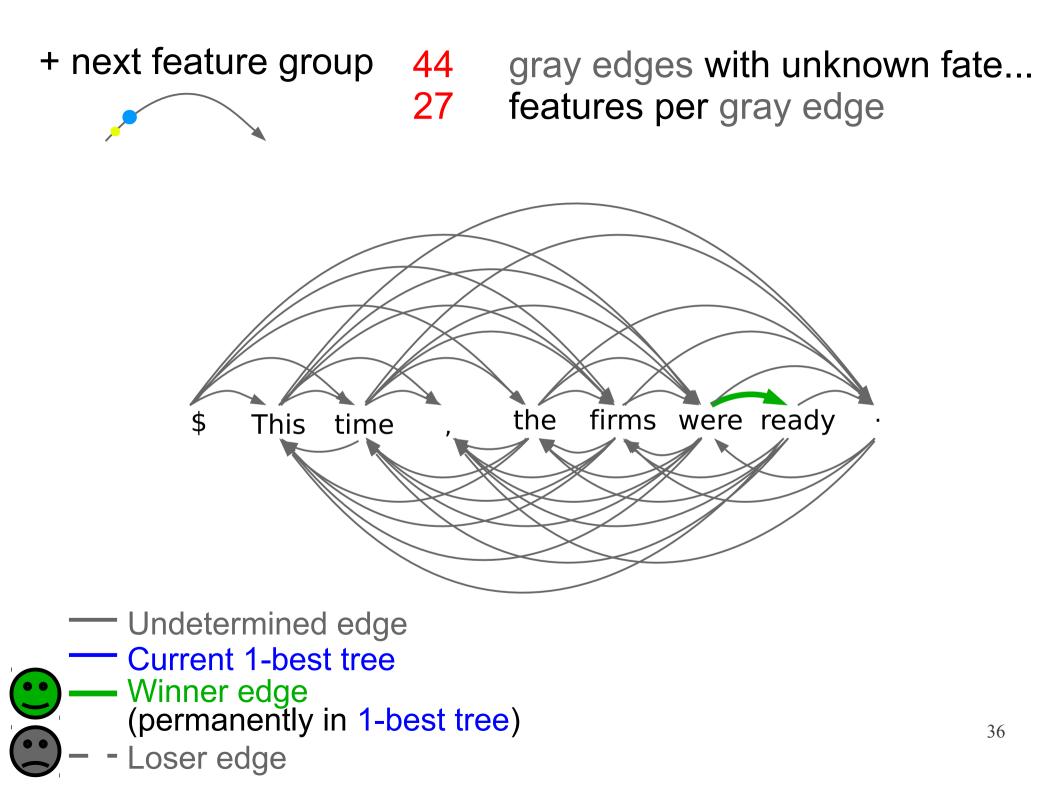


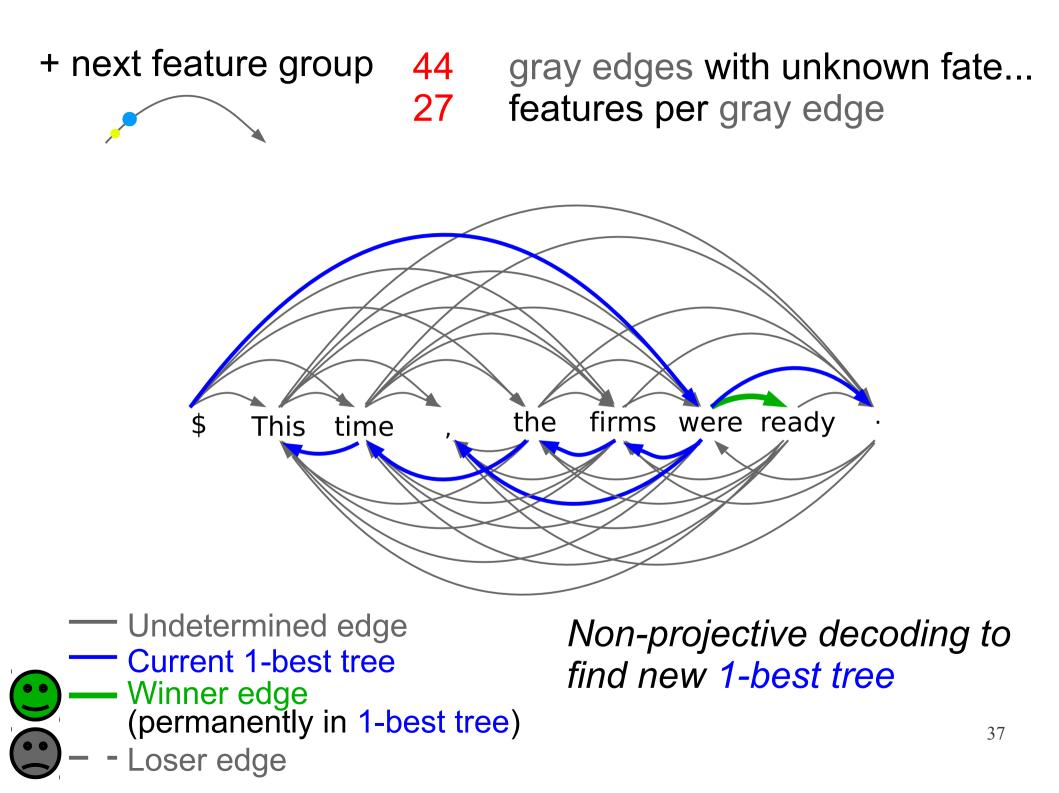


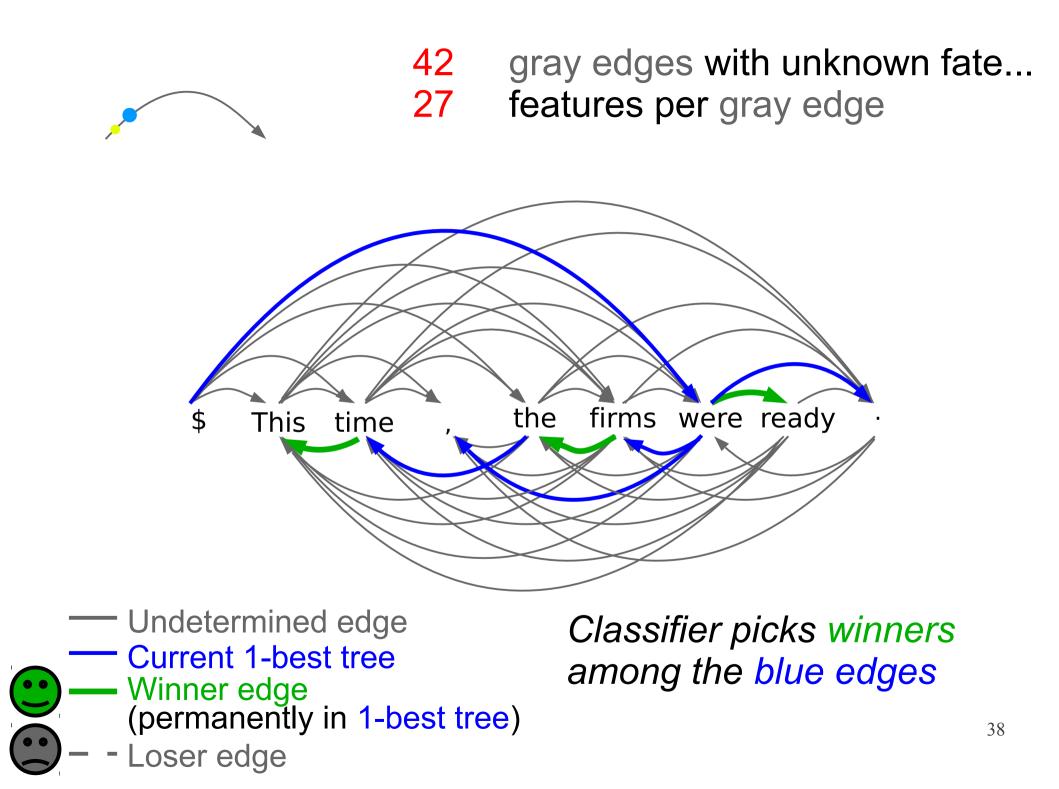


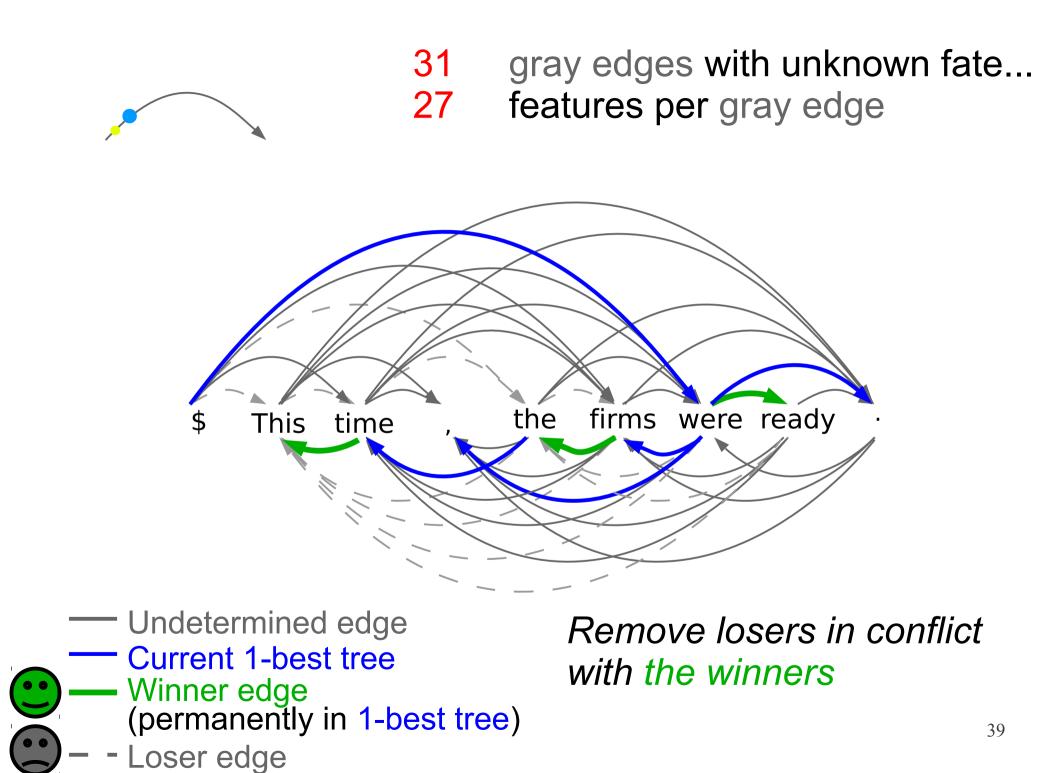


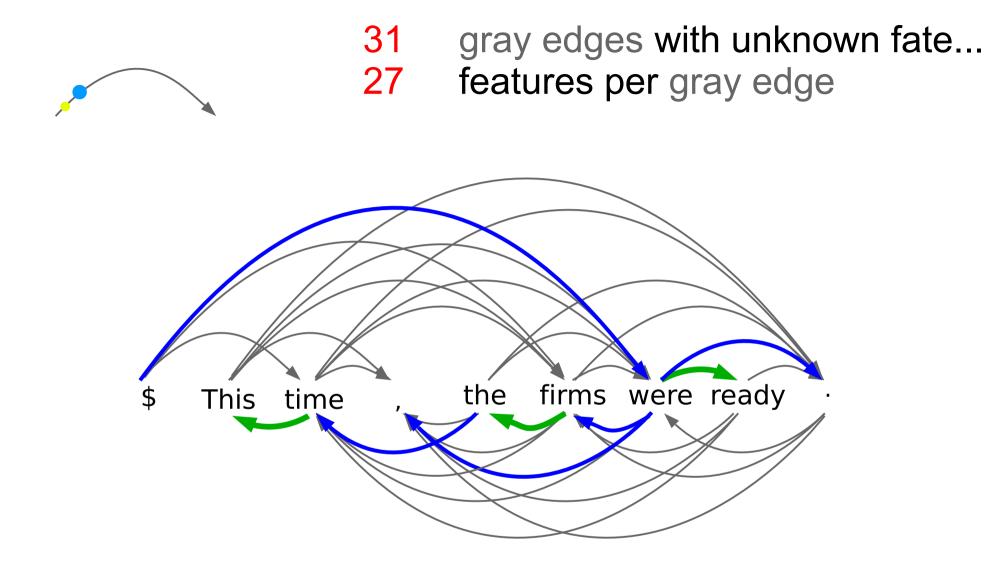




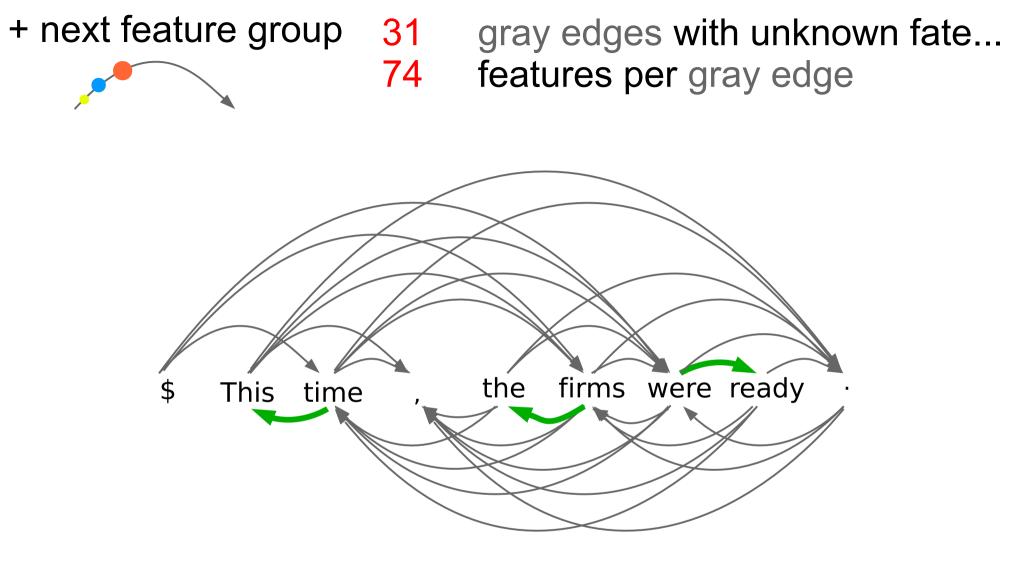




