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Martin Čmejrek2
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Jiřı́ Havelka

Vladislav Kuboň
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Chapter 1

Introduction

Jan Hajǐc

Let’s imagine a system for translating a sentence from a foreign language (say
Czech, but substitute any of your favorite languages here) into your native language
(say English). Such a system works as follows. It analyzes the foreign-language
sentence to obtain a structural representation that captures its essence, i.e. ”who
did what to whom where.” It then translates (or “transfers”) the actors, actions, etc.
into words in your language while ”copying over” the deeper relationships between
them. Finally it synthesizes a syntactically well-formed sentence that conveys the
essential meaning of the original sentence.

Each step in this process is a hard technical problem, to which the best known
solutions are either not adequate, or good enough only in narrow application do-
mains, failing when applied to other domains. This summer, we have concentrated
on improving one of these three steps, namely the synthesis (or generation), while
having in mind that some of the core technologies can be applied to other parts of
an MT system if the basic principle (i.e., using graph tree representations with only
local transformations) is kept.

The target language for generation has been English, and the source language
to the MT system has been a language of a different type (Czech). We have been
able to produce automatically a fairly deeply analyzed sentence structure of the
source language (albeit imperfect, of course). The incorporation of the deep anal-
ysis makes the whole approach very novel - so far no large-coverage translation
system has tried to operate with such a structure, and the application to more di-
verse languages than, say, English and French, has made it an exciting enterprise.

Within the generation process, we have focused on the structural (syntactic)
part, even though we had to develop a simple morphological generation module
as well to be able to fully evaluate the final result. Statistical methods have been
used throughout (except for a comparison to an existing state-of-the-art system in
rule-based NL generation). Evaluation has been carried out using the BLEU metric
and compared mainly to a baseline GIZA++-based system available previously (as
created in the past by some of the team members).

Although the final results were below those generated by the simpler GIZA++
system, we believe that using deeper analysis for machine translation is the way to
go. Needless to say, the system we compared to carefully researched and developed
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systems was the result of only six weeks’ work (albeit very intensive indeed).
Significant part of the pre-workshop work was devoted to resource creation for

the complete Czech-English MT system. After further expansion and finalization,
these resources will be made available publicly (in a much broader and complete
form than used during the workshop).

In this report, we summarize the resources, findings, methods and experiments
we have made during the 2002 JHU/CLSP Workshop. We hope that you will be
able to find - at least - an inspiration for the future work on both Machine Transla-
tion and NL Generation here.
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Chapter 2

Summary of Resources

Jan Hajǐc, Martin Čmejrek, Jan Cǔrı́n, Jǐrı́ Havelka, Vladislav Kubǒn

The MAGENTA system generates English analytical dependency trees from
four different input options:

1. English tectogrammatical trees, automatically created from the Penn Tree-
bank;

2. English tectogrammatical trees, human-annotated;

3. English tectogrammatical trees, automatically created from the Penn Tree-
bank, improved by information from the Proposition Bank;

4. So-called “Czenglish” tectogrammatical trees, automatically created from
the Czech input text. This input option represents an attempt to develop a
full MT system based on dependency trees.

In the sequel, we summarize resources available before (Sections 2.1–2.4) as
well as those created during the workshop (Section 2.5). Sections 2.6–2.11 de-
scribe automatic procedures used for preparation of both training and testing data
for all four input options used in the MAGENTA system. Section 2.12 describes
the process of filtering dictionaries used in the transfer procedure.

2.1 The Prague Dependency Treebank

The Prague Dependency Treebank project1 aims at complex annotation of a corpus
containing about 1.8M word occurrences (about 80,000 running text sentences) in
Czech. The annotation, which is based on dependency syntax, is carried out in
three steps: morphological, analytical, and tectogrammatical. The first two have
been finished so far, presently, there are about 18,000 sentences tectogrammatically
annotated. See (Hajič et al., 2001) and (Hajičová, Panevová, and Sgall, 2000)
respectively for details of analytical and tectogrammatical annotation.

1version 1.0; LDC catalog no.: LDC2001T10, ISBN: 1-58563-212-0,
http://ufal.mff.cuni.cz/pdt
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2.2 The Penn Treebank

The Penn Treebank project2 consists of about 1,500,000 tokens. Its bracketing
style is based on constituent syntax, and comprises the surface syntactic structure,
various types of null elements representing underlying positions for wh-movement,
passive voice, infinitive constructions etc., and also predicate-argument structure
markup. The largest component of the corpus consists of about 1 million words
(about 40,000 sentences) from the Wall Street Journal newspaper. Only this part of
the Penn Treebank corpus was used in the MAGENTA project.

2.3 The Proposition Bank

The PropBank project adds annotation of basic semantic propositions to the Penn
Treebank corpus. For a verb, there is a list of syntactic frames (frameset), which
have ever occurred in the annotated data; each position in the frame is associ-
ated with a semantic role in the predicate-argument structure of a given verb. The
annotation started from the most frequent verbs (all occurrences of one verb are
annotated in the same time) and continues to less frequent ones. See (Kingsbury,
Palmer, and Marcus, 2002a) for further details.

2.4 Existing Czech-English parallel corpora

Two considerable resources of Czech-English parallel texts were available before
the workshop and were mentioned in previous experiments related to statistical
Czech-English MT: Reader’s Digest Výběr ((Al-Onaizan et al., 1999), (Cuřı́n and
Čmejrek, 2001)), and IBM AIX and AS/400 operating system guides and messages
translations (Cuřı́n andČmejrek, 1999). The Reader’s Digest Výběr corpus (58,137
sentence pairs) contains sentences from a broad domain, very free translations,
while IBM corpus (119,886 sentence pairs) contains domain specific sentences,
literal, almost word-by-word translations.

According to the automatic sentence alignment procedure, only 57% sentence
pairs from the Reader’s Digest Výběr corpus are 1-1 matching sentence pairs, com-
pared to 98% of 1-1 sentence pairs from the IBM corpus.

Both corpora are automatically morphologically annotated by automatic BH
tagging tools (Hajič and Hladká, 1998). None of these corpora contain any syntac-
tic annotation.

2.5 English to Czech translation of Penn Treebank

MAGENTA system uses syntactically annotated parallel texts as training data. Be-
fore the workshop preparation work started, there were no Czech-English paral-
lel data manually syntactically annotated. We decided to translate a considerable
part of the existing syntactically annotated English corpus (Penn Treebank) by hu-
man translators rather than to syntactically annotate existing Czech-English paral-

2version 3; LDC catalog no.: LDC99T42, ISBN: 1-58563-163-9
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lel texts. The translators were asked to translate each English sentence as a single
Czech sentence and also to stick to the original sentence construction when possi-
ble. Before the beginning of the workshop, 11,189 WSJ sentences were translated
into Czech by human translators (Table 2.1). The translation project continues, still
after the workshop, aiming at translating the whole Penn Treebank.

For both training and evaluation measured by BLEU metrics, about 500 sen-
tences were retranslated back from Czech into English by 4 different translators
(Table 2.2).

data category #sentence pairs
training 6,966
devtest1 242

step devtest2 2,737
evaltest1 248

step evaltest2 996

Table 2.1: English - Czech sentence pairs

data category #sentences

devtest 259
evaltest 256

Table 2.2: WSJ sentences retranslated from Czech to English by 4 different trans-
lators

2.6 English Analytical Dependency Trees

Apart from various input options, the tree-to-tree transducer used by the MA-
GENTA system always generates analytical trees. This section describes the auto-
matic preparation of the output part of the training data from Penn Treebank.

2.6.1 Marking Heads in English

The concept of the head of a phrase is important when transforming the phrase tree
topology into the dependency one. We used Jason Eisner’s scripts (Eisner, 2001)
for marking head constituents in each phrase.

2.6.2 Lemmatization of English

The Penn Treebank data contain manually assigned POS tags and this information
substantially simplifies lemmatization. The lemmatization procedure just searches
the list of all triples of word form, POS tag and lemma extracted from a large cor-
pus, for a triple with a matching word form and POS and chooses the lemma from

1covered by 4 human retranslations into English
2not covered by human retranslations
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wsj_1700.mrg:5::
(S (NP˜-SBJ (DT @the the)

(@NN @aim aim))
(@VP (MD @would would)

(@VP˜ (@VB @be be)
(S˜-PRD (NP˜-SBJ-1 (@-NONE- @* *))

(@VP (TO @to to)
(@VP˜ (@VB @end end)

(NP˜ (@NP (DT @the the)
(NN @guerrilla guerrilla)
(@NN @war war))

(PP (@IN @for for)
(NP˜ (@NP (@NN @control control))

(PP (@IN @of of)
(NP˜ (@NPR (@NNP @Cambodia Cambodia)))))))

(PP-MNR (@IN @by by)
(S˜-NOM (NP˜-SBJ (@-NONE- @*-1 *-1))

(@VP (@VBG @allowing allow)
(NP˜ (DT @the the)

(@NPR (NNP @Khmer Khmer)
(@NNP @Rouge Rouge)))

(NP˜ (@NP (DT @a a)
(JJ @small small)
(@NN @share share))

(PP (@IN @of of)
(NP˜ (@NN @power power))))))))))))

(. @. .))

Figure 2.1: Example of a lemmatized sentence with marked heads: “The aim would
be to end the guerrilla war for control of Cambodia by allowing the Khmer Rouge
a small share of power.”. Terminal nodes consist of a sequence of part-of-speech,
word form, lemma, and a unique id. The names of the head constituent names start
with @. (In the noun phrase Khmer Rougethe word Rougewas marked as head by
mistake.)

this triple. A large corpus of English (365M words, 13M sentences) was automat-
ically POS tagged by MXPOST tagger (Ratnaparkhi, 1996) and lemmatized by
the morphatool (Minnen, Carroll, and Pearce, 2001). The resulting list contains
910,216 triples.

Lemmatization procedure makes two attempts to find a lemma:

� first, it tries to find a triple with a matching word form and its (manually
assigned) POS;

� if it fails, it makes a second attempt with the word form converted to lower-
case.

If it fails in both attempts, then it chooses the given word form as the lemma.
For technical reasons, a unique identifier is assigned to each token in this step.
Figure 2.1 contains an example of a lemmatized sentence with marked heads.
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2.6.3 Transformation of Phrase Trees into Analytical Representations

The transformation of the lemmatized Penn Treebank phrase trees with marked
heads to analytical trees consists of three steps:

1. Structural transformation

The transformation from the phrase tree to the dependency tree is defined
recursively:

� Terminal nodes of the phrase are converted to nodes of the dependency
tree.

� Constituents of a non-terminal node are converted into separate depen-
dency trees. The root node of the dependency tree transformed from
the head constituent becomes the main root. Dependency trees trans-
formed from the left and right siblings of the head constituent are at-
tached to the main root as the left or right children, respectively.

� Nodes representing traces are removed and their children are reattached
to the parent of the trace.

� Handling of coordination in PDT is different from the Penn Treebank
annotation style and Jason Eisner’s head assigning scripts (described in
(Eisner, 2001), Sect. 6.2); in the case of a phrase containing a coordi-
nating conjunction (CC), we consider the rightmost CCas the head. The
treatment of apposition is a more difficult task, since there is no explicit
annotation of this phenomenon in the Penn Treebank; constituents of a
noun phrase separated by commas (and not containing CC) are consid-
ered to be in apposition and the rightmost comma is the head.

2. Assignment of analytical functions

The information from the phrase tree and the structure of the dependency
tree are both used for analytical function assignment.

� WSJ function tag to analytical function mapping: some function tags
of a phrase tree correspond to analytic functions in an analytical tree
and can be mapped to them: SBJ � Sb, DTV � Obj , LGS �
Obj , BNF � Obj , TPC � Obj , CLR � Obj , ADV � Adv ,
DIR � Adv , EXT � Adv , LOC � Adv , MNR� Adv , PRP �
Adv , TMP � Adv , PUT � Adv .

� Assignment of analytical functions using local context: for assigning
analytical functions to the remaining nodes, we use simple rules taking
into account POS, the name of the constituent headed by a node in the
original phrase tree. In the rules this information for the current node,
its parent and grandparent can be used. For example, the rule

���� � ������ � ��	

assigns the analytical function Atr to every determiner, the rule

���� � 
������ � �
���� � ����
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assigns the function tag AuxV to a modal verb headed by a verb, etc.
The attribute mPOSrepresenting the POS of the node is obligatory for
every rule. The rules are examined primarily in the order of the longest
prefix of the POS of the given node and secondarily in the order as they
are listed in the rule file. The ordering of rules is important since the
first matching rule found assigns the analytical function and the search
is finished.

3. PDT specific operations

Differences between PDT and Penn Treebank annotation schemes, mainly
the markup of coordinations, appositions, and prepositional phrases are han-
dled by this step.

� Coordinations and appositions: the analytical function, which was orig-
inally assigned to the head of coordination or apposition respectively is
propagated to children nodes with the attached suffix Co or Ap and
the head nodes get the analytical function Coord or Apos .

� Prepositional phrases: the analytical function originally assigned to the
preposition node is propagated to its child and the preposition node is
labeled AuxP.

� Sentences in the PDT annotation style always contain a root node la-
beled AuxS, which, as the only one in the dependency tree, does not
correspond to any terminal of the phrase tree; the root node is inserted
above the original root. While in the Penn Treebank, the final punctu-
ation is a constituent of the sentence phrase, in the analytical tree, it is
moved under the sentence root node.

After these rearrangements modifying the local context of some nodes, the
analytical function assignment procedure attempts to label the remaining empty
positions.

data category #sentences

training 42,697
devtest 248

step devtest 3,384
evaltest 249

step evaltest 1,416

Table 2.3: Penn Treebank sentences automatically converted into Analytical and
Tectogrammatical representation

2.7 English Tectogrammatical Dependency Trees

The transformation of Penn Treebank phrase trees into Tectogrammatical repre-
sentation reuses the preprocessing (marking heads and lemmatization) described
in Sections 2.6.1 and 2.6.2, and consists of the following three steps:
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Figure 2.2: Example of an analytical tree automatically converted from Penn Tree-
bank: “The aim would be to end the guerrilla war for control of Cambodia by
allowing the Khmer Rouge a small share of power.” (In the noun phrase Khmer
Rougethe word Rougewas marked as head by mistake.)
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1. Structural Transformation - the topology of the tectogrammatical tree is de-
rived from the topology of the PTB tree, and each node is labeled with the
information from the PTB tree. In this step, the concept of head of a PTB
subtree plays a key role;

2. Functor Assignment - a functor is assigned to each node of the tectogram-
matical tree;

3. Grammateme Assignment - morphological (e.g. Tense, Degree of Compar-
ison) and syntactic grammatemes (e.g. TWHEN AFT(er)) are assigned to
each node of the tectogrammatical tree. The assignment of the morphologi-
cal attributes is based on PennTreebank tags and reflects basic morphological
properties of the language. The syntactic grammatemes capture more spe-
cific information about deep syntactic structure. At the moment, there are no
automatic tools for the assignment of the latter ones.

The whole procedure is described in detail in (Žabokrtský and Kučerová, 2002).
In order to gain a “gold standard” annotation, roughly 1,000 sentences have

been annotated manually (see Table 2.4). These data are assigned morphological
gramatemes (the full set of values) and syntactic grammatemes, and the nodes are
reordered according to topic-focus-articulation.

data category #sentences

training 561
devtest 248

step devtest 199
evaltest 249

step evaltest 0

Table 2.4: Penn Treebank sentences manually assigned Tectogrammatical repre-
sentations

2.8 Part-of-Speech Tagging and Lemmatization of Czech

The Czech translations of Penn Treebank were automatically tokenized and mor-
phologically tagged, each word form was assigned a basic form - lemma- by (Hajič
and Hladká, 1998) tagging tools.

2.9 Analytical parsing of Czech

Czech analytical parsing consists of a statistical dependency parser for Czech (Hajič
et al., 1998) and a module for automatic analytical functor assignment (̌Zabokrtský,
Sgall, and Džeroski, 2002). For efficiency reasons, sentences longer than 60 words
were excluded from the corpus in this step.

Figure 2.4 contains an example of a Czech analytical tree.
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SENT
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ACT

be�CPL
PRED

&Gen;
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end�CPL
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share
EFF

power
APP

Figure 2.3: Example of a tectogrammatical tree automatically converted from Penn
Treebank: “The aim would be to end the guerrilla war for control of Cambodia by
allowing the Khmer Rouge a small share of power.” (In the noun phrase Khmer
Rougethe word Rougewas marked as the head by mistake.)
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Cílem
Pnom

by
AuxV
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Pred

ukončení
Sb

partyzánské
Atr
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nevelký
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AuxP
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�
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Figure 2.4: Example of a Czech analytical tree automatically parsed from input
text: “Cı́lem by bylo ukoňceńı partyźansḱe v́alky usiluj́ıćı o ovĺadnut́ı Kamboďze,
při čem̌z by Rud́ı Khmérov́e źıskali nevelḱy pod́ıl na moci.” (As a result of auto-
matic parsing, this tree contains some errors in attachment and analytical function
assignment: specifically, the phrase headed by “usilujı́cı́” (trying) should have been
modifying “války” (war), not “bylo” (to be, the main verb of the sentence) )
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Figure 2.5: Example of a Czech tectogrammatical tree automatically converted
from the analytical one: “Ćılem by bylo ukoňceńı partyźansḱe v́alky usiluj́ıćı o
ovládnut́ı Kamboďze, p̌ri čem̌z by Rud́ı Khmérov́e źıskali nevelḱy pod́ıl na moci.”
(The incorrect structure from the analytical tree in Figure 2.4 persists.)

2.10 Tectogrammatical parsing of Czech

During the tectogrammatical parsing of Czech, the analytical tree structure is con-
verted into the tectogrammatical one. These transformations are described by lin-
guistic rules (Böhmová, 2001). Then, tectogrammatical functors are assigned by a
C4.5 classifier (Žabokrtský, Sgall, and Džeroski, 2002).

