
Approximation-­‐aware	
 	

Dependency	
 Parsing	
 by	
 	

Belief	
 Propagation	

September	
 19,	
 2015	

TACL	
 at	
 EMNLP	

1	

Matt	
 Gormley	

Mark	
 Dredze	

Jason	
 Eisner	

Motivation	
 #1:	
 	

Approximation-­‐unaware	
 Learning	

Problem:	
 Approximate	
 inference	
 causes	
 standard	

learning	
 algorithms	
 to	
 go	
 awry	
 	

(Kulesza	
 &	
 Pereira,	
 2008)	

	

2	

Can	
 we	
 take	
 our	
 	

approximations	
 	

into	
 account?	

with	
 exact	
 inference:	
 with	
 approx.	
 inference:	

Motivation	
 #2:	
 	

Hybrid	
 Models	

Graphical	
 models	
 let	
 you	

encode	
 domain	

knowledge	

Neural	
 nets	
 are	
 really	

good	
 at	
 fitting	
 the	
 data	

discriminatively	
 to	
 make	

good	
 predictions	

3	

Could	
 we	
 define	
 a	
 neural	
 net	
 	

that	
 incorporates	
 	

domain	
 knowledge?	

…	

…	

…	

Our	
 Solution	

Key	
 idea:	
 Treat	
 your	
 unrolled	
 approximate	

inference	
 algorithm	
 as	
 a	
 deep	
 network	

4	

…	

…	

…	

…"

…"

…"

…"

…"

…"

…"

Chart parser:

Talk	
 Summary	

5	

Loopy	
 BP	
 Dynamic	
 Prog.	
 +	
 Structured	
 BP	
 =	

ERMA	
 /	
 Back-­‐BP	
 =	
 Loopy	
 BP	
 +	
 Backprop.	

This	
 Talk	
 =	
 +	
 Backprop.	
 Loopy	
 BP	
 Dynamic	
 Prog.	
 +	

Low-Resource Semantic Role Labeling

Matthew R. Gormley1 Margaret Mitchell2 Benjamin Van Durme1 Mark Dredze1

1 Human Language Technology Center of Excellence

Johns Hopkins University, Baltimore, MD 21211

2 Microsoft Research

Redmond, WA 98052

m

r

g

@

c

s

.

j

h

u

.

e

d

u

| mem
i

t

c

@

m

i

c

r

o

s

o

f

t

.

c

o

m

| van
d

u

r

m

e

@

c

s

.

j

h

u

.

e

d

u

| mdr
e

d

z

e

@

c

s

.

j

h

u

.

e

d

u

Abstract

We explore the extent to which high-

resource manual annotations such as tree-

banks are necessary for the task of se-

mantic role labeling (SRL). We examine

how performance changes without syntac-

tic supervision, comparing both joint and

pipelined methods to induce latent syn-

tax. This work highlights a new applica-

tion of unsupervised grammar induction

and demonstrates several approaches to

SRL in the absence of supervised syntax.

Our best models obtain competitive results

in the high-resource setting and state-of-

the-art results in the low resource setting,

reaching 72.48% F1 averaged across lan-

guages. We release our code for this work

along with a larger toolkit for specifying

arbitrary graphical structure.1

1 Introduction

The goal of semantic role labeling (SRL) is to

identify predicates and arguments and label their

semantic contribution in a sentence. Such labeling

defines who did what to whom, when, where and

how. For example, in the sentence “The kids ran

the marathon”, ran assigns a role to kids to denote

that they are the runners; and a role to marathon to

denote that it is the race course.

Models for SRL have increasingly come to rely

on an array of NLP tools (e.g., parsers, lem-

matizers) in order to obtain state-of-the-art re-

sults (Björkelund et al., 2009; Zhao et al., 2009).

Each tool is typically trained on hand-annotated

data, thus placing SRL at the end of a very high-

resource NLP pipeline. However, richly annotated

data such as that provided in parsing treebanks is

expensive to produce, and may be tied to specific

domains (e.g., newswire). Many languages do

1
h

t

t

p

:

/

/

w

w

w

.

c

s

.

j

h

u

.

e

d

u

/˜

m

r

g

/

s

o

f

t

w

a

r

e

/

not have such supervised resources (low-resource

languages), which makes exploring SRL cross-

linguistically difficult.

The problem of SRL for low-resource lan-

guages is an important one to solve, as solutions

pave the way for a wide range of applications: Ac-

curate identification of the semantic roles of enti-

ties is a critical step for any application sensitive to

semantics, from information retrieval to machine

translation to question answering.

In this work, we explore models that minimize

the need for high-resource supervision. We ex-

amine approaches in a joint setting where we

marginalize over latent syntax to find the optimal

semantic role assignment; and a pipeline setting

where we first induce an unsupervised grammar.

We find that the joint approach is a viable alterna-

tive for making reasonable semantic role predic-

tions, outperforming the pipeline models. These

models can be effectively trained with access to

only SRL annotations, and mark a state-of-the-art

contribution for low-resource SRL.

To better understand the effect of the low-

resource grammars and features used in these

models, we further include comparisons with (1)

models that use higher-resource versions of the

same features; (2) state-of-the-art high resource

models; and (3) previous work on low-resource

grammar induction. In sum, this paper makes

several experimental and modeling contributions,

summarized below.

Experimental contributions:

•

Comparison of pipeline and joint models for

SRL.

•

Subtractive experiments that consider the re-

moval of supervised data.

•

Analysis of the induced grammars in un-

supervised, distantly-supervised, and joint

training settings.