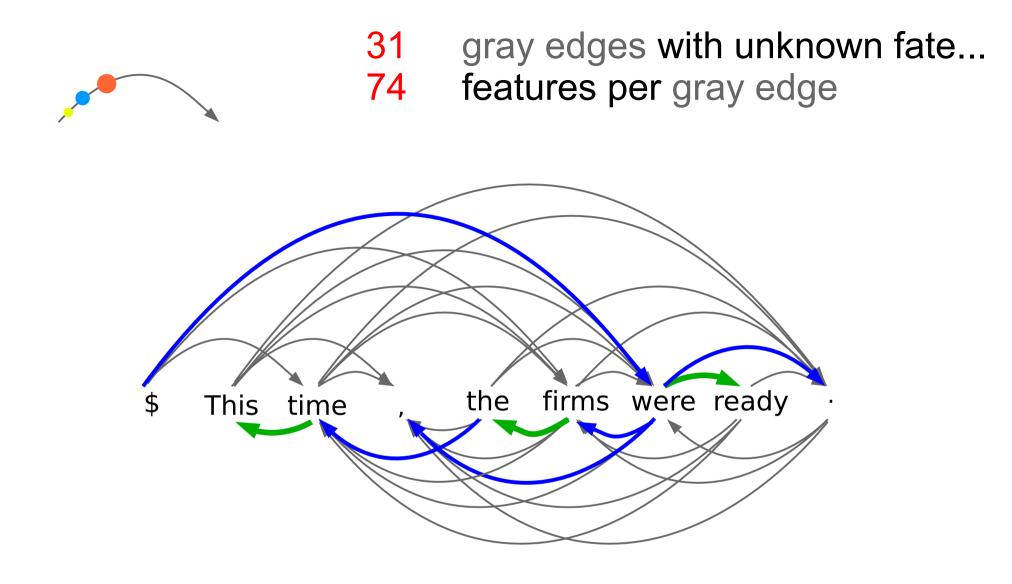


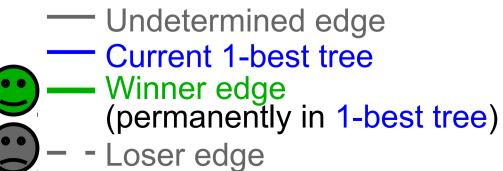


Remove losers in conflict with the winners

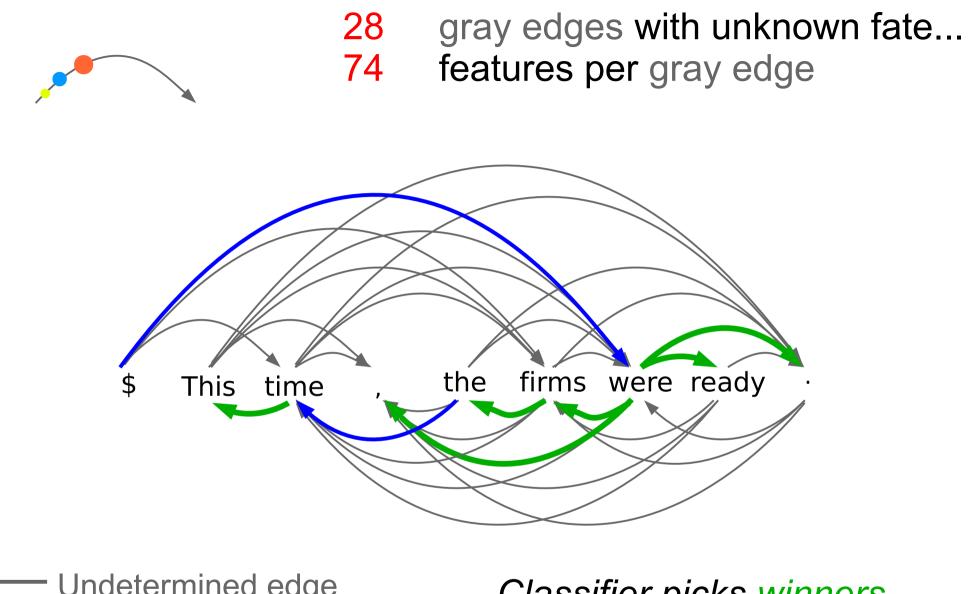


Undetermined edge
 Current 1-best tree
 Winner edge
 (permanently in 1-best tree)
 Loser edge

