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Motivation	
  #1:	
  	
  
Approximation-­‐unaware	
  Learning	
  

Problem:	
  Approximate	
  inference	
  causes	
  standard	
  
learning	
  algorithms	
  to	
  go	
  awry	
  	
  
(Kulesza	
  &	
  Pereira,	
  2008)	
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Can	
  we	
  take	
  our	
  	
  
approximations	
  	
  
into	
  account?	
  

with	
  exact	
  inference:	
   with	
  approx.	
  inference:	
  



Motivation	
  #2:	
  	
  
Hybrid	
  Models	
  

Graphical	
  models	
  let	
  you	
  
encode	
  domain	
  
knowledge	
  

Neural	
  nets	
  are	
  really	
  
good	
  at	
  fitting	
  the	
  data	
  
discriminatively	
  to	
  make	
  
good	
  predictions	
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Could	
  we	
  define	
  a	
  neural	
  net	
  	
  
that	
  incorporates	
  	
  

domain	
  knowledge?	
  

…	
  

…	
  

…	
  



Our	
  Solution	
  

Key	
  idea:	
  Treat	
  your	
  unrolled	
  approximate	
  
inference	
  algorithm	
  as	
  a	
  deep	
  network	
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…	
  

…	
  

…	
  

…"

…"

…"

…"

…"

…"

…"

Chart parser: 



Talk	
  Summary	
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Loopy	
  BP	
   Dynamic	
  Prog.	
  +	
   Structured	
  BP	
  =	
  

ERMA	
  /	
  Back-­‐BP	
  =	
  Loopy	
  BP	
   +	
   Backprop.	
  

This	
  Talk	
  =	
  +	
   Backprop.	
  Loopy	
  BP	
   Dynamic	
  Prog.	
  +	
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Abstract

We explore the extent to which high-

resource manual annotations such as tree-

banks are necessary for the task of se-

mantic role labeling (SRL). We examine

how performance changes without syntac-

tic supervision, comparing both joint and

pipelined methods to induce latent syn-

tax. This work highlights a new applica-

tion of unsupervised grammar induction

and demonstrates several approaches to

SRL in the absence of supervised syntax.

Our best models obtain competitive results

in the high-resource setting and state-of-

the-art results in the low resource setting,

reaching 72.48% F1 averaged across lan-

guages. We release our code for this work

along with a larger toolkit for specifying

arbitrary graphical structure.1

1 Introduction

The goal of semantic role labeling (SRL) is to

identify predicates and arguments and label their

semantic contribution in a sentence. Such labeling

defines who did what to whom, when, where and

how. For example, in the sentence “The kids ran

the marathon”, ran assigns a role to kids to denote

that they are the runners; and a role to marathon to

denote that it is the race course.

Models for SRL have increasingly come to rely

on an array of NLP tools (e.g., parsers, lem-

matizers) in order to obtain state-of-the-art re-

sults (Björkelund et al., 2009; Zhao et al., 2009).

Each tool is typically trained on hand-annotated

data, thus placing SRL at the end of a very high-

resource NLP pipeline. However, richly annotated

data such as that provided in parsing treebanks is

expensive to produce, and may be tied to specific

domains (e.g., newswire). Many languages do
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not have such supervised resources (low-resource

languages), which makes exploring SRL cross-

linguistically difficult.

The problem of SRL for low-resource lan-

guages is an important one to solve, as solutions

pave the way for a wide range of applications: Ac-

curate identification of the semantic roles of enti-

ties is a critical step for any application sensitive to

semantics, from information retrieval to machine

translation to question answering.

In this work, we explore models that minimize

the need for high-resource supervision. We ex-

amine approaches in a joint setting where we

marginalize over latent syntax to find the optimal

semantic role assignment; and a pipeline setting

where we first induce an unsupervised grammar.

We find that the joint approach is a viable alterna-

tive for making reasonable semantic role predic-

tions, outperforming the pipeline models. These

models can be effectively trained with access to

only SRL annotations, and mark a state-of-the-art

contribution for low-resource SRL.

To better understand the effect of the low-

resource grammars and features used in these

models, we further include comparisons with (1)

models that use higher-resource versions of the

same features; (2) state-of-the-art high resource

models; and (3) previous work on low-resource

grammar induction. In sum, this paper makes

several experimental and modeling contributions,

summarized below.

Experimental contributions:

•

Comparison of pipeline and joint models for

SRL.

•

Subtractive experiments that consider the re-

moval of supervised data.

•

Analysis of the induced grammars in un-

supervised, distantly-supervised, and joint

training settings.

(Smith	
  &	
  
Eisne

r,	
  200
8)	
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and demonstrates several approaches to
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in the high-resource setting and state-of-

the-art results in the low resource setting,

reaching 72.48% F1 averaged across lan-

guages. We release our code for this work

along with a larger toolkit for specifying

arbitrary graphical structure.1

1 Introduction

The goal of semantic role labeling (SRL) is to

identify predicates and arguments and label their

semantic contribution in a sentence. Such labeling

defines who did what to whom, when, where and

how. For example, in the sentence “The kids ran

the marathon”, ran assigns a role to kids to denote

that they are the runners; and a role to marathon to

denote that it is the race course.

Models for SRL have increasingly come to rely

on an array of NLP tools (e.g., parsers, lem-

matizers) in order to obtain state-of-the-art re-

sults (Björkelund et al., 2009; Zhao et al., 2009).

Each tool is typically trained on hand-annotated

data, thus placing SRL at the end of a very high-

resource NLP pipeline. However, richly annotated

data such as that provided in parsing treebanks is

expensive to produce, and may be tied to specific

domains (e.g., newswire). Many languages do

1
h

t

t

p

:

/

/

w

w

w

.

c

s

.

j

h

u

.

e

d

u

/˜

m

r

g

/

s

o

f

t

w

a

r

e

/

not have such supervised resources (low-resource

languages), which makes exploring SRL cross-

linguistically difficult.

The problem of SRL for low-resource lan-

guages is an important one to solve, as solutions

pave the way for a wide range of applications: Ac-

curate identification of the semantic roles of enti-

ties is a critical step for any application sensitive to

semantics, from information retrieval to machine

translation to question answering.

In this work, we explore models that minimize

the need for high-resource supervision. We ex-

amine approaches in a joint setting where we

marginalize over latent syntax to find the optimal

semantic role assignment; and a pipeline setting

where we first induce an unsupervised grammar.

We find that the joint approach is a viable alterna-

tive for making reasonable semantic role predic-

tions, outperforming the pipeline models. These

models can be effectively trained with access to

only SRL annotations, and mark a state-of-the-art

contribution for low-resource SRL.

To better understand the effect of the low-

resource grammars and features used in these

models, we further include comparisons with (1)

models that use higher-resource versions of the

same features; (2) state-of-the-art high resource

models; and (3) previous work on low-resource

grammar induction. In sum, this paper makes

several experimental and modeling contributions,

summarized below.

Experimental contributions:

•

Comparison of pipeline and joint models for

SRL.

•

Subtractive experiments that consider the re-

moval of supervised data.

•

Analysis of the induced grammars in un-

supervised, distantly-supervised, and joint

training settings.

(Eato
n	
  &	
  G

hahra
mani,	
  2

009)	
  

(Stoy
anov

	
  et	
  al.
,	
  2011

)	
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This	
  Talk	
  =	
  +	
   Backprop.	
  Loopy	
  BP	
   Dynamic	
  Prog.	
  +	
  

=	
  +	
   Neural	
  
Networks	
  

Graphical	
  
Models	
  

Hypergraphs	
  +	
   The	
  models	
  that	
  
interest	
  me	
  

•  If	
  you’re	
  thinking,	
  	
  
“This	
  sounds	
  like	
  a	
  
great	
  direction!”	
  

•  Then	
  you’re	
  in	
  good	
  
company	
  

•  And	
  have	
  been	
  
since	
  before	
  1995	
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This	
  Talk	
  =	
  +	
   Backprop.	
  Loopy	
  BP	
   Dynamic	
  Prog.	
  +	
  

=	
  +	
   Neural	
  
Networks	
  

Graphical	
  
Models	
  

Hypergraphs	
  +	
   The	
  models	
  that	
  
interest	
  me	
  

•  So	
  what’s	
  new	
  since	
  1995?	
  
•  Two	
  new	
  emphases:	
  

1.  Learning	
  under	
  approximate	
  inference	
  
2.  Structural	
  constraints	
  



An	
  Abstraction	
  for	
  Modeling	
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Mathematical	
  
Modeling	
  

y2 

y1 

ψ12 

Factor	
  Graph	
  
(bipartite	
  graph)	
  
•  variables	
  (circles)	
  
•  factors	
  (squares)	
   Tr

ue
	
  

Fa
ls
e	
  

True	
   2	
   9	
  

False	
   4	
   2	
  

ψ2 True	
   0.1	
  

False	
   5.2	
  



Factor	
  Graph	
  for	
  Dependency	
  Parsing	
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Y2,1 Y1,2 Y3,2 Y2,3 

Y3,1 Y1,3 

Y4,3 Y3,4 

Y4,2 Y2,4 

Y4,1 Y1,4 

Y0,1 

Y0,3 

Y0,4 

Y0,2 



Factor	
  Graph	
  for	
  Dependency	
  Parsing	
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0	
   2	
  1	
   3	
   4	
  
Juan_Carlos	
   su	
  abdica	
   reino	
  <WALL>	
  

(Smith	
  &	
  
Eisne

r,	
  200
8)	
  

Left	
  
arc	
  

Right	
  
arc	
  

Y2,1 Y1,2 Y3,2 Y2,3 

Y3,1 Y1,3 

Y4,3 Y3,4 

Y4,2 Y2,4 

Y4,1 Y1,4 

Y0,1 

Y0,3 

Y0,4 

Y0,2 



Factor	
  Graph	
  for	
  Dependency	
  Parsing	
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✔ ! ! ! 

! ! 

✔ ! 
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! ! 

! 

! 

! 

✔ 

0	
   2	
  1	
   3	
   4	
  
Juan_Carlos	
   su	
  abdica	
   reino	
  <WALL>	
  

(Smith	
  &	
  
Eisne

r,	
  200
8)	
  

Left	
  
arc	
  

Right	
  
arc	
  



Factor	
  Graph	
  for	
  Dependency	
  Parsing	
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✔ ! ! ! 

! ! 

✔ ! 

! ✔ 

! ! 

! 

! 

! 

✔ 

0	
   2	
  1	
   3	
   4	
  
Juan_Carlos	
   su	
  abdica	
   reino	
  <WALL>	
  

Unary:	
  local	
  opinion	
  
about	
  one	
  edge	
  

(Smith	
  &	
  
Eisne

r,	
  200
8)	
  



Factor	
  Graph	
  for	
  Dependency	
  Parsing	
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! ! 
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! ! 

! 

! 
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0	
   2	
  1	
   3	
   4	
  
Juan_Carlos	
   su	
  abdica	
   reino	
  <WALL>	
  

Unary:	
  local	
  opinion	
  
about	
  one	
  edge	
  

(Smith	
  &	
  
Eisne

r,	
  200
8)	
  



Factor	
  Graph	
  for	
  Dependency	
  Parsing	
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✔ ! ! ! 

! ! 

✔ ! 
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! ! 

! 
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0	
   2	
  1	
   3	
   4	
  
Juan_Carlos	
   su	
  abdica	
   reino	
  <WALL>	
  

PTree:	
  Hard	
  constraint,	
  
multiplying	
  in	
  1	
  if	
  the	
  
variables	
  form	
  a	
  tree	
  
and	
  0	
  otherwise.	
  

Unary:	
  local	
  opinion	
  
about	
  one	
  edge	
  

(Smith	
  &	
  
Eisne

r,	
  200
8)	
  



Factor	
  Graph	
  for	
  Dependency	
  Parsing	
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  a	
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  0	
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Unary:	
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  opinion	
  
about	
  one	
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  &	
  
Eisne

r,	
  200
8)	
  



Factor	
  Graph	
  for	
  Dependency	
  Parsing	
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✔ ! ! ! 

! ! 

✔ ! 

! ✔ 

! ! 

! 

! 

! 

✔ 

0	
   2	
  1	
   3	
   4	
  
Juan_Carlos	
   su	
  abdica	
   reino	
  <WALL>	
  

PTree:	
  Hard	
  constraint,	
  
multiplying	
  in	
  1	
  if	
  the	
  
variables	
  form	
  a	
  tree	
  
and	
  0	
  otherwise.	
  

Unary:	
  local	
  opinion	
  
about	
  one	
  edge	
  

Grandparent:	
  local	
  
opinion	
  about	
  
grandparent,	
  head,	
  
and	
  modifier	
  

(Smith	
  &	
  
Eisne

r,	
  200
8)	
  



Factor	
  Graph	
  for	
  Dependency	
  Parsing	
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✔ ! ! ! 

! ! 

✔ ! 

! ✔ 

! ! 

! 

! 

! 

✔ 

0	
   2	
  1	
   3	
   4	
  
Juan_Carlos	
   su	
  abdica	
   reino	
  <WALL>	
  

PTree:	
  Hard	
  constraint,	
  
multiplying	
  in	
  1	
  if	
  the	
  
variables	
  form	
  a	
  tree	
  
and	
  0	
  otherwise.	
  

Unary:	
  local	
  opinion	
  
about	
  one	
  edge	
  

Sibling:	
  local	
  opinion	
  
about	
  pair	
  of	
  arbitrary	
  
siblings	
  

Grandparent:	
  local	
  
opinion	
  about	
  
grandparent,	
  head,	
  
and	
  modifier	
  

(Ried
el	
  and

	
  Smith,	
  20
10)	
  

(Martins
	
  et	
  al.

,	
  2010
)	
  



Factor	
  Graph	
  for	
  Dependency	
  Parsing	
  
(Ried

el	
  and
	
  Smith,	
  20

10)	
  

(Martins
	
  et	
  al.

,	
  2010
)	
  

Now	
  we	
  can	
  
work	
  at	
  this	
  

level	
  of	
  
abstraction.	
  Y2,1 Y1,2 Y3,2 Y2,3 

Y3,1 Y1,3 

Y4,3 Y3,4 

Y4,2 Y2,4 

Y4,1 Y1,4 

Y0,1 

Y0,3 

Y0,4 

Y0,2 



Why	
  dependency	
  parsing?	
  

1.  Simplest	
  example	
  for	
  
Structured	
  BP	
  

2.  Exhibits	
  both	
  polytime	
  and	
  
NP-­‐hard	
  problems	
  

19	
  



The	
  Impact	
  of	
  Approximations	
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Linguistics	
  
	
  
	
  
	
  
	
  

Model	
  
	
  
	
  
	
  
	
  
	
  

Learning	
  
	
  
	
  
	
  
	
  

Inference	
  
	
  
	
  
	
  
	
  

(Inference	
  is	
  usually	
  
called	
  as	
  a	
  subroutine	
  

in	
  learning)	
  

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

pθ( ) = 0.50 



The	
  Impact	
  of	
  Approximations	
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The	
  Impact	
  of	
  Approximations	
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Linguistics	
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Machine	
  
Learning	
   Conditional	
  Log-­‐likelihood	
  Training	
  

1.  Choose	
  model	
  
Such	
  that	
  derivative	
  in	
  #3	
  is	
  ea	
  

2.  Choose	
  objective:	
  	
  
Assign	
  high	
  probability	
  to	
  the	
  
things	
  we	
  observe	
  and	
  low	
  
probability	
  to	
  everything	
  else	
  

23	
  

3.  Compute	
  
derivative	
  by	
  
hand	
  using	
  the	
  
chain	
  rule	
  

4.  Replace	
  exact	
  
inference	
  by	
  
approximate	
  
inference	
  



Conditional	
  Log-­‐likelihood	
  Training	
  
1.  Choose	
  model	
  	
  

(3.	
  comes	
  from	
  log-­‐linear	
  factors)	
  

2.  Choose	
  objective:	
  	
  
Assign	
  high	
  probability	
  to	
  the	
  
things	
  we	
  observe	
  and	
  low	
  
probability	
  to	
  everything	
  else	
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3.  Compute	
  
derivative	
  by	
  
hand	
  using	
  the	
  
chain	
  rule	
  

4.  Replace	
  exact	
  
inference	
  by	
  
approximate	
  
inference	
  

Machine	
  
Learning	
  



What’s	
  wrong	
  with	
  CLL?	
  
How	
  did	
  we	
  compute	
  
these	
  approximate	
  
marginal	
  probabilities	
  
anyway?	
  

25	
  

By	
  Structured	
  Belief	
  
Propagation	
  of	
  course!	
  

Machine	
  
Learning	
  



Everything	
  you	
  need	
  to	
  know	
  about:	
  
Structured	
  BP	
  

1.  It’s	
  a	
  message	
  passing	
  
algorithm	
  

2.  The	
  message	
  computations	
  
are	
  just	
  multiplication,	
  
addition,	
  and	
  division	
  

3.  Those	
  computations	
  are	
  
differentiable	
  

26	
  



Structured	
  Belief	
  Propagation	
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✔ ! ! ! 

! ! 

✔ ! 

! ✔ 

! ! 

! 

! 

! 

✔ 

0	
   2	
  1	
   3	
   4	
  
Juan_Carlos	
   su	
  abdica	
   reino	
  <WALL>	
  

This	
  is	
  just	
  another	
  
factor	
  graph,	
  so	
  we	
  
can	
  run	
  Loopy	
  BP	
  

What	
  goes	
  wrong?	
  
•  Naïve	
  

computation	
  is	
  
inefficient	
  

•  We	
  can	
  embed	
  
the	
  inside-­‐
outside	
  
algorithm	
  within	
  
the	
  structured	
  
factor	
  

(Smith	
  &	
  
Eisne

r,	
  200
8)	
  

Inference	
  



Algorithmic	
  Differentiation	
  
•  Backprop	
  works	
  on	
  more	
  than	
  just	
  neural	
  
networks	
  

•  You	
  can	
  apply	
  the	
  chain	
  rule	
  to	
  any	
  arbitrary	
  
differentiable	
  algorithm	
  
	
  
	
  

•  Alternatively:	
  could	
  estimate	
  a	
  gradient	
  by	
  
finite-­‐difference	
  approximations	
  –	
  but	
  
algorithmic	
  differentiation	
  is	
  much	
  more	
  
efficient!	
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That’s	
  the	
  key	
  (old)	
  idea	
  behind	
  this	
  talk.	
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…	
   Model	
  

parameters	
  

Factors	
  …	
  

•  Unary	
  factor:	
  vector	
  with	
  
2	
  entries	
  

•  Binary	
  factor:	
  (flattened)	
  
matrix	
  with	
  4	
  entries	
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Inference,	
  Decoding	
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Feed-­‐forward	
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Inference,	
  Decoding	
  and	
  Loss	
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…	
   Model	
  

parameters	
  

Factors	
  …	
  

…	
   Messages	
  
at	
  time	
  t=1 

…	
   Messages	
  
at	
  time	
  t=0 

•  Messages	
  from	
  neighbors	
  used	
  to	
  
compute	
  next	
  message	
  

•  Leads	
  to	
  sparsity	
  in	
  layerwise	
  connections	
  
	
  



Feed-­‐forward	
  Topology	
  of	
  	
  
Inference,	
  Decoding	
  and	
  Loss	
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   Model	
  

parameters	
  

Factors	
  …	
  

…	
   Messages	
  
at	
  time	
  t=1 

…	
   Messages	
  
at	
  time	
  t=0 

Arrows	
  in	
  This	
  Diagram:	
  
A	
  different	
  semantics	
  
given	
  by	
  the	
  algorithm	
  

Arrows	
  in	
  Neural	
  Net:	
  
Linear	
  combination,	
  then	
  
a	
  sigmoid	
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at	
  time	
  t=1 

…	
   Messages	
  
at	
  time	
  t=0 

Arrows	
  in	
  This	
  Diagram:	
  
A	
  different	
  semantics	
  
given	
  by	
  the	
  algorithm	
  

Arrows	
  in	
  Neural	
  Net:	
  
Linear	
  combination,	
  then	
  
a	
  sigmoid	
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   Model	
  

parameters	
  

Decode	
  /	
  Loss 

Factors	
  …	
  

…	
   Beliefs 

Messages	
  	
  
at	
  time	
  t=3 

…	
  

Messages	
  
at	
  time	
  t=2 

…	
  

…	
   Messages	
  
at	
  time	
  t=1 

…	
   Messages	
  
at	
  time	
  t=0 
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34	
  
…	
   Model	
  

parameters	
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  /	
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…	
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at	
  time	
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at	
  time	
  t=2 