(Smith	
 &	

Eisne

r,	
 200
8)	

Low-Resource Semantic Role Labeling

Matthew R. Gormley1 Margaret Mitchell2 Benjamin Van Durme1 Mark Dredze1

1 Human Language Technology Center of Excellence

Johns Hopkins University, Baltimore, MD 21211

2 Microsoft Research

Redmond, WA 98052

m

r

g

@

c

s

.

j

h

u

.

e

d

u

| mem
i

t

c

@

m

i

c

r

o

s

o

f

t

.

c

o

m

| van
d

u

r

m

e

@

c

s

.

j

h

u

.

e

d

u

| mdr
e

d

z

e

@

c

s

.

j

h

u

.

e

d

u

Abstract

We explore the extent to which high-

resource manual annotations such as tree-

banks are necessary for the task of se-

mantic role labeling (SRL). We examine

how performance changes without syntac-

tic supervision, comparing both joint and

pipelined methods to induce latent syn-

tax. This work highlights a new applica-

tion of unsupervised grammar induction

and demonstrates several approaches to

SRL in the absence of supervised syntax.

Our best models obtain competitive results

in the high-resource setting and state-of-

the-art results in the low resource setting,

reaching 72.48% F1 averaged across lan-

guages. We release our code for this work

along with a larger toolkit for specifying

arbitrary graphical structure.1

1 Introduction

The goal of semantic role labeling (SRL) is to

identify predicates and arguments and label their

semantic contribution in a sentence. Such labeling

defines who did what to whom, when, where and

how. For example, in the sentence “The kids ran

the marathon”, ran assigns a role to kids to denote

that they are the runners; and a role to marathon to

denote that it is the race course.

Models for SRL have increasingly come to rely

on an array of NLP tools (e.g., parsers, lem-

matizers) in order to obtain state-of-the-art re-

sults (Björkelund et al., 2009; Zhao et al., 2009).

Each tool is typically trained on hand-annotated

data, thus placing SRL at the end of a very high-

resource NLP pipeline. However, richly annotated

data such as that provided in parsing treebanks is

expensive to produce, and may be tied to specific

domains (e.g., newswire). Many languages do

1
h

t

t

p

:

/

/

w

w

w

.

c

s

.

j

h

u

.

e

d

u

/˜

m

r

g

/

s

o

f

t

w

a

r

e

/

not have such supervised resources (low-resource

languages), which makes exploring SRL cross-

linguistically difficult.

The problem of SRL for low-resource lan-

guages is an important one to solve, as solutions

pave the way for a wide range of applications: Ac-

curate identification of the semantic roles of enti-

ties is a critical step for any application sensitive to

semantics, from information retrieval to machine

translation to question answering.

In this work, we explore models that minimize

the need for high-resource supervision. We ex-

amine approaches in a joint setting where we

marginalize over latent syntax to find the optimal

semantic role assignment; and a pipeline setting

where we first induce an unsupervised grammar.

We find that the joint approach is a viable alterna-

tive for making reasonable semantic role predic-

tions, outperforming the pipeline models. These

models can be effectively trained with access to

only SRL annotations, and mark a state-of-the-art

contribution for low-resource SRL.

To better understand the effect of the low-

resource grammars and features used in these

models, we further include comparisons with (1)

models that use higher-resource versions of the

same features; (2) state-of-the-art high resource

models; and (3) previous work on low-resource

grammar induction. In sum, this paper makes

several experimental and modeling contributions,

summarized below.

Experimental contributions:

•

Comparison of pipeline and joint models for

SRL.

•

Subtractive experiments that consider the re-

moval of supervised data.

•

Analysis of the induced grammars in un-

supervised, distantly-supervised, and joint

training settings.

(Eato
n	
 &	
 G

hahra
mani,	
 2

009)	

(Stoy
anov

	
 et	
 al.
,	
 2011

)	

6	

This	
 Talk	
 =	
 +	
 Backprop.	
 Loopy	
 BP	
 Dynamic	
 Prog.	
 +	

=	
 +	
 Neural	

Networks	

Graphical	

Models	

Hypergraphs	
 +	
 The	
 models	
 that	

interest	
 me	

•  If	
 you’re	
 thinking,	
 	

“This	
 sounds	
 like	
 a	

great	
 direction!”	

•  Then	
 you’re	
 in	
 good	

company	

•  And	
 have	
 been	

since	
 before	
 1995	

7	

This	
 Talk	
 =	
 +	
 Backprop.	
 Loopy	
 BP	
 Dynamic	
 Prog.	
 +	

=	
 +	
 Neural	

Networks	

Graphical	

Models	

Hypergraphs	
 +	
 The	
 models	
 that	

interest	
 me	

•  So	
 what’s	
 new	
 since	
 1995?	

•  Two	
 new	
 emphases:	

1.  Learning	
 under	
 approximate	
 inference	

2.  Structural	
 constraints	

An	
 Abstraction	
 for	
 Modeling	

8	

Mathematical	

Modeling	

y2

y1

ψ12

Factor	
 Graph	

(bipartite	
 graph)	

•  variables	
 (circles)	

•  factors	
 (squares)	
 Tr

ue
	

Fa
ls
e	

True	
 2	
 9	

False	
 4	
 2	

ψ2 True	
 0.1	

False	
 5.2	

Factor	
 Graph	
 for	
 Dependency	
 Parsing	

9	

Y2,1 Y1,2 Y3,2 Y2,3

Y3,1 Y1,3

Y4,3 Y3,4

Y4,2 Y2,4

Y4,1 Y1,4

Y0,1

Y0,3

Y0,4

Y0,2

Factor	
 Graph	
 for	
 Dependency	
 Parsing	

10	

0	
 2	
 1	
 3	
 4	

Juan_Carlos	
 su	
 abdica	
 reino	
 <WALL>	

(Smith	
 &	

Eisne

r,	
 200
8)	

Left	

arc	

Right	

arc	

Y2,1 Y1,2 Y3,2 Y2,3

Y3,1 Y1,3

Y4,3 Y3,4

Y4,2 Y2,4

Y4,1 Y1,4

Y0,1

Y0,3

Y0,4

Y0,2

Factor	
 Graph	
 for	
 Dependency	
 Parsing	

11	

✔ ! ! !