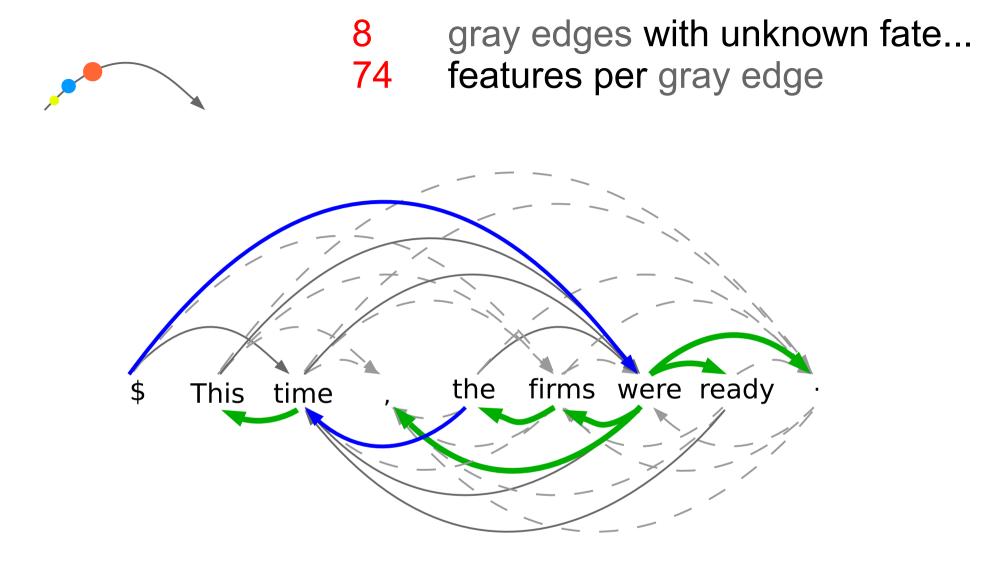




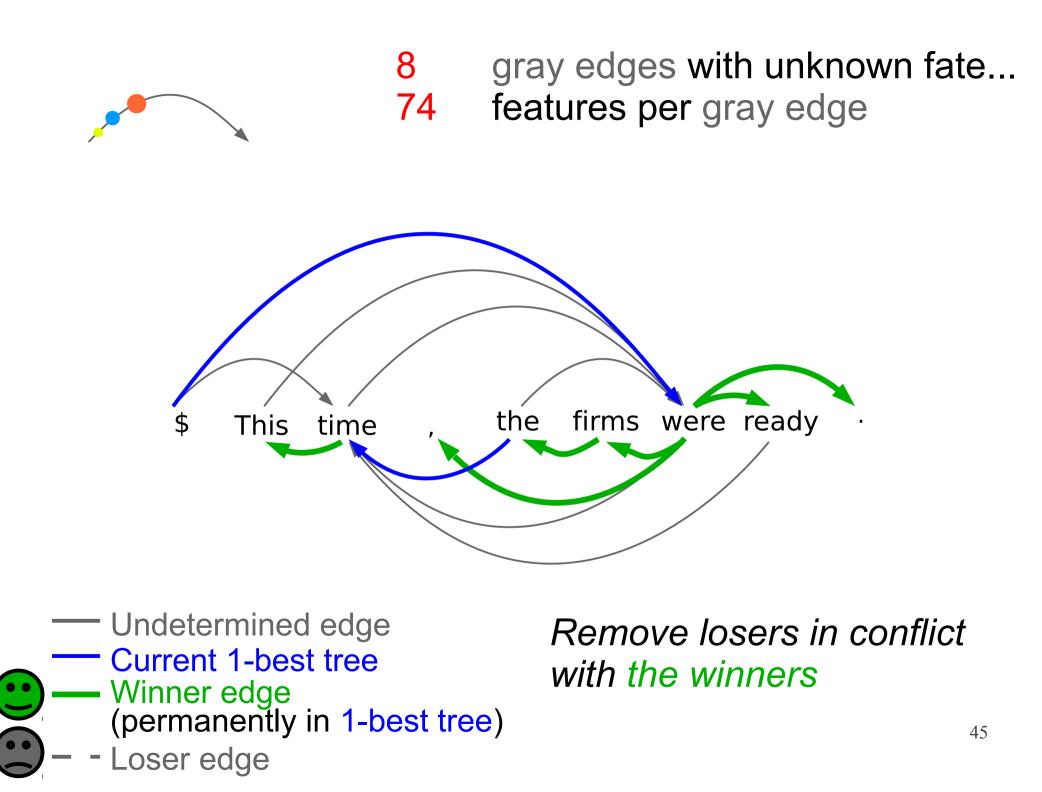
Non-projective decoding to find new 1-best tree



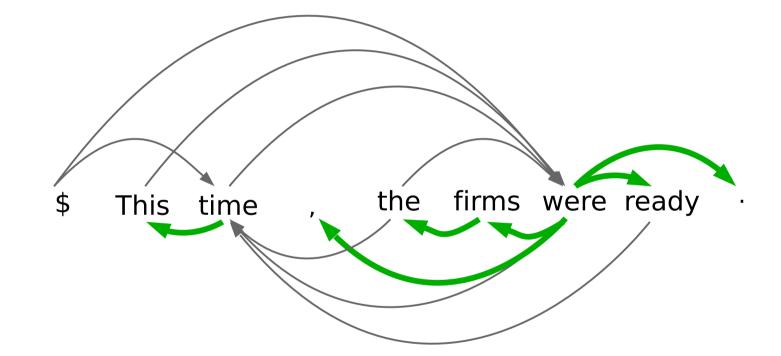
 Undetermined edge
 Current 1-best tree
 Winner edge (permanently in 1-best tree)
 Loser edge Classifier picks winners among the blue edges



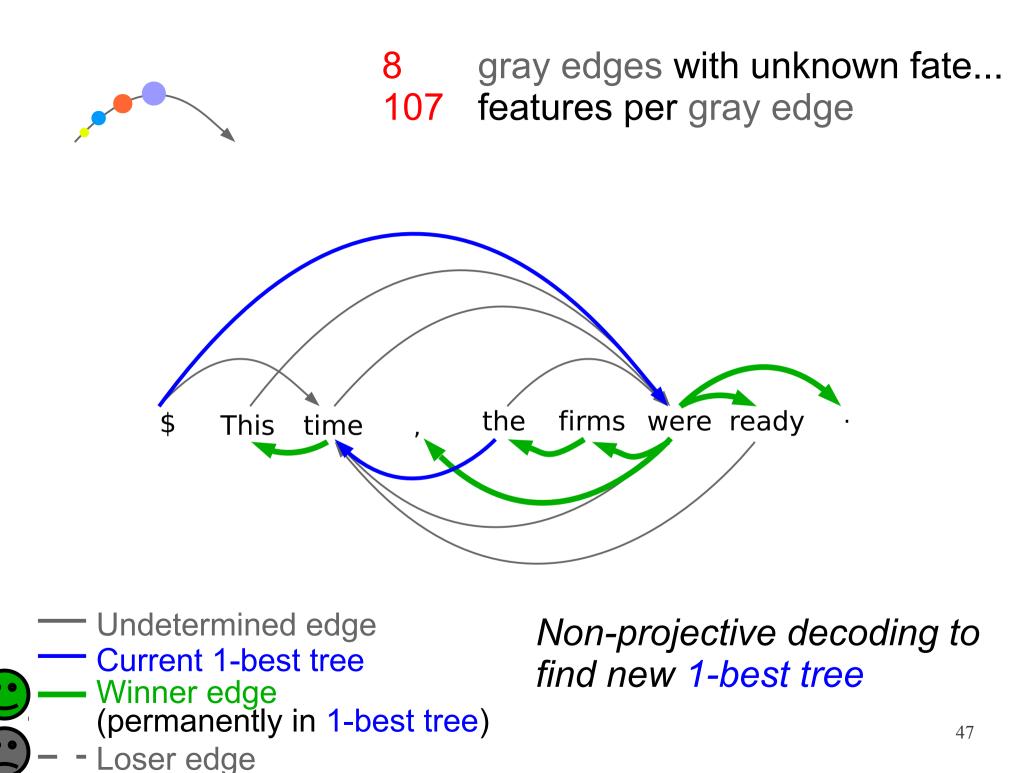
Remove losers in conflict with the winners

