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vocabulary

We’re not the first to notice this...
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Our Model

Shared Components Topic Model (SCTM):

— Generate a pool of “components” (proto-topics)

— Assemble each topic from some of the components
e Multiply and renormalize (“product of experts”)

— Documents are mixtures of topics (just like LDA)

1. So the wordlists of two topics are not generated
independently!

2. Fewer parameters
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Components are distributions over words.
How to combine components into topics?
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SCTM: Motivating Example

We can imagine a component as a set of words
(i.e. all the non-zero probabilities are identical):
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SCTM: Motivating Example

To create a {Canadian government} topic we could
take the union of {government} and {Canadaj.
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Better yet, to create a {Canadian government} topic
we could take the intersection of {government}
and {Canada}.
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Soft Intersection and Union

 We don’t want topics to be sets of words, we
want probability distributions over words

* |n probability space...

Union s [Vixture

Intersection mww) Normalized
Product
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Product of Experts

Product of Experts (PoE) model (Hinton, 2002)
— Another name for a normalized product
— For a subset of components, define the model as:

HCEC ¢ca:

p(z|@y,...,bc) =
1 ¢ Zfz‘)/zl HCGC ¢CU

Intersection === Normalized

Product (PoE)
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Learning the Structure of Topics

How do we decide which subset of components
combine to form a single topic?
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e
Learning the Structure of Topics

How do we decide which subset of components
combine to form a single topic?

Beta-Bernoulli model

— The finite version of the
Indian Buffet Process
(Griffiths &
Ghahramani, 2006)

— Prior over K x C binary
matrices
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How do we decide which subset of components
combine to form a single tgpic?
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Shared Components Topic Model (SCTM):
— Generate a pool of “components” (proto-topics)
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(Blei et al., 2004)
(Rosen-2vi et al., 2004)
(Teh et al., 2004)

(Blei & Lafferty, 2006)
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(Mimno et al., 2007)
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(Paisley et al, 2011)
(Kim & Sudderth, 2011)
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* Hierarchical LDA (hLDA)

e Author-Topic Model

HDP mixture model

e Correlated Topic Models (CTM)

* Pachinko Allocation Model (PAM)

* Hierarchical PAM (hPAM)

* Syntactic Topic Models

* Focused Topic Models

e 2D Topic-Aspect Model

* DILN for mixed-membership modeling
* Doubly Correlated Nonparametric TM
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Correlated Topics

* Correlated Topics
— Correlated Topic Models (CTM)
— Pachinko Allocation Model (PAM)
— Hierarchical LDA (hLDA)
— Hierarchical PAM (hPAM)
* Key difference from SCTM: correlation is limited to
topics that appear together in the same document

— Example: {hockey} and {baseball} topics share many words
in common, but never appear in the same document

* The spirit of learning relationships between topics is
very similar!
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* Correlated Topics
— Correlated Topic Models (CTM)
— Pachinko Allocation Model (PAM)
— Hierarchical LDA (hLDA)
— Hierarchical PAM (hPAM)

* Key difference from SCTM: correlation is limited to
topics that appear together in the same document

— Example: {hockey} and {baseball} topics share many words
in common, but never appear in the same document

* The spirit of learning relationships between topics is
very similar!
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* Hierarchical LDA (hLDA) . (Wallach et al., 2009)

e Author-Topic Model . (Reisinger et al., 2010)
*  HDP mixture model . (Wang & Blei, 2009)

e Correlated Topic Models (CTM) . (Eisenstein et al., 2011)

* Pachinko Allocation Model (PAM)

* Hierarchical PAM (hPAM)

* Syntactic Topic Models
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* DILN for mixed-membership modeling
* Doubly Correlated Nonparametric TM
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e Hierarchical LDA (hLDA) . Asymmetric Dirichlet prior
e Author-Topic Model . Spherical Topic Models
HDP mixture model . Sparse Topic Models

e Correlated Topic Models (CTM) . SAGE for topic modeling

* Pachinko Allocation Model (PAM) . Shared Components Topic
* Hierarchical PAM (hPAM) Models (this work)

* Syntactic Topic Models

* Focused Topic Models

e 2D Topic-Aspect Model

* DILN for mixed-membership modeling
* Doubly Correlated Nonparametric TM
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Asymmetric Dirichlet prior
Spherical Topic Models
Sparse Topic Models

SAGE for topic modeling
Shared Components Topic
Models (this work)




Comparison of a few Topic Models

Dependently

Fewer S
Generated Description
: Parameters
Topics

Asymmetric Dirichlet Prior
(Wallach et al., 2009) ¢ x All topics drawn from

language specific base

Spherical Topic Model distribution
(Reisinger et al., 2010)
SparseTM x ’

Each topic is sparse

LDA
(Blei et al., 2003)

(Wang & Blei, 2009)

SAGE
(Eisenstein et al., 2011)
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Dependently

Fewer o
Generated Description
Parameters

LDA
(Blei et al., 2003)

Asymmetric Dirichlet Prior

(Wallach et al., 2009) All topics drawn from

language specific base

Spherical Topic Model distribution

(Reisinger et al., 2010)

SparseTM
(Wang & Blei, 2009)

Each topic is sparse
SAGE E E

(Eisenstein et al., 2011)

Topics are products of a
shared pool of components

SCTM
(This paper)
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Parameter Estimation

e Goal: infer values for model parameters
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* Monte Carlo EM (MCEM) algorithm, where the
M-step minimizes a Contrastive Divergence
(CD) objective
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Parameter Estimation
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Parameter Estimation

Model parameters

Latent variables




Parameter Estimation

Standard M-step: Maximize likelihood of @,
conditioned onz,_ and b_,

,mm“f 1

Standard E-step: Compute expectations of z_,. and
b, conditioned on @,

b 4

72
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Standard M-step: Maximize likelihood of @,
conditioned onz,_ and b_,
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Parameter Estimation

CD M-step: Minimize contrastive divergence of @,
conditioned onz,__ and b_,

,ﬁ"‘.mw 1

Monte-Carlo E-step: Sample z__and b_,
conditioned on ¢,

h




Parameter Estimation

CD M-step:

Monte-Carlo E-step:

Sl
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e Goal: infer values for model parameters
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(CD) objective




e
Experiments: Topic Modeling

* Experiments:

— Can SCTM combine a fixed number of components
(multinomials) into topics to achieve lower perplexity?

— Does SCTM achieve lower perplexity than LDA with a
more compact model?

* Analysis:
— What are the learned topics like?

— What are the learned components like?
— What topic-structure is learned?



e
Experiments: Topic Modeling

Experimental Setup:

— Datasets:

* 1,000 random articles from 20 Newsgroups
e 1,617 NIPS abstracts

— Evaluation:
* |left-to-right average perplexity on held-out data

— Models:

* LDA trained with a collapsed Gibbs sampler

— In LDA, components and topics are in a one-to-one relationship
(i.e. a special case of the SCTM where each topic is comprised of
only its corresponding component)

e SCTM with parameter estimation as described
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Experiments: Topic Modeling

* Experiments:

— Can SCTM combine a fixed number of components
(multinomials) into topics to achieve lower perplexity?




e
Experiments: Topic Modeling

18007 20News

1600 - ~|LDA

1ty

1400 -

1200 -

Perplex

1000 -+

800 —

0 20 40 60 30 100
# of Components



e
Experiments: Topic Modeling

10
18007 20News
# LDA

1600 - A|SCTM
2 SCTM with
"2 1400 - # components = # topics
L (labels show # topics)
5

1000 -

800 -

0 20 40 60 30 100
# of Components



e
Experiments: Topic Modeling

10
1800 20News
~ LDA

1600+ o A|SCTM
)
Y
" 1400 -
L (labels show # topics)
g_‘ _

1000 -

800 -

0 20 40 60 30 100
# of Components



e
Experiments: Topic Modeling

10
1800 20News
~ LDA
1600 - 204\ 20 A|SCTM
>
40
= 1400 - 4
L 60 60 (labels show # topics)
g" 80 v
1200 -
A 120 120 A 1o
160 A
1000- 1ot - 200
JU
800 -
0 20 40 60 30 100