Figure 2.5 contains an example of a Czech tectogrammatical tree.

2.11 Tectogrammatical Lexical Transfer - “Czenglish” tec-
togrammatical representation

In this step, tectogrammatical trees automatically created from Czech input text
are transfered into so-called “Czenglish” tectogrammatical trees. The transfer pro-
cedure itself is a lexical replacement of the trlemma attribute of autosemantic
nodes by its English equivalent found in the Czech-English probabilistic dictio-
nary. Because of multiple translation possibilities, the output structure is a forest
of “Czenglish” tectogrammatical trees represented in a packed-tree format (Langk-
ilde, 2000).
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2.11.1 Translation equivalent replacement algorithm (for 1-1, 1-2 entry-
translation mapping).

For each Czech tectogrammatical tree (TGTree) do:

1. Start at the root

2. In the dictionary, find translation equivalents for ”trlemma” of this node

3. If there is only one translation, add the appropriate TN-tags to this node,
continue with step 9

If there is more than one translation:

4. Change the current node into OR node

5. For each child of the current node create a new ID node, set the parent of the
child to this ID node

6. Create new WORD node for each translation, set parents of the new nodes
to the OR node

7. If there is a two-word translation, create a new node for the dependent word
and set its parent to the appropriate WORD node created in 6)

8. For each ID node created in step 5 set multiple parents to all WORD nodes
created in step 6

9. Backtrack to the next node in TGTree and continue with step 2

Figure 2.6 contains an example of the “Czenglish” tectogrammatical packed-
tree.

For practical reasons such as time efficiency and integration with the Tree-to-
tree transducer, a simplified version, taking into account only the first most prob-
able translation was used during the time of the workshop. Also 1-2 translations
were handled as 1-1 — two words in one “trlemma” attribute.

2.12 Czech-English Word-to-Word Translation Dictionar-
ies

2.12.1 Manual Dictionary Sources

There were three different sources of Czech-English manual dictionaries available,
two of them were downloaded form the Web (WinGED, GNU/FDL), and one was
extracted from the Czech/English EuroWordNet. See dictionaries parameters in
Table 2.5.

2.12.2 Dictionary Filtering

For a subsequent use of these dictionaries for a simple transfer from the Czech to
the English tectogrammatical trees (see Section 2.11) a relatively huge number of
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ňce

ńı
p

a
r-

tyźa
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Dictionary # entries # translations Weight

EuroWordNet 12,052 48,525 3
GNU/FDL 12,428 17,462 3
WinGED 16,296 39,769 2
merged 33,028 87,955 —

Table 2.5: Dictionary parameters and weights

possible translations for each entry3 had to be filtered. The aim of the filtering is
to exclude synonyms from the translation list, i.e. to choose one representative per
meaning.

First, all dictionaries are converted into a unified XML format (See description
of steps a8822, b8822in Table 2.6) and merged together preserving information
about the source dictionary (c8822, d8822).

This merged dictionary consisting of entry/translation pairs (Czech entries and
English translations in our case) is enriched by the following procedures:

� Frequencies of English word obtained from large English monolingual cor-
pora are added to each translation (e8822). See description of the corpora in
Section 2.6.2.

� Czech POS tag and stem are added to each entry using the Czech morpho-
logical analyzer (f8822, (Hajič and Hladká, 1998)).

� English POS tag is added to each translation (g8822). If there is more
than one English POS tag obtained from the English morphological analyzer
(Ratnaparkhi, 1996), the English POS tag is “disambiguated” according to
the Czech POS in the appropriate entry/translation pair.

We select few relevant translations for each entry taking into account the sum
of the weights of the source dictionaries (see dictionary weights in Table 2.5),
the frequencies from English monolingual corpora, and the correspondence of the
Czech and English POS tags (j8822).

2.12.3 Scoring Translations Using GIZA++

To make dictionaries more sensitive to a specific domain, which is in our case
the domain of financial news, and because of the use of stochastic methods in the
subsequent stages (such as transduction of English TGTrees to ALTrees), it would
help to have the translations somehow weighted.

By extending this dictionary by the training part of the Czech-English parallel
corpus (7,412 sentences from WSJ) and by running GIZA++ training (translation
models 1-4, see (Och and Ney, 2000) on it (steps a8824–e8824), we obtained a
probabilistic Czech-English dictionary. As a result, the entry/translation pairs seen
in the parallel corpus become more probable. For entry/translation pairs not seen
in the parallel text, the probability distribution among translations is uniform. The

3For example for WinGED dictionary it is 2.44 translations per entry in average, and excluding
1-1 entry/translation pairs even 4.51 translations/entry.
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translation is “GIZA++ selected” if its probability is higher than a threshold, which
is set to 0.10 in our case.

The final selection (l8822) contains translations selected by both the dictionary
and GIZA++ selectors. In addition, translations not covered by the original dic-
tionary can be included in the final selection, if they were newly discovered in the
parallel corpus by GIZA++ training and their probability is significant (higher than
the most probable translation so far).

The translations of the final selection are used in the transfer (steps h8801 or
i8801). See the sample of the dictionary in Figure 2.7.
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<e>zes ı́lit<t>V

[FSG]<tr>increase<trt>V<prob>0.327524
[FSG]<tr>reinforce<trt>V<prob>0.280199
[FSG]<tr>amplify<trt>V<prob>0.280198
[G]<tr>re-enforce<trt>V<prob>0.0560397
[G]<tr>reenforce<trt>V<prob>0.0560397

<e>v ýb ěr<t>N

[FSG]<tr>choice<trt>N<prob>0.404815
[FSG]<tr>selection<trt>N<prob>0.328721
[G]<tr>option<trt>N<prob>0.0579416
[G]<tr>digest<trt>N<prob>0.0547869
[G]<tr>compilation<trt>N<prob>0.0547869
[]<tr>alternative<trt>N<prob>0.0519888
[]<tr>sample<trt>N<prob>0.0469601

<e>selekce<t>N

[FSG]<tr>selection<trt>N<prob>0.542169
[FSG]<tr>choice<trt>N<prob>0.457831

<e>roz š ı́ řit<t>V

[FSG]<tr>widen<trt>V<prob>0.20402
[FSG]<tr>enlarge<trt>V<prob>0.20402
[G]<tr>expand<trt>V<prob>0.138949
[G]<tr>extend<trt>V<prob>0.130029
[G]<tr>spread<trt>V<prob>0.0822508
[]<tr>step<trt>V<prob>0.0516784
[]<tr>let<trt>X<prob>0.0459122
[]<tr>stretch<trt>V<prob>0.0427784
[]<tr>larger<trt>V<prob>0.040804
[]<tr>broaden<trt>V<prob>0.040804
[]<tr>ground-handling<trt>N<prob>0.0136013
[]<tr>make larger<trt>V<prob>0.01
[]<tr>let_out<trt>V<prob>0.01
[]<tr>reconsider<trt>V<prob>0.00515253

[S] ... dictionary weight selection
[G] ... GIZA++ selection
[F] ... final selection

Figure 2.7: Sample of the Czech-English dictionary used for the tranfer.
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step functionality summary

8801 – Czech data

a8801 tokenization of Czech WSJ files
b8801 morphology & tagging
c8801 preprocessing necessary for Collins’ parser
d8801 statistical dependency parser for Czech
e8801 analytical function assignment
f8801 rule based conversion of analytical representation into tectogrammatical

representation
g8801 C 4.5 based assignment of tectogrammatical functors
h8801 lexical transfer into “Czenglish” packed forest representation
i8801 simplified lexical transfer into “Czenglish”, first translation

8802 – English data

a8802 marking heads in Penn Treebank trees
b8802 lemmatization of Penn Treebank
c8802 conversion of Penn Treebank trees into analytical trees
d8802 conversion of Penn Treebank trees into tectogrammatical trees

8822 – Czech-English Dictionary Filtering

a8822 creating unified SGML format of dictionaries from various input formats
b8822 filtering out garbage
c8822 conversion into XML
d8822 preparing dictionary for POS annotation
e8822 adding frequencies from large monolingual corpus to English translations
f8822 morphological analysis of Czech entries
g8822 morphological analysis of English translations
h8822 merging temporary dictionaries from steps e8822, f8822 and g8822 into

one XML dictionary
i8822 converting the whole dictionary (without any filtering criteria) to a parallel

plain text corpus to be used as GIZA++ training data
j8822 selecting translations according to dictionary weights and converting the

selected sub-dictionary to a parallel plain text corpus to be used as GIZA++
training data

k8822 merges results of GIZA++ dictionary training (e8824) with XML dictio-
nary.

l8822 selecting translations for transfer according to dictionary weights and
GIZA++ translation probabilities

m8822 stores Czech-English translation dictionary to be used for transfer (h8801,
i8801)

8824 – Czech-English Probabilistic Dictionary Training

a8824 creating parallel corpus from Czech tectogrammatical trees (g8801) and
English tectogrammatical trees (d8802)

b8824 creating plain text parallel corpus of trlemmas for GIZA++ training
c8824 extending training corpus by corpus obtained from i8822 or j8822
d8824 GIZA++ training, model 4
e8824 converting GIZA++ output into XML

Table 2.6: Summary of used scripts
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Chapter 3

The Generation System
MAGENTA

Jason Eisner, Jan Hajič, Dan Gildea,
Yuan Ding, Terry Koo, Kristen Parton

The Generation system assumes that we have a tectogrammatical (TR) tree (as
a result of source language analysis and transfer), and its task is to transform this
tree to the correct target-language sentence by converting it first to an intermediate
representation, namely, a surface-syntactic dependency tree, called an analytical
(AR) tree.

In the project, we have divided the task into four successive steps:

1. Global Tree Preprocesing/transformation (additional target-language label-
ing) - section 3.3;

2. Tree-to-tree transducer (TR to AR, unordered) - section 3.1 and section 3.2;

3. Language Model (ordering the AR tree nodes) - section 3.4;

4. English Morphology and Punctuation - section 3.5.

The first step (additional supportive tree labeling using global tree information)
has only been implemented separately (aiming at correct preposition generation)
and it is not part of the system as evaluated. However, it is meant to be an example
of a module that can help to better guide the core of the system, namely the tree
transformation step.

3.1 A Generative Model for Pairs of Trees

In this section, we present a description of the core of the generation system,
namely a generative model for pairs of trees that enables (locally) non-isomorphic
“transformations” of tree structures. It is usable not only for NL generation, but
also for machine translation, deep parsing etc.1

1This section also appeared separately as (Eisner, 2003). It was also supported by ONR grant
N00014-01-1-0685, “Improving Statistical Models Via Text Analyzers Trained from Parallel Cor-
pora.” The views expressed are the author’s.
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3.1.1 Tree-to-Tree Mappings

Statistical machine translation systems are trained on pairs of sentences that are
mutual translations. For example, (beaucoup d’enfants donnent un baiserà Sam,
kids kiss Sam quite often). This translation is somewhat free, as is common in
naturally occurring data. The first sentence is literally Lots of’children give a kiss
to Sam.

In the present section 3.1.1, we outline “natural” formalisms and algorithms
for training on pairs of trees. Our methods work on either dependency trees (as
shown) or phrase-structure trees. Note that the depicted trees are not isomorphic.

a

kiss

baiser

donnent

Sam often

quite

beaucoup un Sam

d’

enfants

kids

Our main concern is to develop models that can align and learn from these tree
pairs despite the “mismatches” in tree structure. Many “mismatches” are charac-
teristic of a language pair: e.g., preposition insertion (of� �), multiword locutions
(kiss� give a kiss to; misinform� wrongly inform), and head-swapping (float
down� descend by floating). Such systematic mismatches should be learned by
the model, and used during translation.

It is even helpful to learn mismatches that merely tend to arise during free
translation. Knowing that beaucoup d’is often deleted will help in aligning the
rest of the tree.

When would learned tree-to-tree mappings be useful? Obviously, in MT, when
one has parsers for both the source and target language. Systems for “deep” anal-
ysis and generation might wish to learn mappings between deep and surface trees
(Böhmová et al., 2001) or between syntax and semantics (Shieber and Schabes,
1990). Systems for summarization or paraphrase could also be trained on tree
pairs (Knight and Marcu, 2000). Non-NLP applications might include comparing
student-written programs to one another or to the correct solution.

Our methods can naturally extend to train on pairs of forests(including packed
forests obtained by chart parsing). The correct tree is presumed to be an element of
the forest. This makes it possible to train even when the correct parse is not fully
known, or not known at all.

3.1.2 A Natural Proposal: Synchronous TSG

We make the quite natural proposal of using a synchronous tree substitution gram-
mar (STSG). An STSG is a collection of (ordered) pairs of aligned elementary
trees. These may be combined into a derived pair of trees. Both the elementary
tree pairs and the operation to combine them will be formalized in later sections.

As an example, the tree pair shown in the introduction might have been derived
by “vertically” assembling the 6 elementary tree pairs below. The � symbol de-
notes a frontier node of an elementary tree, which must be replaced by the circled
root of another elementary tree. If two frontier nodes are linked by a dashed line
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labeled with the state � , then they must be replaced by two roots that are also
linked by a dashed line labeled with � .

a

kiss

null
(0,Adv)

Start

un

baiser

NP

donnent

NP
NP

beaucoup

NPd’

(0,Adv)
null

null often(0,Adv)

(0,Adv)
null quite

enfants kids
NP

Sam SamNP

The elementary trees represent idiomatic translation “chunks.” The frontier
nodes represent unfilled roles in the chunks, and the states are effectively nonter-
minals that specify the type of filler that is required. Thus, donnent un baiser̀a
(“give a kiss to”) corresponds to kiss, with the French subject matched to the En-
glish subject, and the French indirect object matched to the English direct object.
The states could be more refined than those shown above: the state for the subject,
for example, should probably be not NPbut a pair (Npl, NP3s).

STSG is simply a version of synchronous tree-adjoining grammar or STAG
(Shieber and Schabes, 1990) that lacks the adjunction operation. (It is also equiva-
lent to top-down tree transducers.) What, then, is new here?

First, we know of no previous attempt to learn the “chunk-to-chunk” map-
pings. That is, we do not knowat training time how the tree pair of section 3.1.1
was derived, or even what it was derived from. Our approach is to reconstruct
all possible derivations, using dynamic programming to decompose the tree pair
into aligned pairs of elementary trees in all possible ways. This produces a packed
forest of derivations, some more probable than others. We use an efficient inside-
outside algorithm to do Expectation-Maximization, reestimating the model by train-
ing on all derivations in proportion to their probabilities. The runtime is quite low
when the training trees are fully specified and elementary trees are bounded in
size.2

Second,it is not a priori obvious that one can reasonably use STSG instead
of the slower but more powerful STAG. TSG can be parsed as fast as CFG. But
without an adjunction operation,3, one cannot break the training trees into linguis-
tically minimal units. An elementary tree pair � � (elle est finalement partie, fi-
nally she left)cannot be further decomposed into � � (elle est partie, she left)and
� � (finalement, finally). This appears to miss a generalization. Our perspective is
that the generalization should be picked up by the statistical model that defines the
probability of elementary tree pairs. ���� can be defined using mainly the same

2(Goodman, 2002) presents efficient TSG parsing with unbounded elementary trees. Alas, that
clever DOP-to-CFG reduction does not appear to generalize to our synchronous case. (It would need
exponentially many nonterminals to keep track of a matching of unboundedly many frontier nodes.)
Nor does it permit arbitrary models of elementary-tree probabilities.

3Or a sister-adjunction operation, for dependency trees.
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parameters that define ���� and ����, with the result that ���� � ���� � ����.
The balance between the STSG and the statistical model is summarized in the last
paragraph of this section.

Third, our version of the STSG formalism is more flexible than previous ver-
sions. We carefully address the case of empty trees, which are needed to handle
free-translation “mismatches.” In the example, an STSG cannot replace beaucoup
d’ (“lots of”) in the NP by quite oftenin the VP; instead it must delete the former
and insert the latter. Thus we have the alignments (beaucoup d’,�) and (�, quite
often). These require innovations as shown. The tree-internal deletion of beau-
coup d’is handled by an empty elementary tree in which the root is itself a frontier
node. (The subject frontier node of kissis replaced with this frontier node, which
is then replaced with kids.) The tree-peripheral insertion of quite oftenrequires
an English frontier node that is paired with a French null.

We also formulate STSGs flexibly enough that they can handle both phrase-
structure trees and dependency trees. The latter are small and simple (Alshawi,
Bangalore, and Douglas, 2000): tree nodes are words, and there need be no other
structure to recover or align. Selectional preferences and other interactions can be
accommodated by enriching the states.

Any STSG has a weakly equivalent SCFG that generates the same string pairs.
So STSG (unlike STAG) has no real advantage for modeling string pairs.4 But
STSGs can generate a wider variety of tree pairs, e.g., non-isomorphic ones. So
when actual trees are provided for training, STSG can be more flexible in aligning
them.

3.1.3 Past Work

Most statistical MT derives from IBM-style models (Brown et al., 1993), which
ignore syntax and allow arbitrary word-to-word translation. Hence they are able
to align any sentence pair, however mismatched. However, they have a tendency
to translate long sentences into word salad. Their alignment and translation ac-
curacy improves when they are forced to translate shallow phrases as contiguous,
potentially idiomatic units (Och, Tillmann, and Ney, 1999).

Several researchers have tried putting “more syntax” into translation mod-
els: like us, they use statistical versions of synchronous grammars, which gen-
erate source and target sentences in parallel and so describe their correspondence.5

This approach offers four features absent from IBM-style models: (1) a recursive
phrase-based translation, (2) a syntax-based language model, (3) the ability to con-
dition a word’s translation on the translation of syntactically related words, and (4)
polynomial-time optimal alignment and decoding (Knight, 1999).