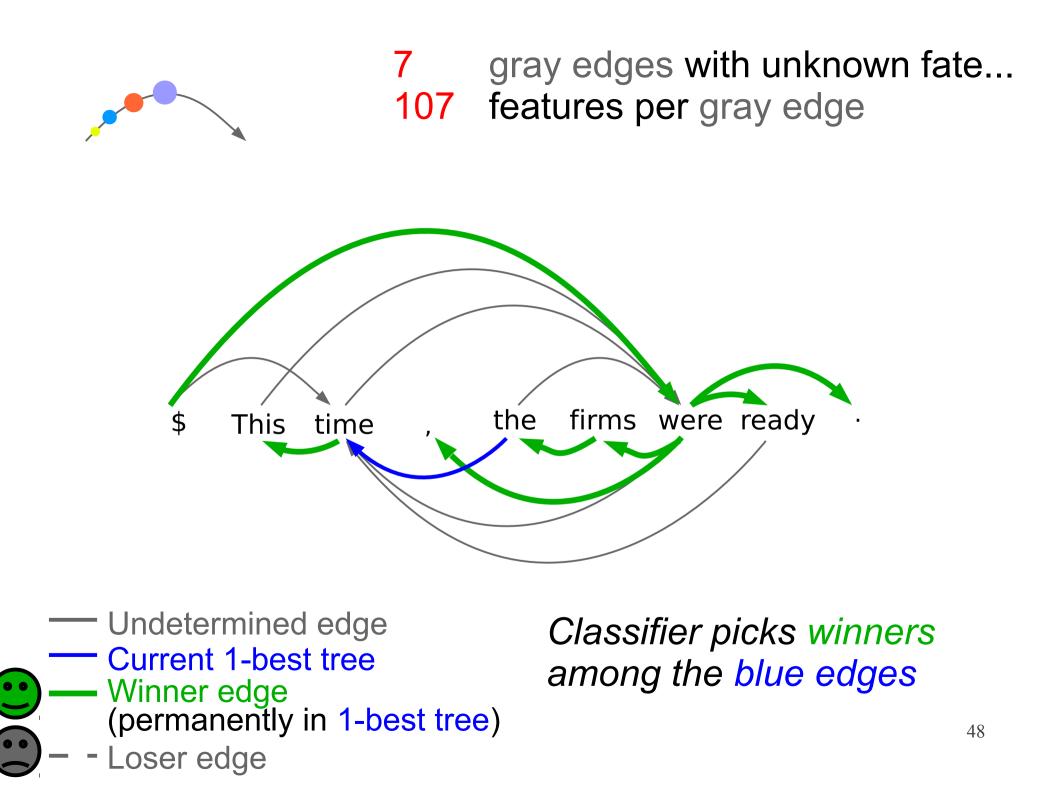


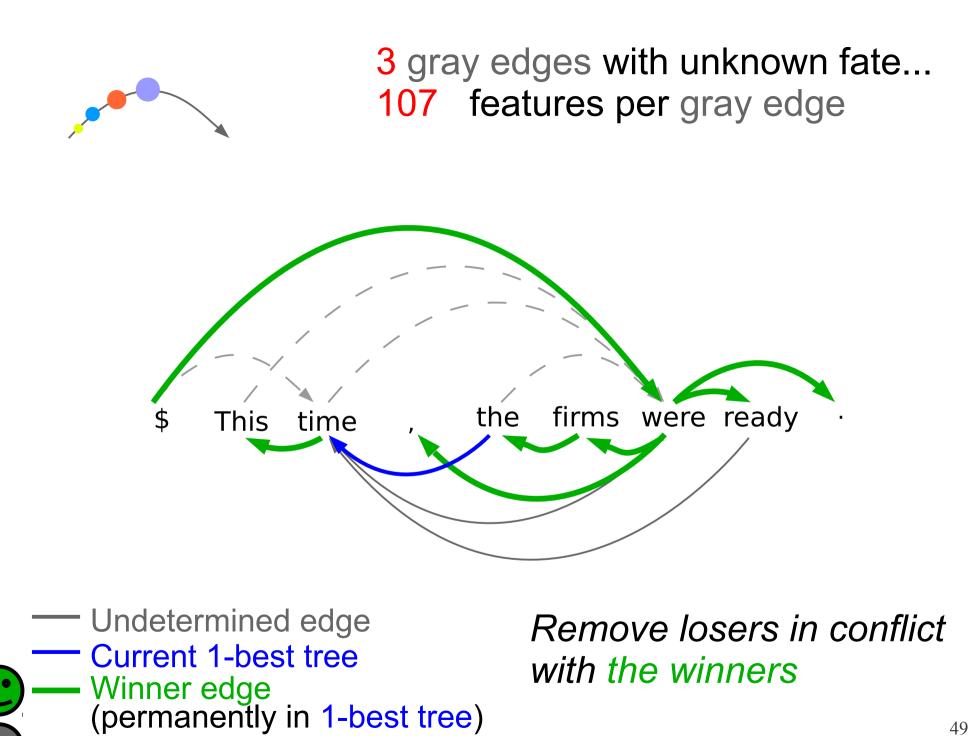
+ next feature group 8 gray edges with unknown fate... 107 features per gray edge



Undetermined edge
 Current 1-best tree
 Winner edge
 (permanently in 1-best tree)
 Loser edge

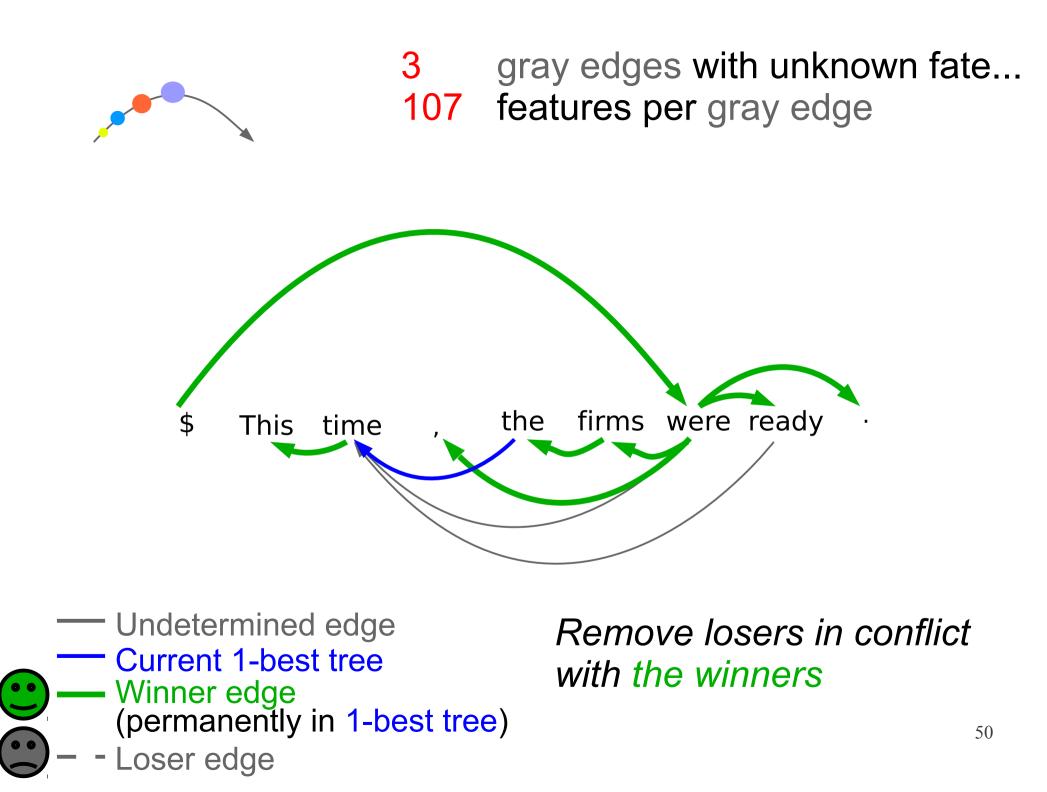


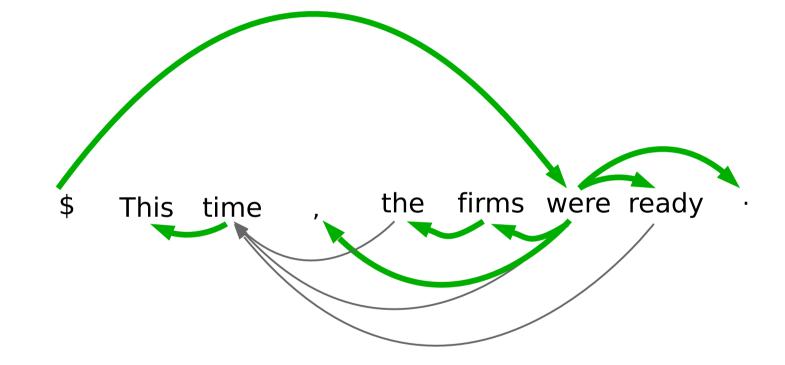




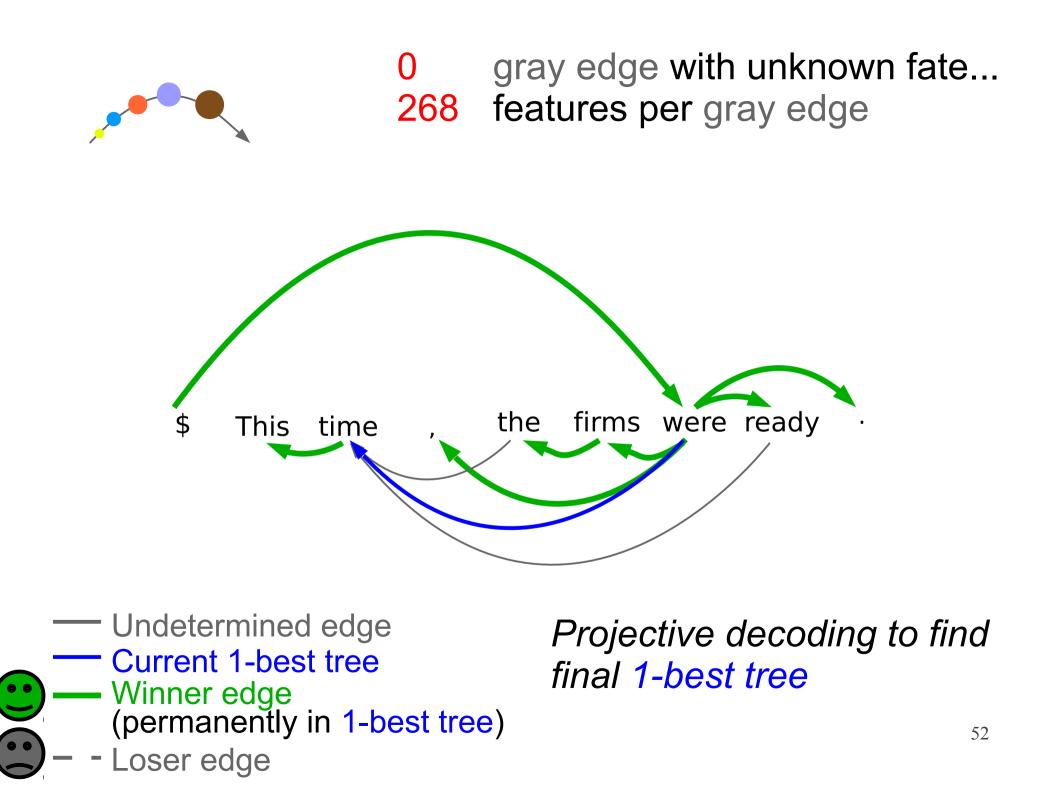
oser edge

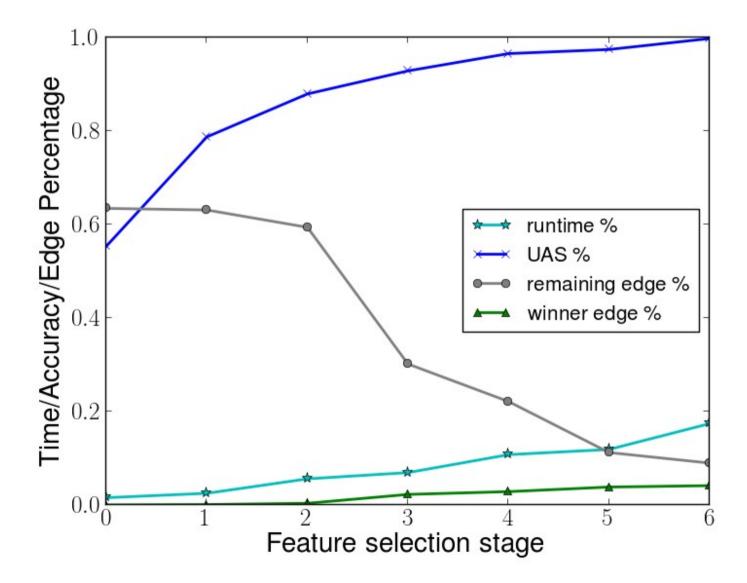
49

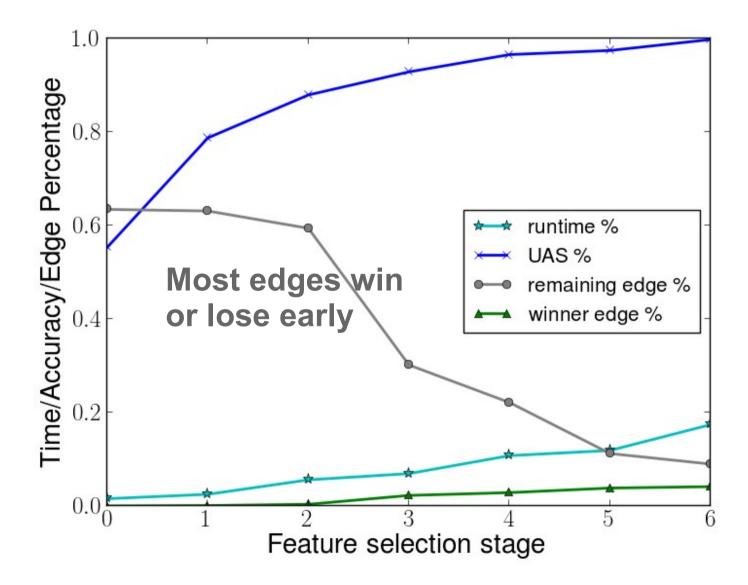


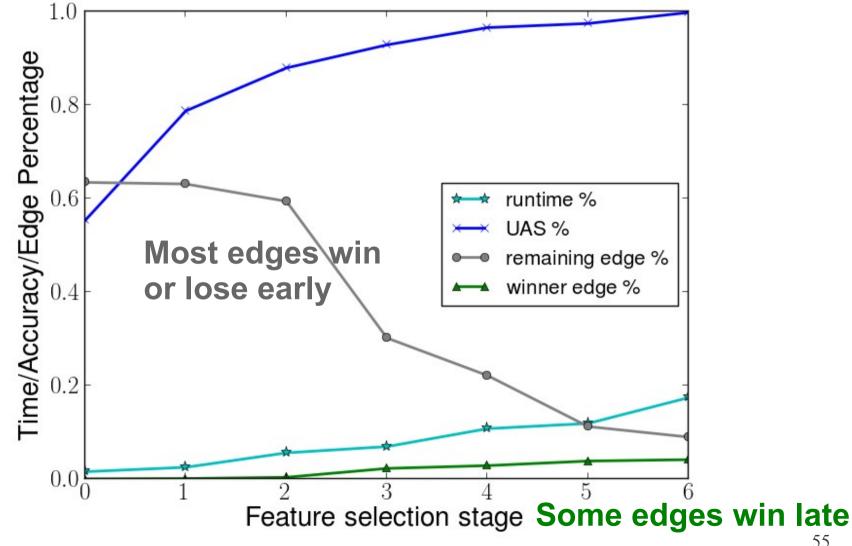


Undetermined edge
 Current 1-best tree
 Winner edge
 (permanently in 1-best tree)
 Loser edge

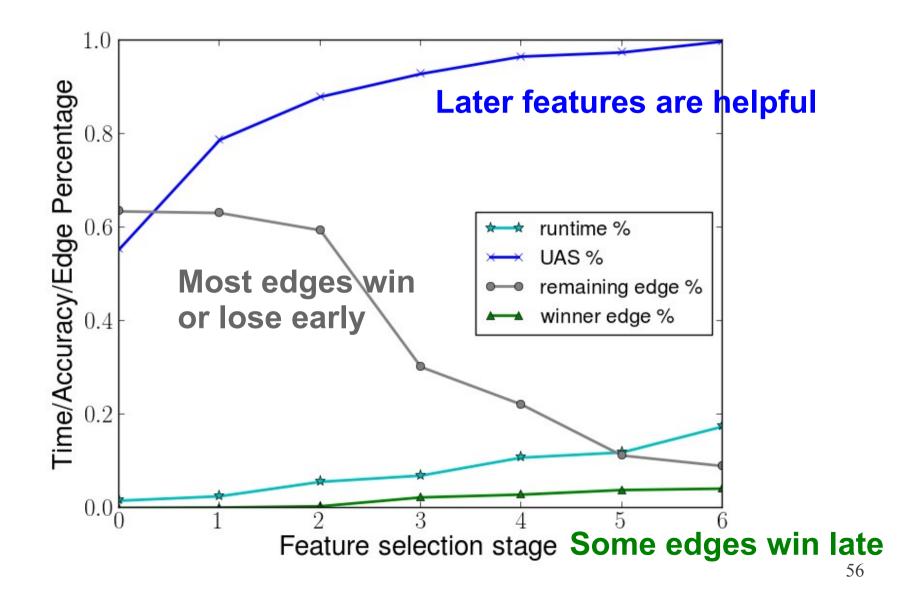


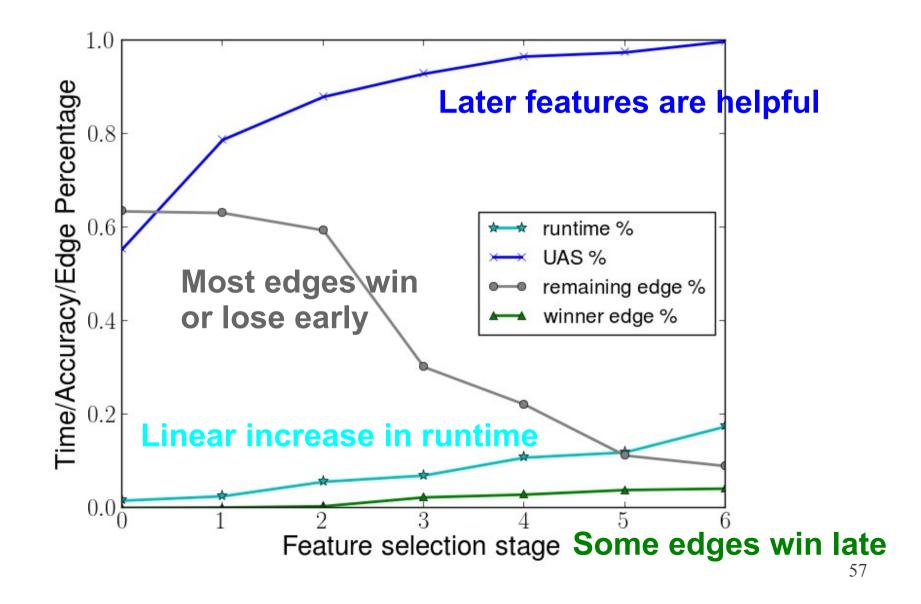






55

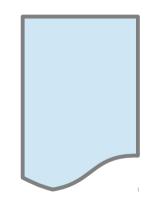




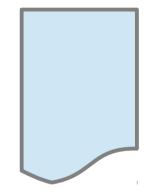
Summary: How Early Decisions Are Made

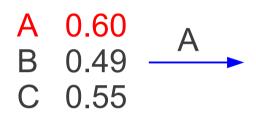
- Will definitely appear in the 1-best tree

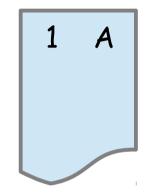
- Losers
 - Have the same child as a winning edge
 - Form cycle with winning edges
 - Cross a winning edge (optional)
 - Share root (\$) with a winning edge (optional)
- Undetermined
 - Add the next feature group to the remaining gray edges

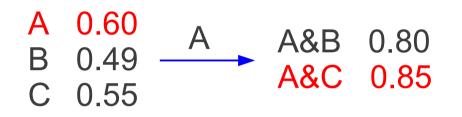


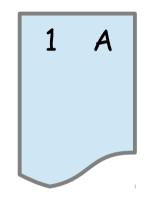
- Forward selection
 - A 0.60 B 0.49
 - C 0.55

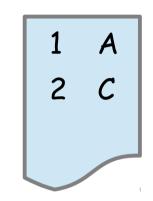


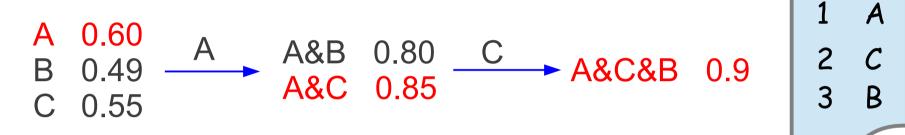












Forward selection

Grouping

.

head cPOS+ mod cPOS + in-between punct	# 0.49
in-between cPOS	0.59
head POS + mod POS + in-between conj #	0.71
head POS + mod POS + in-between POS + o	dist 0.72
head token + mod cPOS + dist	0.80
•	_

