

Approximation-aware Dependency Parsing by Belief Propagation

Matt Gormley Mark Dredze Jason Eisner

September 19, 2015 TACL at EMNLP

Motivation #1:

Approximation-unaware Learning

Problem: Approximate inference causes standard learning algorithms to go awry (Kulesza & Pereira, 2008)

with approx. inference:

Can we take our approximations into account?

Motivation #2:

Hybrid Models

Graphical models let you encode domain knowledge

Neural nets are really good at fitting the data discriminatively to make good predictions

Could we define a neural net that incorporates domain knowledge?

Our Solution

Talk Summary

= This Talk

Loopy BP + Dynamic Prog.

Backprop.

= This Talk

Graphical + Hypergraphs Models

Neural Networks = The models that interest me

- If you're thinking, "This sounds like a great direction!"
- Then you're in good company
- And have been since before 1995

LeRec: A NN/HMM Hybrid for On-Line Handwriting Recognition

Yoshua Bengio* bengioy@iro.umontreal.ca yann@research.att.com

Yann LeCun

Craig Nohl nohl@research.att.com

Chris Burges burges@research.att.com

AT&T Bell Laboratories Rm 4G332, 101 Crawfords Corner Road Holmdel, NJ 07733

To appear in Neural Computation, Volume 7, Number 5, 1995

Loopy BP + Dynamic Prog. + Backprop.

Graphical + Hypergraphs Models

+ Neural Networks = The models that interest me

- So what's new since 1995?
- Two new emphases:
 - 1. Learning under approximate inference
 - 2. Structural constraints

An Abstraction for Modeling

Now we can work at this level of abstraction.

$$p_{\theta}(\boldsymbol{y}) = \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{y}_{\alpha})$$

Why dependency parsing?

- 1. Simplest example for Structured BP
- 2. Exhibits both polytime and NP-hard problems

The Impact of Approximations

The Impact of Approximations

The Impact of Approximations

Conditional Log-likelihood Training

Choose **model**

Choose **objective**: Assign high probability to the things we observe and low probability to everything else

$$p_{\theta}(\boldsymbol{y}) = \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{y}_{\alpha})$$

$$L(\theta) = \sum_{\boldsymbol{v} \in \mathcal{D}} \log p_{\theta}(\boldsymbol{y})$$

Compute 3. derivative **by**

derivative by hand using the chain rule
$$\frac{dL(\theta)}{d\theta_j} = \sum_{\boldsymbol{y} \in \mathcal{D}} \left(\sum_{\alpha} \left[f_{\alpha,j}(\boldsymbol{y}_{\alpha}) - \sum_{\boldsymbol{y}'} p_{\theta}(\boldsymbol{y}_{\alpha}') f_{\alpha,j}(\boldsymbol{y}_{\alpha}') \right] \right)$$

Machine Learning

Conditional Log-likelihood Training

- Choose model

 (3. comes from log-linear factors)
- $p_{\theta}(\boldsymbol{y}) = \frac{1}{Z} \prod_{\alpha} \exp(\theta \cdot \boldsymbol{f}_{\alpha}(\boldsymbol{y}_{\alpha}))$
- 2. Choose **objective:**Assign high probability to the things we observe and low probability to everything else

$$L(\theta) = \sum_{\boldsymbol{v} \in \mathcal{D}} \log p_{\theta}(\boldsymbol{y})$$

- 3. Compute derivative by hand using the chain rule
- $egin{equation} rac{dL(heta)}{d heta_j} = \sum_{oldsymbol{y} \in \mathcal{D}} \left(\sum_{lpha} \left[f_{lpha,j}(oldsymbol{y}_lpha) \sum_{oldsymbol{y}'} p_{ heta}(oldsymbol{y}'_lpha) f_{lpha,j}(oldsymbol{y}'_lpha)
 ight]
 ight) \end{aligned}$
- 4. Replace exact inference by approximate inference

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta \ egin{aligned} f_{lpha,j}(oldsymbol{y}_lpha) - \sum_{oldsymbol{y}'} b_{ heta}(oldsymbol{y}'_lpha) f_{lpha,j}(oldsymbol{y}'_lpha) \end{bmatrix} \end{aligned}$$

Machine Learning

What's wrong with CLL?

How did we compute these **approximate** marginal probabilities anyway?

By Structured Belief Propagation of course!

Everything you need to know about: Structured BP

- It's a message passing algorithm
- 2. The message computations are just multiplication, addition, and division
- 3. Those computations are differentiable

Algorithmic Differentiation

- Backprop works on more than just neural networks
- You can apply the chain rule to any arbitrary differentiable algorithm

That's the key (old) idea behind this talk.