Previous work in statistical synchronous grammars has been limited to forms of
synchronous context-free grammar (Wu, 1997; Alshawi, Bangalore, and Douglas,
2000; Yamada and Knight, 2001). This means that a sentence and its translation
must have isomorphic syntax trees, although they may have different numbers of

4However, the binary-branchingSCFGs used by (Wu, 1997) and (Alshawi, Bangalore, and Dou-
glas, 2000) are strictly less powerful than STSG.

5The joint probability model can be formulated, if desired, as a channel model times a much
better-trained language model.
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surface words if null words � are allowed in one or both languages. This rigidity
does not fully describe real data.

The one exception is the synchronous DOP approach of (Poutsma, 2000),
which obtains an STSG by decomposing alignedtraining trees in all possible ways
(and using “naive” count-based probability estimates). However, we would like to
estimate a model from unaligned data.

3.1.4 A Probabilistic TSG Formalism

For expository reasons (and to fill a gap in the literature), first we formally present
non-synchronous TSG. Let � be a set of states. Let � be a set of labels that may
decorate nodes or edges. Node labels might be words or nonterminals. Edge labels
might include grammatical roles such as Subject. In many trees, each node’s
children have an order, recorded in labels on the node’s outgoing edges.

An elementary tree is a a tuple �	
 	 �
 �
 �
 

 �� where 	 is a set of nodes;
	 � � 	 is the set of internal nodes, and we write 	 � � 	 	 	 � for the set of
frontier nodes; � � 	 � 
 	 is a set of directed edges(thus all frontier nodes
are leaves). The graph �	
�� must be connected and acyclic, and there must be
exactly one node � � 	 (the root) that has no incoming edges. The function
� � �	 � � �� � � labels each internal node or edge; 
 � � is the root state, and
� � 	 � � � assigns a frontier state to each frontier node (perhaps including �).

A TSG is a set of elementary trees. The generation process builds up a derived
tree � that has the same form as an elementary tree, and for which 	� � 
.
Initially, � is chosen to be any elementary tree whose root state ��
 � Start.
As long as � has any frontier nodes, ��	 � , the process expands each frontier node
� � ��	 � by substituting at � an elementary tree � whose root state, ��
, equals �’s
frontier state, ������. This operation replaces � with ���	 � ��	 	 ���
 ��	 � �
��	 �
 ���� � ���
 ��� � ���
 ��

 ��� � ��� 	 ���
 ��
���. Note that a function is
regarded here as a set of �input
 output� pairs. ���� is a version of ��� in which �
has been been replaced by ���.

A probabilistic TSG also includes a function ��� � 
�, which, for each state

, gives a conditional probability distribution over the elementary trees � with root
state 
. The generation process uses this distribution to randomly choose which
tree � to substitute at a frontier node of � having state 
. The initial value of � is
chosen from ��� � Start�. Thus, the probability of a given derivation is a product
of ��� � 
� terms, one per chosen elementary tree.

There is a natural analogy between (probabilistic) TSGs and (probabilistic)
CFGs. An elementary tree � with root state 
 and frontier states 
� � � � 
� (for � � �)
is analogous to a CFG rule 
 � � 
� � � � 
�. (By including � as a terminal symbol
in this rule, we ensure that distinct elementary trees � with the same states corre-
spond to distinct rules.) Indeed, an equivalent definition of the generation process
first generates a derivation tree from this derivation CFG, and then combines its
terminal nodes � (which are elementary trees) into the derived tree � .

3.1.5 Tree Parsing Algorithms for TSG

Given a a grammar � and a derived tree � , we may be interested in constructing
the forest of � ’s possible derivation trees (as defined above). We call this tree
parsing, as it finds ways of decomposing � into elementary trees.
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Given a node � � ���, we would like to find all the potential elementary sub-
trees � of � whose root ��� could have contributed � during the derivation of � .
Such an elementary tree is said to fit �, in the sense that it is isomorphic to some
subgraph of � rooted at �.

The following procedure finds an elementary tree � that fits �. Freely choose a
connected subgraph � of � such that � is rooted at � (or is empty). Let ��	� be the
vertex set of � . Let ��� be the set of outgoing edges from nodes in ��	� to their
children, that is, ��� � ��� � ���	 � 
 ��	 �. Let ��� be the restriction of ��� to
��	 � � ���, that is, ��� � ��� � ����	 � � ���� 
 ��. Let ��	 be the set of nodes
mentioned in ���, or put ��	 � ��� if ��	 � � ��� � 
. Finally, choose ��
 freely
from �, and choose � � ��	 � � � to associate states with the frontier nodes of �;
the free choice is because the nodes of the derived tree � do not specify the states
used during the derivation.

How many elementary trees can we find that fit �? Let us impose an upper
bound � on ���	 �� and hence on �� �. Then in an �-ary tree � , the above procedure
considers at most ����

���
connected subgraphs � of order � � rooted at �. For

dependency grammars, limiting to � � � and � � � is quite reasonable, leaving
at most 43 subgraphs � rooted at each node �, of which the biggest contain only �,
a child �� of �, and a child or sibling of ��. These will constitute the internal nodes
of �, and their remaining children will be �’s frontier nodes.

However, for each of these 43 subgraphs, we must jointly hypothesize states
for all frontier nodes and the root node. For ��� � �, there are exponentially many
ways to do this. To avoid having exponentially many hypotheses, one may restrict
the form of possible elementary trees so that the possible states of each node of �
can be determined somehow from the labels on the corresponding nodes in � . As a
simple but useful example, a node labeled NP might be required to have state NP.
Rich labels on the derived tree essentially provide supervision as to what the states
must have been during the derivation.

The tree parsing algorithm resembles bottom-up chart parsing under the deriva-
tion CFG. But the input is a tree rather than a string, and the chart is indexed by
nodes of the input tree rather than spans of the input string:6

1. for each node � of � , in bottom-up order
2. for each � � �, let ����� � �
3. for each elementary tree � that fits �
4. increment ������� by ��� � ���� �

�
����� � �����	�
��

The � values are inside probabilities. After running the algorithm, if � is the root
of � , then �r�Start� is the probability that the grammar generates � .

��� � 
� in line 4 may be found by hash lookup if the grammar is stored ex-
plicitly, or else by some probabilistic model that analyzes the structure, labels, and
states of the elementary tree � to compute its probability.

One can mechanically transform this algorithm to compute outside probabili-
ties, the Viterbi parse, the parse forest, and other quantities (Goodman, 1999). One
can also apply agenda-based parsing strategies.

For a fixed grammar, the runtime and space are only ���� for a tree of � nodes.

6We gloss over the standard difficulty that the derivation CFG may contain a unary rule cycle.
For us, such a cycle is a problem only when it arises solely from single-node trees.

30



The grammar constant is the number of possible fits to a node � of a fixed tree. As
noted above, there usually not many of these (unless the states are uncertain) and
they are simple to enumerate.

As discussed above, an inside-outside algorithm may be used to compute the
expected number of times each elementary tree � appeared in the derivation of
� . That is the E step of the EM algorithm. In the M step, these expected counts
(collected over a corpus of trees) are used to reestimate the parameters�� of ��� � 
�.
One alternates E and M steps till ��corpus � ��������� converges to a local maximum.
The prior ����� can discourage overfitting.

3.1.6 Extending to Synchronous TSG

We are now prepared to discuss the synchronous case. A synchronous TSG con-
sists of a set of elementary tree pairs. An elementary tree pair � is a tuple
���
 ��
 

�
 ��. Here �� and �� are elementary trees without their own root or fron-
tier states (that is, �� � �	� 
 	

�
� 
 �� 
 ���). But 
 � � is a single root state for the

pair. � � 	 �
�

 	 �

�
is a matching between ��’s and ��’s frontier nodes.7 Let �� �

� � ����
null� � �� is unmatched in �� � ��null
 ��� � �� is unmatched in ��.
Finally, � � �� � � assigns a state to each frontier node pair or unpaired frontier
node.

In the figure of section 3.1.2, donnent un baiser̀a has 2 frontier nodes and
kisshas 3, yielding 13 possible matchings. Note that least one English node must
remain unmatched; it still generates a full subtree, aligned with null.

As before, a derived tree pair � has the same form as an elementary tree pair.
The generation process is similar to before. As long as �� �� �� 
, the process
expands some node pair ���
 ��� � �� ��. It chooses an elementary tree pair � such
that ��
 � ������
 ���. Then for each � � �
 	, it substitutes �� at �� if non-null. (If
�� is null, then ��
 must guarantee that �� is the special null tree.)

In the probabilistic case, we have a distribution ��� � 
� just as before, but this
time � is an elementary tree pair.

Several natural algorithms are now available to us:

� Training. Given an unaligned tree pair ���
 ���, we can again find the forest
of all possible derivations, with expected inside-outside counts of the ele-
mentary tree pairs. This allows EM training of the ��� � 
� model.

The algorithm is almost as before. The outer loop iterates bottom-up over
nodes �� of ��; an inner loop iterates bottom-up over �� of ��. Inside proba-
bilities (for example) now have the form �������
�. Although this brings the
complexity up to �����, the real complication is that there can be many fits
to ���
 ���. There are still not too many elementary trees �� and �� rooted at
�� and ��; but each ���
 ��� pair may be used in many elementary tree pairs �,
since there are exponentially many matchings of their frontier nodes. Fortu-
nately, most pairs of frontier nodes have low � values that indicate that their
subtrees cannot be aligned well; pairing such nodes in a matching would
result in poor global probability. This observation can be used to prune the
space of matchings greatly.

7A matching between � and � is a 1-to-1 correspondence between a subset of � and a subset of
� (perhaps all of ���).
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� 1-best Alignment (if desired). The training algorithm above finds the joint
probability ����
 ���, summed over all alignments. Use its Viterbi variant to
find the single bestderivation of the input tree pair. This derivation can be
regarded as the optimal syntactic alignment.8

� Decoding.We create a forest of possible synchronous derivations (cf. (Langk-
ilde, 2000)). We chart-parse �� much as in section 3.1.5, but fitting the left
side of an elementary tree pair to each node. Roughly speaking:

1. for �� = null and then �� � ���� , in bottom-up order
2. for each � � �, let ������ � ��
3. for each probable � � ���� ��� ��
� 	� whose �� fits ��
4. max ��� � �� �

�
���	���� �
 ����	�
�� 
��� into ������

We then extract the max-probability synchronous derivation and return the
�� that it derives. This algorithm is essentially alignment to an unknowntree
��; we do not loop over its nodes ��, but choose �� freely.

In line 3 of the above pseudocode, for each possible elementary tree �� that fits
��, we must call a proposer module to find all reasonably probable ways to extend
it to an elementary tree pair �. This amounts to finding possible translations of the
local structure ��. The proposer is further discussed in section ?? below. It need
not score the translations, only propose them, since each proposed � will be scored
by the model (the call to ��� � 
� at line 4).

3.1.7 Status of the Implementation

We have outlined an EM algorithm to learn the probabilities of elementary tree
pairs by training on pairs of full trees, and a Viterbi decoder to find optimal trans-
lations. It implements Step 2 of the generation system (see the start of Chapter 3).

For the within-language translations, it sufficed to use a simplistic, fixed model
of ��� � 
� that relied entirely on morpheme identity.

Team members are now developing real, trainable models of ��� � 
�, such as
log-linear models on meaningful features of the tree pair �. Cross-language trans-
lation results await the plugging-in of these interesting models. The algorithms we
have presented serve only to “shrink” the modeling, training and decoding prob-
lems from full trees to bounded, but still complex, elementary trees.

Our elementary trees are dependency trees whose internal nodes are decorated
with words and whose edges are decorated with grammatical functions. Thus,
pairing elementary trees with 2 and 3 internal nodes represents a 2-word-to-3-word
phrasal translation. The trees’ frontier nodes control what happens to the phrase’s
dependents during translation.

We have tested the code by successfully aligning English TR (deep structure)
to English AR (surface structure). For this we used only a simple “stub” probability
model ��� � 
� that exploits lexical identity, but is not allowed to use subconstituent
order information (as that would make the problem too easy). We have also demon-
strated decoding with this simple “stub” model.

To use the system in real generation (English TR � English AR), we await a
real, trainable model of ��� � 
� for this step. Given such a model, one would be

8As free-translation post-processing, one could try to pair up “moved” subtrees that align well
with each other, according to the chart, but were both paired with null in the global alignment.
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able to use our TR-to-AR alignments to retrain the model parameters, and repeat
just as for any EM algorithm. We are interested in log-linear models of ��� � 
� for
generation and also for the other steps of translation.

3.2 The Proposer

The proposer’s job in a tree-to-tree translation system was discussed at the end
of section 3.1.6. In our case of generation (TR-to-AR translation), the proposer
must be able to suggest possible translations of each TR fragment.

In principle, a proposer could be derived directly from the probability model
��� � 
�; indeed, its proposals might change at successive iterations of EM as that
model’s parameters are changed.

However, it is also possible to use a heuristic proposer based on table lookup
and other tricks. That is our current strategy: we attempt to look up known elemen-
tary trees, and handle unknown ones (badly) by translating word-by-word. Better
heuristics for translating unknown elementary trees could be imagined. Note that
the proposer is allowed to overgenerate (at the cost of speed), as poor proposals
will simply be scored low by the probability model.

The task of the proposer for the decoder is the following:

� Collecting Feature Patterns on TR

� Construct AR using observed possible TR-AR transform

� For unobserved TR, using naive mapping on AR

At the training time, the proposer observes the TR to AR mappings by running
through a treewalker. A typical mapping of TR structure to AR structure is shown
in Fig. 3.1.

After a set of such mappings have been collected, two sets of parameters of
each of the mappings are extracted. Those parameters are used to fill two databases:
The TR-AR transform database and the TR feature database. The TR-AR trans-
form database stores each of the mappings, including the lexical transfer and the
structural variance. The TR feature database stores the features of the TR that each
mapping is conditioned on. The scheme of the proposer at the training stage is
shown in Fig. 3.2.

At the decoding stage, the proposer first take an input TR tree, and fills it into
the TR side of the TR-AR pair. Then the proposer looks into each of the observed
feature combinations in the TR feature database, fills the features, and make a
query into the TR-AR transform database. If the query returns a set of non-empty
value(s), that set of AR trees is proposed to the decoder. Otherwise, the AR tree is
constructed using a naive rule by simply replacing the lemmas. The scheme of the
proposer at the decoding stage is shown in Fig. 3.3, and the Fig. 3.4 shows how a
query is made by the proposer.
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Figure 3.1: TR to AR mapping

Figure 3.2: Proposer: training phase

Figure 3.3: Proposer: decoding stage
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Figure 3.4: Query made by the Proposer

3.3 Using Global Tree Information: Preposition Insertion

exist in the AR. This section describes our implementation of a classifier that indi-
cates where prepositions must be inserted into the TR. Because the system operates
on the tree as a whole, it has access to global tree information and can make more
accurate decisions than the Proposer. Although we only discuss preposition inser-
tion in this section, the techniques we present are applicable to other tree transfor-
mations such as insertion of determiners or auxiliary verbs. All such modules in
conjunction, if integrated with the generation system, implement its Step 1 (see the
start of Chapter 3).

The remainder of this section is split into four subsections. The first two subsec-
tions present, respectively, an overview of the C5.0 data mining tool, which we
used to train our classifier, and the general technique of using classifiers to capture
global tree information. The next subsection presents our preposition insertion im-
plementation, describing the operation of our classifier, how we prepared its testing
and training data, how we improved its performance, and how it performs. The fi-
nal subsection concludes with suggestions for future work.

3.3.1 Description of C5.0

C5.0 is a data mining tool that generates classifiers in the form of decision trees
or rule sets. We present a brief overview of the C5.0 data mining tool. The reader
already familiar with C5.0 may skip this sub-section.

The training data for C5.0 is set of cases, where each case consists of a contextand
a classification. The context can be made of any number of variables which can be
real numbers, dates, enumerated discrete values, or functions on the other variables
(such as area := width*height or young := age < 20 ). The classifi-
cation is the category to which C5.0 should assign this case. C5.0 has a number of
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training options, a few of which we describe below.

Discrete Value Sub-settingC5.0 can make decisions based on subsets of discrete
values instead of individual discrete values. On a data set with many discrete
values, discrete value sub-setting reduces fragmentation of the training data.

Adaptive Boosting C5.0 can run several trials of classifier generation on given
sets of training and test data. The first classifier generated may do well
but will probably make errors on some regions of the test data. C5.0 takes
these errors into account and trains the second classifier with an emphasis on
these error-prone data. This process continues iteratively until some spec-
ified number of trials is complete or the accuracy of the classifier becomes
either very high or very low.

Misclassification CostsC5.0 allows misclassification costs to be specified indi-
vidually. This is useful in when one kind of error is more grave than another;
for instance, when diagnosing a potentially fatal disease, we would rather
misdiagnose a healthy patient as sick than vice versa. By specifying a high
cost for misclassifying sick as healthy and a low cost for misclassifying
healthy as sick , we can instill a bias in the classifier C5.0 produces.

When using a C5.0 classifier, the context is presented as input, and the classifier
attempts to deduce the correct classification. Source code is available for a free C
program called sample , which takes a trained C5.0 decision tree or rule set and
classifies new cases with it.

3.3.2 Using Classifiers to Capture Tree Information

We now discuss the general technique of using classifiers to aid our tree transduc-
tion. Recall that our tree transduction operates by transforming small tree frag-
ments at a time and then composing those fragments into whole trees. Unfortu-
nately, the TR tree fragments only provide local information limited by the size of
the fragment. This lack of information makes it difficult for the Proposer to choose
the correct AR transformation.

In actuality, the entire TR tree is available to the transducer, but we choose not to
transduce the entire tree at one go for data sparseness and computational efficiency
reasons. However, some TR to AR transformations depend on long-range relation-
ships or other data which are lost when the tree is broken into small fragments. We
would like to capture the relevant long-range information in some local form that
the Proposer can easily access.