! !

✔ !

! ✔

! !

!

!

!

✔

0	
 2	
 1	
 3	
 4	

Juan_Carlos	
 su	
 abdica	
 reino	
 <WALL>	

(Smith	
 &	

Eisne

r,	
 200
8)	

Left	

arc	

Right	

arc	

Factor	
 Graph	
 for	
 Dependency	
 Parsing	

12	

✔ ! ! !

! !

✔ !

! ✔

! !

!

!

!

✔

0	
 2	
 1	
 3	
 4	

Juan_Carlos	
 su	
 abdica	
 reino	
 <WALL>	

Unary:	
 local	
 opinion	

about	
 one	
 edge	

(Smith	
 &	

Eisne

r,	
 200
8)	

Factor	
 Graph	
 for	
 Dependency	
 Parsing	

13	

✔ ! ! !

! !

✔ ✔

! ✔

! !

!

!

!

✔

0	
 2	
 1	
 3	
 4	

Juan_Carlos	
 su	
 abdica	
 reino	
 <WALL>	

Unary:	
 local	
 opinion	

about	
 one	
 edge	

(Smith	
 &	

Eisne

r,	
 200
8)	

Factor	
 Graph	
 for	
 Dependency	
 Parsing	

14	

✔ ! ! !

! !

✔ !

! ✔

! !

!

!

!

✔

0	
 2	
 1	
 3	
 4	

Juan_Carlos	
 su	
 abdica	
 reino	
 <WALL>	

PTree:	
 Hard	
 constraint,	

multiplying	
 in	
 1	
 if	
 the	

variables	
 form	
 a	
 tree	

and	
 0	
 otherwise.	

Unary:	
 local	
 opinion	

about	
 one	
 edge	

(Smith	
 &	

Eisne

r,	
 200
8)	

Factor	
 Graph	
 for	
 Dependency	
 Parsing	

15	

✔ ! ! !

! !

✔ !

! ✔

! !

!

!

!

✔

0	
 2	
 1	
 3	
 4	

Juan_Carlos	
 su	
 abdica	
 reino	
 <WALL>	

PTree:	
 Hard	
 constraint,	

multiplying	
 in	
 1	
 if	
 the	

variables	
 form	
 a	
 tree	

and	
 0	
 otherwise.	

Unary:	
 local	
 opinion	

about	
 one	
 edge	

(Smith	
 &	

Eisne

r,	
 200
8)	

Factor	
 Graph	
 for	
 Dependency	
 Parsing	

16	

✔ ! ! !

! !

✔ !

! ✔

! !

!

!

!

✔

0	
 2	
 1	
 3	
 4	

Juan_Carlos	
 su	
 abdica	
 reino	
 <WALL>	

PTree:	
 Hard	
 constraint,	

multiplying	
 in	
 1	
 if	
 the	

variables	
 form	
 a	
 tree	

and	
 0	
 otherwise.	

Unary:	
 local	
 opinion	

about	
 one	
 edge	

Grandparent:	
 local	

opinion	
 about	

grandparent,	
 head,	

and	
 modifier	

(Smith	
 &	

Eisne

r,	
 200
8)	

Factor	
 Graph	
 for	
 Dependency	
 Parsing	

17	

✔ ! ! !

! !

✔ !

! ✔

! !

!

!

!

✔

0	
 2	
 1	
 3	
 4	

Juan_Carlos	
 su	
 abdica	
 reino	
 <WALL>	

PTree:	
 Hard	
 constraint,	

multiplying	
 in	
 1	
 if	
 the	

variables	
 form	
 a	
 tree	

and	
 0	
 otherwise.	

Unary:	
 local	
 opinion	

about	
 one	
 edge	

Sibling:	
 local	
 opinion	

about	
 pair	
 of	
 arbitrary	

siblings	

Grandparent:	
 local	

opinion	
 about	

grandparent,	
 head,	

and	
 modifier	

(Ried
el	
 and

	
 Smith,	
 20
10)	

(Martins
	
 et	
 al.

,	
 2010
)	

Factor	
 Graph	
 for	
 Dependency	
 Parsing	

(Ried

el	
 and
	
 Smith,	
 20

10)	

(Martins
	
 et	
 al.

,	
 2010
)	

Now	
 we	
 can	

work	
 at	
 this	

level	
 of	

abstraction.	
 Y2,1 Y1,2 Y3,2 Y2,3

Y3,1 Y1,3

Y4,3 Y3,4

Y4,2 Y2,4

Y4,1 Y1,4

Y0,1

Y0,3

Y0,4

Y0,2

Why	
 dependency	
 parsing?	