A

2 C 3 B

Forward selection

 A
 0.60
 A
 A&B
 0.80
 C
 A&C&B
 2
 C

 B
 0.49
 A
 A&C
 0.85
 C
 A&C&B
 0.9
 2
 C

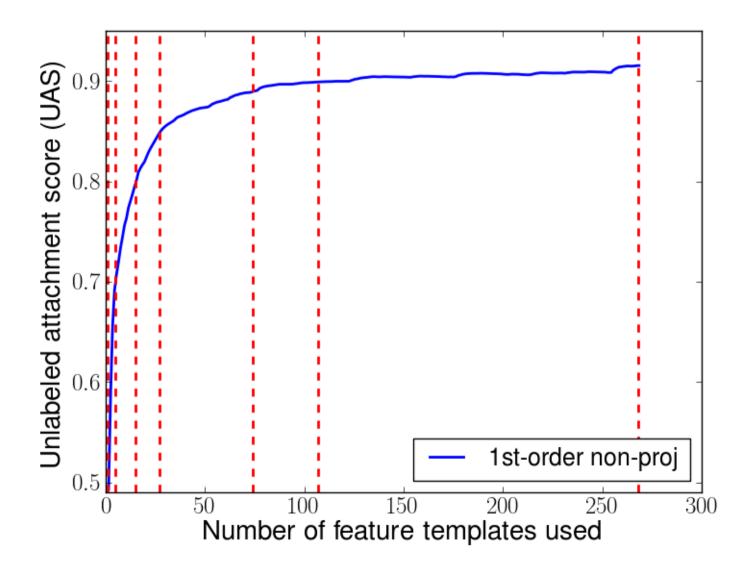
 C
 0.55
 A&C
 0.85
 C
 A&C&B
 0.9
 3
 B

Grouping

head cPOS+ mod cPOS + in-between punct #0.49in-between cPOS0.59head POS + mod POS + in-between conj #0.71head POS + mod POS + in-between POS + dist0.72head token + mod cPOS + dist0.80

A

Partition Feature List Into Groups



• Learn a classifier

- Learn a classifier
- Features
 - Currently added parsing features
 - Meta-features -- confidence of a prediction

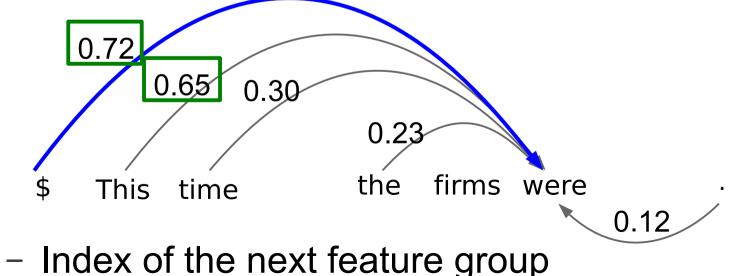
- Learn a classifier
- Features
 - Currently added parsing features
 - Meta-features -- confidence of a prediction
- Training examples
 - Input: each blue edge in current 1-best tree
 - Output: is the edge in the gold tree? If so, we want it to win!

Classifier Features

- Currently added parsing features
- Meta-features

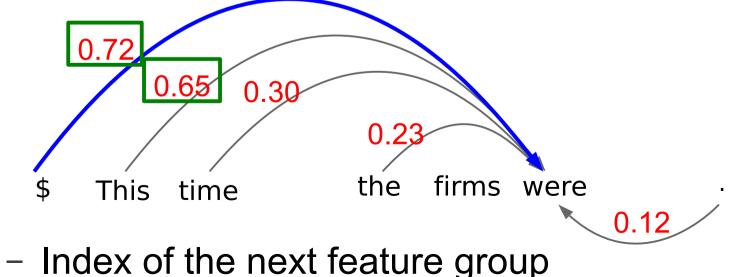
the firms : ..., 0.5, 0.8, 0.85
 (scores are normalized by the sigmoid function)

- Margins to the highest-scoring competing edge



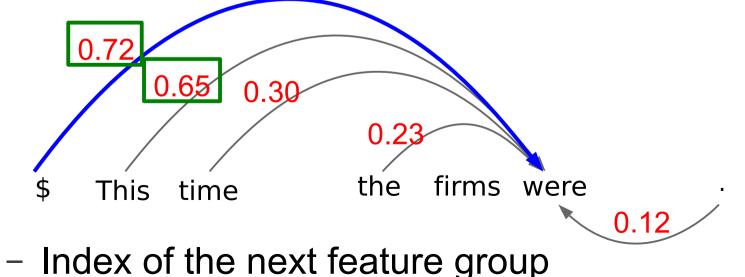
Classifier Features

- Currently added parsing features
- Meta-features
 - the firms : ..., 0.5, 0.8, 0.85
 (scores are normalized by the sigmoid function)
 - Margins to the highest-scoring competing edge



Classifier Features

- Currently added parsing features
- Meta-features Dynamic Features
 the firms : ..., 0.5, 0.8, 0.85
 (scores are normalized by the sigmoid function)
 - Margins to the highest-scoring competing edge



How To Train With Dynamic Features

- Training examples are not fixed in advance!
- Winners/losers from stages < k affect:
 - Set of edges to classify at stage k
 - The dynamic *features* of those edges at stage k
- Bad decisions can cause future errors

How To Train With Dynamic Features

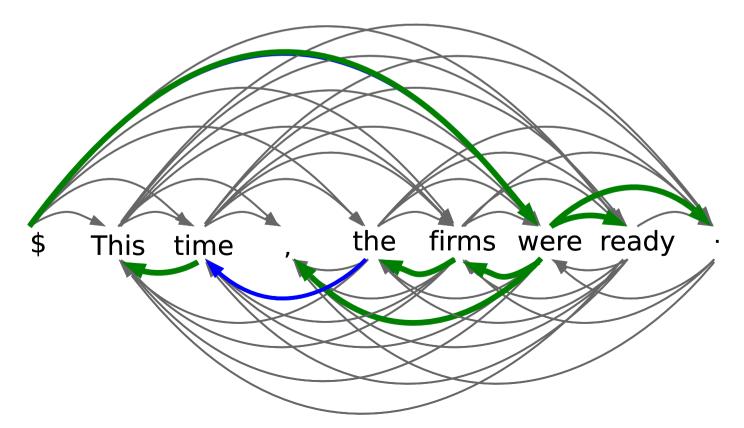
- Training examples are not fixed in advance!!
- Winners/losers from stages < k affect:
 - Set of edges to classify at stage k
 - The dynamic *features* of those edges at stage k
- Bad decisions can cause future errors

Reinforcement / Imitation Learning

- Dataset Aggregation (DAgger) (Ross et al., 2011)
 - Iterates between training and running a model
 - Learns to recover from past mistakes

Upper Bound of Our Performance

- "Labels"
 - Gold edges always win
 - 96.47% UAS with 2.9% first-order features



How To Train Our Parser

1.Train parsers (non-projective, projective) using all features

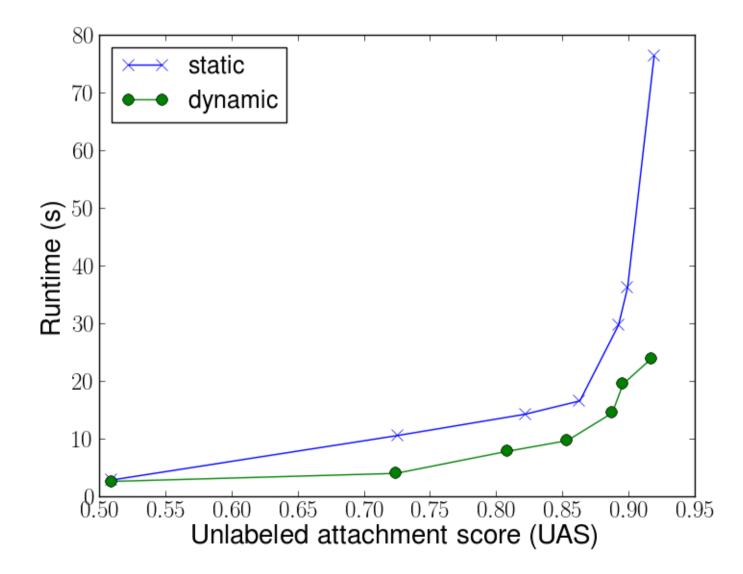
2.Rank and group feature templates

3. Iteratively train a classifier to decide winners/losers

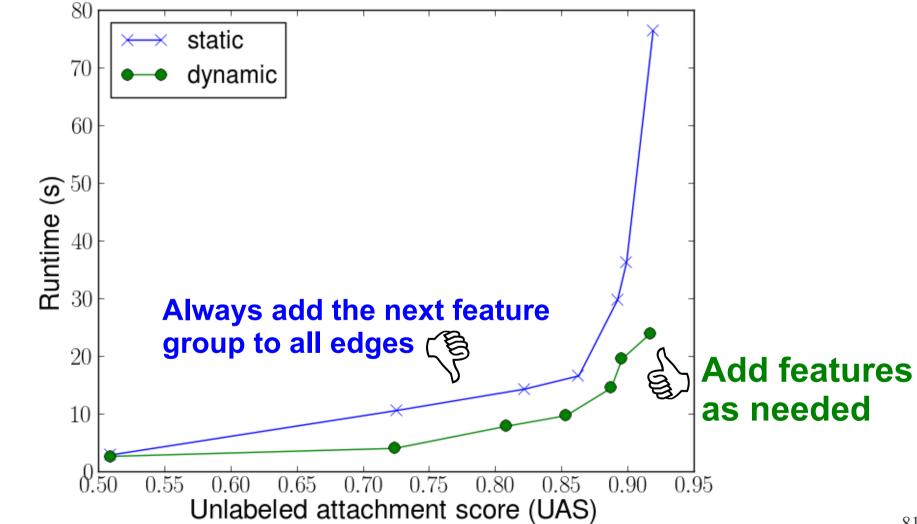
Experiment

- Data
 - Penn Treebank: English
 - CoNLL-X: Bulgarian, Chinese, German, Japanese, Portuguese, Swedish
- Parser
 - MSTParser (McDonald et al., 2006)
- Dynamically-trained Classifier
 - LibLinear (Fan et al., 2008)

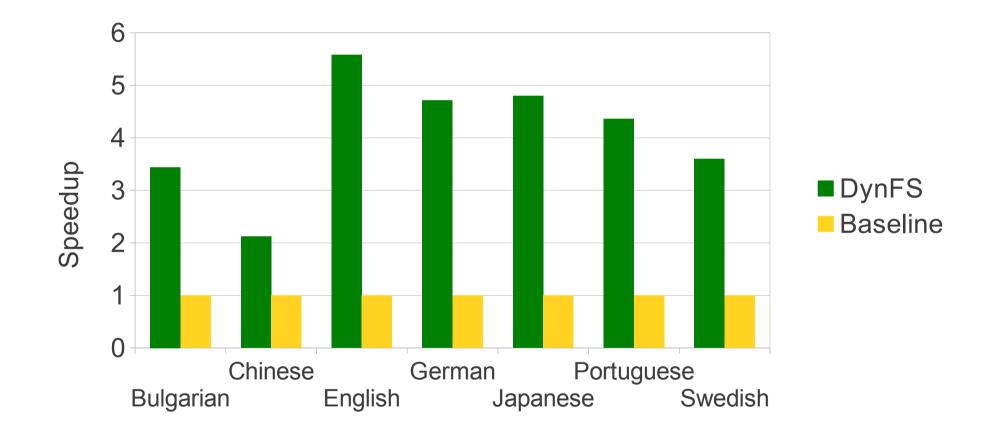
Dynamic Feature Selection Beats Static Forward Selection



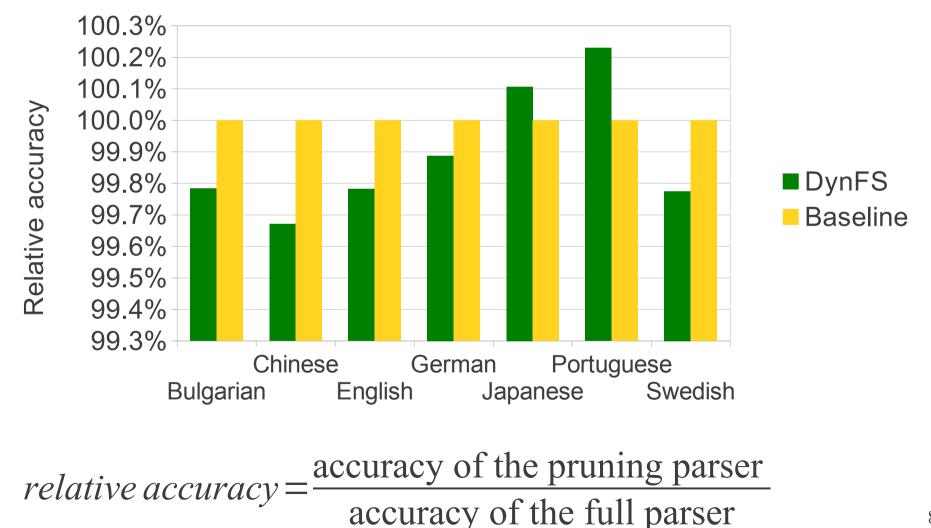
Dynamic Feature Selection Beats Static Forward Selection



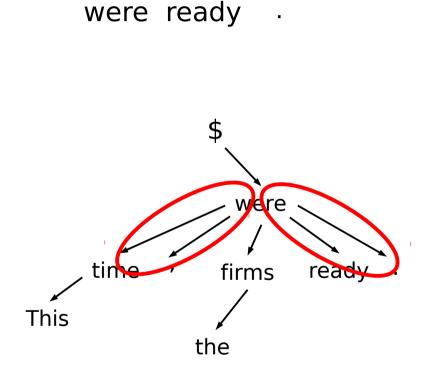
Experiment: 1st-order 2x to 6x speedup



Experiment: 1st-order ~0.2% loss in accuracy

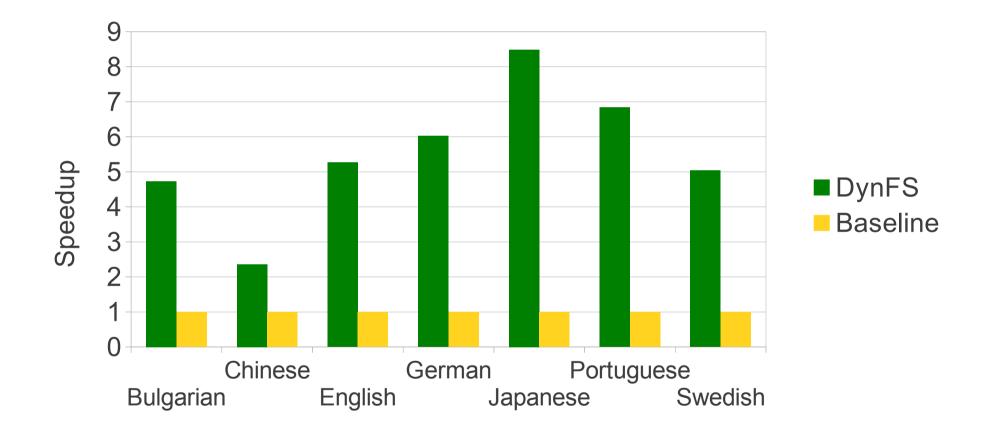


Second-order Dependency Parsing

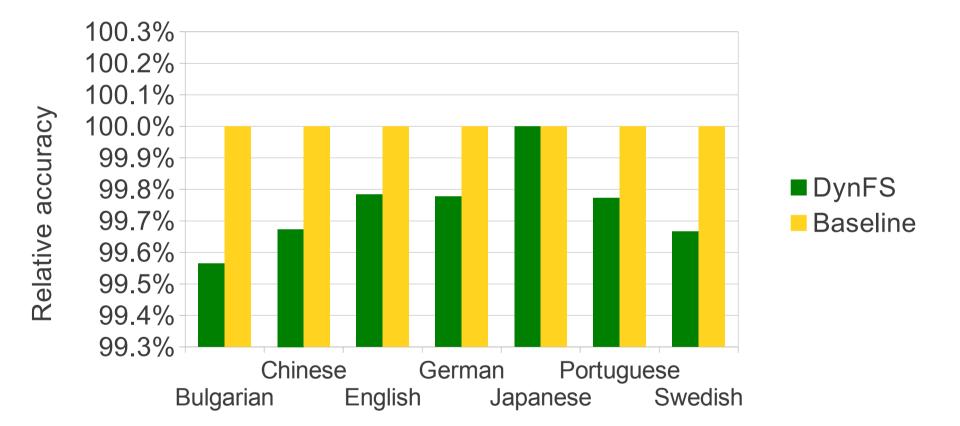


- Features depend on the siblings as well
- First-order:
 - O(n²) substructure to score
- Second-order:
 - O(n³) substructure to score
 - ~380 feature templates
 - ~96M features
- Decoding: still O(n³)

Experiment: 2nd-order 2x to 8x speedup



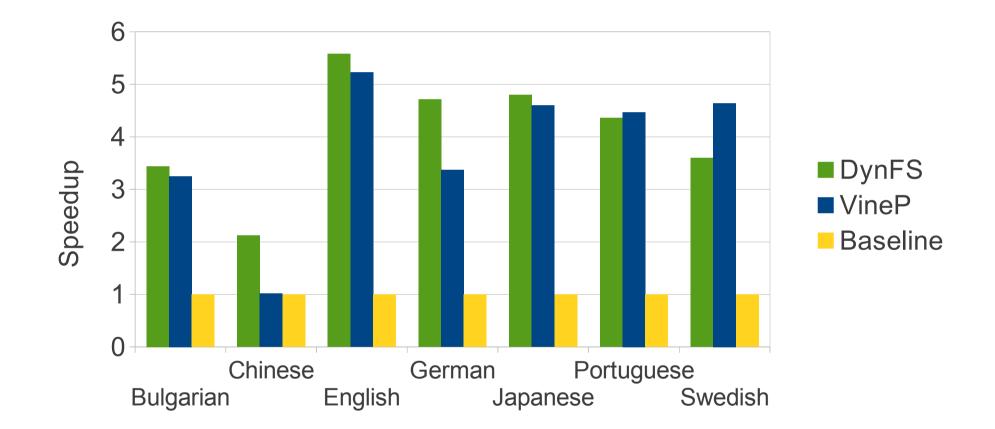
Experiment: 2nd-order ~0.3% loss in accuracy



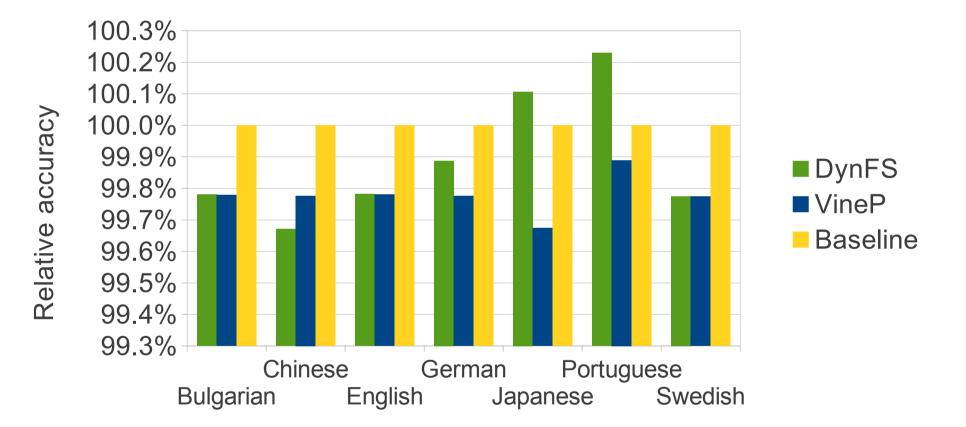
Ours vs Vine Pruning (Rush and Petrov, 2012)

- Vine pruning: a very fast parser that speeds up using orthogonal techniques
 - Start with short edges (fully scored)
 - Add long edges in if needed
- Ours
 - Start with all edges (*partially* scored)
 - Quickly remove unneeded edges
- Could be combined for further speedup!