Our approach is to preprocess the TR tree with a classifier, attaching arbitrary in-
formative labels to individual nodes. When the Proposer receives a tree fragment,
it reads the labels off of the nodes in the fragment, incorporating the labels’ infor-
mation in its decisions.
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3.3.3 The Preposition Insertion Classifier

The classifier operates by labeling individual nodes of the TR tree. The possible
labels are nothing , indicating that no preposition should be inserted above this
node, or insert X, where X represents a preposition to insert above the labeled
node. X can either be a single preposition such as “of” or a compound preposition
such as “because of”. In the case of a compound preposition such as “because of”,
“of” should be inserted as the parent to the labeled node and “because” should be
inserted as the parent of “of”.

Unfortunately, we were unable to integrate the preposition insertion classifier into
the tree transduction system, due to time constraints. However, the classifier itself
is fully implemented and has been tested as an independent module.

The remainder of this subsection is broken into three parts which describe, respec-
tively, how we created the training data for our classifier, how we attempted to
improve its performance, and how the classifier performs.

Preparing the Training Data

We now discuss how we prepared training data for our preposition insertion classi-
fier. To begin, we have only trained and tested the classifier on data from Input 1.
This is because Input 1 has a large amount of data, covering all 24 WSJ sections,
and was the earliest available Input of this size. Naturally, we did not train or test
the classifier on the parts of the WSJ which were reserved for testing.

POS Tag
TR Func

POS Tag
TR Func

POS Tag
TR Func

POS Tag
TR Func

POS Tag
TR Func
TR Lemma

POS Tag
TR Func

Figure 3.5: Inputs to the classifier when classifying current node (hexagon).

The classifier’s inputs, displayed in Figure 3.5, are the attributes of the node to
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be classified and a few of the surrounding nodes. Specifically, we pass the POS
tag and TR functor of the node being classified, its parent node, its left and right
brother nodes, and its leftmost and rightmost children. In addition, the TR lemma
of the parent node is also included. We would ideally include more TR lemmas but
doing so increases the size of the problem drastically and causes C5.0 to exit with
an out of memory error.

One caveat about our inputs is that the POS tags in the classifier’s input are not
full POS tags — at transduction time, only simple POS tags are available. This
simple POS tag can distinguish between basic categories such as noun, verb, and
adjective, but does not make distinctions within these categories, such as VBZand
VBD. We simulate this by using only the first character of the full POS tag in the
input to the classifier.

To create the data, we used a Perl script that traverses a TR tree, creating a single
case entry for each node. The contextual information is gathered in fairly straight-
forward fashion, by examining the parent, left and right brother, and leftmost and
rightmost children of the current node. The classification is a bit more tricky to
find, however.

Since the TR trees from Input 1 are automatically generated from English surface
text, they contain the original prepositions, marked as hidden nodes. The hidden
prepositions are also attached at a different position in the TR than the AR; if a
preposition is attached above node � in the AR tree, it is attached as the leftmost
child of � in the TR tree. As a second check, we examine the corresponding AR
tree and make sure that the hidden prepositions in the TR tree appear in the AR tree
as parents of the current node, with AR functor AuxP and POS tag IN . These two
quick checks will accept some subordinating conjunctions as prepositions, but this
is reasonable since the two phenomena are closely related. Finally, the prepositions
that pass both checks are concatenated with insert , forming the current node’s
classification. If no prepositions were found, the classification nothing is used.

In the previous paragraph, we have left out two important mechanisms for reasons
of clarity. These mechanisms are conjunction and apposition hopping and skip-
ping. We first describe conjunction and apposition hopping.

Suppose that we always looked at the literal parent node when gathering context
information. In the TR of a sentence such as “John talked to Mary and to Jane” (see
Figure 3.6), the parent of “Mary” and “Jane” is the conjunction “and”. However,
“and” provides no information about the relationship between “talked” and “Mary”
or “Jane” represented by the preposition “to”. We should have ignored “and” and
looked at the parent of “and”, “talked”. Rather, “and” is simply a grouping node
and the true parent, with respect to the preposition “to”, is “talked”. Through
an identical mechanism, appositions also exhibit this spurious parenthood. To fix
these errors, we look for the parent by hopping upward until we find a node that is
neither a conjunction nor an apposition.

Conjunction and apposition skipping complements hopping. In the sentence “John
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John

talked

and

Mary

to

Jane

to

Figure 3.6: TR tree for “John talked to Mary and to Jane”

John

talked

and

to Mary Jane

Figure 3.7: TR tree for “John talked to Mary and Jane”

talked to Mary and Jane” (see Figure 3.7), “and” would be classified insert to
by our naive data creation script. However, the “and” is not the actual target of the
preposition “to”. Rather, the targets are “Mary” and “Jane”. We solve this problem
by simply skipping over conjunction and apposition nodes without creating any
data for them; we let conjunction and apposition hopping generate the appropriate
data when “Mary” and “Jane” are processed. We must, however, ensure that the
correct prepositions are detected when “Mary” and “Jane” are processed. Thus,
we alter the hopping process to check for prepositions attached to any of the nodes
on the path to the true parent. In the TR of the sentence “John talked to Mary
and Jane”, “to” is attached to “and”, which is between “talked” and both “Mary”
and “Jane”. This means that “Mary” and “Jane” are processed as if they had the
preposition “to” inserted above them, even though they do not. Note that this makes
the TR trees of Figures 3.6 and 3.7 identical with respect to the training data they
produce. Since the two sentences are nearly identical in terms of meaning, and
certainly interchangeable, we have decided that this is acceptable behavior.

Improving Performance

We now discuss how we improved the performance of our classifier. Our efforts
have focused on increasing insertion recall, which we define as the number of
correct preposition insertions the classifier makes divided by the total number of
prepositions in the test set. We emphasize insertion recall because the classifier,
when integrated, will make suggestions to the Proposer. Ideally, these suggestions
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always include the correct answer. We focus only on insertions because our system
attains perfect recall on nothing , for trivial reasons which we will explain later.

Our first performance problems derive from the high prior probability of the clas-
sification nothing , which makes up roughly 
 �� of all classifications. On the
other hand, there are roughly 330 classifications corresponding to preposition in-
sertions, all sharing the remaining � �� of the probability space. This makes the
classifier tentative about inserting prepositions; if there is any uncertainty about
whether to insert a preposition, the classifier will generally opt for nothing since
it is right 9 times out of 10. Unfortunately, this tentativeness causes poor insertion
recall.

We first attempted to deal with this problem by using C5.0’s differential misclassifi-
cation costs feature to favor insertions and disfavor nothing . However, we made
little improvement with this approach and actually performed worse in some cases.
We also attempted to use the adaptive boosting, hoping that C5.0 could detect that
it was classifying many prepositions insertions as nothing and compensate for
that in successive trials. However, attempts to train using adaptive boosting also
met with failure: C5.0 aborted the training every time because the scores of the
classifiers became too low.

The solution we eventually arrived at was to train on data that consisted only of
preposition insertion cases. Our intuition was that if the nothing cases were
causing confusion, then we should remove them. The classifier we trained on the
preposition-only data is able to get significantly higher insertion recall than the
classifier we trained on all the data, even though both classifiers are trained on
the same preposition insertion cases. The obvious disadvantage is that a classi-
fier trained on preposition-only data will never make a classification of nothing .
We solve this problem by modifying the classifier to return two classifications:
nothing and the preposition insertion determined by the decision tree. This ex-
plains why, as we mentioned above, we have perfect recall on nothing .

Notice that we are now returning multiple suggested classifications. Although this
increases the number of possibilities that the tree transduction must evaluate, the
increased insertion recall more than offsets the computational disadvantage. The
natural step at this point is to alter our decision tree so that it returns multiple clas-
sifications.

Our first and most primitive application of this idea is what we call N Threshold-
ing. To explain, when the normal classifier evaluates an input, it creates confidence
values for each of the possible classifications and returns the classification with
the highest confidence as its decision. A classifier using N Thresholding is the
same except it returns the best !��	
�� classifications. This method is able to get
high insertion recall, but only when !��	
�� is large. Furthermore, when !��	
�� is
large, there are many cases where the decision tree’s highest or second highest con-
fidence classification is correct, but the remaining classifications are still returned
as dead weight. Manual study of the confidence values of in these cases shows that
most of the confidence mass is concentrated in these one or two highest-ranked
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classifications. Additionally, when the correct answer is in one of the lower-ranked
classifications, the confidence mass is generally more spread out. These two ob-
servations lead us to our next thresholding technique.

The next kind of thresholding we developed is what we call C Thresholding, where
C stands for “confidence”. Instead of returning a fixed number of classifications, C
Thresholding can return a variable number. C Thresholding operates by picking the
smallest set of " classifications such that the sum of the confidence values of the
" classifications is greater than #����
�. # is an adjustable parameter and ����
�

is the sum of confidence values for all classifications. Thus, if the confidence mass
is concentrated in one or two classifications, the threshold will probably be passed
using just those one or two classifications. If, on the other hand, the confidence
mass is spread evenly, more classifications will be returned. This behavior follows
the trends we have observed.

Note that although ����
� � �, it is not necessarily 1; hence the need to multiply #
by ����
� to create the threshold value. We set a hard limit on how many classifi-
cations can be returned, which is also an adjustable parameter. Thus far, however,
we have used the hard limit 15 for all of our classifiers, and anticipate that chang-
ing the hard limit would not have any profound effects. For comparison to the N
Thresholding classifier on a given set of cases, we calculate the “effective !��	
��”
of a C Thresholding classifier as the average number of classifications suggested.

Unfortunately, when compared at equal values of !��	
��, the C Thresholding clas-
sifier does not perform much better than the N Thresholding classifier. This is
strange, since manual study of insertion cases shows that C Thresholding consis-
tently returns fewer classifications than N Thresholding.

The problem lies in the nothing cases. Since the classifier has been trained on
preposition-only data, it has no knowledge of what to do with nothing cases.
When it is presented with the input for a nothing case, it will produce a fairly
even spread of very low confidences. As we have mentioned earlier, this causes
the C Thresholding technique to return multiple classifications. After more manual
study, we made the key observation that ����
� is small for these nothing cases.
This leads us to our next and final thresholding technique.

Our final thresholding technique is what we call Aggressive C Thresholding. This
is identical to C Thresholding except the threshold value is #�����
��

�. Preposi-
tion insertion cases will have ����
� reasonably close to 1, so the effect of squaring
it is small and the number of classifications returned is similar to C Threshold-
ing. However, for nothing classifications, ����
� will be small, and squaring
it will force the threshold value very low. Therefore, in these nothing cases,
Aggressive C Thresholding returns far fewer classifications, usually only 1, than
normal C Thresholding. Aggressive C Thresholding thus combines the accuracy
of C Thresholding on preposition insertion cases with high economy on nothing
cases.

Our current best classifier is trained on preposition-only data and uses Aggressive
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N Thresholding C Thresholding Aggressive C
!��	
�� Recall (%) Eff. !��	
�� Recall (%) Eff. !��	
�� Recall (%)

2 70.1568 2.8719 74.2187 2.0697 71.1497
3 76.3963 2.9981 74.6136 2.0992 71.6462

3.1038 75.2680 2.1158 71.7026
3.2714 77.4343 2.1493 73.4514
3.3517 78.2241 2.1666 73.9366
3.5324 78.8334 2.1702 73.9479
3.7341 79.5555 2.1799 74.0494

4 80.5935 4.0257 80.1647 2.2271 74.5797
4.4184 82.9065 2.2812 76.5655

5 82.9967 4.8659 84.1137 2.3397 76.7799
5.3083 84.7004 2.3583 76.8927

6 84.8810 5.9295 86.4380 2.4066 77.2199
7 86.2011 6.6144 87.7581 2.4884 77.9871
8 87.2955 7.7973 89.0105 2.6519 78.8559
9 87.9838 9.0266 89.8793 2.9678 80.1647
10 88.6720 10.1724 90.2516 3.2876 80.8643
11 89.1459 12.5654 90.6916 3.5069 81.3156

Figure 3.8: Number of Classifications Returned and Percent Recall for the three thresh-
olding methods. Values in both C Thresholding columns are bold-ed when their effective
������� is close to an integer. For easier comparison, the N Thresholding values have been
moved next to their closest companions in the C Thresholding column.

C Thresholding to modulate its suggestions.

Results

We now present the results of testing our preposition insertion classifier. All of the
results we include are of a classifier trained on preposition-only data, and using
various thresholding techniques.

Figures 3.8 and 3.9 do not show any clear winner between N Thresholding and C
Thresholding. Both, however, show that Aggressive C Thresholding has a clear ad-
vantage over the other two. The Aggressive C Thresholding classifier can classify
with 80% insertion recall, using only about 3 classifications per case. Of course,
this performance can be improved upon, but it is nevertheless an impressive start.

3.3.4 Future Work

There are a number of tasks we should undertake following this research. Clearly,
the first task is integrating the above classifier with the Proposer. This will include
training the classifier again on the other Inputs. Once integrated, we can evaluate
the impact that the classifier has on overall English generation performance. From
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Figure 3.9: Percent Recall vs. Number of Classifications Returned for the three thresh-
olding methods.

there, we will create more classifiers if the technique turns out to be useful, which
we expect to be the case.

We should also improve the performance of the preposition insertion classifier. For
instance, recall that we use only one TR lemma in the input because C5.0 cannot
allocate enough memory. We would like to group TR lemmas, which have over
30,000 different values, into a smaller number of categories. Instead of directly
using the TR lemmas as input, we can use the derived categories. Provided that the
number of categories is small enough, we could use the categorized TR lemmas of
multiple nodes.

Another improvement would focus on the creation of training data. Recall that we
accept some subordinating conjunctions as prepositions. If we were able to sepa-
rate prepositions from subordinating conjunctions, we could create a more uniform
set of training data, which in turn might lead to a more accurate decision tree.

Finally, we could look at using several different classifier generators, with the hope
that one might provide us significantly better performance.

To conclude, we have shown the effective of the general technique of using classi-
fiers to capture tree information. We have also created a working classifier which
achieves high recall on preposition insertions. We hope that in the future the prepo-
sition insertion classifier and other classifiers like it will be integrated into the tree
transduction.
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3.4 The Word Order Language Model

In this chapter we describe a tree-based language model used to choose the word
ordering for the final output of the generation system. It implements the Step 3 of
the generation system (see the start of Chapter 3). The model was used in conjunc-
tion which the tree transduction model described by section 3.1–section 3.3, which
proposed a best unorderedtree for each sentence. The language model was used
to select the best ordering for the children of each node in the tree; thus the final
word order was constrained by the input tree’s bracketing.

The language model was trained on the hand-annotated parse trees of the Penn
Treebank and evaluated on held-out data from the Treebank before being integrated
into the generation system. We describe the two main type of probability models
investigated, the surface bigram and tree bigram, and give performance results on
re-ordering manually annotated parse trees in this chapter. Results will be given
both for reordering the original trees from the Penn Treebank and the transformed
“analytic representations” produced from them.

3.4.1 Surface Bigram

This model chooses the best ordering of the tree according to a bigram model of the
resulting surface string. This model follows the approach to generation taken by
(Langkilde and Knight, 1998), where a symbolic system generates a forest of can-
didate trees which are then ranked by a surface bigram model. This can be thought
of as a division of the generation task into well-formedness and semantic accuracy
on the one hand, which are guaranteed by the symbolic system, and fluency, which
is estimated by the surface statistics.

The probability model used is the straightforward n-gram model commonly
used in speech recognition:

$ �%����� �
��

���

$ �%��%����

where the word sequence %���� is augmented with special START and STOP symbols
at the beginning (%�) and end (%�) of the string.

We smoothed the bigram probabilities by backing off to the part-of-speech tags:

$ �%��%���� � & �$ �%��%���� � ��	 &� �$ �%����� �$ ���������

where ����� are the part-of-speech tags given in the input tree, and �$ represents the
empirical distribution of the training data.

One advantage of the surface model is that it can easily be trained on large
amounts of unannotated text. For our experiments, we made use of 23 million
words of Wall Street Journal text, in addition to the roughly 1 million words of
the Wall Street Journal portion of the Penn Treebank. This text was automatically
part-of-speech tagged using the tagger of (Ratnaparkhi, 1996).

The search through possible re-orderings takes place in a bottom-up fashion
using dynamic programming. Given the first and last words of one subtree’s word
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order, the probabilities for the orderings of material outside of a subtree are inde-
pendent of the remaining internal ordering decisions. Thus, we compute and store
the best order for one node’s children for each combination of first and last words.

3.4.2 Tree-Based Bigram

This probability model, based on the model used for syntactic parsing by (Collins,
1997), is also composed of word-pair probabilities, but in this case the pairs are
head-modifier relations from the tree itself, rather than adjacent words in the sur-
face string. This probability model also predicts, and conditions on, the nonter-
minal labels in the tree, and thus makes use of more information than the surface
bigram.

The model can be thought of as a variety of lexicalized probabilistic context-
free grammar, with the rule probabilities factored into three distributions. The first
distribution gives probability of the syntactic category ' of the head child of a
parent node with category $ , head word Hhw, and head tag (the part of speech tag
of the head word) Hht:

$��'�$
Hht
Hhw�

The head word and head tag of the new node ' are defined to be the same as those
of its parent. The remaining two distributions generate the non-head children one
after the other, moving from the head child outward. A special STOP symbol is
generated to terminate the sequence of children for a given parent. Each child is
generated in two steps: first its syntactic category � and head tag Cht are cho-
sen given the parent’s and head child’s features and a function 
 representing the
distance from the head child:

$���
Cht�$
'
Hht
Hhw


 ��

where � indicates direction, left or right, of the new child from the head. Then the
new child’s head word Chw is chosen:

$���Chw�$
'
Hht
Hhw


 �
 �
Cht�

For each of the three distributions, the empirical distribution of the training data is
interpolated with less specific backoff distributions.