1.  Simplest	
 example	
 for	

Structured	
 BP	

2.  Exhibits	
 both	
 polytime	
 and	

NP-­‐hard	
 problems	

19	

The	
 Impact	
 of	
 Approximations	

20	

Linguistics	

	

	

	

	

Model	

	

	

	

	

	

Learning	

	

	

	

	

Inference	

	

	

	

	

(Inference	
 is	
 usually	

called	
 as	
 a	
 subroutine	

in	
 learning)	

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

pθ() = 0.50

The	
 Impact	
 of	
 Approximations	

21	

Linguistics	

	

	

	

	

Model	

	

	

	

	

	

Learning	

	

	

	

	

Inference	

	

	

	

	

(Inference	
 is	
 usually	

called	
 as	
 a	
 subroutine	

in	
 learning)	

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

pθ() = 0.50

The	
 Impact	
 of	
 Approximations	

22	

Linguistics	

	

	

	

	

Model	

	

	

	

	

	

Learning	

	

	

	

	

Inference	

	

	

	

	

(Inference	
 is	
 usually	

called	
 as	
 a	
 subroutine	

in	
 learning)	

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

pθ() = 0.50

Machine	

Learning	
 Conditional	
 Log-­‐likelihood	
 Training	

1.  Choose	
 model	

Such	
 that	
 derivative	
 in	
 #3	
 is	
 ea	

2.  Choose	
 objective:	
 	

Assign	
 high	
 probability	
 to	
 the	

things	
 we	
 observe	
 and	
 low	

probability	
 to	
 everything	
 else	

23	

3.  Compute	

derivative	
 by	

hand	
 using	
 the	

chain	
 rule	

4.  Replace	
 exact	

inference	
 by	

approximate	

inference	

Conditional	
 Log-­‐likelihood	
 Training	

1.  Choose	
 model	
 	

(3.	
 comes	
 from	
 log-­‐linear	
 factors)	

2.  Choose	
 objective:	
 	

Assign	
 high	
 probability	
 to	
 the	

things	
 we	
 observe	
 and	
 low	

probability	
 to	
 everything	
 else	

24	

3.  Compute	

derivative	
 by	

hand	
 using	
 the	

chain	
 rule	

4.  Replace	
 exact	

inference	
 by	

approximate	

inference	

Machine	

Learning	

What’s	
 wrong	
 with	
 CLL?	

How	
 did	
 we	
 compute	

these	
 approximate	

marginal	
 probabilities	

anyway?	

25	

By	
 Structured	
 Belief	

Propagation	
 of	
 course!	

Machine	

Learning	

Everything	
 you	
 need	
 to	
 know	
 about:	

Structured	
 BP	

1.  It’s	
 a	
 message	
 passing	

algorithm	

2.  The	
 message	
 computations	

are	
 just	
 multiplication,	

addition,	
 and	
 division	

3.  Those	
 computations	
 are	

differentiable	

26	

Structured	
 Belief	
 Propagation	

27	

✔ ! ! !

! !

✔ !

! ✔

! !

!

!

!

✔

0	
 2	
 1	
 3	
 4	

Juan_Carlos	
 su	
 abdica	
 reino	
 <WALL>	

This	
 is	
 just	
 another	

factor	
 graph,	
 so	
 we	

can	
 run	
 Loopy	
 BP	

What	
 goes	
 wrong?	

•  Naïve	

computation	
 is	

inefficient	

•  We	
 can	
 embed	

the	
 inside-­‐
outside	

algorithm	
 within	

the	
 structured	

factor	

(Smith	
 &	

Eisne

r,	
 200
8)	

Inference	

Algorithmic	
 Differentiation	

•  Backprop	
 works	
 on	
 more	
 than	
 just	
 neural	

networks	

•  You	
 can	
 apply	
 the	
 chain	
 rule	
 to	
 any	
 arbitrary	

differentiable	
 algorithm	

	

	

•  Alternatively:	
 could	
 estimate	
 a	
 gradient	
 by	

finite-­‐difference	
 approximations	
 –	
 but	

algorithmic	
 differentiation	
 is	
 much	
 more	

efficient!	

28	

That’s	
 the	
 key	
 (old)	
 idea	
 behind	
 this	
 talk.	

29	

…	
 Model	

parameters	

Factors	
 …	

•  Unary	
 factor:	
 vector	
 with	

2	
 entries	

•  Binary	
 factor:	
 (flattened)	

matrix	
 with	
 4	
 entries	

	

Feed-­‐forward	
 Topology	
 of	
 	

Inference,	
 Decoding	
 and	
 Loss	

Feed-­‐forward	
 Topology	
 of	
 	

Inference,	
 Decoding	
 and	
 Loss	

30	

…	
 Model	

parameters	

Factors	
 …	

…	
 Messages	

at	
 time	
 t=1

…	
 Messages	

at	
 time	
 t=0

•  Messages	
 from	
 neighbors	
 used	
 to	

compute	
 next	
 message	

•  Leads	
 to	
 sparsity	
 in	
 layerwise	
 connections	

	

Feed-­‐forward	
 Topology	
 of	
 	

Inference,	
 Decoding	
 and	
 Loss	

31	

…	
 Model	

parameters	

Factors	
 …	

…	
 Messages	

at	
 time	
 t=1

…	
 Messages	

at	
 time	
 t=0

Arrows	
 in	
 This	
 Diagram:	

A	
 different	
 semantics	

given	
 by	
 the	
 algorithm	

Arrows	
 in	
 Neural	
 Net:	

Linear	
 combination,	
 then	

a	
 sigmoid	

	

Feed-­‐forward	
 Topology	
 of	
 	

Inference,	
 Decoding	
 and	
 Loss	

32	

…	
 Model	

parameters	

Factors	
 …	

…	
 Messages	

at	
 time	
 t=1

…	
 Messages	

at	
 time	
 t=0

Arrows	
 in	
 This	
 Diagram:	

A	
 different	
 semantics	

given	
 by	
 the	
 algorithm	

Arrows	
 in	
 Neural	
 Net:	

Linear	
 combination,	
 then	

a	
 sigmoid	

	

Feed-­‐forward	
 Topology	
 	

	

33	

…	
 Model	

parameters	

Decode	
 /	
 Loss

Factors	
 …	

…	
 Beliefs

Messages	
 	

at	
 time	
 t=3

…	

Messages	

at	
 time	
 t=2

…	

…	
 Messages	

at	
 time	
 t=1

…	
 Messages	

at	
 time	
 t=0

Feed-­‐forward	
 Topology	
 	

	