…	
  

…	
   Messages	
  
at	
  time	
  t=1 

…	
   Messages	
  
at	
  time	
  t=0 

Messages	
  from	
  PTree	
  
factor	
  rely	
  on	
  a	
  variant	
  
of	
  inside-­‐outside	
  
	
  

Arrows	
  in	
  This	
  Diagram:	
  
A	
  different	
  semantics	
  
given	
  by	
  the	
  algorithm	
  



Feed-­‐forward	
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…	
  

Messages	
  from	
  PTree	
  
factor	
  rely	
  on	
  a	
  variant	
  
of	
  inside-­‐outside	
  
	
  

Chart	
  parser:	
  



Approximation-­‐aware	
  Learning	
  
1.  Choose	
  model	
  to	
  be	
  the	
  

computation	
  with	
  all	
  its	
  
approximations	
  

2.  Choose	
  objective	
  
	
  to	
  likewise	
  include	
  the	
  
approximations	
  

3.  Compute	
  derivative	
  by	
  
backpropagation	
  (treating	
  
the	
  entire	
  computation	
  as	
  
if	
  it	
  were	
  a	
  neural	
  network)	
  

4.  Make	
  no	
  approximations!	
  
(Our	
  gradient	
  is	
  exact)	
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Chart parser: 

Key	
  idea:	
  Open	
  up	
  the	
  black	
  box!	
  



Experimental	
  Setup	
  
Goal:	
  Compare	
  two	
  training	
  approaches	
  

1.  Standard	
  approach	
  (CLL)	
  
2.  New	
  approach	
  (Backprop)	
  

	
  
Data:	
  English	
  PTB	
  
–  Converted	
  to	
  dependencies	
  using	
  Yamada	
  &	
  
Matsumoto	
  (2003)	
  head	
  rules	
  

–  Standard	
  train	
  (02-­‐21),	
  dev	
  (22),	
  test	
  (23)	
  split	
  
–  TurboTagger	
  predicted	
  POS	
  tags	
  

	
  
Metric:	
  Unlabeled	
  Attachment	
  Score	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (higher	
  is	
  better)	
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Results	
  

Speed-­‐Accuracy	
  
Tradeoff	
  	
  
New	
  training	
  
approach	
  yields	
  
models	
  which	
  are:	
  	
  
1.  Faster	
  for	
  a	
  given	
  

level	
  of	
  accuracy	
  
2.  More	
  accurate	
  for	
  

a	
  given	
  level	
  of	
  
speed	
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Results	
  

Increasingly	
  
Cyclic	
  Models	
  
•  As	
  we	
  add	
  more	
  

factors	
  to	
  the	
  
model,	
  our	
  model	
  
becomes	
  loopier	
  

•  Yet,	
  our	
  training	
  
by	
  Backprop	
  
consistently	
  
improves	
  as	
  
models	
  get	
  richer	
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See	
  our	
  TACL	
  paper	
  for…	
  
1)	
  Results	
  on	
  19	
  
languages	
  
from	
  CoNLL	
  
2006	
  /	
  2007	
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2)	
  Results	
  with	
  
alternate	
  
training	
  
objectives	
  

3)	
  Empirical	
  
comparison	
  of	
  
exact	
  and	
  
approximate	
  
inference	
  

1ST-ORDER 2ND-ORDER (WITH GIVEN NUM. BP ITERATIONS)
1 2 4 8

LANGUAGE CLL L2 � CLL CLL L2 � CLL CLL L2 � CLL CLL L2 � CLL CLL L2 � CLL

AR 77.63 -0.26 73.39 +2.21 77.05 -0.17 77.20 +0.02 77.16 -0.07
BG 90.38 -0.76 89.18 -0.45 90.44 +0.04 90.73 +0.25 90.63 -0.19
CA 90.47 +0.30 88.90 +0.17 90.79 +0.38 91.21 +0.78 91.49 +0.66
CS 84.69 -0.07 79.92 +3.78 82.08 +2.27 83.02 +2.94 81.60 +4.42
DA 87.15 -0.12 86.31 -1.07 87.41 +0.03 87.65 -0.11 87.68 -0.10
DE 88.55 +0.81 88.06 0.00 89.27 +0.46 89.85 -0.05 89.87 -0.07
EL 82.43 -0.54 80.02 +0.29 81.97 +0.09 82.49 -0.16 82.66 -0.04
EN 88.31 +0.32 85.53 +1.44 87.67 +1.82 88.63 +1.14 88.85 +0.96
ES 81.49 -0.09 79.08 -0.37 80.73 +0.14 81.75 -0.66 81.52 +0.02
EU 73.69 +0.11 71.45 +0.85 74.16 +0.24 74.92 -0.32 74.94 -0.38
HU 78.79 -0.52 76.46 +1.24 79.10 +0.03 79.07 +0.60 79.28 +0.31
IT 84.75 +0.32 84.14 +0.04 85.15 +0.01 85.66 -0.51 85.81 -0.59
JA 93.54 +0.19 93.01 +0.44 93.71 -0.10 93.75 -0.26 93.47 +0.07
NL 76.96 +0.53 74.23 +2.08 77.12 +0.53 78.03 -0.27 77.83 -0.09
PT 86.31 +0.38 85.68 -0.01 87.01 +0.29 87.34 +0.08 87.30 +0.17
SL 79.89 +0.30 78.42 +1.50 79.56 +1.02 80.91 +0.03 80.80 +0.34
SV 87.22 +0.60 86.14 -0.02 87.68 +0.74 88.01 +0.41 87.87 +0.37
TR 78.53 -0.30 77.43 -0.64 78.51 -1.04 78.80 -1.06 78.91 -1.13
ZH 84.93 -0.39 82.62 +1.43 84.27 +0.95 84.79 +0.68 84.77 +1.14

AVG. 83.98 +0.04 82.10 +0.68 83.88 +0.41 84.41 +0.19 84.34 +0.31

Table 2: Results on 19 languages from CoNLL-2006/2007. For languages appearing in both datasets, the 2006 version
was used, except for Chinese (ZH). Evaluation follows the 2006 conventions and excludes punctuation. We report
absolute UAS for the baseline (CLL) and the improvement in UAS for L2 over CLL (L2 � CLL) with positive/negative
differences in blue/red. The average UAS and average difference across all languages (AVG.) is given.

8 Discussion

The purpose of this work was to explore ERMA and
related training methods for models which incorpo-
rate structured factors. We applied these methods
to a basic higher-order dependency parsing model,
because that was the simplest and first instance of
structured BP (Smith and Eisner, 2008). In future
work, we hope to explore further models with struc-
tured factors—particularly those which jointly ac-
count for multiple linguistic strata (e.g. syntax, se-
mantics, and topic). Another natural extension of
this work is to explore other types of factors: here we
considered only log-linear potential functions (com-
monly used in CRFs), but any differentiable func-
tion would be appropriate, such as a neural network
(Durrett and Klein, 2015; Gormley et al., 2015b).

Our primary contribution is approximation-aware
training for structured BP. We have specifically
presented message-passing formulas for any factor
whose belief’s partition function can be computed
as the total weight of all hyperpaths in a weighted
hypergraph. This would suffice to train the struc-
tured BP systems that have been built for projective

dependency parsing (Smith and Eisner, 2008), CNF
grammar parsing (Naradowsky et al., 2012), TAG
(Auli and Lopez, 2011), ITG-constraints for phrase
extraction (Burkett and Klein, 2012), and graphical
models over strings (Dreyer and Eisner, 2009).

9 Conclusions

We introduce a new approximation-aware learning
framework for belief propagation with structured
factors. We present differentiable objectives for
both empirical risk minimization (à la ERMA) and a
novel objective based on L2 distance between the in-
ferred beliefs and the true edge indicator functions.
Experiments on the English Penn Treebank and 19
languages from CoNLL-2006/2007 shows that our
estimator is able to train more accurate dependency
parsers with fewer iterations of belief propagation
than standard conditional log-likelihood training, by
taking approximations into account. For additional
details, see the tech report version of this paper
(Gormley et al., 2015a). Our code is available in
a general-purpose library for structured BP, hyper-
graphs, and backprop (Gormley, 2015).

take inexact inference into account. The two key
findings of our experiments are that our learning ap-
proach is more robust to (1) decreasing the number
of iterations of BP and (2) adding additional cycles
to the factor graph in the form of higher-order fac-
tors. In short: our approach leads to faster inference
and creates opportunities for more accurate parsers.

Speed-Accuracy Tradeoff Our first experiment is
on English dependencies. For English PTB-YM,
Figure 3 shows accuracy as a function of the num-
ber of BP iterations for our second-order model with
both arbitrary sibling and grandparent factors on En-
glish. We find that our training methods (L2 and
L2+AR) obtain higher accuracy than standard train-
ing (CLL), particularly when a small number of BP
iterations are used and the inference is a worse ap-
proximation. Notice that with just two iterations of
BP, the parsers trained by our approach obtain ac-
curacy greater than or equal to those by CLL with
any number of iterations (1 to 8). Contrasting the
two objectives for our approximation-aware train-
ing, we find that our simple L2 objective performs
very well. In fact, in only two cases, at 3 and 5 itera-
tions, does risk annealing (L2+AR) further improve
performance on test data. In our development exper-
iments, we also evaluated AR without using L2 for
initialization and we found that it performed worse
than either of CLL and L2 alone. That AR performs
only slightly better than L2 (and not worse) in the
case of L2+AR is likely due to early stopping on dev
data, which guards against selecting a worse model.

Increasingly Cyclic Models Figure 4 contrasts
accuracy with the type of 2nd-order factors (grand-
parent, sibling, or both) included in the model for
English, for a fixed budget of 4 BP iterations.
Adding higher-order factors introduces more loops,
making the loopy BP approximation more problem-
atic for standard CLL training. By contrast, under
approximation-aware training, enriching the model
with more factors always helps performance, as de-
sired, rather than hurting it.

Notice that our advantage is not restricted to the
case of loopy graphs. Even when we use a 1st-
order model, for which BP inference is exact, our
approach yields higher-accuracy parsers than CLL
training. We speculate that this improvement is due
to our method’s ability to better deal with model

TRAIN INFERENCE DEV UAS TEST UAS
CLL Exact 91.99 91.62
CLL BP 4 iters 91.37 91.25
L2 Exact 91.91 91.66
L2 BP 4 iters 91.83 91.63

Table 1: The impact of exact vs. approximate inference
on a 2nd-order model with grandparent factors only. Re-
sults are for the development (§ 22) and test (§ 23) sec-
tions of PTB-YM.

misspecification—a first-order model is quite mis-
specified! Note the following subtle point: when
inference is exact, the CLL estimator is actually a
special case of our approximation-aware learner—
that is, CLL computes the same gradient that our
training by backpropagation would if we used log-
likelihood as the objective.

Exact Inference with Grandparents §2 noted
that since we always do MBR decoding, the ideal
strategy is to fit the true distribution with a good
model. Consider a “good model” that includes unary
and grandparent factors. Exact inference is possible
here in O(n4

) time by dynamic programming (Koo
and Collins, 2010, Model 0). Table 1 shows that
CLL training with exact inference indeed does well
on test data—but that accuracy falls if we substitute
fast approximate inference (4 iterations of BP). Our
proposed L2 training is able to close the gap, just as
intended. That is, we succesfully train a few itera-
tions of an approximate O(n3

) algorithm to behave
as well as an exact O(n4

) algorithm.

Other Languages Our final experiments train and
test our parsers on 19 languages from CoNLL-
2006/2007 (Table 2). We find that, on average across
languages, approximation-aware training with an L2

objective obtains higher UAS than CLL training.
This result holds for both our poorest model (1st-
order) and our richest one (2nd-order with grandpar-
ent and sibling factors), using 1, 2, 4, or 8 iterations
of BP. Notice that the approximation-aware train-
ing doesn’t always outperform CLL training—only
in the aggregate. Again, we see the trend that our
training approach yields larger gains when BP is re-
stricted to a small number of maximum iterations. It
is possible that larger training sets would also favor
our approach, by providing a clearer signal of how
to reduce the objective (8).
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Figure 3: Speed/accuracy tradeoff of English PTB-YM
UAS vs. the total number of BP iterations tmax for
standard conditional likelihood training (CLL) and our
approximation-aware training with either an L2 objective
(L2) or a staged training of L2 followed by annealed risk
(L2+AR). Note that the x-axis shows the number of iter-
ations used for both training and testing. We use a 2nd-
order model with Grand.+Sib. factors.

POS tags for the CoNLL languages, and predicted
tags from TurboTagger (Martins et al., 2013) for the
PTB. Unlike most prior work, we hold out 10% of
each CoNLL training dataset as development data
for regularization by early stopping.9

Some of the CoNLL languages contain non-
projective edges, but our system is built using a
probability distribution over projective trees only.
ERMA can still be used with such a badly misspec-
ified model—one of its advantages—but no amount
of training can raise CLL’s objective above �1,
since any non-projective gold tree will always have
probability 0. Thus, for CLL only, we replace
each gold tree in training data with a minimum-loss
projective tree (Carreras, 2007).10 This resembles
ERMA’s goal of training the system to find a low-
loss projective tree. At test time, we always evaluate
the system’s projective output trees against the pos-
sibly non-projective gold trees, as in prior work.

Learning Settings We compare three learning set-
tings. The first, our baseline, is conditional log-

9In dev experiments, we found L2 distance to be less sensi-
tive to the `2-regularizer weight than CLL. So we added addi-
tional regularization by early stopping to improve CLL.

10We also ran a controlled experiment with L2 and not just
CLL trained on these projectivized trees: the average margin of
improvement for our method widened very slightly.
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Figure 4: English PTB-YM UAS vs. the types of 2nd-
order factors included in the model for approximation-
aware training and standard conditional likelihood train-
ing. All models include 1st-order factors (Unary). The
2nd-order models include grandparents (Grand.), arbi-
trary siblings (Sib.), or both (Grand.+Sib.)—and use 4
iterations of BP.

likelihood training (CLL) (§6). As is common
in the literature, we conflate two distinct learning
settings (conditional log-likelihood/surrogate log-
likelihood) under the single name “CLL,” allowing
the inference method (exact/inexact) to differentiate
them. The second learning setting is approximation-
aware learning (§3) with either our L2 distance ob-
jective (L2) (§4.2) or our layer-wise training method
(L2+AR) which takes the L2-trained model as an ini-
tializer for our annealed risk (§4.3). The annealed
risk objective requires an annealing schedule: over
the course of training, we linearly anneal from ini-
tial temperature T = 0.1 to T = 0.0001, updat-
ing T at each step of stochastic optimization. The
third learning setting uses the same two objectives,
L2 and L2+AR, but with exact inference (§6). The
`2-regularizer weight in (8) is � = 1. Each method is
trained by AdaGrad for 5 epochs with early stopping
(i.e. the model with the highest score on dev data is
returned). Across CoNLL, the average epoch chosen
for CLL was 2.02 and for L2 was 3.42. The learning
rate for each training run is dynamically tuned on a
sample of the training data.

7.2 Results

Our goal is to demonstrate that our approximation-
aware training method leads to improved parser ac-
curacy as compared with the standard training ap-
proach of conditional log-likelihood (CLL) maxi-
mization (Smith and Eisner, 2008), which does not
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approximation-aware training with either an L2 objective
(L2) or a staged training of L2 followed by annealed risk
(L2+AR). Note that the x-axis shows the number of iter-
ations used for both training and testing. We use a 2nd-
order model with Grand.+Sib. factors.

POS tags for the CoNLL languages, and predicted
tags from TurboTagger (Martins et al., 2013) for the
PTB. Unlike most prior work, we hold out 10% of
each CoNLL training dataset as development data
for regularization by early stopping.9

Some of the CoNLL languages contain non-
projective edges, but our system is built using a
probability distribution over projective trees only.
ERMA can still be used with such a badly misspec-
ified model—one of its advantages—but no amount
of training can raise CLL’s objective above �1,
since any non-projective gold tree will always have
probability 0. Thus, for CLL only, we replace
each gold tree in training data with a minimum-loss
projective tree (Carreras, 2007).10 This resembles
ERMA’s goal of training the system to find a low-
loss projective tree. At test time, we always evaluate
the system’s projective output trees against the pos-
sibly non-projective gold trees, as in prior work.

Learning Settings We compare three learning set-
tings. The first, our baseline, is conditional log-

9In dev experiments, we found L2 distance to be less sensi-
tive to the `2-regularizer weight than CLL. So we added addi-
tional regularization by early stopping to improve CLL.

10We also ran a controlled experiment with L2 and not just
CLL trained on these projectivized trees: the average margin of
improvement for our method widened very slightly.
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order factors included in the model for approximation-
aware training and standard conditional likelihood train-
ing. All models include 1st-order factors (Unary). The
2nd-order models include grandparents (Grand.), arbi-
trary siblings (Sib.), or both (Grand.+Sib.)—and use 4
iterations of BP.

likelihood training (CLL) (§6). As is common
in the literature, we conflate two distinct learning
settings (conditional log-likelihood/surrogate log-
likelihood) under the single name “CLL,” allowing
the inference method (exact/inexact) to differentiate
them. The second learning setting is approximation-
aware learning (§3) with either our L2 distance ob-
jective (L2) (§4.2) or our layer-wise training method
(L2+AR) which takes the L2-trained model as an ini-
tializer for our annealed risk (§4.3). The annealed
risk objective requires an annealing schedule: over
the course of training, we linearly anneal from ini-
tial temperature T = 0.1 to T = 0.0001, updat-
ing T at each step of stochastic optimization. The
third learning setting uses the same two objectives,
L2 and L2+AR, but with exact inference (§6). The
`2-regularizer weight in (8) is � = 1. Each method is
trained by AdaGrad for 5 epochs with early stopping
(i.e. the model with the highest score on dev data is
returned). Across CoNLL, the average epoch chosen
for CLL was 2.02 and for L2 was 3.42. The learning
rate for each training run is dynamically tuned on a
sample of the training data.

7.2 Results

Our goal is to demonstrate that our approximation-
aware training method leads to improved parser ac-
curacy as compared with the standard training ap-
proach of conditional log-likelihood (CLL) maxi-
mization (Smith and Eisner, 2008), which does not



Comparison	
  of	
  Two	
  Approaches	
  

1.	
  CLL	
  with	
  approximate	
  inference	
  
– A	
  totally	
  ridiculous	
  thing	
  to	
  do!	
  	
  
– But	
  it’s	
  been	
  done	
  for	
  years	
  because	
  it	
  often	
  
works	
  well	
  

–  (Also	
  named	
  “surrogate	
  likelihood	
  training”	
  by	
  
Wainright	
  (2006))	
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Comparison	
  of	
  Two	
  Approaches	
  

2.	
  Approximation-­‐aware	
  Learning	
  for	
  NLP	
  
–  In	
  hindsight,	
  treating	
  the	
  approximations	
  as	
  part	
  of	
  
the	
  model	
  is	
  the	
  obvious	
  thing	
  to	
  do	
  
(Domke,	
  2010;	
  Domke,	
  2011;	
  Stoyanov	
  et	
  al.,	
  2011;	
  	
  
Ross	
  et	
  al.,	
  2011;	
  Stoyanov	
  &	
  Eisner,	
  2012;	
  Hershey	
  et	
  al.,	
  2014)	
  

– Our	
  contribution:	
  Approximation-­‐aware	
  learning	
  
with	
  structured	
  factors	
  

– But	
  there's	
  some	
  challenges	
  to	
  get	
  it	
  right	
  (numerical	
  
stability,	
  efficiency,	
  backprop	
  through	
  structured	
  factors,	
  annealing	
  
a	
  decoder’s	
  argmin)	
  

–  Sum-­‐Product	
  Networks	
  are	
  similar	
  in	
  spirit	
  
	
  (Poon	
  &	
  Domingos,	
  2011;	
  Gen	
  &	
  Domingos,	
  2012)	
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Key	
  idea:	
  Open	
  up	
  the	
  black	
  box!	
  



Takeaways	
  

•  New	
  learning	
  approach	
  for	
  Structured	
  BP	
  
maintains	
  high	
  accuracy	
  with	
  fewer	
  
iterations	
  of	
  BP,	
  even	
  with	
  cycles	
  

•  Need	
  a	
  neural	
  network?	
  Treat	
  your	
  unrolled	
  
approximate	
  inference	
  algorithm	
  as	
  a	
  deep	
  
network	
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Questions?	
  

Pacaya	
  -­‐	
  Open	
  source	
  framework	
  for	
  hybrid	
  
graphical	
  models,	
  hypergraphs,	
  and	
  neural	
  networks	
  
Features:	
  	
  
–  Structured	
  BP	
  	
  
–  Coming	
  Soon:	
  Approximation-­‐aware	
  training	
  

Language:	
  Java	
  
URL:	
  https://github.com/mgormley/pacaya	
  	
  
	
  