 Alternatively: could estimate a gradient by finite-difference approximations – but algorithmic differentiation is much more efficient!

Feed-forward Topology of Inference, Decoding and Loss

- Messages from neighbors used to compute next message
- Leads to sparsity in layerwise connections

Arrows in Neural Net:

Linear combination, then a sigmoid

$$a_i = \sigma \left(\sum_j \theta_j b_j \right)$$

Arrows in This Diagram:

A different semantics given by the algorithm

$$\psi_{\alpha}(\boldsymbol{y}_{\alpha}) = \exp(\boldsymbol{\theta} \cdot \boldsymbol{f}_{\alpha}(\boldsymbol{y}_{\alpha}, \boldsymbol{x}))$$

Messages at time t=1

Messages at time t=0

Factors

Model parameters

Arrows in Neural Net:

Linear combination, then a sigmoid

$$a_i = \sigma \left(\sum_j \theta_j b_j \right)$$

Arrows in This Diagram:

A different semantics given by the algorithm

$$m_{\alpha \to i}(y_i) = \frac{1}{\kappa_{\alpha \to i}} \sum_{\boldsymbol{y}_{\alpha} \sim y_i} \psi_{\alpha}(\boldsymbol{y}_{\alpha}) \prod_{j \in \mathcal{N}(\alpha) \setminus i} m_{j \to \alpha}(y_i)$$

Messages at time t=1

Messages at time t=0

Factors

Model parameters

Feed-forward Topology

Messages from PTree factor rely on a variant of **inside-outside**

Arrows in This Diagram:

A different semantics given by the algorithm

$$m_{\alpha \to i}(y_i) = \frac{1}{\kappa_{\alpha \to i}} \sum_{\boldsymbol{y}_{\alpha} \sim y_i} \psi_{\alpha}(\boldsymbol{y}_{\alpha}) \prod_{j \in \mathcal{N}(\alpha) \setminus i} m_{j \to \alpha}(y_i)$$

a

Messages at time t=1

Messages at time t=0

Factors

 $\boldsymbol{\theta}$

Model parameters

Machine Learning

Approximation-aware Learning

- Choose model to be the computation with all its approximations
- Choose objective
 to likewise include the
 approximations
- Compute derivative by backpropagation (treating the entire computation as if it were a neural network)
- 4. Make no approximations!(Our gradient is exact)

Key idea: Open up the black box!

Experimental Setup

Goal: Compare two training approaches

- Standard approach (CLL)
- 2. New approach (Backprop)

Data: English PTB

- Converted to dependencies using Yamada & Matsumoto (2003) head rules
- Standard train (02-21), dev (22), test (23) split
- TurboTagger predicted POS tags

Metric: Unlabeled Attachment Score (higher is better)

Results

Speed-Accuracy Tradeoff

New training approach yields models which are:

- Faster for a given level of accuracy
- More accurate for a given level of speed

Results

Increasingly **Cyclic Models**

- As we add more factors to the model, our model becomes loopier
- Yet, our training by Backprop consistently improves as models get richer

See our TACL paper for...

1) Results on 19 languages from CoNLL 2006 / 2007

2) Results with alternatetrainingobjectives

3) Empirical comparison of **exact** and **approximate** inference

TRAIN	Inference	DEV UAS	TEST UAS
CLL	Exact	91.99	91.62
CLL	BP 4 iters	91.37	91.25
L_2	Exact	91.91	91.66
L_2	BP 4 iters	91.83	91.63

Comparison of Two Approaches

- 1. CLL with approximate inference
 - A totally ridiculous thing to do!
 - But it's been done for years because it often works well
 - (Also named "surrogate likelihood training" by Wainright (2006))

Machine Learning

Comparison of Two Approaches

Key idea: Open up the black box!

- 2. Approximation-aware Learning for NLP
 - In hindsight, treating the approximations as part of the model is the obvious thing to do (Domke, 2010; Domke, 2011; Stoyanov et al., 2011; Ross et al., 2011; Stoyanov & Eisner, 2012; Hershey et al., 2014)
 - Our contribution: Approximation-aware learning with structured factors
 - But there's some challenges to get it right (numerical stability, efficiency, backprop through structured factors, annealing a decoder's argmin)
 - Sum-Product Networks are similar in spirit
 (Poon & Domingos, 2011; Gen & Domingos, 2012)

Takeaways

 New learning approach for Structured BP maintains high accuracy with fewer iterations of BP, even with cycles

 Need a neural network? Treat your unrolled approximate inference algorithm as a deep network

Questions?

Pacaya - Open source framework for hybrid graphical models, hypergraphs, and neural networks

Features:

- Structured BP
- Coming Soon: Approximation-aware training

Language: Java

URL: https://github.com/mgormley/pacaya