34	

…	
 Model	

parameters	

Decode	
 /	
 Loss

Factors	
 …	

…	
 Beliefs

Messages	
 	

at	
 time	
 t=3

…	

Messages	

at	
 time	
 t=2

…	

…	
 Messages	

at	
 time	
 t=1

…	
 Messages	

at	
 time	
 t=0

Messages	
 from	
 PTree	

factor	
 rely	
 on	
 a	
 variant	

of	
 inside-­‐outside	

	

Arrows	
 in	
 This	
 Diagram:	

A	
 different	
 semantics	

given	
 by	
 the	
 algorithm	

Feed-­‐forward	
 Topology	
 	

	

35	

…	

…	

…	

…	

…	

…	

…	

Messages	
 from	
 PTree	

factor	
 rely	
 on	
 a	
 variant	

of	
 inside-­‐outside	

	

Chart	
 parser:	

Approximation-­‐aware	
 Learning	

1.  Choose	
 model	
 to	
 be	
 the	

computation	
 with	
 all	
 its	

approximations	

2.  Choose	
 objective	

	
 to	
 likewise	
 include	
 the	

approximations	

3.  Compute	
 derivative	
 by	

backpropagation	
 (treating	

the	
 entire	
 computation	
 as	

if	
 it	
 were	
 a	
 neural	
 network)	

4.  Make	
 no	
 approximations!	

(Our	
 gradient	
 is	
 exact)	

36	

Machine	

Learning	

…"

…"

…"

…"

…"

…"

…"

Chart parser:

Key	
 idea:	
 Open	
 up	
 the	
 black	
 box!	

Experimental	
 Setup	

Goal:	
 Compare	
 two	
 training	
 approaches	

1.  Standard	
 approach	
 (CLL)	

2.  New	
 approach	
 (Backprop)	

	

Data:	
 English	
 PTB	

–  Converted	
 to	
 dependencies	
 using	
 Yamada	
 &	

Matsumoto	
 (2003)	
 head	
 rules	

–  Standard	
 train	
 (02-­‐21),	
 dev	
 (22),	
 test	
 (23)	
 split	

–  TurboTagger	
 predicted	
 POS	
 tags	

	

Metric:	
 Unlabeled	
 Attachment	
 Score	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (higher	
 is	
 better)	

37	

Results	

Speed-­‐Accuracy	

Tradeoff	
 	

New	
 training	

approach	
 yields	

models	
 which	
 are:	
 	

1.  Faster	
 for	
 a	
 given	

level	
 of	
 accuracy	

2.  More	
 accurate	
 for	

a	
 given	
 level	
 of	

speed	
 	

38	

88	

89	

90	

91	

92	

93	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

U
nl
ab

el
ed

	
 A
tt
ac

hm
en

t	
 S
co

re
	

(U
A
S)
	

#	
 Iterations	
 of	
 BP	

CLL	
 Backprop	

Faster	

M
or

e	

ac

cu
ra
te
	

Dependency	
 Parsing	

Results	

Increasingly	

Cyclic	
 Models	

•  As	
 we	
 add	
 more	

factors	
 to	
 the	

model,	
 our	
 model	

becomes	
 loopier	

•  Yet,	
 our	
 training	

by	
 Backprop	

consistently	

improves	
 as	

models	
 get	
 richer	

39	

90	

91	

92	

93	

U
nl
ab

el
ed

	
 A
tt
ac

he
m
en

t	
 S
co

re
	
 (U

A
S)
	

CLL	
 Backprop	

Richer	
 Models	

M
or

e	

ac

cu
ra
te
	

Dependency	
 Parsing	

See	
 our	
 TACL	
 paper	
 for…	

1)	
 Results	
 on	
 19	

languages	

from	
 CoNLL	

2006	
 /	
 2007	

40	

2)	
 Results	
 with	

alternate	

training	

objectives	

3)	
 Empirical	

comparison	
 of	

exact	
 and	

approximate	

inference	

1ST-ORDER 2ND-ORDER (WITH GIVEN NUM. BP ITERATIONS)
1 2 4 8

LANGUAGE CLL L2 � CLL CLL L2 � CLL CLL L2 � CLL CLL L2 � CLL CLL L2 � CLL

AR 77.63 -0.26 73.39 +2.21 77.05 -0.17 77.20 +0.02 77.16 -0.07
BG 90.38 -0.76 89.18 -0.45 90.44 +0.04 90.73 +0.25 90.63 -0.19
CA 90.47 +0.30 88.90 +0.17 90.79 +0.38 91.21 +0.78 91.49 +0.66
CS 84.69 -0.07 79.92 +3.78 82.08 +2.27 83.02 +2.94 81.60 +4.42
DA 87.15 -0.12 86.31 -1.07 87.41 +0.03 87.65 -0.11 87.68 -0.10
DE 88.55 +0.81 88.06 0.00 89.27 +0.46 89.85 -0.05 89.87 -0.07
EL 82.43 -0.54 80.02 +0.29 81.97 +0.09 82.49 -0.16 82.66 -0.04
EN 88.31 +0.32 85.53 +1.44 87.67 +1.82 88.63 +1.14 88.85 +0.96
ES 81.49 -0.09 79.08 -0.37 80.73 +0.14 81.75 -0.66 81.52 +0.02
EU 73.69 +0.11 71.45 +0.85 74.16 +0.24 74.92 -0.32 74.94 -0.38
HU 78.79 -0.52 76.46 +1.24 79.10 +0.03 79.07 +0.60 79.28 +0.31
IT 84.75 +0.32 84.14 +0.04 85.15 +0.01 85.66 -0.51 85.81 -0.59
JA 93.54 +0.19 93.01 +0.44 93.71 -0.10 93.75 -0.26 93.47 +0.07
NL 76.96 +0.53 74.23 +2.08 77.12 +0.53 78.03 -0.27 77.83 -0.09
PT 86.31 +0.38 85.68 -0.01 87.01 +0.29 87.34 +0.08 87.30 +0.17
SL 79.89 +0.30 78.42 +1.50 79.56 +1.02 80.91 +0.03 80.80 +0.34
SV 87.22 +0.60 86.14 -0.02 87.68 +0.74 88.01 +0.41 87.87 +0.37
TR 78.53 -0.30 77.43 -0.64 78.51 -1.04 78.80 -1.06 78.91 -1.13
ZH 84.93 -0.39 82.62 +1.43 84.27 +0.95 84.79 +0.68 84.77 +1.14