# of Components



e
Experiments: Topic Modeling

10
1800 - 20News
~ LDA
1600 - 20 A|SCTM
>~
4
Z1400-
L (labels show # topics)
5
1000 -
800 -

0 20 40 60 30 100
# of Components



e
Experiments: Topic Modeling

10
1800 7 20News
~ LDA
1600 - 20 A|SCTM
PR
40
1400+ 50
L (labels show # topics)
5
1000 -
800 -

0 20 40 60 30 100
# of Components



e
Experiments: Topic Modeling

700- NIPS
~|LDA
600 -
>
=
e
= 500 -
=
QO
A
400 -
300 -
0 20 40 60 30 100

# of Components



e
Experiments: Topic Modeling

700

600 -

Perplexity
S

400 -

300 -

LDA
SCTM

(labels show #

20 40 60
# of Components

80

topics)



L
Experiments: Topic Modeling

* Experiments:

— Can SCTM combine a fixed number of components
(multinomials) into topics to achieve lower perplexity?

— Does SCTM achieve lower perplexity than LDA with a
more compact model?
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Experiments: Topic Modeling

* Experiments:

— Can SCTM combine a fixed number of components
(multinomials) into topics to achieve lower perplexity?

— Does SCTM achieve lower perplexity than LDA with a
more compact model?

* Analysis:

— What are the learned topics like?




What does SCTM learn?
20News

ay | Top words for topic
0.306 | subject organization israel return define law org
0.031 | encryption chip clipper keys des escrow security law
0.025 | turkish armenian armenians war turkey turks armenia
0.102 | drive card disk scsi hard controller mac drives
0.071 | image jpeg window display code gif color mit
0.018 | jews israeli jewish arab peace land war arabs
0.074 | org money back question years thing things point
0.106 | christian bible church question christ christians life
| | B |« 9]0.011 | administration president year market money senior
«—| 10 | 0.055 | health medical center research information april
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«—| 12 | 0.160 | world organization system israel state usa cwru reply
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14 | 0.038 | space nasa gov launch power wire ground air
15 | 0.079 | team game year play games season players hockey
16 | 0.158 | car lines dod bike good uiuc sun cars
0.136 | windows file government key jesus system program
18 | 0.122 | article writes center page harvard virginia research
19 | 0.017 | max output access digex int entry col line
20 | 0.380 | lines people don university posting host nntp time
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Experiments: Topic Modeling

* Experiments:

— Can SCTM combine a fixed number of components
(multinomials) into topics to achieve lower perplexity?

— Does SCTM achieve lower perplexity than LDA with a
more compact model?

* Analysis:
— What are the learned topics like?

— What are the learned components like?
— What topic-structure is learned?
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Experiments: Topic Modeling

* Experiments:

— For the same number of components (multinomials),
SCTM achieves lower perplexity than LDA

— Non-square SCTM achieves lower perplexity than LDA
with a more compact model
* Analysis:
— SCTM learns diverse LDA-like topics

— Components are usually only interpretable when they
also appear as a topic

— SCTM learns an implicit Hasse diagram defining
subsumption relationships between topics
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Summary

Shared Components Topic Model (SCTM):
1. Generate a pool of “components” (proto-topics)

2. Assemble each topic from some of the
components

* Multiply and renormalize (“product of experts”)
3. Documents are mixtures of topics (just like LDA)

— So the wordlists of two topics are not generated
independently!

— Fewer parameters
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Future Work

* Improve inference for SCTM

* Topics as products of components in other
applications
— Selectional preference: components could

correspond to semantic features that intersect to
define semantic classes

— Vision: topics are classes of objects, the
components could be features of those objects
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Thank youl!

Questions, comments?




