Approximation-aware
Dependency Parsing by
Belief Propagation

Matt Gormley
Mark Dredze
Jason Eisner

September 19, 2015
TACL at EMNLP

IIIIIIIIII

. . JOHNS HOPKINS
Motivation #1:

Approximation-unaware Learning

Problem: Approximate inference causes standard
learning algorithms to go awry
(Kulesza & Pereira, 2008)

with exact inference: with approx. inference:

Can we take our
approximations
into account?

. . JOHNS HOPKINS
Motivation #2:
Hybrid Models

Graphical models let you | Neural nets are really
encode domain good at fitting the data
knowledge discriminatively to make
good predictions

Could we define a neural net
that incorporates
domain knowledge?

JOHNS HOPKINS

UNIVERSITY

Our Solution

Key idea: Treat your unrolled approximate
inference algorithm as a deep network

291\

DN SR
f)ﬁ?(h

> | RN
|) r@ 7] 9 I L ,‘}54/"3:\:\\“;%’
] ~ P ;»"‘;
© {@ 4 ma(yl) N A b é“&d\ﬁ\\\
) Ay, ¥ | /'L‘«l///'/'\ '? ‘I
ma—)z(y’t) T “'lll [1]

IESSSS
[TITITIT]

JOHNS HOPKINS

UNIVER SITY

Talk Summary

Loopy BP + Dynamic Prog. = Structured BP

a®

Loopy BP + Backprop. = ERMA | Back-BP

S

“
& :

Loopy BP + Dynamic Prog. + Backprop.

—

This Talk

JOHNS HOPKINS

UNIVERSITY

Loopy BP + Dynamic Prog. + Backprop. This Talk

2 = 7

Graphical + Hypergraphs + Neural = The models that
Models Networks interest me

, o o
¢ If yo u re t h I n kl n g 9 LeRec: A NN/HMM Hybrid for On-Line Handwriting

Recognition

“This sounds like a -.
great direction!” ‘ g

Craig Nohl Chris Burges
nohl@research.att.com burges@research.att.com

* Then you’re in good

Rm 4G332, 101 Crawfords Corner Road
Holmdel, NJ 07733

company

 And have been
since before 1995

To appear in Neural Computation, Volume 7, Number 5, 1995

Loopy BP + Dynamic Prog. + Backprop.

4 S o i \

<«

Graphical + Hypergraphs + Neural = The models that
Models Networks interest me

* So what’s new since 19957

* Two new emphases:
1. Learning under approximate inference
2. Structural constraints

JOHNS HOPKINS
14 UNIVERSITY

Mathematical

“* An Abstraction for Modeling

Factor Graph
(bipartite graph)
* variables (circles)

o v
3]

e factors (squares) | &
True 2 9

False | 4 2

True 0.1

False | 5.2

IIIIIIIIII

JOHNS HOPKINS

UNIVERSITY

Factor Graph for Dependency Parsing

o)
psnet >

(5“\“'“ & |

<WALL>

10

JOHNS HOPKINS

UNIVERSITY

Factor Graph for Dependency Parsing

o)
psnet >

(S“\“X\ & |

11

JOHNS HOPKINS

UNIVERSITY

Factor Graph for Dependency Parsing

o)
psnet >

(S“\“X\ & |

i Unary: local opinion
about one edge

PV
(rees
??

12

JOHNS HOPKINS

UNIVERSITY

Factor Graph for Dependency Parsing

o)
psnet >

(S“\“X\ & |

i Unary: local opinion
about one edge

13

IIIIIIIIII

Factor Graph for Dependency Parsing

B PTree: Hard constraint,
multiplying in 1 if the
variables form a tree
and o otherwise.

i Unary: local opinion
about one edge

14

IIIIIIIIII

Factor Graph for Dependency Parsing

B PTree: Hard constraint,
multiplying in 1 if the
variables form a tree
and o otherwise.

i Unary: local opinion
about one edge

15

JOHNS HOPKINS

UNIVERSITY

Factor Graph for Dependency Parsing

008\
gionehr” J PTree: Hard constraint,

\ \-\&
G — multiplying in 1 if the
variables form a tree
and o otherwise.

i Unary: local opinion
about one edge

© o) (® B Crandparent: local
opinion about
grandparent, head,

I@P @ O and modifier

0 1 2 3 4
<WALL> Juan_Carlos abdica su reino

16

JOHNS HOPKINS

UNIVERSITY

Factor Graph for Dependency Parsing

\’(,‘(\)

\03 B PTree: Hard constraint,

multiplying in 1 if the
variables form a tree
and o otherwise.

i Unary: local opinion
about one edge

© o) (® B Crandparent: local
opinion about
grandparent, head,

I@P @ S and modifier
B Sibling: local opinion

about pair of arbitrary
o o ©) (o © s
? ? siblings
0 1 2 3 4
<WALL> Juan_Carlos abdica su reino

17

IIIIIIIIII

Now we can

v, ‘{Q‘) @ v,) (, work at this
level of
>

QP 2) G, abstraction.

Why dependency parsing?