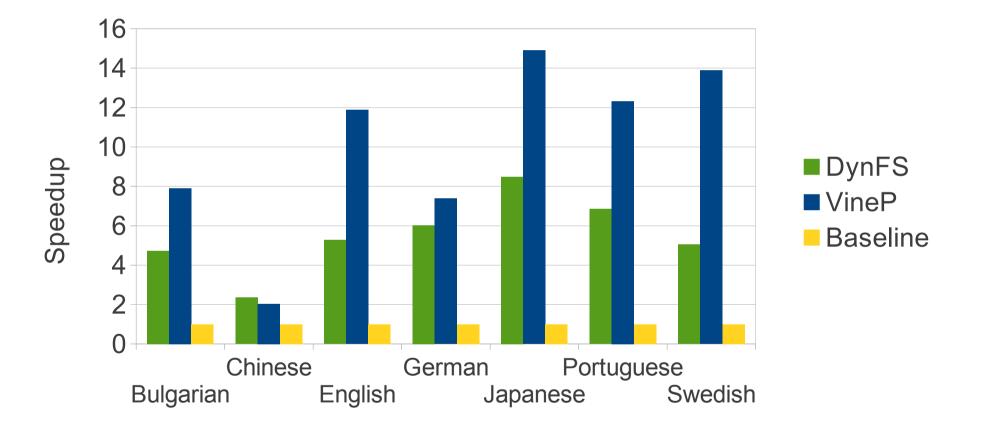
VS Vine Pruning: 1st-order comparable performance



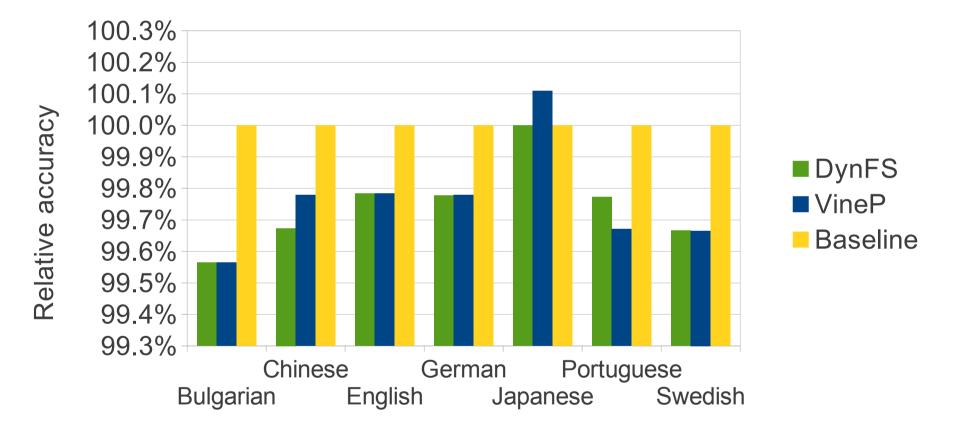
VS Vine Pruning: 1st-order



VS Vine Pruning: 2nd-order



VS Vine Pruning: 2nd-order

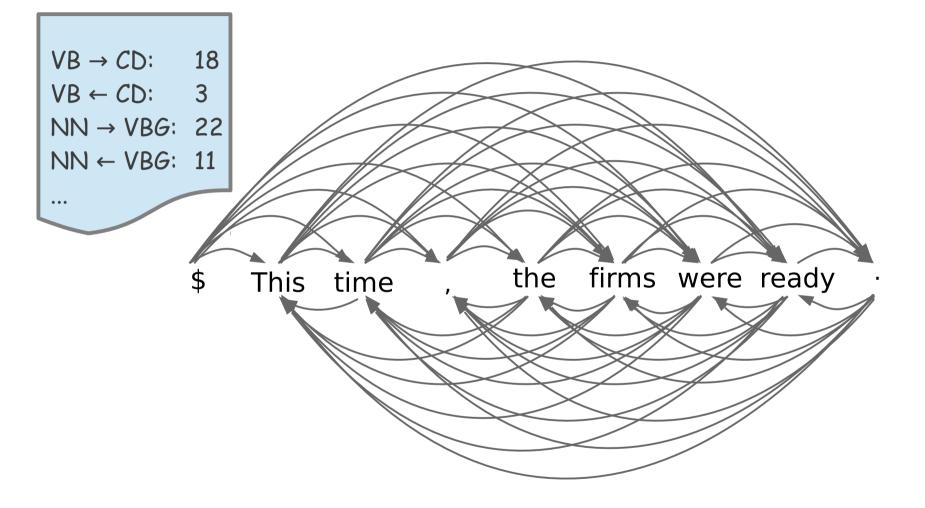


Conclusion

- Feature computation is expensive in structured prediction
- Commitment should be made dynamically
- Early commitment to edges reduce both searching and scoring time
- Can be used in other feature-rich models for structured prediction

Backup Slides

Static dictionary pruning (Rush and Petrov, 2012)



Reinforcement Learning 101

- Markov Decision Process (MDP)
 - State: all the information helping us to make decisions
 - Action: things we choose to do
 - Reward: criteria for evaluating actions
 - Policy: the "brain" that makes the decision
- Goal
 - Maximize the expected future reward

Policy Learning

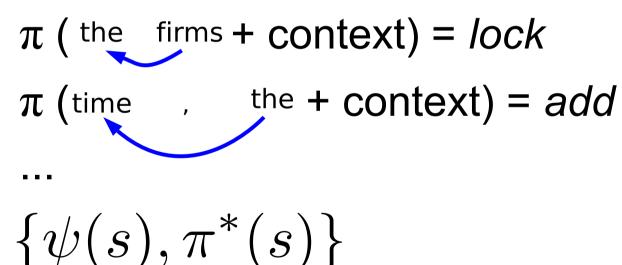
Markov Decision Process (MDP)

 π (the firms + context) = add / lock

- reward = accuracy + λ ·speed
- Reinforcement learning
 - Delayed reward
 - Long time to converge
- Imitation learning
 - Mimic the oracle
 - Reduced to supervised classification problem

Imitation Learning

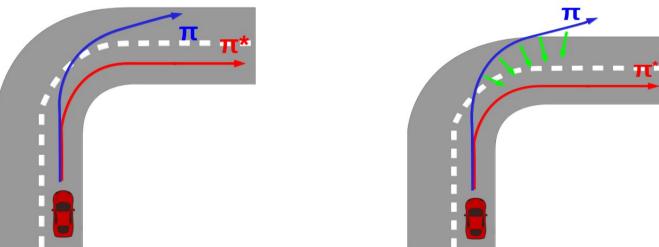
- Oracle
 - (near) optimal performance
 - generate target action in any given state



Binary classifier

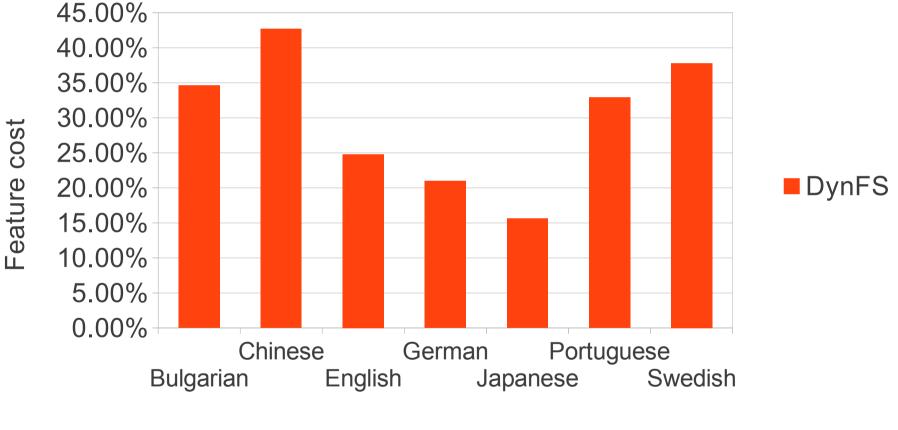
Dataset Aggregation (DAgger)

- Collect data from the oracle only
 - Different distribution at training and test time
- Iterative policy training



- Correct the learner's mistake
- Obtain a policy performs well under its own policy distribution

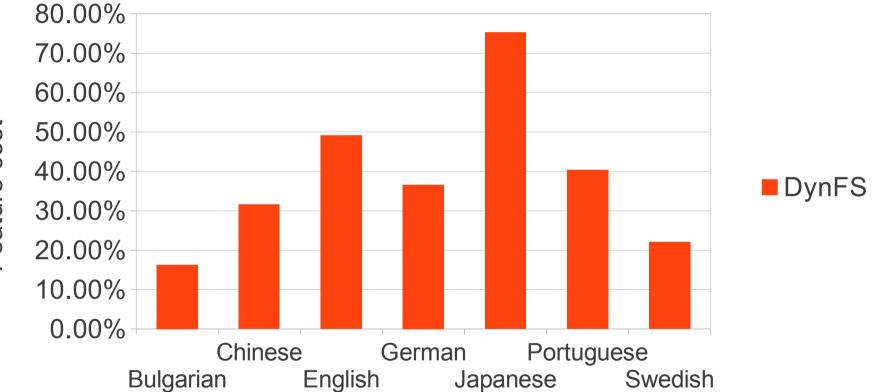
Experiment (1st-order)



feature templates used

 $cost = \frac{1}{total \# feature templates on the statically pruned graph}$ 99

Experiment (2nd-order)



Second-order Parsing

.

Second-order Parsing