AVG. 83.98 +0.04 82.10 +0.68 83.88 +0.41 84.41 +0.19 84.34 +0.31

Table 2: Results on 19 languages from CoNLL-2006/2007. For languages appearing in both datasets, the 2006 version
was used, except for Chinese (ZH). Evaluation follows the 2006 conventions and excludes punctuation. We report
absolute UAS for the baseline (CLL) and the improvement in UAS for L2 over CLL (L2 � CLL) with positive/negative
differences in blue/red. The average UAS and average difference across all languages (AVG.) is given.

8 Discussion

The purpose of this work was to explore ERMA and
related training methods for models which incorpo-
rate structured factors. We applied these methods
to a basic higher-order dependency parsing model,
because that was the simplest and first instance of
structured BP (Smith and Eisner, 2008). In future
work, we hope to explore further models with struc-
tured factors—particularly those which jointly ac-
count for multiple linguistic strata (e.g. syntax, se-
mantics, and topic). Another natural extension of
this work is to explore other types of factors: here we
considered only log-linear potential functions (com-
monly used in CRFs), but any differentiable func-
tion would be appropriate, such as a neural network
(Durrett and Klein, 2015; Gormley et al., 2015b).

Our primary contribution is approximation-aware
training for structured BP. We have specifically
presented message-passing formulas for any factor
whose belief’s partition function can be computed
as the total weight of all hyperpaths in a weighted
hypergraph. This would suffice to train the struc-
tured BP systems that have been built for projective

dependency parsing (Smith and Eisner, 2008), CNF
grammar parsing (Naradowsky et al., 2012), TAG
(Auli and Lopez, 2011), ITG-constraints for phrase
extraction (Burkett and Klein, 2012), and graphical
models over strings (Dreyer and Eisner, 2009).

9 Conclusions

We introduce a new approximation-aware learning
framework for belief propagation with structured
factors. We present differentiable objectives for
both empirical risk minimization (à la ERMA) and a
novel objective based on L2 distance between the in-
ferred beliefs and the true edge indicator functions.
Experiments on the English Penn Treebank and 19
languages from CoNLL-2006/2007 shows that our
estimator is able to train more accurate dependency
parsers with fewer iterations of belief propagation
than standard conditional log-likelihood training, by
taking approximations into account. For additional
details, see the tech report version of this paper
(Gormley et al., 2015a). Our code is available in
a general-purpose library for structured BP, hyper-
graphs, and backprop (Gormley, 2015).

take inexact inference into account. The two key
findings of our experiments are that our learning ap-
proach is more robust to (1) decreasing the number
of iterations of BP and (2) adding additional cycles
to the factor graph in the form of higher-order fac-
tors. In short: our approach leads to faster inference
and creates opportunities for more accurate parsers.

Speed-Accuracy Tradeoff Our first experiment is
on English dependencies. For English PTB-YM,
Figure 3 shows accuracy as a function of the num-
ber of BP iterations for our second-order model with
both arbitrary sibling and grandparent factors on En-
glish. We find that our training methods (L2 and
L2+AR) obtain higher accuracy than standard train-
ing (CLL), particularly when a small number of BP
iterations are used and the inference is a worse ap-
proximation. Notice that with just two iterations of
BP, the parsers trained by our approach obtain ac-
curacy greater than or equal to those by CLL with
any number of iterations (1 to 8). Contrasting the
two objectives for our approximation-aware train-
ing, we find that our simple L2 objective performs
very well. In fact, in only two cases, at 3 and 5 itera-
tions, does risk annealing (L2+AR) further improve
performance on test data. In our development exper-
iments, we also evaluated AR without using L2 for
initialization and we found that it performed worse
than either of CLL and L2 alone. That AR performs
only slightly better than L2 (and not worse) in the
case of L2+AR is likely due to early stopping on dev
data, which guards against selecting a worse model.

Increasingly Cyclic Models Figure 4 contrasts
accuracy with the type of 2nd-order factors (grand-
parent, sibling, or both) included in the model for
English, for a fixed budget of 4 BP iterations.
Adding higher-order factors introduces more loops,
making the loopy BP approximation more problem-
atic for standard CLL training. By contrast, under
approximation-aware training, enriching the model
with more factors always helps performance, as de-
sired, rather than hurting it.

Notice that our advantage is not restricted to the
case of loopy graphs. Even when we use a 1st-
order model, for which BP inference is exact, our
approach yields higher-accuracy parsers than CLL
training. We speculate that this improvement is due
to our method’s ability to better deal with model

TRAIN INFERENCE DEV UAS TEST UAS
CLL Exact 91.99 91.62
CLL BP 4 iters 91.37 91.25
L2 Exact 91.91 91.66
L2 BP 4 iters 91.83 91.63

Table 1: The impact of exact vs. approximate inference
on a 2nd-order model with grandparent factors only. Re-
sults are for the development (§ 22) and test (§ 23) sec-
tions of PTB-YM.

misspecification—a first-order model is quite mis-
specified! Note the following subtle point: when
inference is exact, the CLL estimator is actually a
special case of our approximation-aware learner—
that is, CLL computes the same gradient that our
training by backpropagation would if we used log-
likelihood as the objective.

Exact Inference with Grandparents §2 noted
that since we always do MBR decoding, the ideal
strategy is to fit the true distribution with a good
model. Consider a “good model” that includes unary
and grandparent factors. Exact inference is possible
here in O(n4

) time by dynamic programming (Koo
and Collins, 2010, Model 0). Table 1 shows that
CLL training with exact inference indeed does well
on test data—but that accuracy falls if we substitute
fast approximate inference (4 iterations of BP). Our
proposed L2 training is able to close the gap, just as
intended. That is, we succesfully train a few itera-
tions of an approximate O(n3

) algorithm to behave
as well as an exact O(n4

) algorithm.

Other Languages Our final experiments train and
test our parsers on 19 languages from CoNLL-
2006/2007 (Table 2). We find that, on average across
languages, approximation-aware training with an L2

objective obtains higher UAS than CLL training.
This result holds for both our poorest model (1st-
order) and our richest one (2nd-order with grandpar-
ent and sibling factors), using 1, 2, 4, or 8 iterations
of BP. Notice that the approximation-aware train-
ing doesn’t always outperform CLL training—only
in the aggregate. Again, we see the trend that our
training approach yields larger gains when BP is re-
stricted to a small number of maximum iterations. It
is possible that larger training sets would also favor
our approach, by providing a clearer signal of how
to reduce the objective (8).

88.0

89.0

90.0

91.0

92.0

93.0

1 2 3 4 5 6 7 8

U
A

S

Iterations of BP

CLL

L2

L2+AR

Figure 3: Speed/accuracy tradeoff of English PTB-YM
UAS vs. the total number of BP iterations tmax for
standard conditional likelihood training (CLL) and our
approximation-aware training with either an L2 objective
(L2) or a staged training of L2 followed by annealed risk
(L2+AR). Note that the x-axis shows the number of iter-
ations used for both training and testing. We use a 2nd-
order model with Grand.+Sib. factors.

POS tags for the CoNLL languages, and predicted
tags from TurboTagger (Martins et al., 2013) for the
PTB. Unlike most prior work, we hold out 10% of
each CoNLL training dataset as development data
for regularization by early stopping.9

Some of the CoNLL languages contain non-
projective edges, but our system is built using a
probability distribution over projective trees only.
ERMA can still be used with such a badly misspec-
ified model—one of its advantages—but no amount
of training can raise CLL’s objective above �1,
since any non-projective gold tree will always have
probability 0. Thus, for CLL only, we replace
each gold tree in training data with a minimum-loss
projective tree (Carreras, 2007).10 This resembles
ERMA’s goal of training the system to find a low-
loss projective tree. At test time, we always evaluate
the system’s projective output trees against the pos-
sibly non-projective gold trees, as in prior work.

Learning Settings We compare three learning set-
tings. The first, our baseline, is conditional log-

9In dev experiments, we found L2 distance to be less sensi-
tive to the `2-regularizer weight than CLL. So we added addi-
tional regularization by early stopping to improve CLL.

10We also ran a controlled experiment with L2 and not just
CLL trained on these projectivized trees: the average margin of
improvement for our method widened very slightly.

90.5

91

91.5

92

92.5

Unary Grand. Sib. Grand.+Sib.

U
A

S

CLL

L2

L2+AR

Figure 4: English PTB-YM UAS vs. the types of 2nd-
order factors included in the model for approximation-
aware training and standard conditional likelihood train-
ing. All models include 1st-order factors (Unary). The
2nd-order models include grandparents (Grand.), arbi-
trary siblings (Sib.), or both (Grand.+Sib.)—and use 4
iterations of BP.

likelihood training (CLL) (§6). As is common
in the literature, we conflate two distinct learning
settings (conditional log-likelihood/surrogate log-
likelihood) under the single name “CLL,” allowing
the inference method (exact/inexact) to differentiate
them. The second learning setting is approximation-
aware learning (§3) with either our L2 distance ob-
jective (L2) (§4.2) or our layer-wise training method
(L2+AR) which takes the L2-trained model as an ini-
tializer for our annealed risk (§4.3). The annealed
risk objective requires an annealing schedule: over
the course of training, we linearly anneal from ini-
tial temperature T = 0.1 to T = 0.0001, updat-
ing T at each step of stochastic optimization. The
third learning setting uses the same two objectives,
L2 and L2+AR, but with exact inference (§6). The
`2-regularizer weight in (8) is � = 1. Each method is
trained by AdaGrad for 5 epochs with early stopping
(i.e. the model with the highest score on dev data is
returned). Across CoNLL, the average epoch chosen
for CLL was 2.02 and for L2 was 3.42. The learning
rate for each training run is dynamically tuned on a
sample of the training data.

7.2 Results

Our goal is to demonstrate that our approximation-
aware training method leads to improved parser ac-
curacy as compared with the standard training ap-
proach of conditional log-likelihood (CLL) maxi-
mization (Smith and Eisner, 2008), which does not

88.0

89.0

90.0

91.0

92.0

93.0

1 2 3 4 5 6 7 8

U
A

S

Iterations of BP

CLL

L2

L2+AR

Figure 3: Speed/accuracy tradeoff of English PTB-YM
UAS vs. the total number of BP iterations tmax for
standard conditional likelihood training (CLL) and our
approximation-aware training with either an L2 objective
(L2) or a staged training of L2 followed by annealed risk
(L2+AR). Note that the x-axis shows the number of iter-
ations used for both training and testing. We use a 2nd-
order model with Grand.+Sib. factors.

POS tags for the CoNLL languages, and predicted
tags from TurboTagger (Martins et al., 2013) for the
PTB. Unlike most prior work, we hold out 10% of
each CoNLL training dataset as development data
for regularization by early stopping.9

Some of the CoNLL languages contain non-
projective edges, but our system is built using a
probability distribution over projective trees only.
ERMA can still be used with such a badly misspec-
ified model—one of its advantages—but no amount
of training can raise CLL’s objective above �1,
since any non-projective gold tree will always have
probability 0. Thus, for CLL only, we replace
each gold tree in training data with a minimum-loss
projective tree (Carreras, 2007).10 This resembles
ERMA’s goal of training the system to find a low-
loss projective tree. At test time, we always evaluate
the system’s projective output trees against the pos-
sibly non-projective gold trees, as in prior work.

Learning Settings We compare three learning set-
tings. The first, our baseline, is conditional log-

9In dev experiments, we found L2 distance to be less sensi-
tive to the `2-regularizer weight than CLL. So we added addi-
tional regularization by early stopping to improve CLL.

10We also ran a controlled experiment with L2 and not just
CLL trained on these projectivized trees: the average margin of
improvement for our method widened very slightly.

90.5

91

91.5

92

92.5

Unary Grand. Sib. Grand.+Sib.

U
A

S

CLL

L2

L2+AR

Figure 4: English PTB-YM UAS vs. the types of 2nd-
order factors included in the model for approximation-
aware training and standard conditional likelihood train-
ing. All models include 1st-order factors (Unary). The
2nd-order models include grandparents (Grand.), arbi-
trary siblings (Sib.), or both (Grand.+Sib.)—and use 4
iterations of BP.

likelihood training (CLL) (§6). As is common
in the literature, we conflate two distinct learning
settings (conditional log-likelihood/surrogate log-
likelihood) under the single name “CLL,” allowing
the inference method (exact/inexact) to differentiate
them. The second learning setting is approximation-
aware learning (§3) with either our L2 distance ob-
jective (L2) (§4.2) or our layer-wise training method
(L2+AR) which takes the L2-trained model as an ini-
tializer for our annealed risk (§4.3). The annealed
risk objective requires an annealing schedule: over
the course of training, we linearly anneal from ini-
tial temperature T = 0.1 to T = 0.0001, updat-
ing T at each step of stochastic optimization. The
third learning setting uses the same two objectives,
L2 and L2+AR, but with exact inference (§6). The
`2-regularizer weight in (8) is � = 1. Each method is
trained by AdaGrad for 5 epochs with early stopping
(i.e. the model with the highest score on dev data is
returned). Across CoNLL, the average epoch chosen
for CLL was 2.02 and for L2 was 3.42. The learning
rate for each training run is dynamically tuned on a
sample of the training data.

7.2 Results

Our goal is to demonstrate that our approximation-
aware training method leads to improved parser ac-
curacy as compared with the standard training ap-
proach of conditional log-likelihood (CLL) maxi-
mization (Smith and Eisner, 2008), which does not

Comparison	
 of	
 Two	
 Approaches	

1.	
 CLL	
 with	
 approximate	
 inference	

– A	
 totally	
 ridiculous	
 thing	
 to	
 do!	
 	

– But	
 it’s	
 been	
 done	
 for	
 years	
 because	
 it	
 often	

works	
 well	

–  (Also	
 named	
 “surrogate	
 likelihood	
 training”	
 by	

Wainright	
 (2006))	

41	

Machine	

Learning	

Comparison	
 of	
 Two	
 Approaches	

2.	
 Approximation-­‐aware	
 Learning	
 for	
 NLP	

–  In	
 hindsight,	
 treating	
 the	
 approximations	
 as	
 part	
 of	

the	
 model	
 is	
 the	
 obvious	
 thing	
 to	
 do	

(Domke,	
 2010;	
 Domke,	
 2011;	
 Stoyanov	
 et	
 al.,	
 2011;	
 	

Ross	
 et	
 al.,	
 2011;	
 Stoyanov	
 &	
 Eisner,	
 2012;	
 Hershey	
 et	
 al.,	
 2014)	

– Our	
 contribution:	
 Approximation-­‐aware	
 learning	

with	
 structured	
 factors	

– But	
 there's	
 some	
 challenges	
 to	
 get	
 it	
 right	
 (numerical	

stability,	
 efficiency,	
 backprop	
 through	
 structured	
 factors,	
 annealing	

a	
 decoder’s	
 argmin)	

–  Sum-­‐Product	
 Networks	
 are	
 similar	
 in	
 spirit	

	
 (Poon	
 &	
 Domingos,	
 2011;	
 Gen	
 &	
 Domingos,	
 2012)	

42	

Machine	

Learning	

Key	
 idea:	
 Open	
 up	
 the	
 black	
 box!	

Takeaways	

•  New	
 learning	
 approach	
 for	
 Structured	
 BP	

maintains	
 high	
 accuracy	
 with	
 fewer	

iterations	
 of	
 BP,	
 even	
 with	
 cycles	

•  Need	
 a	
 neural	
 network?	
 Treat	
 your	
 unrolled	

approximate	
 inference	
 algorithm	
 as	
 a	
 deep	

network	

43	

Questions?	

Pacaya	
 -­‐	
 Open	
 source	
 framework	
 for	
 hybrid	

graphical	
 models,	
 hypergraphs,	
 and	
 neural	
 networks	

Features:	
 	

–  Structured	
 BP	
 	

–  Coming	
 Soon:	
 Approximation-­‐aware	
 training	

Language:	
 Java	

URL:	
 https://github.com/mgormley/pacaya	
 	

	