1. Simplest example for
Structured BP

2. Exhibits both polytime and
NP-hard problems

JOHNS HOPKINS

UNIVERSITY

The Impact of Approximations

=X
QY JOLINS TIQPKINS

The Impact of Approximations

Linguistics Mg_éel

N P\

time flies like an arrow
: © @"‘
>0 % © 1o

=19 of

-

(Inference is usually
called as a subroutine
in learning)

JOHNS HOPKINS
|4 UN

IVERSITY

Conditional Log-likelihood Training

Machine
Learning

1. Choose model

2. Choose objective:
Assign high probability to the
things we observe and low
probability to everything else

3. Compute
derivative by 4L(6) I]
hand using the = DA 1 fai@a) =D _po(yi) fas(ylh)
chain rule J yeD \ o | Y’ i

JOHNS HOPKINS

UNIVERSITY

Conditional Log-likelihood Training

Machine
Learning

1. Choose model
(3. comes from log-linear factors) P6 (y)

2. Choose objective:
Assign high probability to the L(@)
things we observe and low
probability to everything else

3. Compute
derivative by

hand using the dL(O) _ M S:

chain rule

4. Replace exact
inference by
approximate €D\ « i
inference

Q
M

24

JOHNS HOPKINS

UNIVERSITY

What’s wrong with CLL?

How did we compute
these approximate
marginal probabilities
anyway:?

bo (Yo)

By Structured Belief
Propagation of course!

\

r

25

Everything you need to know about:

Structured BP

1. It’s a message passing
algorithm

2. The message computations
are just multiplication,
addition, and division

3. Those computations are
differentiable

JOHNS HOPKINS

UNIVER SITY

'Ooastructured Belief Propagation

&% E.\Sﬂe(!

n
G This is just another

factor graph, so we
can run Loopy BP

What goes wrong?
* Naive

= A computation is
$ inefficient

* We can embed
[Ci)) @ T the inside-

outside

S © o) (o < algorithm within
the structured

factor

0 1 2 3 -
<WALL> Juan_Carlos abdica su reino

27

JOHNS HOPKINS
14 UNIVERSITY

Algorithmic Differentiation

* Backprop works on more than just neural
networks

* You can apply the chain rule to any arbitrary
differentiable algorithm

That’s the key (old) idea behind this talk.

* Alternatively: could estimate a gradient by

finite-difference approximations — but
algorithmic differentiation is much more
ethcient!

Feed-forward Topology of
Inference, Decoding and Loss

JOHNS HOPKINS

UNIVERSITY

* Unary factor: vector with

2 entries

* Binary factor: (flattened)

matrix with 4 entries

Factors

Model

J_I_‘_I_‘_I_‘ e I_I_I_I parameters

29

JOHNS HOPKINS

UNIVERSITY

* Messages from neighbors used to
compute next message

* Leads to sparsity in layerwise connections

\/

Messages
at time r=1

Messages
at time =0

wOé (ya) Factors

H Model
_J_I_‘_I_‘_I_‘ Tt I_I_I_I parameters

30

=N T 1o T 1o

Arrows in Neural Net:

Linear combination, then
a sigmoid

a; =0 (Z ejbj)
N

I

Arrows in This Diagram:

A different semantics
given by the algorithm

wa(ya) — eXp(e ' fa(ya7 CL‘))

NN

INS

Messages
at time r=1

Messages

Va(Ya)

at time =0
4 Factors

Model
parameters

=N T 1o T 1o

Arrows in Neural Net:

Linear combination, then
a sigmoid

a, — 0O Zejbj
J

I

Arrows in This Diagram:

A different semantics
given by the algorithm

! Z Va(Yq)

K —1
(07 (] yaNyz

IT mima()

JEN (a)\i

N

ma—)i(yi) =

INS

Messages
at time r=1

Messages

at time =0

Factors

Model
parameters

UNIVERSITY

Feed-forward Topology

L(y*,0) ﬁ

Decode / Loss

Beliefs

Messages
at time =3

Messages
at time =2

Messages
at time r=1

Messages
at time =0

Factors

Model
parameters 33

=N T 1o T 1o

Messages from PTree
factor rely on a variant
of inside-outside

fal

VL

. .
m; o (Y;) |

mg)—m (yz) |

Va(Ya)

Arrows in This Diagram:

A different semantics
given by the algorithm

Masi®) = —L 3 hwa) [misa)

m .
TR yo~vi JEN (a)\i

N

INS

Messages
at time r=1

Messages

0

at time =0
{ Factors

Model
parameters 34

JOHNS HOPKINS

UNIVERSITY

rard Topology

i

Messages from PTree e
factor rely on a variant w

of inside-outside
()
m;_a (y’b) | Chart parser:

mg)—m (y’L) |

balyn) dbid 4

O TTTTTIlIT]

35

Machine
Learning

JOHNS HOPKINS
|4 UN

Approximation-aware Learning

Key idea: Open up the black box!
Choose model to be the
computation with all its L(y*,0)
approximations bi (1) m

Choose objective

to likewise include the

approximations ® ()