We follow (Collins, 1999) in special handling of punctuation, conjunctions, and
base noun phrases. In a probabilistic context-free grammar, the ordering decisions
for material outside a subtree are independent of internal ordering decisions, mean-
ing that we store only one best ordering for each node’s children. Strictly speaking,
the adjacency feature of Collins’ model (
 above) does not obey this context-free
property, as the probabilities for higher-level ordering depend on whether the head
word of a constituent appears at it edge. For simplicity we did not include a search
through values of 
 in our implementation.

Head-Modifier vs. Tree Bigram Probabilities

Of the three probabilities computed by the Collins model, the first, $� is the same
for all re-orderings of a fixed tree, assuming that the head child is known and
held constant. For the probabilities $� and $��, only the values of the variable �
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(left or right) and 
 (the distance) vary among re-orderings. Although the model
contains bilexical probabilities $��, which can be compared to our surface bigram
probabilities, these are computed between heads and their modifiers, and the set of
head-modifier relations do not change with re-ordering.

The exception to this in the original Collins model is the handling of base
noun phrases, for which the previously generated child in the sequence is always
considered the head for the purposes of probability estimation. In terms of our
probabilities, this mean that ' , ��� , and ��� are defined to be the previously
generated child rather than the head child, meaning that for the base noun phrase
“the back cat”, the probabilities for generating the non-head children moving from
“cat” to the left are:

$���=JJ, Cht=JJ�$=NPB, '=NN, Hht=NN, Hhw=cat, ...)
$���Chw=black�$=NPB, '=NN, Hht=NN, Hhw=cat, ...)
$���=DT, Cht=DT�$=NPB, '=JJ, Hht=JJ, Hhw=black, ...)
$���Chw=the�$=NPB, '=JJ, Hht=JJ, Hhw=black, ...)
$���=STOP�$=NPB, '=DT, Hht=DT, Hhw=the, ...)

where NN is the tag for noun, JJ for adjective, and DT for determiner, rather than:

$���=JJ, Cht=JJ�$=NPB, '=NN, Hht=NN, Hhw=cat, ...)
$���Chw=black�$=NPB, '=NN, Hht=NN, Hhw=cat, ...)
$���=DT, Cht=DT�$=NPB, '=NN, Hht=NN, Hhw=cat, ...)
$���Chw=the�$=NPB, '=NN, Hht=NN, Hhw=cat, ...)
$���=STOP�$=NPB, '=NN, Hht=NN, Hhw=cat, ...)

One reason for this special treatment of base noun phrases is to force deter-
miners to appear at the left edge of the phrase, adjecent to the STOP symbol. For
constituents other than base noun phrases, the only difference between re-orderings
among children to one side of the head is value of 
. This feature is in fact a vector
of three binary values: whether the modifer is immediately adjacent to the head,
whether there is an intervening verb, and whether there is intervening punctuation.
The model often does not distinguish at all between re-orderings among those chil-
dren not immediately adjacent to the head.

In order to make the model more discriminative for the purpose of choosing an
ordering, we used the “rolling head word” for all constituents, not just base noun
phrases. We call the resulting model a tree-bigram model, in order to distinguish it
from both the surface bigram and head-modifier (original Collins) models.

3.4.3 Results

Table 3.1 shows results from both the surface bigram and tree-based language
model for the original Penn Treebank trees as well as for the Analytic Represen-
tation format. Our performance metric is the percentage of nodes whose children
are assigned the correct ordering by the model. No partial credit is assigned for
orderings that are close but not identical to the correct ordering.

The Chancecolumn represents the performance one would obtain by choosing
ordering randomly. For example, if the all nodes in all the trees had two children,
this figure would be .5; if all nodes had three children, it would be �

�
. Because of
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the large numbers of unary nodes in our trees, chance performance is in fact higher
than .5.

For reasons of computational complexity, we did not attempt to re-order nodes
with more than six children. This is reflected in the column label Max, which
gives the percentage of nodes with 6 or fewer children. This is the maximum the
algorithm could get correct, as nodes with 7 or more children are always counted
as incorrect.

Total Chance Max. Tree Bigram Surface Bigram
Penn Treebank 52984 �	�� 

�� 
��� �
��
Penn Treebank w/o punc. 52984 ���� 

�
 
��� ����
Analytic Rep. 48206 �
�� 
��
 
��	 ����
Analytic Rep. w/o punc. 48206 ���
 

�� 
	�
 ����

Table 3.1: Word-order results

The “tree-bigram” modification of the Collins model improved performance,
from 93.9% for the original Collins model to the 95.6% shown for the tree-bigram
model in Table 3.1 for the Penn Treebank. The increase in performance is small
in comparison to the amount by which both tree-based models outperform the sur-
face bigram, which achieved 89.0% accuracy. This may seem surprising, since the
original Collins probability model was designed and tuned to assign structure to a
fixed string, and might not be expected to discriminate between re-orderings of a
valid tree. We believe that it does better because it has access to more information.
Making use of the syntactic categories of the tree nodes provides a useful level
of backoff beyond the part of speech information used by the bigram model. The
tree-based model also makes use of lexical head information not available to the
surface bigram.

Analysis: Unlabeled Dependency Model

In order to measure how much of the performance of the tree-based model was
due to the syntactic category information and how much was simply due to the
information as to the subtrees head, a model was trained using the same tree struc-
ture as the Penn Treebank, and the same heads for each constituent, but with all
constituent labels replaced with an ’X’ symbol. This representation is similar to
an unlabeled lexical dependency graph, with the exception that intermediate nodes
with the same head are preserved from the original Penn Treebank tree (for ex-
ample the VP node under an S, both of which are headed by the sentence’s main
verb). One motivation for this experiment was to see how important it was for the
translation system to provide syntactic categories in trees it generates, or whether
unlabeled dependency graphs would be sufficient.

This model performed at 92.1% on our test set, significantly worse than the
95.6% of the full tree bigram model on the same data, but still better than the
89.0% of the surface bigram (first row of Table 3.1). For this reason, the decision
was made to generate syntactic labels as part of the translation model rather than
unlabeled dependency graphs.
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Sample Output

Below are the first five sentences of Section 23 of the Wall Street Journal, showing
both the original text (a) and the output of the re-ordering model (b):

1a) No , it was n’t Black Monday .

1b) it was n’t Black Monday . , No

2a) But while the New York Stock Exchange did n’t fall apart Friday as the Dow
Jones Industrial Average plunged 190.58 points – most of it in the final hour
– it barely managed to stay this side of chaos .

2b) But while the New York Stock Exchange did n’t fall apart Friday as the Dow
Jones Industrial Average plunged 190.58 points – most of it in the final hour
– it barely managed to stay this side of chaos .

3a) Some “ circuit breakers ” installed after the October 1987 crash failed their
first test , traders say , unable to cool the selling panic in both stocks and
futures .

3b) Some “ circuit breakers ” installed after the October 1987 crash failed their
first test , traders say , unable to cool the selling panic in both stocks and
futures .

4a) The 49 stock specialist firms on the Big Board floor – the buyers and sellers
of last resort who were criticized after the 1987 crash – once again could n’t
handle the selling pressure .

4b) once again The 49 stock specialist firms on the Big Board floor – – the buyers
and sellers of last resort who were criticized after the 1987 crash could n’t
handle the selling pressure .

5a) Big investment banks refused to step up to the plate to support the belea-
guered floor traders by buying big blocks of stock , traders say .

5b) Big investment banks refused to step up to the plate to support the belea-
guered floor traders by buying big blocks of stock traders say . ,

Two of the five sentences are identical to the original, one differs only in the mis-
placement of a comma, and the remaining two are re-ordered in ways that still read
more or less coherently and preserve the original meaning.

3.5 English Morphological Generation

English morphological generation module (implementation of Step 4, see the start
of Chapter 3) has been developed in the form of a simple table that maps English
lemmas and tags to wordforms. The table has been created with the help of the
freely available tool “morpha” (Minnen, Caroll, and Pearce, 2001) and adapted to
match the style of lemmatization used throughout the project.

As a part of the English morphological generation subsystem, orthography and
punctuation insertion has been worked on and is part of the final system that has
been evaluated.
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Chapter 4

The Generation System
ARGENT

Dragomir Radev

This part of the system is an alternative to a fully statistically trained generation
system. The purpose was to compare the rule-based approach (with hand-written
rules within an off-the-shelf system, FUF in this case), in the given workshop time-
frame, to a fully statistical system described earlier (and evaluated in Chapter 6).

4.1 Introduction

This section describes ARGENT, a rule based generation system. ARGENT is
built on top of the FUF sentence generator (Elhadad, 1991; Elhadad, 1993).

FUF is a general-purpose generation framework. It takes as input a lexical-
ized representation of a sentence and unifies it with a large systemic grammar of
English, called Surge, to fill in syntactic constraints, build a syntactic tree, choose
closed class words, and eventually linearize the tree as a sentence. FUF has been
used in the past for generation in a large number of domains such as sports re-
ports(Robin, 1994), multimedia explanations(Feiner and McKeown, 1991), and
summaries (Radev and McKeown, 1998).

ARGENT includes a manually-built functional unification grammar which was
developed from section 00 of the Penn Treebank. The results shown in this section
are based on the dev-test and eval sections of the Treebank also used in the rest of
this report.

The input of ARGENT is a sentence in the PDT framework with all tectogram-
matical roles specified. Figure 4.1 shows a sample input in PDT format. This
representation includes base forms for all content words as well as their functors.
The root node corresponds to the word “join” with a functor PRED (predicate).
The input corresponds to the (world famous) first sentence (wsj-0000-001) of the
Penn Treebank “Pierre Vinken, 61 years old, will join the board as a nonexecutive
director Nov. 29.”. The following example (Figure 4.2) matches sentence wsj-
0012-003 “Alan Spoon, recently named Newsweek president, said Newsweek’s ad
rates would increase 5% in January.”
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#
SENT

Pierre
RSTR

Vinken
ACT�AP

&Comma;
APPS

61
RSTR

year
RSTR

old
ACT�AP

join�CPL
PRED

board
PAT

nonexecutive
RSTR

director
PAT

Nov�
TWHEN

29
RSTR

Figure 4.1: Sample PDT tree for (wsj-0000-001).

#4 (wsj�0012�mrg:3)
SENT

Alan
RSTR

Spoon
ACT

&Comma;
APPS

recently
TWHEN

name
ACT

&Gen;
ACT

Newsweek
RSTR

president
PAT

say
PRED

Newsweek
APP

ad
RSTR

rate
ACT

increase
PAT

5
RSTR

%
EXT

January
TWHEN

Figure 4.2: Sample PDT tree for (wsj-0012-003).
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4.2 ARGENT architecture

In order to get from the PDT representation back to a running sentence, ARGENT
goes through the following stages:

1. PDT is converted to a (FUF-style) FD format (Figure 4.3). All grammatemes
are ignored. Order is the same as in PDT (at each level). An equivalent
representation is shown in Figure 4.4.

(setq fdfs/d8802c.wsj_0001.tgt.000.fsp
’((in ((cat clause)

(PRED ((lex "join")
(APPS ((lex "\,")

(ACT ((lex "Vinken")
(RSTR ((lex "Pierre")))))

(ACT-1 ((lex "old")
(RSTR ((lex "year")

(RSTR ((lex "61")))))))))
(PAT ((lex "board")))
(PAT-1 ((lex "director")

(RSTR ((lex "nonexecutive")))))
(TWHEN ((lex "Nov.")

(RSTR ((lex "29")))))))))))

Figure 4.3: FD representation for wsj-000-01.

�
�����������������

in ���

�
�����������������

cat ���clause

pred ���

�
����������������

lex ���”join”

apps ���

�
����

lex ���”,”

act ���

�
lex �	�”Vinken”

rstr �
�
�

lex ����”Pierre”
� �

act-1 ����

� lex ����”old”

rstr ����

	
lex ����”year”

rstr ����


 �
�
���


pat ����
�

lex ����”board”
�

pat-1 ��	�

�
lex ��
�”director”

rstr ����
�

lex ����”nonexecutive”
� �

twhen ����

�
lex ����”Nov.”

rstr ����
�

lex ����”29”
� �

�
���������������


�
����������������


�
����������������


���� �
�

lex ����”61”
�

Figure 4.4: FD for ”Pierre Vinken” (wsj-0001-01) before lexicalization.

2. The FD is unflattened and lexicalized with the ARGENT FUF grammar.
At this stage, it is decided what additional words to add to the representa-
tion. The unflattening process converts the dependency representation to a
constituent representation, e.g., transforming the PRED node to a syntactic
subtree headed by a CLAUSE node. The representation at this stage of the
Pierre Vinken sentence is shown in Figure 4.5.
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Figure 4.5: FD for ”Pierre Vinken” (wsj-0001-01) after lexicalization.
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3. The result is unified with Surge which produces a fully grammatical running
(surface) sentence.

One implementation remark is needed here. The PDT representation allows for
double fillers for given slots. For example, Figure 4.1 contains two PAT fillers at
the /PRED level. These are automatically converted to PAT and PAT1 in the FUF
framework. The order is the same in which they appear in the PDT version.

4.3 Example

An example of generation follows. Figure 4.6 shows the second (Allan Spoon)
FD before lexicalization. Three examples will be shown, each getting closer to the
correct surface sentence.

1. The baseline sentence that one could generate from the PDT representation
is “Alan Spoon, recently name Newsweek president, say Newsweek ad rate
increase 5% January”.

2. The FD shown in Figure 4.8 generates the (incorrect) sentence ”Alan Spoon,
the president named, says that Newsweek’s ad rate increases the 5 % Jan-
uary.”. At this level, one can notice several improvements, in particular the
presence of a relative clause headed by “say”, proper subject-verb agreement
(“says”, “increases”), correct possessive (“Newseek’s”) as well as some omis-
sions (e.g., “recently”).

3. The FD shown in Figure 4.7 generates the sentence ”Alan Spoon, Newsweek
president name, said that Newsweek’s ad rates increased five pct in January.”.

The difference between these last two FDs is that the first one is automatically
generated by ARGENT from the PDT representation of the sentence while the
second one is the ideal FD from which Surge would produce the correct output. In
other words, the goal of the ARGENT grammar is to move away from the baseline
towards the correct output. Adding more rules could take the system closer to the
correct output. With the current set of manual rules (developed over a three week
period in weeks 3-5 of the summer workshop), the output of ARGENT is more like
the middle example above. The example in Figure 4.7 was created manually for
illustration purposes. It is not an actual output of ARGENT.

4.4 The ARGENT grammar

So how does ARGENT get from the PDT representation and to the input to Surge as
shown in Figure 4.8? It makes use of close to one hundred head-based rules which
convert different functors and their descendants to a constituent format. Figure 4.9
shows some sample tectogrammatical functors. Each of these corresponds to a set
of rules in the ARGENT grammar.

In place of functors, FUF uses the following constituents: a process, a number
of participants partic (e.g., agent or affected), and a number of circumstantials
(circum). Figure 4.10 shows the equivalent SURGE constructs.
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Figure 4.6: ARGENT FD for ”Alan Spoon” before lexicalization.
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Figure 4.7: Target FD for ”Alan Spoon” (wsj-0012-003) after lexicalization.
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((IN
((CAT CLAUSE)

(PRED
((LEX "say")

(APPS
((LEX ",") (ACT {PARTIC SAYER ININ})

(ACT-1
((LEX "name") (TWHEN ((LEX "recently")))

(PAT ((LEX "president") (RSTR ((LEX "Newsweek")))))))))
(PAT

((LEX "increase") (ACT {PARTIC VERBALIZATION PARTIC AGENT ININ})
(EXT {PARTIC VERBALIZATION PARTIC AFFECTED ININ})
(TWHEN ((LEX "January") (RSTR ((LEX NONE)))))
(PRED {IN PRED PAT}) (MANN ((LEX NONE))) (LOC ((LEX NONE)))))

(TWHEN ((LEX NONE))) (MANN ((LEX NONE))) (LOC ((LEX NONE)))))))
(CAT CLAUSE) (M-LEX-PRED 0C)
(PROC ((TYPE VERBAL) (OBJECT-CLAUSE THAT) (LEX {IN PRED LEX})))
(PARTIC

((SAYER
((IN {IN PRED}) (M-IN-ACT-CHECK 1)

(ININ
((APPS {PARTIC SAYER IN APPS}) (LEX "Spoon")

(RSTR ((LEX "Alan"))) (APP NONE)))
(CAT NP) (M-LEX-NPLIKE 3) (M-LEX-NP 1)
(HEAD ((LEX {PARTIC SAYER ININ LEX})))
(CLASSIFIER ((LEX {PARTIC SAYER ININ RSTR LEX})))
(QUALIFIER

((CAT CLAUSE) (PUNCTUATION ((BEFORE ","))) (MOOD PAST-PARTICIPLE)
(PROC {PARTIC SAYER ININ APPS ACT-1})
(PARTIC ((AFFECTED {PARTIC SAYER ININ APPS ACT-1 PAT})))))))

(VERBALIZATION
((IN {IN PRED PAT}) (CAT CLAUSE) (M-LEX-PRED 3)

(PARTIC
((AGENT

((IN {PARTIC VERBALIZATION IN PRED}) (M-IN-ACT-CHECK 0)
(ININ

((ACT {PARTIC VERBALIZATION PARTIC AGENT IN ACT})
(LEX "rate") (APP ((LEX "Newsweek"))) (RSTR ((LEX "ad")))))

(CAT NP) (M-LEX-NPLIKE 1) (M-LEX-NP 1)
(HEAD ((LEX {PARTIC VERBALIZATION PARTIC AGENT ININ LEX})))
(CLASSIFIER

((LEX {PARTIC VERBALIZATION PARTIC AGENT ININ RSTR LEX})))
(POSSESSOR

((LEX {PARTIC VERBALIZATION PARTIC AGENT ININ APP LEX})
(CAT PROPER)))

(M-LEX-NP-APP 0)))
(AFFECTED

((IN {PARTIC VERBALIZATION IN PRED}) (M-IN-EXT-CHECK 0)
(ININ

((PAT {PARTIC VERBALIZATION PARTIC AFFECTED IN EXT})
(ACT NONE) (LEX "\%") (RSTR ((LEX "5"))) (APP NONE)))

(CAT NP) (M-LEX-NPLIKE 2) (M-LEX-NP 1)
(HEAD ((LEX {PARTIC VERBALIZATION PARTIC AFFECTED ININ LEX})))
(CLASSIFIER

((LEX {PARTIC VERBALIZATION PARTIC AFFECTED ININ RSTR LEX})))))))
(PROC ((LEX {PARTIC VERBALIZATION IN PRED LEX})))
(LEX-CSET ({ˆ PARTIC AGENT} {ˆ PARTIC AFFECTED}))
(CIRCUM

((TIME ((LEX {PARTIC VERBALIZATION IN PRED TWHEN LEX})))))))))
(LEX-CSET

({ˆ PARTIC SAYER} {ˆ PARTIC VERBALIZATION PARTIC AGENT}
{ˆ PARTIC VERBALIZATION PARTIC AFFECTED} {ˆ PARTIC

VERBALIZATION})))

Figure 4.8: ARGENT-augmented FD for ”Alan Spoon” after lexicalization.
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Functor Description Example
ACT actor Pierre Vinken joined the board.
PAT patient Pierre Vinken joined the board.
APPS apposition Pierre Vinken, 61 years old...
PRED predicate Pierre Vinken joined the board.
TWHEN time-when He joined the board on November 29.

Figure 4.9: Sample tectogrammatical functors.

Construct Example
process joined
partic/agent Pierre Vinken
partic/affected the board
circum on November 29

Figure 4.10: Sample SURGE constructs.

Let’s now go over a specific PDT to FUF translation example. If the PRED of
a PDT sentence is “say” and its PAT is headed by a verb (as opposed to a noun), the
PRED-PAT PDT subtree needs to be translated as a much more elaborate tree in
FUF. The resulting tree needs to indicate that the verb “say” in this case subcatego-
rizes for a relative clause and it needs to build up the syntactic subtree for the rela-
tive clause. In FUF, this corresponds to the grammar snippet shown in Figure 4.11.
The input IN-PRED is converted to a subtree consisting of a “proc” (process) and a
“partic” (participant). The “proc” subcategorizes for an “object-clause”. The “par-
tic” subtree itself contains two constituents: a “sayer” and a “verbalization”. The
“sayer” is mapped to the subject of the predicate “pred” while the verbalization
is realized as a clause which recursively expands IN-PRED-PAT. The “lex-cset”
operator is FUF-specific and indicates to FUF’s lexical chooser which nodes need
to be expanded at the next level. In this example, four subconstituents need to
be expanded: partic-sayer, partic-verbalization-partic-agent, partic-verbalization-
partic-affected, and partic-verbalization.

The macro in-act-check (shown in Figure 4.12) searches for the head of the
“actor” constituent. It first looks for an apposition (“apps”), if there is no such
element in the input, it looks for a conjunction (“conj”), and finally, for an “act”.

The following figure (Figure 4.13) shows how an apposition is further ex-
panded. A PDT-style APPS contains in this example, two PATs (represented as
PAT and PAT-1). In Surge, the corresponding construct is a ”distinct” with two
components, matching the PAT and PAT-1 portions of the input, respectively.

Figure 4.14 shows the general structure of the ARGENT grammar. Each node
corresponds to a major component of the grammar.

Figure 4.15 shows the most frequent paths in section 00 of the Penn Treebank.
These paths were implemented in the grammar.

4.5 Evaluation

We have evaluated our manual grammar using the DT and EV sections of the PDT
corpus as a blind test section. All grammar development was done on section 00
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((alt (((in ((pred ((lex "say"))))))
((in ((pred ((lex "report"))))))))

(proc ((type verbal)
(object-clause that)
(lex {ˆ2 in pred lex})))

(partic ((sayer ((in {ˆ3 in pred})
(:! in-act-check)
(cat np)
))

(verbalization ((in {ˆ3 in pred pat})
(cat clause)
(in ((pred {ˆ4 in pred pat})))
)

)
))

(lex-cset ({ˆ partic sayer}
{ˆ partic verbalization partic agent}
{ˆ partic verbalization partic affected}
{ˆ partic verbalization}
))

)

Figure 4.11: Lexicon entry for verbs like ”say” and ”report” in the ”X says that Y”
subcategorization where “that Y” is a relative clause.

(def-alt in-act-check
(

((in ((apps ((act given)))))
(in ((apps ((act-1 given)))))
(inin ((apps {ˆ2 in apps}))))

((in ((conj ((act given)))))
(in ((conj ((act-1 given))))))

((in ((act any)))
(inin ((act {ˆ2 in act}))))

)
)

Figure 4.12: Actor head guessing macro.

((in ((apps given)))
(in ((apps ((pat given)))))
(in ((apps ((pat-1 given)))))
(complex apposition)
(punctuation ((after ",")))
(distinct ˜(((:& lex-np)

(in {ˆ3 in apps pat}))
((:& lex-np)

(in {ˆ4 in apps pat-1})))))

Figure 4.13: Converting an APPS to Surge-style apposition.
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TOP-LEVEL LEX-CLAUSE

LEX-PRED

IN-PRED-ACT-CHECK

LEX-NPLIKE

LEX-NP
LEX-NP-RSTR

LEX-NP-APP

IN-PRED-PAT-CHECK

LEX-AGENT

LEX-TWHEN

LEX-MANNER

LEX-LOCATION

Figure 4.14: General structure of the ARGENT grammar.

Frequency Path
1642 /PRED
1430 /PRED/ACT
1420 /PRED/PAT
653 /PRED/ACT/RSTR
617 /PRED/PAT/ACT
554 /PRED/PAT/PAT
526 /PRED/PAT-1
421 /PRED/PAT/RSTR
346 /PRED/TWHEN
263 /PRED/ACT/RSTR-1
218 /PRED/APPS
214 /PRED/PAT/RSTR-1
214 /PRED/PAT/PAT/RSTR
169 /PRED/PAT-1/ACT
168 /PRED/CONJ
161 /PRED/APPS/ACT
159 /PRED/LOC
152 /PRED/PAT/APP
149 /PRED/PAT/ACT/RSTR
149 /PRED/PAT-1/PAT
147 /PRED/ACT/APP
143 /PRED/APPS/ACT/RSTR
139 /PRED/APPS/ACT-1
138 /CONJ/PRED-1
135 /PRED/CONJ/PAT-1
126 /PRED/RHEM
126 /PRED/MANN
124 /PRED/PAT-1/RSTR
119 /PRED/PAT/TWHEN
115 /PRED/PAT/PAT/ACT

Figure 4.15: Most frequent dependency paths in section 00 of the Penn Treebank.
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((CAT CLAUSE)
(PRED

((LEX "join")
(APPS

((LEX ",") (ACT {PARTIC AGENT DISTINCT CAR LOAD})
(ACT-1 {PARTIC AGENT DISTINCT CDR CAR LOAD})))

(PAT {PARTIC AFFECTED LOAD})
(PAT-1 ((LEX "director") (RSTR ((LEX "nonexecutive")))))
(TWHEN ((LEX "Nov.") (RSTR ((LEX "29"))))) (ACT ((APP NONE)))
(LOC ((LEX NONE))) (MANN ((LEX NONE)))))

(PROCESS ((LEX {PROCESS LOAD LEX}) (LOAD {PRED})))
(PARTIC

((AFFECTED
((LOAD ((RSTR NONE) (APPS ((APP NONE))) (LOC NONE) (LEX "board")))

(LEX {PARTIC AFFECTED LOAD LEX}) (DETERMINER NONE)))
(AGENT

((COMPLEX APPOSITION) (PUNCTUATION ((AFTER ",")))
(DISTINCT

((CAR ((CLASSIFIER
((LEX {PARTIC AGENT DISTINCT CAR LOAD RSTR LEX})))

(LOAD ((RSTR ((LEX "Pierre"))) (LEX "Vinken")))
(LEX {PARTIC AGENT DISTINCT CAR LOAD LEX})
(DETERMINER NONE)))

(CDR ((CAR ((CLASSIFIER
((CAT NOUN-COMPOUND)

(HEAD
((LEX

{PARTIC AGENT DISTINCT CDR CAR LOAD RSTR LEX})))
(CLASSIFIER

((LEX
{PARTIC AGENT DISTINCT CDR CAR LOAD RSTR RSTR LEX})))))

(LOAD
((RSTR ((RSTR ((LEX "61"))) (LEX "year")))

(LEX "old")))
(LEX {PARTIC AGENT DISTINCT CDR CAR LOAD LEX})
(DETERMINER NONE)))

(CDR NONE)))))
(LHS {PARTIC AGENT DISTINCT CAR LOAD})
(RHS {PARTIC AGENT DISTINCT CDR CAR LOAD})))))

(CIRCUM
((PERSPECTIVE

((CAT PP)
(NP

((CAT COMMON) (DEFINITE NO)
(CLASSIFIER ((LEX {PRED PAT-1 RSTR LEX})))
(HEAD ((LEX {PRED PAT-1 LEX})))))))

(TIME ((CAT PP) (PREP ((LEX "on")))
(NP

((CAT COMMON) (DETERMINER NONE)
(HEAD ((LEX {PRED TWHEN LEX})))
(CLASSIFIER ((LEX {PRED TWHEN RSTR LEX}))))))))))

Figure 4.16: FD for Pierre Vinken after lexicalization.
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of the PDT and development testing (validation) on section 01 of the PDT. The
results are generated using BLEU (BiLingual Evaluation Understudy) (Papineni et
al., 2002) which is a linear combination of �-gram precision with � from 1 to 4,
along with a penalty for brevity.

Results using two methods are reported. D5 refers to the latest version of the
ARGENT grammar while D5-r also includes a postprocessing stage in which all
words appearing in the PDT representation but which were not used by ARGENT
are concatenated to the end of the ARGENT output. Doing so automatically in-
creases unigram precision which contributes to a higher BLEU score.

Method 00 DT EV
D5 0.146 0.081 0.067
D5-r 0.260 0.155 0.145

Table 4.1: Bleu scores.

D5
D5-r

00 DT EV

D5

D5-r

0

0.2

0.4

0.6

0.8

1

BLEU
Score

Figure 4.17: Results.

4.6 Future work

Clearly, building PDT to FUF rules by hand is a time-consuming, and possibly
unnecessary task. One of the main steps to follow this work is to develop a ma-
chine learning framework to build tree-to-tree alignments from PDT to FUF. Such
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work will hopefully be built on top of the existing tree-to-tree framework described
elsewhere in this report.

One can cast the following FUF “realization switches” as decisions to be made
by the learning component: tense/number, order of adverbs, choice of determiners,
punctuation, etc. In that sense, the PDT to FUF translation is not fundamentally
different from the tree-to-tree translation described in the report. One major dif-
ference, however, is that the size of the trees (especially on the FUF side) can
be significantly larger than the sizes prescribed in the tree-to-tree framework. On
the other hand, the FUF trees can possibly be represented at a higher granularity,
treating each consistuent as an independent unit.
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Chapter 5

English Tectogrammatical
Parsing

Owen Rambow, Bonnie Dorr and Ivona Kučerov́a

5.1 Introduction

Throughout this project, we have assumed that the starting point for the generation
of English, namely, the Tectogrammatical Representation of English sentences is
given and available, both for training and testing (evaluation). The latter was cer-
tainly true; see later the Chapter on system evaluation. However, for training,
despite having the manually annotated Penn Treebank available, it is not available
at the Tectogrammatical Level of annotation assumed by the Machine Translation
scenario we have adopted. Nevertheless, we have tried to analyze the possibilities
of using the Penn Treebank and its recently developed “extension” (the so-called
PropBank) to obtain such a deep representation of its sentences automatically, pos-
sibly without too much additional manual work.

The development of the Penn Treebank (PTB) (Marcus, Santorini, and Marcin-
kiewicz, 1993; Marcus et al., 1994) has had an immense effect on the development
of natural language processing (NLP) by providing training and testing data for
approaches based on machine learning, including statistical models. It has inspired
other treebanking efforts in many languages, including the Prague Dependency
Treebank (PDT) (Böhmová et al., 2001; Hajič et al., 2001). However, since the de-
velopment of the PTB, it has become clear that for many NLP applications, parsing
to a a level of representation is needed that is “deeper” than the surface-syntactic
phrase structure of the PTB. Furthermore, work in generation using machine learn-
ing cannot use the PTB because the representation is too shallow as a starting point
for generation. Thus, a more richly annotated corpus is needed, in particular, a cor-
pus that includes certain semantic notions. Annotation efforts for languages other
than English have been able to incorporate this requirement from the beginning.
For example, the PDT includes both the Analytical and the Tectogrammatical level
of representation. However, for English, such resources have been created only
recently . One such resource is the PropBank (Kingsbury, Palmer, and Marcus,
2002b), which superimposes an annotation for verbal predicates and their argu-
ments and adjuncts on the PTB. In the PropBank, the annotation of the relation
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between verb and dependent is “local”, i.e., only relevant to a single verb mean-
ing. However, for many applications we need a “global” semantic labeling scheme
such as that provided by the Tectogrammatical Representation (TR) of the PDT,
with labels such as ACT (actor) and ORIG (origin) whose meaning is not specific
to the verb. The question arises whether and how the PropBank can be extended to
reflect global semantic information.

The direct motivation for this paper is the observation by Hajičová and Kučerová
(2002) that the global semantics of the Tectogrammatical Representation (TR) of
the Prague school cannot be derived directly from the local semantics of the Prop-
Bank, since it does not contain sufficient detail: TR makes distinctions not made
in the PropBank. The authors suggest that it may, however, be derivable from the
PropBank with the aid of an intermediary representation that also uses global se-
mantic labels such as Lexical-Conceptual Structure (LCS), or VerbNet (VN). The
proposal is worth investigating: it seems reasonable to derive TR labels from other
representations of global semantics. While TR, LCS, and VN use different labels,
we expect there to be some consistency. For example, LCS src should correspond
to VerbNet Source and TR ORIG. While the three representations — TR, LCS,
VN — are based on different approaches to representing the meaning of a sen-
tence, all three approaches assume that there is a sharable semantic intuition about
the meaning of the relation between a verb and each of its dependents (argument
or adjunct). Of course, the semantic labels themselves differ (as in the case of src,
Source, and ORIG), and furthermore, often one approach makes finer-grained dis-
tinctions than another, for example VN has one category Time, while TR has many
subcategories, including THL (temporal length) and THWHEN (time point) and so
on. Nonetheless, in these cases, the different label sets are compatible in meaning,
in the sense that we can define a one-to-many mapping between label sets in the
different frameworks. More precisely, we expect one of three situations to hold for
a given pair of labels from label sets � and �:

� A label ( in � corresponds to exactly one label ) in �, and ) corresponds
only to ( (bijective case).

� A label ( in � corresponds to a set of labels � in �, and each element ) of
� corresponds only to ( (one-to-many case).

� A label ) in � corresponds to a set of labels � in �, and each element ( of
� corresponds only to ) (many-to-one case).

The case in which there are overlapping meanings, with (� from� correspond-
ing to )� and )� from �, and (� from � corresponding to )� and )� from �, should
be excluded.

There are two positions one may take. Given that global semantic labels ex-
press relationships which are meaningful across verbs, and assuming that researchers
in different frameworks share certain semantic intuitions, we may claim that labels
are (possibly) compatible across frameworks. On the other hand, we may claim
that in such difficult semantic issues, it is unreasonable to expect different frame-
works to have converged on label sets with compatible meanings. The issue is not
just one of academic interest — it is also of great practical interest. If the usefulness
of parsing is to be increased by developing semantically annotated corpora (a very
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costly process), it is important to know whether an annotation in, for example, LCS
will allow us to automatically derive a corpus annotated in TR. If not, the value of
a corpus of LCS labels will be reduced, since it will be relevant to a smaller com-
munity of researchers (those working in the framework of LCS). While to some
researchers the answer to the question of inter-framework compatibility of labels
may be intuitively obvious, we are not aware of any serious empirical study of this
question. Such a study must necessarily be corpus-based or experimental, as only
the data will reveal how the frameworks usetheir labels (as opposed to defining
them), which is what this question is about.

In this paper, we present the results of investigating the relationship between
PropBank, TR, LCS, and VN labels based on an annotated corpus. The conclusion
we put forward is that global semantic labels are not only framework-specific, but
also lexically idiosyncratic within each framework. This means that labels are not
compatible between frameworks, and do not necessarily express the same seman-
tic intuition. (It of course does not mean that these labels are used inconsistently
within any one framework.) As a result, we argue that corpora should not be an-
notated in terms of global semantic labels (such as TR, LCS, or VN). Instead,
we argue that corpora should be annotated with local semantic labels (as has al-
ready been done in the PropBank), and global semantic labels should be generated
automatically using framework-specific lexicons (i.e., verb-specific lists of label
mappings for arguments). Such lexicons represent an important resource in their
own right.

This paper is structured as follows. We start by introducing a vocabulary to talk
about types of resources in general in Section 5.2. We then present four different
ways of labeling corpora with semantic information: PropBank in Section 5.3,
TR in Section 5.4, VerbNet in Section 5.5, and LCS in Section 5.6.1 While these
approaches are part of larger theories of syntax and lexical semantics, we are for the
purpose of this paper only interested in the label set they use to annotate the relation
between a verbal predicate and its arguments and adjuncts; we will therefore refer
to these theories in a reductive manner as “labeling schemes”. We then compare
the global-semantic labeling schemes to each other in Section 5.7 and find labeling
to be lexically idiosyncratic and framework-specific. In Section 5.8 we return to
the original question of Hajičová and Kučerová (2002) and report on experiments
using machine learning to derive rule sets for annotating a corpus with TR labels.
These results confirm the conclusions of Section 5.7.

5.2 Types of Corpus Labels

Surface syntaxreflects the relation between words at the surface level. Consider
the following pair of sentences, whose structure is shown in Figure 5.1:

(1) a. John loads hay into trucks
b. Hay is loaded into trucks by John

In this example, where two sentences differ only in the voice of the verb,

1These labeling schemes in themselves are not the original work presented in this paper, we
summarize them here for the convenience of the reader. The original work is investigating the relation
between and among them.

64



loads

subj

John

obj

hay

prepobj

into

comp

trucks

John loads hay into trucks

loaded

prepobj

by

comp

John

subj

hay

prepobj

into

comp

trucks

fw

is

Hay is loaded into trucks by John

Figure 5.1: Surface syntactic representation for the sentences in (1)
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John loads hay into trucks

load
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John

obj

hay

obj2

truck

Hay is loaded into trucks by Johnny

Figure 5.2: Deep-syntactic representation

the first two arguments of the verb, John and hay, have different roles depend-
ing on voice. The (dependency representation recoverable from the) PTB has a
surface-syntactic labeling scheme, though deeper labels can be inferred from tags
and traces.

Deep syntaxnormalizes syntactically productive alternations (those that apply
to all or a well-defined class of verbs, not lexically idiosyncratically). This primar-
ily refers to voice, but (perhaps) also other transformations such as dative shift. The
deep-syntactic representation for the two trees in Figure 5.1 (i.e., the two sentences
in (1) is shown in Figure 5.2. However, the deep-syntactic representation does not
capture verb-specific alternations, such as the container-content alternation found
with load:

(2) a. John loads hay into trucks

b. John loads trucks with hay

In these two sentences, the semantic relationship between the verb and its three
arguments is the same in both sentences, but they are realized differently syntacti-
cally: hay is the deep direct object in one, trucksin the other. This is shown in the
two trees in Figure 5.3.

Instead, we can choose numerical labels (arg0, arg1, . . . ) on the arguments
which abstract away from the syntactic realization and only represent the seman-
tic relation between the particular verb meaning and the arguments. These local
semantic labels have no intrinsic meaning and are significant only when several

65



load

subj

John

obj

hay

obj2

truck

John loads hay into trucks

load

subj

John

obj2

hay

obj

truck

John loads trucks with hay

Figure 5.3: Deep-syntactic representation: missed generalization
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John
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hay

arg1

truck

Figure 5.4: Local semantic representation for both (2a) and (2b)

syntactic realizations of the same verb meaning are contrasted. An example is
shown in Figure 5.4.

Now consider the following two sentences:

(3) a. John loads hay into trucks

b. John throws hay into trucks

Semantically, one could claim that (3b) merely adds manner information to
(3a), and that therefore the arguments should have the same relationships to the
verb in the two cases. However, since these are different verbs (and a fortiori dif-
ferent verb meanings) there is no guarantee that the local semantic arc labels are
the same. In a global semanticannotation, the arc labels do not reflect syntax at
all, and are meaningful across verbs and verb meanings. The labels reflect general-
izations about the types of relations that can exist between a verb and its argument,
and the representation in Figure 5.5 applies to sentences (3a) and (3b).2

5.3 PropBank

The PropBank (Kingsbury, Palmer, and Marcus, 2002b) annotates the Penn Wall
Street Journal Treebank II with dependency structures (or ‘predicate-argument’

2The FrameNet project (Baker, Fillmore, and Lowe, 1998) uses semantic labels which are local,
but apply not to one verb meaning, but to a set of verb meanings that refer to the same frame (i.e.,
situation). For example, buy, sell, cost and so on all refer to the commercial transaction frame,
realizing different participants of the frame in different syntactic ways. However, since the frame
elements such as Buyer or Rate (=price) do not refer to an abstract notion of the relationship between
a proposition and its argument, but rather to a specific set of verbs and a specific argument, the
approach is closer in spirit to a local semantic approach. Perhaps a better term for FrameNet would
be “regional semantics”.
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Figure 5.5: Global semantic representation for (3a) (with load) and (3b)
(withthrow); the labels used are for illustrative purposes

structures), using sense tags for each word and local semantic labels for each argu-
ment and adjunct. The argument labels are numbered and used consistently across
syntactic alternations for the same verb meaning, as shown in Figure 5.4. Adjuncts
are given special tags such as TMP (for temporal), or LOC (for locatives) derived
from the original annotation of the Penn Treebank. In addition to the annotated cor-
pus, PropBank provides a lexicon which lists, for each meaning of each annotated
verb, its roleset, i.e., the possible arguments in the predicate and their labels. An ex-
ample, the entry for the verb kick, is given in Figure 5.6. The notion of “meaning”
used is fairly coarse-grained, and it is typically motivated from differing syntac-
tic behavior. Since each verb meaning corresponds to exactly one roleset, these
terms are often used interchangeably. The roleset also includes a “descriptor” field
which is intended for use during annotation and as documentation, but which does
not have any theoretical standing. Each entry also includes examples. Currently
there are frames for about 1600 verbs in the corpus, with a total of 2402 rolesets.

ID kick.01
Name drive or impel with the foot
VN/Levin 11.4-2, 17.1, 18.1, 23.2

classes 40.3.2, 49

Roles

Number Description
0 Kicker
1 Thing kicked
2 Instrument

(defaults to foot)
Example [John]� tried [*trace*�]���� to kick

[the football]����

Figure 5.6: The unique roleset for kick

5.4 Tectogrammatical Representation

The Tectogrammatical Representation (TR) of the Prague School (Sgall, Hajičová,
and Panevová, 1986) is a dependency representation that contains only autoseman-
tic (=meaning-bearing) words. The arcs are labeled with rich set of labels. What
distinguishes TR from other labeling schemes is that it is hybrid: the deep sub-
ject and deep object of a verb are always given the labels ACT (for actor) and
PAT (for patient), respectively. The deep indirect object is given one of three la-
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PropBank TR
Role Description Form label

0 Bidder subject ACT
1 Target for EFF

to AIM
2 Amount bid object PAT

Figure 5.7: TR extension to PropBank entry for bid, roleset name “auction”

bels, EFF(ect), ADDR(essee), or ORIG(in). Other arguments and free adjuncts
are drawn from list of 42 global semantic labels, such as AIM, BEN(eficiary),
LOC(ation), MAN(ner), and a large number of temporal adjuncts such as THL
(temporal length) and THWHEN (time point).

For the TR, we have a small gold standard. Approximately 1,500 sentences of
the PTB were annotated with TR dependency structure and arc labels. A total of
36 different labels are used in this corpus. The sentences were prepared automati-
cally by a computer program (Žabokrtský and Kučerová, 2002) and then corrected
manually. We will refer to this corpus as the TRGS (which should not be confused
with the PDT, which is a much larger corpus in Czech), and to the code as AutoTR.
It uses heuristics that can access the full PTB annotation.

In addition, there is a lexicon of tectogrammatical entries for English based on
(a subset of) the PropBank lexicon. The mapping was done for 662 predicates (all
PropBank entries that were done by January 2002). Every entry contains an orig-
inal PropBank lexical information with examples, information about Levin class
membership and appropriate tectogrammatical mapping. The mapping is only de-
fined for entries that are explicitly listed in the original PropBank entry; no others
were created. Figure 5.7 shows the entry for the verb bid. Note that the mapping
to TR is indexed both on the Propbank argument and on the syntactic realization
(“form”), so that arg1 may become EFF or AIM, depending on the preposition that
it is realized with.

We evaluated the quality of the PropBank-to-TR lexicon by comparing results
on those arguments in the TRGS whose verbs are also in the lexicon (727 argument
instances). The AutoTR program has an error rate of 15.3% on this data, while the
lexicon’s error rate is only 12.2%. We performed an error analysis by randomly
sampling 15 instances (of the 89 errors). In 9 instances, there were inconsisten-
cies between the lexicon and the TRGS. (Of these, one instance was furthermore
inconsistent in the TRGS.) In four instances, there appeared to be an error in the
lexicon. And in two instances, there was an error in our automatic alignment of the
data due to a mismatch of the syntactic analysis in the TRGS and in the PTB. We
conclude that all these problems are in principle fixable.

5.5 VerbNet

VerbNet (Kipper, Dang, and Palmer, 2000) is a hierarchical verb lexicon with syn-
tactic and semantic information for English verbs, using Levin verb classes (Levin,
1993) to systematically construct lexical entries. The first level in the hierarchy is
constituted by the original Levin classes, with each class subsequently refined to
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Actor, Agent, Theme, Patient, Asset, Attribute,
Beneficiary, Cause, Destination, Experiencer,
Instrument, Location, Material, Patient, Prod-
uct, Recipient, Source, Stimulus, Time, Topic

Figure 5.8: Inventory of thematic role labels used in VerbNet

account for further semantic and syntactic differences within a class. Each node
in the hierarchy is characterized extensionally by its set of verbs, and intensionally
by a list of the arguments of those verbs and syntactic and semantic information
about the verbs. The argument list consists of thematic labels from a set of 20
possible such labels (given in Fig. 5.8), and possibly selectional restrictions on the
arguments expressed using binary predicates. The syntactic information maps the
list of thematic arguments to deep-syntactic arguments. The semantic information
for the verbs is expressed as a set (i.e., conjunction) of semantic predicates, such
as motion, contact, transferinfo.3 Currently, all Levin verb classes have been as-
signed thematic roles and syntactic frames, and 123 classes, with more than 2500
verbs, are completely described, including their semantic predicates.

In addition, a PropBank-to-VerbNet lexicon maps the rolesets of PropBank to
VerbNet classes, and also the PropBank argument labels in the rolesets to VerbNet
thematic role labels. Fig. 5.9 shows an example of the mapping of roleset install.01
with VerbNet class put-9.1. The mapping is currently not complete: some verb
meanings in PropBank have not yet been mapped, others are mapped to several
VerbNet classes as the PropBank verb meanings are sometimes coarser than or
simply different from the VerbNet verb meanings (many PropBank rolesets are
based on a financial corpus and have a very specific meaning).

PropBank VN
Role Description label

0 Putter Agent
1 Thing put Theme
2 Where put Destination

VerbNet-Levin class 9.1

Figure 5.9: Entry in PropBank-to-VerbNet lexicon for put (excerpt)

Using this lexicon, we have augmented the PropBank-annotated Penn Tree-
bank with VerbNet annotations automatically. In theory, we could simply look
up the corresponding VerbNet argument for each annotated PropBank argument
in the corpus. However, there are several impediments to doing this. First, the
PropBank annotation of the Penn Treebank does not currently include the roleset,
i.e., the verb meaning: of all the PropBank-annotated verbs in the TRGS, in only
74.7% of cases do we have access to the PropBank meaning (roleset). Second,
because the PropBank-to-VerbNet lexicon is not yet complete (as just described),
only 42.1% of verbs (instances) have exactly one VerbNet-Levin class assigned

3Both for VerbNet and LCS, the semantic information about each verb is not directly germane to
this paper.
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Verb jog
Class 51.3.2.a.ii
Theta th,src(),goal()

Figure 5.10: LCS definitions of jog (excerpt)

to them. Therefore, only 46.1% of argument instances can be assigned VerbNet
thematic roles automatically (18 different labels are used) However, the coverage
will increase as (i) PropBank annotates rolesets in the corpus and (ii) the annota-
tion of the PropBank lexicon with VerbNet information progresses. In principle,
there is no reason why we cannot achieve a near 100% automatic coverage of the
hand-annotated PropBank arguments in the Penn Treebank with VerbNet thematic
roles.

5.6 Lexical Conceptual Structure

Lexical Conceptual Structure (LCS) is a compositional abstraction with language-
independent properties that transcend structural idiosyncrasies (Jackendoff, 1983;
Dorr and Olsen, 1997). LCS captures the semantics of a lexical item through a
combination of semantic structure (specified by the shape of the graph and its struc-
tural primitives and fields) and semantic content (specified through constants). The
semantic structure of a verb is something the verb inherits from its Levin verb class,
whereas the content comes from the specific verb itself.

The lexicon entry for one sense of the English verb jog is shown in Figure 5.10.
This entry includes several pieces of information such as the word’s semantic verb
class, its thematic roles (“Theta” – in this case, th, src, and goal), and the LCS
itself (not shown here, as it is not directly relevant to this paper). The LCS spec-
ifies how the arguments — identified by their thematic roles — contribute to the
meaning of the verb.

Figure 5.11 contains a list of thematic roles. The theta-role specification in-
dicates the obligatory and optional roles by an underscore (_) and a comma (, ),
respectively. The roles are ordered in a canonical order normalized for voice (and
dative shift): subject; object; indirect object; etc, which corresponds to surface or-
der in English. Thus, the th loc grid is not the same as the loc th grid (The box
holds the ballas opposed to The water fills the box).

agent, theme, experiencer, information, src
(source), goal, perceived item, pred (identifica-
tional predicate), locational predicate, mod-poss
(possessed item modifier), mod-pred ( property
modifier)

Figure 5.11: Inventory of LCS thematic roles (extract)

To derive LCS thematic labels for arguments and adjuncts in the PropBank,
we make use of the Lexical Verb Database (LVD). This resource contains hand-
constructed LCSs organized into semantic classes — a reformulated version of
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Predict From No mlex With mlex n
VN LCS 30.3% 13.0% 399
LCS VN 22.8% 9.5% 399
TR VN 36.1% 14.4% 97
VN TR 56.7% 8.3% 97
TR LCS 42.3% 20.5% 78
LCS TR 41.0% 11.5% 78

Figure 5.12: Error rates for predicting one label set from another, with and without
using feature mlex (the governing verb’s lexeme); � is the number of tokens for
the study

the semantic classes in (Levin, 1993). The LVD contains 4432 verbs in 492 classes
with more specific numbering than the original Levin numbering (e.g., “51.3.2.a.ii”),
a total of 11000 verb entries. For the mapping, we used as keys into the LVD both
the lexeme and the Levin class as determined by VerbNet (see Section 5.5), adjust-
ing the class name to account for the different extensions developed by Verbnet and
LCS. Each key returns a set of possible theta grids for each lookup. We then form
the intersection of the two sets, to get at the theta grid for the verb in its specific
meaning. If this intersection is empty, we instead form the union. (This complex
approach maximizes coverage.) We then map to each argument a set of possible
theta roles (note that even if there are two possible theta grids, one of the argu-
ments may receive the same role under both). This approach yields 54.7% of verb
instances in the TRGS with a unique theta-grid, and 47.7% of argument/adjunct
instances, with a unique theta role. (The lower figure is presumably due to the fact
that verbs with fewer arguments are more likely to have unique theta grids.) A total
of 13 LCS roles are used for these instances.

VN label TR label tokens types sample verbs

Topic EFF 29 2 say X
Predicate EFF 12 7 view Y as X

AIM 2 2 use Y to do X
CPR 1 1 rank Y as X
COMPL 1 1 believe Y that X
LOC 1 1 engage Y in X

Attribute EFF 4 3 rate Y X
EXT 1 1 last X
THL 1 1 last X
DIFF 1 1 fall X
LOC 1 1 price Y at X

Figure 5.13: Exhaustive mapping of three VerbNet labels to TR labels other than
ACT and PAT (the argument being labeled is X)
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5.7 Relation Between Semantic Labels

We now address the question of how similar the three annotation schemes are, i.e.,
the semantic part of TR, LCS, and VerbNet. To test the correspondence between
global semantic labels, we use Ripper (Cohen, 1996) to predict one label set, given
another. Using a set of attributes, Ripper greedily learns rule sets that choose one
of several classes for each data set. Because in this section we are using Ripper to
analyze the data, not to actually learn rule sets to apply to unseen data (as we do in
Section 5.8), we report here the error rate on the training data.

For these experiments, we use all arguments from the TRGS which are also
labeled in the PropBank, 1268 data points. For VN and LCS, we exclude all data
points in which either the predictor label or the predicted label are not available
from the mappings described in Sections 5.4, 5.5, and 5.6, respectively. In the case
of TR (which is always available), we exclude cases with the ACT and PAT fea-
tures, as they are determined syntactically. If there is a one-to-one correspondence
between two label sets, we expect a zero error rate for both directions; if the cor-
respondence is one-to-many (i.e., one label set is more detailed than the other), we
expect a zero error rate for at least one direction.

Instead, what we find are error rates between 22.8% and 56.7%, for all direc-
tions. Crucially, we find these error rates greatly reduced (with error reduction
ranging between 51% and 85%) if we also allow the lexeme of the governing verb
to be a feature. The results are summarized in Figure 5.12. All differences are
significant, using the usual Ripper test (the difference between the results must be
larger than twice the sum of each run’s standard deviation). As expected, in each
pair, the richer label set (as measured by the number of labels used in the TRGS)
is better at predicting the less rich label set.

By way of illustration, we will look in more detail at the way in which three
VN labels, Topic, Predicate, and Attribute, map to TR categories. The data is
summarized in Figure 5.13.4 As we can see, for all three labels, the most common
TR label (and in the case of Topic, the only TR label) is EFF. However, closer
inspection reveals this not to be the case. VerbNet makes a distinction between the
communicated content (John said he is happy) which is a Topic, a Predicate of an-
other dependent of the verb (they view/portray/describe the sales force as a critical
asset, where a critical assetis a predicate true of the sales force), and an Attribute
of another actant of the verb (they value/estimate the order at$326 million/rate
the bond AAA).5 TR considers all these cases to be EFFects of an act of commu-
nication or judgment. Conversely, TR makes a distinction between an EFFect of
a human action (of communication or judgment, such they value/estimate the or-
der at$326 million/rate the bond AAA) and different types of states of affairs, for
example a DIFFerence (UAL stock has fallen 33%) or a length of time (THL, the
earth quake lasted 15 seconds). To VN, these are all Attributes.

But note that in nearly all cases considered in the table in Figure 5.13, the
governing verb determines the label assignment both for TR and VN.6 Thus, both

4We exclude tokens whose TR labels are ACT or PAT, as these labels are determined entirely
syntactically.

5Intuitively, a predicateis a function from entities to truth values, while an attributeis a function
from entities to an open set of possible values (such as dollar amounts).

6The exceptions are in TR: use Y to do Xis sometimes EFF, sometimes AIM, while last X is
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in the general Ripper experiments and in these specific examples, we see that there
is no general mapping among the labels; instead, we must take the governing verb
into account. We conclude that assigning labels is both framework specific and
lexically idiosyncratic within each framework.

Final hypothesis is:
ORIG if fw=from and vn!=_ (2/1).
CAUS if fw=because (2/0).
COND if fw=if (3/0).
MOD if lemma=probably (2/0).
DIR3 if pb=ARG2 and pba=DIR (2/0).
AIM if fw=to and vrole=adj (12/4).
MANN if pba=MNR (20/1).
ADDR if pb=ARG2 and vn=Recipient and

lemma!=blame and lemma!=article (7/0).
ADDR if lemma=audience (2/1).
ADDR if mlemma=assure and pb=ARG1 (2/0).
TWHEN if pba=TMP (55/6).
EFF if vn=Topic and mlemma=say (25/0).
EFF if vrole=’2’ and fw=as (12/1).
ACT if vrole=’0’ (366/16).
default PATC (502/67).

Figure 5.14: Sample generated rule set (excerpt — “fw” is the function word for
the argument, “mlex” the governing verb’s lexeme, “pba” the modifier tag from the
Penn Treebank)

5.8 Predicting TR Labels

We now turn to experiments for learning rule sets for choosing TR labels from
all other labels (the task described by Hajičová and Kučerová (2002), the original
inspiration for this work). We again use Ripper, as in Section 5.7. The task is to
predict the TR label, and we experiment with different feature sets. Given our anal-
ysis in Section 5.7, we predict that using other global semantic labels, i.e., VN or
LCS, will not improve performance. However, we expect syntactic (including lex-
ical) features and local semantic features (PropBank) to contribute to performance.
We observe that it is not clear what the topline is, given some inconsistency in the
gold standard; the experience reported above from very small hand-inspected data
sets suggests an inconsistency rate of between 5% and 10%.

We use the following syntactic features: PTB lean (argument lemma, govern-
ing verb’s lemma, part-of-speech, and function word, if any); Full PTB (PTB lean
+ TR label of mother, extended tag of PTB, node labels of path to root); VRole (the
deep-syntactic argument, as derived from the PTB by head percolation and voice
normalization); and AutoTR , the computer script AutoTR writtem to determine
TR labels. We also use these semantic features: PropBank, LCS, VerbNet. A sam-
ple rule set (with features PTB-lean, Vrole, Propbank, and VerbNet) is shown in
Figure 5.14. The rules are checked from top to bottom, when one applies the listed

sometimes EXTent, sometimes temporal length (THL). We assume these are labeling inconsistencies.
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label is chosen. The numbers in parentheses indicate the number of times the rule
applies correctly (before the slash) and incorrectly (after the slash). Clearly, there
is some overfitting happening in this particular ruleset (for example, in the rule to
choose ADDR if the lemma is audience).

The results for the machine learning experiments are summarized in Figure 5.15.
These are based on five-fold cross-validation on a set of 1268 data points (those ar-
guments of the TRGS labeled by PropBank, with mismatches related to different
syntactic treatment of conjunction removed). Note that because of the greedy na-
ture of Ripper, a superset of features may (and often does) produce worse results
than a subset. In general, any two results are statistically significant if their differ-
ence is between three and five; there are too many combinations to list all. Com-
pared to the baseline of the hand-written AutoTR code, the combination of PTB
Lean, Vrole, and PropBank provides an error reduction of 24.5% with respect to a
(possibly unrealistic) 0% error topline. The error reduction is 75.8% with respect
to default baseline of always choosing PAT, the most common label (i.e., running
Ripper with no features), and the 0% topline.

Semantics None PropBank PB&LCS PB&VN
Syntax
None 59.23% 24.30% 23.27% 22.25%
Vrole 30.44% 19.80% 18.38% 17.75%
PTB 18.15% 15.70% 16.17% 16.02%
PTB & Vrole 16.09% 15.14% 15.46% 14.67%
PTB Lean & Vrole 16.80% 14.36% 15.15% 14.51%

Figure 5.15: Results (error rate) for different combinations of syntactic features
(left column) and semantic features (top row); baseline error rate using hand-
written AutoTR code is 19.01%

We now highlight some important conclusions (all are statistically significant
unless otherwise stated). First, some syntax always helps, whether or not we have
semantics (compare the rows labeled “None” and any of the rows below it). This
is not surprising, as some of the TR labels (ACT and PAT) are defined fully syn-
tactically. Second, the PTB-lean feature set does as well as the full PTB set, no
matter what semantic information is used (compare rows labeled “PTB & Vrole”
and “PTB Lean & Vrole”). In particular, the TR label of mother, the extended
tag of the PTB, and the node labels of path to root do not help. Third, using the
PropBank improves on using just syntactic information (compare the columns la-
beled “None” and “PropBank” — not all pairwise comparisons are statistically
significant). Fourth, as predicted, there is no benefit to adding global semantic in-
formation once local semantic information is used (compare the column labeled
“PropBank” to the columns labeled “PB&LCS” and “PB&VN”).

In related work, Gildea and Jurafsky (2002) predict generic FrameNet labels
(similar to the VN or LCS labels). They achieve an error rate of 17.9% using
no other semantic information. While this error rate is similar to the ones we
report here (in the row labeled “None”), there are some important differences: their
testing data only contains seen predicates (unlike ours), but our task is facilitated
by the fact that the most common labels in TR are defined syntactically.
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5.9 Conclusions

As we have seen, there are problems in mapping among VerbNet, LCS, and TR.
Most truly global semantic labels are both framework-specific and lexically id-
iosyncratic: different frameworks (and possibly researchers in the same frame-
work) do not divide up the space of possible labels in the same way. As a result,
in automatically labeling a corpus with TR labels, using LCS or VerbNet does not
improve on using only syntactic (including lexical) and local semantic informa-
tion, contrary to the suggestion of Hajičová and Kučerová (2002). While this may
at first seem like an unfortunate conclusion, we note that the solution seems to
be fairly simple: the creation of lexicons. Lexicons are useful (even crucial) for
consistent annotation, they are general repositories of linguistic knowledge, and
they can be used for many NLP tasks. Thus the creation of lexicons along with
a single set of annotations is a simple way to allow for translation to other anno-
tation frameworks, since the lexical idiosyncracies are taken into account in the
lexicon. For example, if we have a PropBank-style annotation for our corpus, and
a (framework-specific, lexically idiosyncratic) PropBank-to-� lexicon, where � is
the desired labeling scheme, then we can automatically relabel the corpus with the
labels of � . Human intervention will only be required when � makes finer dis-
tinctions in verb or argument meaning than the scheme used for the annotation of
the corpus. This approach can also be used when � represents a very domain- or
task-specific labeling, in which case annotating a whole corpus just with these la-
bels would be a very large investment with little prospect for resuse, as the labels
would probably not be reusable by other projects.
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Chapter 6

Evaluation

Terry Koo and Jan Hajǐc

6.1 Overview

We evaluated our systems with IBM’s BLEU evaluation metric. Because BLEU
scores are a relative measure, we also created baseline and upper bound systems
to use as reference points. Additionally, we created a competitor system using
GIZA++, so that we could compare our performance to that of a good word-to-
word system.

The remainder of this chapter describes, in order, the BLEU evaluation metric,
the baseline system, the upper bound system, the GIZA++ system, the evaluation
mechanics, and the results.

6.2 BLEU

We used IBM’s BLEU metric because of its convenience and accuracy. BLEU
is automatic, so it does not require expensive and time-consuming human evalu-
ations. Additionally, BLEU has been shown to correlate with the judgments of
humans (Papineni et al., 2001).

We obtained a Perl implementation of the baseline BLEU metric, as described by
(Papineni et al., 2001). The following paragraphs describe the operation of the
baseline BLEU metric as we have used it.

BLEU has two inputs: the candidate translation and a set of reference translations.
First, the candidate and reference translations are broken into sentences. Each sen-
tence is then processed into sets of 1-grams, 2-grams, 3-grams and 4-grams. Each
of the candidate sentence’s n-grams are checked for inclusion in the union of the
reference sentences’ n-grams, and matching n-grams are tallied. To guard against
overly repeated n-grams (i.e. “the the the the the”), a given n-gram is prevented
from matching more times than the maximum number of times it appears in any of
the reference sentences. For each level of n-gram, the number of matching n-grams
in the entire candidate translation is divided by the total number of n-grams in the
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candidate translation. This yields four numbers which are the modified n-gram pre-
cision for 1-grams through 4-grams.

With the above scheme, shorter sentences can get higher modified n-gram preci-
sion scores than longer ones, since the number of times an n-gram can match is
bounded. At the extreme, one can imagine a sentence composed of a single 4-gram
that matches the reference; this would get perfect scores for all n-gram levels. To
counteract the advantage of short sentences, BLEU uses a brevity penalty. The
brevity penalty is a decaying exponential in � �, where � is the length of the can-
didate translation in words, and � is the length of a best-matched reference transla-
tion. Specifically, � is the sum of the lengths of the reference sentences which are
closest in length to their corresponding candidate sentence. The brevity penalty
multiplied by the geometric mean of the four modified n-gram precision scores
gives the final BLEU score.

We made one modification to the BLEU implementation, which was to add sen-
tence ID’s. Initially, we had trouble with dropped sentences because the original
Perl code assumed the sentences in the candidate and reference translations were
in the same order. A dropped sentence would change the candidate translation’s
order and cause an incorrect evaluation. Our modification allows BLEU to use
sentence ID’s to match sentences in the candidate and reference translations, rather
than depending on a rigid ordering.

The number and variety of reference translations used affects the BLEU score and
its accuracy. There may be many ways to correctly translate a given sentence, but
the BLEU metric will only acknowledge the words and phrasing found in the ref-
erence translations. The more reference translations there are, and the more variety
there is among them, the better the BLEU score can recognize valid translations.

In our own evaluations, we used 5 reference translations. Each reference contained
roughly 500 matching sentences selected from WSJ sections 22, 23, and 24. Of the
five references, one was the original Penn Treebank sentences and the other four
were translations to English of a Czech translation of the Penn Treebank, done by
four separate humans. We feel this gives us a good level of coverage in our refer-
ence translations.

6.3 Upper Bound System

The upper bound for the performance of our system would be translation by hu-
mans. Accordingly, our upper bound comparison system is composed of the refer-
ences translations themselves.

To evaluate the references, we held out each reference in turn and evaluated it
against the remaining four, averaging the five BLEU scores at the end. For the pur-
poses of a meaningful comparison, all of the results we present were created using
the same 5-way averaging.
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6.4 Baseline System

Each of the four Inputs is associated with its own baseline. Each baseline, how-
ever, operates off the same principle: output the TR lemmas of each input TR tree
in some order.

For Inputs 1 and 3, the TR lemmas are output in a randomized order. These Inputs
are automatically generated from surface text and the TR trees capture the true
surface word ordering. However, our generation system for these Inputs views the
input TR trees as unordered. Thus the baseline is similarly deprived of word order
information.

For Inputs 2 and 4, the TR lemmas are output in the order they appear in the TR
tree. These inputs are, respectively, the manually annotated and Czech transfer TR
trees. Their word orderings are meaningful; the manually annotated TR captures
the deep word order while the Czech transfer TR captures the Czech word order-
ing. Our generation system can make use of this input word ordering. Therefore,
the baseline should also be able to take advantage of this.

6.5 GIZA++ System

The GIZA++ system was created by Jan Cuřı́n and trained on 30 million words of
bilingual text. This system is a representative of the word-to-word machine trans-
lation systems with which our own system will compete.

6.6 Evaluation Mechanics

Our 500 reference sentences were split into two test sets: a devtest set which we
used to evaluate our system during its development, and an evaltest set which re-
mained untouched until its use in the final evaluation at the conclusion of the work-
shop.

The evaluation itself is orchestrated by a number of sh and Perl scripts. The scripts
allowed individual evaluations to be run as well as batch evaluations, and created a
HTML webpage and GIF bar graph as output.

6.7 Results

Figures 6.1 and 6.2 display the final evaluation results in chart and graph form. In
each of these, “Base N” is the baseline for Input N, and “Gen N” is the generation
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Base 1 Gen 1 Base 2 Gen 2 Upper

BLEU 0.04184 0.24416 0.16022 0.2365 0.53366
4-Gram 0.01146 0.10286 0.08038 0.09894 0.3385
3-Gram 0.02608 0.20238 0.17814 0.2016 0.46396
2-Gram 0.07564 0.41364 0.37008 0.41038 0.62766
1-Gram 0.76004 0.88762 0.7609 0.88116 0.8441
Brev 0.64902 0.82612 0.63484 0.8117 0.99396

Base 3 Gen 3 Base 4 Gen 4 GIZA++

BLEU 0.04142 0.24324 0.05862 0.0479 0.18954
4-Gram 0.01146 0.10152 0.0181 0.00594 0.06884
3-Gram 0.026 0.20078 0.0408 0.02722 0.1365
2-Gram 0.07194 0.4132 0.12028 0.13192 0.28172
1-Gram 0.76194 0.8872 0.48054 0.6013 0.62328
Brev 0.65042 0.82758 0.7252 0.80064 0.9402

Figure 6.1: Final evaluation results for all systems.

system for Input N. The BLEU scores as well as the four modified n-gram preci-
sion scores and the brevity penalties are displayed.

The system as it currently stands can outperform the baselines for Inputs 1, 2, and
3, but it is still below the baseline for Input 4, the full MT. It is also well below the
GIZA++ system’s performance.
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Chapter 7

Conclusions

Jan Hajǐc

As has already been said, the results as described in the previous section are
worse than those obtained by a GIZA++ system based on lemmas. Base on the ad-
equacy argument, I am still convinced, however, that deep linguistic analysis of the
source language (and the subsequent relatively complex NL Generation it entails)
is the right approach. During the 6-week workshop, we were unable to finish com-
pletely the implementation of the full system, and we had to use certain amount of
“hacks” to get a fully automatic generation and thus translation, contributing to the
overall low performance of the system.

Nevertheless, on top of bringing together a great team of people seeing the
problem from different perspectives, there are already some tangible results of the
Generation/MT team at this workshop:

� A methodology for automatically learnable nonisomorphic tree-to-tree trans-
formations, the Synchronous Tree to Tree Transducers based on the STSG
(Synchronous Tree Substitution Grammar);

� Resources (data) and tools for Czech/English Machine Translation (a CD
with resources and tools rich enough to produce a fully trained statistical
Czech/English MT system will be published soon by the LDC); it includes,
e.g., over 25,000 manually aligned sentences of the WSJ part of the PTB and
their translations into Czech;

� Deeply semantically annotated version of Penn Treebank (by an automatic
rule-based system) using the so-called tectogrammatical representation of
sentence meaning (will also be availabel on the above CD);

� A dataset for BLEU- or NIST-based evaluation of a Czech-to-English MT
system (500 sentences in 5 reference versions), suitable also for an English
NL generation system evaluation when using a deep semantic represenation
of sentence meaning as a starting point;

� A suggestion to evaluate NL generation systems by the same methodology
(automatically evaluatable metric such as the BLEU or NIST system);
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We hope that these achievements will help to advance the field of Machine
Translation and NL Generation, and we certianly hope that the methodology de-
veloped at the Workshop will eventually lead to results superior to the current state-
of-the-art statistical MT systems.
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Cuřı́n, Jan and Martin Čmejrek. 2001. Automatic extraction of terminological translation
lexicon from czech-english parallel texts. International Journal of Corpus Linguistics,
6(Special Issue):1–12, December.

Dorr, Bonnie and Mari Broman Olsen. 1997. Deriving verbal and compositional lexical
aspect for NLP applications. In ”Proceedings of the 35th Annual Meeting of the ACL”,
pages 151–158, Madrid, Spain.

Eisner, Jason. 2001. Smoothing a Probabilistic Lexicon via Syntactic Transformations.
Ph.D. thesis, University of Pennsylvania, July.

Eisner, Jason. 2003. Learning non-isomorphic tree mappings for machine translation. In
Proceedings of the 41st Annual Meeting of the Association for Computational
Linguistics (Companion Volume), Sapporo, July.

83



Elhadad, Michael. 1991. FUF: The universal unifier - user manual, version 5.0. Technical
Report CUCS-038-91, Columbia University.

Elhadad, Michael. 1993. Using argumentation to control lexical choice: a
unification-based implementation. Ph.D. thesis, Computer Science Department,
Columbia University.

Feiner, Steven and Kathleen McKeown. 1991. Automating the generation of coordinated
multimedia explanations. IEEE Computer, 24(10):33–41, October.

Gildea, Daniel and Daniel Jurafsky. 2002. Automatic labeling of semantic roles.
28(3):245–288.

Goodman, Joshua. 1999. Semiring parsing. In Computational Linguistics, volume 25(4),
pages 573–605.

Goodman, Joshua. 2002. Efficient parsing of dop with pcfg-reductions. In Rens Bod,
Khalil Sima’an, and Remko Scha, editors: Data Oriented Parsing. CSLI.
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Štěpánek, Petr Pajas, and Jiřı́ Kárnı́k. 2001. A Manual for Analytic Layer Tagging of
the Prague Dependency Treebank. Technical Report TR-2001-, ÚFAL MFF UK,
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