Compute derivative by m(y:)

backpropagation (treating

the entire computation as

if it were a neural network) o
87

Chart parser:

Make no approximations!
(Our gradient is exact)

Experimental Setup

Goal: Compare two training approaches
1. Standard approach (CLL)
2. New approach (Backprop)

Data: English PTB

— Converted to dependencies using Yamada &
Matsumoto (2003) head rules

— Standard train (02-21), dev (22), test (23) split
— TurboTagger predicted POS tags

Metric: Unlabeled Attachment Score
(higher is better)

JOHNS HOPKINS
14 UNIVERSITY

Results
Speed-Accuracy

Tradeoff g P
. . A92
New training - % N
approach yields SIE o0
models which are: :E 38
: = ¥
1. Faster for a given s

level of accuracy L

-

2. More accurate for
a given level of
speed

JOHNS HOPKINS

UNIVERSITY

Dependency Parsing

b ke Aok A-

A

1 2

3 4 5 6 7 8

Iterations of BP

~4-CLL B Backprop

amrra——

38

Increasingly
Cyclic Models

UNIVERSITY

JOHNS HOPKINS

Results

Dependency Parsing

O
w

As we add more
factors to the
model, our model
becomes loopier

O
N

O
-
|

More accurate

Yet, our training
by Backprop
consistently
improves as
models get richer

O
(@)
|

Unlabeled Attachement Score (UAS)

M CLL B Backprop

Richer Models

Bw JOHNS HOPKINS

UNIVERSITY

See our TACL paper for...

1) Results on19 | 2) Results with = 3) Empirical
languages alternate comparison of
from CoNLL training exact and
2006 [2007 objectives approximate
inference

92.0 - ——
»n 1.0
= CLL
=
90.0 Ly
IsT-oRDER 2D-ORDER (WITH GIVEN NUM. BP ITERATIONS)
L, ; CLL i. ; CLL 4|. ; CLL):. 89.0 L2+AR
aNGuAGE . 2ol 2ol 2ol e .
AR 65 0% 2 TS 00 1T w0 1706 00 TRAIN INFERENCE | DEV UAS | TEST UAS
8o 044 4004 | 9073 4025 | 9063 01
; 0is | | 5 019
cx 3 71907 4038 19121 4078 19149 4066
N o B R TN I B o 88.0 CLL Exact 91.99 91.62
DA 5 2 6.3 718741 4003 | 87.65 011 | 8768 -0.10 1 2 3 4 5 6 7 3 CLL BP 4 . 91 37 91 25
or : : 000 18927 4046 18985 005 18987 007
oo [s24 0s 8002 029|897 009 w24 016 | s266 004 iters . .
I R N 096 .
i # Iterations of BP Ly Exact 91.91 91.66
£ 416 4024 | 7492 038 .
i 4241900 4005 1790 w031 L. BP 4 iters 91.83 91.63
™ 004 18515 4001 | 8566 059 2 k . .
" s Lo 0w Loars 92.5
N 208 172 w053 17803 02 009 CLL
v 001 18701 029 8731 4008 | 8730 4017
st 9,59 50 | 7842 4150 | 7956 +102 | 8091 003 | 8080 4034 L
o URI68 4074 1 BSOL 4041 18IS 4037 2
o [15 030 |7 064 LTBSI 104 L T8E0 106 L7891 113 92
m 493 039 | 8262 4143 | 8427 4095 | 8479 4068 | 84TI +lid Lo+AR
AvG [5395 5007 | 5210 065 T sas8 041 | 8i4 009 | saar 050
2
91.5
=)
91

Unary Grand. Sib. Grand.+Sib.

90.5

JOHNS HOPKINS
14 UNIVERSITY

wne | COmMparison of Two Approaches

Learning

1. CLL with approximate inference
— A totally ridiculous thing to do!

— But it’s been done for years because it often
works well

— (Also named “surrogate likelihood training” by
Wainright (2006))

JOHNS HOPKINS

wne | COmMparison of Two Approaches

Learning
Key idea: Open up the black box!

2. Approximation-aware Learning for NLP

— In hindsight, treating the approximations as part of
the model is the obvious thing to do
(Domke, 2010; Domke, 2011; Stoyanov et al., 2011;
Ross et al., 2011; Stoyanov & Eisner, 2012; Hershey et al., 2014)

— Our contribution: Approximation-aware learning
with structured factors

— But there's some challenges to get it right (numerical

stability, efficiency, backprop through structured factors, annealing
a decoder’s argmin)

— Sum-Product Networks are similar in spirit
(Poon & Domingos, 2011; Gen & Domingos, 2012)

UNIVERSITY

Takeaways

* New learning approach for Structured BP
maintains high accuracy with fewer
iterations of BP, even with cycles

* Need a neural network? Treat your unrolled
approximate inference algorithm as a deep
network

JOHNS HOPKINS
14 UNIVERSITY

Questions?

Pacaya - Open source framework for hybrid
graphical models, hypergraphs, and neural networks

Features:
— Structured BP
— Coming Soon: Approximation-aware training

Language: Java
URL:

