Doing OT in a Straitjacket

Jason Eisner (Penn / Rochester) - UCLA, 14 June 1999 jeisner@linc.cis.upenn.edu

1. A question that could drive you crazy

What constraints does OT allow? i.e., What is the substance of the theory?

1) Some clearly bad constraints (but what makes them bad?):
a. Palindromic: The candidate reads the same backwards as forwards.
b. FTQuINT: Feet are quintary (5 syllables or moras).
c. $\operatorname{MemberOf(a,~aardvark,~aardvarks,~aardwolf,~aardwolves,~Aaron~...)~}$ Candidate must be in the specified set of surface forms.
d. MatchesOutputOfSPE: The output matches the result of applyin Chomsky \& Halle (1968) to the input.
2) Some clearly okay constraints (but what makes them okay?):
a. CLASh-ATR: Low vowels may not bear the ATR feature.
b. OnSET: Every syllable must start with a consonant.
(3) Some questionable constraints, by the standards of derivational phonology: a. FTBIN: Feet are binary (2 syllables or moras)
b. Align-L(Foot, PrWd): The sum of all distances from left edges of feet to c. Half the constraints that first-year phonology students make

Reasons to try to formalize OT, rather than allowing ad hoc English constraints
(4) a. Results in an explicit, falsifiable theory of UG
b. Simplifies that theory, exposing formal similarities among constraints c. Enables computational work (eg., Eisner 1997b) expressive power)
d. Constrains linguistic description
e. Aids descriptive work by providing well-motivated and well-formalized (many constraints piven informaly specify how to count violations in al the literature, including GA, do not specity how to count violations in all circumstances)
The formalization sketched in this talk is called OTP-OT with primitive constraints.
(5) Identifying such core constraints is at the center of the OT program: "The danger, therefore, lies in ...clinging to a conception of Universal Grammar as little more than a loose organizing framework for grammars. A much stronger stance, in close accord with the thrust of recent work, is available ... Universal
Grammar can supply the very substance from which grammars are built: a set

of highly general constraints, which, through ranking, interact to produce the p. 198
 see also Smolensky 1995, Green 1994)

2. Traveling the Web in search of truth

uppose we had a set Con of core constraints for phonology-simple mechanisms ook like
Ask: What formal devices are regularly used by constraints in the literature?
6) a. NasVol
(Itô, Mester, \& Padgett 1996
"Every
$\frac{\text { Every nasal segment must be linked to some }}{\text { SET }}$ Itô, Mester, \& P $\operatorname{Align}(\sigma, \mathrm{L}, C, \mathrm{~L})$ (equivalent) (Prince \& Smolensky 1993) $\operatorname{AligN}(\sigma, \mathrm{L}, C, \mathrm{~L})\}$ (equivalent) (McCarthy \& Prince 1993)
c. Common thread: "Every …some."
$\forall \alpha, \exists \beta$ such that α and β stand in such-and-such local relationship.
If we allow α and β to be edges (as one option), we only need one kind of local elationship-temporal coocurrence:
(7) The primitive implication family.
$\alpha \rightarrow \beta$ means: $\forall \alpha, \exists \beta$ such that α and β coincide temporally.
(8) Rewrite (6):
a. nas \rightarrow voi: \forall nas, \exists voi such that nas and voi coincide temporally
b. $\sigma\left[\rightarrow C\left[: \forall_{\sigma}[, \exists C[\right.\right.$ such that $\sigma[$ and $c[$ coincide temporally.

Thus we can regard alignment as "edge licensing." (Or licensing is "feature lignment.") We can also mix references to edges and interiors:
(9) $F \rightarrow]_{\mu}$: Every foot must cross a mora boundary. (No degenerate feet.) (= Min-2m: Green \& Kenstowicz 1995)
Like GA, primitive implication is formal rather than substantive
Onset: $\sigma\left[\rightarrow C\left[\right.\right.$, NoOnset: $\sigma\left[\rightarrow v[\text {, Coda: }]_{\sigma} \rightarrow\right]_{C}$, and NoCoda:
ONSET: $\sigma \rightarrow c\left[\text {, NoONSET: } \sigma \rightarrow V[\text {, CodA: }]_{\sigma} \rightarrow\right]_{C}$, and NoCodA:
$\left.]_{\sigma} \rightarrow\right]_{V}$ are all equally easy to express using this family. So as in other theories, UG must still state that ONSET and NoCoDA are strongly preferred by human grammars (just as it must state any universal rankings). (The dispreferred con-
straints may still be useful: e.g., Hammond 1995 proposes a NoONSET constraint straints may still be useful: e.g., Hammond 1995 proposes a
for stressless syllables. See Green 1994 on metaconstraints.)

McCarthy \& Prince (1993) have previously noted that alignment plays a unifying role, and have suggested that it's the core mechanism for all of phonology
here, which extends to include all the various ways that constituents may be enjoined to share an edge in prosody and morphology. Data like
given widely disparate treatments in the literature ..." (p. 1)
ature ... (p. 1) aken together with X-like restrictions on immediate domination and interechanism for completely speciifying a class of formal langunages that, when a stantive parameters are set, ought to be all-but-coextensive with possible human languages." (p. 2)

A second constraint family
Above, we unified feature licensing and alignment.
The opposite of feature licensing is feature clash.
The opposite of alignment is disalignment, i.e., edge clash.
(11) a. *[low, ATR]
N. Neatures are incompatible with ATr feat ," (e.g., Buckley 1995) "Prosodic words may not be right-aligned with feet ,"
(12) The primitive clash family
$\alpha \perp \beta$ means: $\forall \alpha, \nexists \beta$ such that α and β coincide temporally.

$$
\begin{align*}
& \alpha \perp \beta \text { means: } \forall \alpha, \nexists \beta \text { such that } \alpha \text { and } \beta \text { coincide ten } \tag{7}\\
& \text { Equivalently: } \forall \alpha \forall \beta, \alpha \text { and } \beta \text { are temporally disjoint. }
\end{align*}
$$

(13) Rewrite (11):
a. low \perp ATR: All low and ATR features are temporally disjoint. b. $\left.]_{P r W d} \perp\right]_{F}$: Each $]_{P r W d}$ does not coincide with (fall on) any $]_{F}$
gain, this formulation suggests we can mix edges and interiors, and we can
(14) $F \perp{ }_{M}$: A foot may not cross a morpheme boundary
(= Tauto-F, Crowhurst 1994) (In fact, (14) is more plausible than Crowhurst's formulation, $*_{F}\left[\sigma{ }_{M}[\sigma]_{F}\right.$.
It would be surprising to find a language that crucially blocked In fact, (14) is more plausibe than Crowhurst sormulation,
It would be surprising to find a language that crucially blocked M only where
Crowhurst states, while still allowing it to interrupt a syllable or a ternary foot.

Null hypothesis: These two families of local primitive constraints -implication and clash - are the only ones needed.

$$
\begin{aligned}
& \alpha \rightarrow \beta \text { says that } \alpha \text { 's attract } \beta^{\prime} \\
& \alpha \perp \beta \text { says that } \alpha \text { 's repel } \beta \text { 's. }
\end{aligned}
$$

. What representations are being constrained?

The primitive constraints constantly refer to edges, and never refer to association lines. So they are easiest to interpret if we assume that ηk is represented as in (15b)
(15a). This representation is inspired by Optimal Domains Theory (Cole \& (McCarthy \& Prince 1995).
(15) a.
 (Goldsmith
$1990)$

(The timeline is really just an ordered set of edge brackets. Thus, only horizontal order matters in the drawing above. Ignore spacing and vertical order.)
c. Easy to see that (15b) violates the progressive voicing constraint $]_{v o i} \perp_{C}[$.
(16) Key characteristics of the new representation
a. Constituents float along a timeline.
xample constituents: nas (autosegmental), μ (prosodic), \mathbf{x} (stress mark), Stem (morphological), H-domain (feature domain)
b. The timeline is continuous, not divided into segments
c. All constituents have width and edges. Thus we can refer naturally to the edges of syllables (or morphemes) whose segmental features are scattere Mester 1994).
d. For autosegments with width, such as [nas], think of phonetic gestures. (15b), which begins with simultaneous nass $[(=$ lower the velum) and woi
($=$ begin vibration of the vocal folds). The primitive constraints can only (= begin vibration of the vocal folds). The primitive constraints can only affect the order of bracket edges; it is up to the phonetic component to determine actual durations
e. Association or Correspondence of two constituents is indicated by having them overlap. (Independently proposed by Bird \& Klein
f. No need for faithfulness constraints on the insertion, deletion, or relocation of association lines (cf. Kirchner 1993, Myers 1994, Féry 1994).
g. No need for (inviolable) well-formedness constraints against gapping or
crossing of associations (cf. Kirchner 1993, Féry 1994, Oostendorp 1995). No need for Correspondence indices.
(17) Where do these representations come from? The behavior of Gen
a. Hypothesis: Gen can't do anything fancy, like palindromes-nothing that the primitive constraints couldn't also handle. So for convenience, let's make Gen as simple as possible, and let undominated constraints clean up the huge unbridled candidate set that results.
b. Gen places constituents freely along the continuous timeline.

That is, as far as Gen is concerned, brackets may land anywhere
onditions such as the prosodic hierarchy are enforced by undominated
However, Gen requires that edge brackets come in matched pairs.
d. Gen also does not allow distinct constituents of the same type (e.g., two syllables or two lab autosegments) to overlap. (Elements on the same tie never link to each other.)
e. Gen is free only with regard to output material. It is forced to place a copy of the input material into every candidate, on its own tier, for purposes of -O Correspondence. (Cf. Containment (Prince \& Smolensky 1993), Stric Consistency Constraint (Polgardi 1995).)
(18) Because the timeline is continuous rather than divided into segments, brackets can fall in mid-segment
a. Contour tones
$\left.\left.V_{V[}{ }^{L[}\right]_{V}\right]_{L}$
b. Geminates (long vowels are simila vowel

4. Donning the straitjacket
(19) Formal statement of the primitive constraint families
a. $\alpha \rightarrow \beta$: Each α temporally overlaps some β.

$$
\text { Scoring: Each } \alpha \text { without a } \beta \text { incurs one violation mark. }
$$

b. $\alpha \perp \beta$: Each α temporally overlaps no β Scoring: Each overlap incurs one violation mark
(20) What can α and β be?
a. Edges such as low[or loow

Interiors such as low.
Denote only the interior of a constituent, without its edges.
nus, low and ATR do not overlap here:
I.e., the above candidate satisfies low
c. Conjunctions and disjunctions as in (21). (Dispreferred in analyse,
refer to more features.)
(21) Occasionally, must allow the following generalized forms of (19). I propose to limit conjunction/disjunction to these configurations only
a. $\left(\alpha_{1}\right.$ and α_{2} and $\left.\ldots\right) \rightarrow\left(\beta_{1}\right.$ or β_{2} or $\left.\ldots\right)$

Scoring: Violated once by each set of objects $\left\{A_{1}, A_{2}, \ldots\right\}$ of type
$\alpha_{1}, \alpha_{2}, \ldots$ respectively that all overlap on the timeline and whose intersection does not overlap any object of type $\beta_{1}, \beta_{2}, \ldots$
b. (α_{1} and α_{2} and \ldots) $\perp\left(\beta_{1}\right.$ and β_{2} and \ldots)

Scoring: Violated once by each set of objects $\left\{A_{1}, A_{2}, \ldots, B_{1}, B_{2}, \ldots\right\}$ of types $\alpha_{1}, \alpha_{2}, \ldots, \beta_{1}, \beta_{2}, \ldots$ respectively that all overlap on the

$$
\begin{aligned}
& \text { timeline. } \\
& \text { (Could also be notated: } \alpha_{1} \perp \alpha_{2} \perp \cdots \perp \beta_{1} \perp \beta_{2} \perp \cdots \text {.) }
\end{aligned}
$$

Each violation mark is still triggered individually by a bad local condition in the candidate, e.g., a moment on the timeline when certain edges are present
and others are not.

Note that some constraints require crisp alignment of edges ($x_{x}\left[\rightarrow_{y}[\right.$), while other are weaker and require only overlap ($x \rightarrow y$), allowing spreading. (Cf. the violable (SIPEDGE constraint of Itô \& Mester (1994).)

5. Input and output

I-O Correspondence (between input and output features): Signaled by alignment between input and output tiers.
Correspondence relations with and without spreading:
(22)Perfect faithfulness
b.
voi []$_{\text {woi }}$
c. voi[] ${ }_{\text {voi }}$
$\underline{v o i} \rightarrow v o$

Violates Dep-IO (Fill): voi $\rightarrow v o i$
$\underset{\underline{v o i}[}{\text { voi }^{\text {vic }}[}$
$]_{\text {voi }}$ Like (a), this spread version satisfies Parse \& Fill which only require overlap. Spreading may be required to satisfy some other constraint. On the other hand various constraints can be invoked against spreading be used to block (d). (Cf. Yip, 1994:21,fn. 11, on MSEg vs. *Insert Structure)
Thus, the timeline mechanism unifies Correspondence relations with autosegmenta ssociations. Both are encoded by overlap on the constituent timeline. This fleshe associations. Both are encoded by overlap on
(23) The re-casting of autosegmental association in terms of correspondence relations may be expected to have consequences for the analysis of tonal, harmonic, and related phenomena. We do not explore these ideas here, though they are clearly worth developing." (p. 22)
Traditional view: The input to Gen is an underlying form drawn from the lexicon Gen (x) produces all candidates whose input tiers exactly encode x.
Broader view (Tranel 1994): The input to Gen is an abstract morpheme (or sequence
thereof). $\operatorname{Gen}(x)$ produces all candidates whose input tiers are compatible with x. So Gen picks the underlying form(s)
Competing candidates may then differ to some extent even on their input tiers:
(24) a. phonologically conditioned allomorphy: candidates try different allomorphs on the input timeline, and the constraints decide what works best (Tranel's "free suppletion")
b. floating tones and features: the lexicon specifies only that H falls somewhere on the input. Different candidates try different locations for it in the input. The output may or may not correspond.
c. floating morphemes, templatic morphology: morphology specifies the order of underlying segments within each morpheme, but lets the morphemes overlap so that their segments intermix freely on the input tiers. These
segments may or may not be preserved in the output.
d. epenthesis $(\underline{C C} \Rightarrow C V C)$: The lexicon doesn't specify whether input egments are adjacent, so can create candidates that push them apart:

syncope $(\underline{C V C} \Rightarrow C C)$ is represented similarly;

$$
\begin{array}{cccc}
c[&]_{C} & c[&]_{C}^{C} \\
\underline{c}[&]_{C} & \underline{c}[&]_{\underline{C}} \\
\underline{V}[&]_{\underline{V}} &
\end{array}
$$

But for good phonological reasons, we'd like other constraints to regard as adjacent the two surface C's in the latter case (and the two \underline{C} 's in the former). See §12 for a very general solution.

This straitjacket fits pretty comfortably

This section illustrates how all the types of primitive constraints are ubiquitous across different areas of phonology.
My apologies in advance for any errors or mischaracterizations in these lists. Some of hese translations to OTP are not exact, but appear to act correctly on the data in the papers cited. Also, note that sometimes there is more than one way to paraphrase a constraint.
("ROA" citations (http://ruccs.rutgers.edu/roa.html) not further listed in the bibliography.)
Key to unfamiliar notation:
feat version of feature on output tier
$\underline{f e a t}$ version of feature on input tier (underline denotes "underlyin'" material)
$\frac{\mu_{s}}{} \quad$ strong mora, containing onset and nucleus (Zec 1988).
weak mora, containing coda if any (Zec 1988)
(One could also use explicit constituents Ons, Nuc, Coda.)
x a 2ndary stress mark over a stress-bearing unit (first layer of the grid)
x a 2ndary stress mark over a stress-bearing unit (first laye
x a word-primary stress mark (second layer of the grid)
segmental root node (alternatively, C or V), as distinguished
from morphological root Root
Some implication constraints from the literature.
(25) "Same edge" implication:
a. Features

1. $\left.\quad]_{\text {raised }} \rightarrow\right]_{\text {upper }}$
Prosody ALIGN[R][U]. Bradshaw ROA-93j.
b. Prosody
2. $\left.]_{\text {Pr Wd }} \rightarrow\right]_{\sigma} \quad$ Align: Wd$\left.]=\sigma\right]$. Myers, ROA- 6.

3. $\left.]_{P r W d} \rightarrow\right]_{\mu_{w}} \quad$ AllgN-H: Align(PrWd, R, heavy syllable, R).

Kager, ROA-70.
Foot-Form (trochaic): If there is a head, it is on the L. Hung, ROA-9. Trochaic: Align(σ, L
$5[\rightarrow \mathrm{Foot}$, L). Kager, ROA-35
t, L; Head(Ft), L). Bermudez-Otero
Final-Str. Align(domain, R á, R). Kager, ROA-35.
Fill: Respect the usual prosodic hierarchy, with out catalexis. Inkelas, ROA-39. (Take catalexis to be $F\left[\sigma[\cdots]_{\sigma} \cdots\right]_{F}$, and assume another con-
6. $]_{P r W d} \rightarrow$ $\underset{\text { straint }]_{F}}{\text { interaction }} \perp$
c. Feature-prosody

1. $F[\rightarrow C]$

Lign(Ft, L, Onset): The left edge of a foot must always be aligned to the onset of the first sylla-
ble in the foot. Goedemans, ROA-26. (Assume ble in the foot. Goedemans, ROA-26. (Assume we also have $F\left[\rightarrow{ }_{\sigma}[\right.$.)
2. $C[\rightarrow \mathrm{x}[$
$\begin{array}{ll}\text { 3. } & H\left[\rightarrow P_{r W d}[\right. \\ \text { 4. } & \\ \rightarrow]_{\text {son }}, ~ e t ~ a ~\end{array}$
Hammond, ROA-58.
Align(H tone, L, PWd, L). Myers, ROA-6.
HNuc: A higher sonority nucleus is more harmonic than one of lower sonority. Féry, ROA-34, following P\&S 1993.
$\operatorname{Project}(\overline{\mathrm{N}}, \mathrm{V})$: Nucleus must be a vowel. Oostendorp, ROA-84.
Strong Onset: Syllables begin with a closure
A_{0}. Bakovic, ROA-96.
7. (]$_{\sigma}$ and $\left.\left.]_{h i}\right) \rightarrow\right]_{\text {back }}$
8. $\left.\left.\left(J_{\text {low }} \text { and }\right]_{\sigma}\right) \rightarrow\right]_{\mathrm{x}}$
*. . i i] σ. Kenstowicz, ROA-103.
No [a]: [a] is not allowed in unstressed op
ROA-93a.
9. (1 ROA-93a. No [i]: [i] is not allowed in unstressed op
ROA-93a.
d. I-O relationships
2. $\left.]_{\text {ATR }} \rightarrow\right]_{\text {ATRdom }}$

Left-HD: The leftmost tone bearer of a tone span must be a head. Myers, ROA-6.
BA-rt: Align(Anchor-s, R; [ATR]-domain, R). Cole \& Kisseberth, ROA-22
e. Morphophonology

1. $\left.]_{\text {Plural }} \rightarrow\right]_{\text {son }}$ Son]PL: Plurals
Wiese, ROA-100.
2. $\underline{M}^{[}\left[\rightarrow_{F}[\right.$ MORPR Iesme-Foot
Foot, L), where "a single Align(Morpheme, L, for every morpheme which does not meet this requirement." Crowhurst, ROA-19. See also Kager,
ROA-35; Bermudez-Otero, ROA-136.
3. Rooot $\left[\rightarrow{ }_{P r W d}\right]$

Align-WD: Align(root, Left; PrWd, Left). Cohn \& McCarthy, ROA- 25.
$\operatorname{Align}($ Root, $\sigma ; \mathrm{L}, \mathrm{R}):$:Align root morpheme
4. Root $\left[\rightarrow \sigma l\right.$, etc. $\quad \begin{array}{l}\text { ALIGN(Root, } \sigma ; \text { L,R): "Align root morpheme } \\ \text { boundaries with syllable bondaries at both } \\ \text { edges." Yip, ROA-14. }\end{array}$ edges." Yip, ROA-14. Red = Foot. ROA-16. Carleton \& Myers, ROA5. $\quad \begin{array}{ll}\text { Red }[\end{array} \rightarrow_{F}\left[\begin{array}{l}\text { Red = Foot. ROA-16. Car } \\ \left.]_{\text {Red }} \rightarrow\right]_{F} \\ \text { 16. (Also need Red } \perp_{F}[.)\end{array}\right.$
(26) "Opposite edge" implication:
a. Features

Project(lax, $\overline{\text {) }}$: Lax vowels are followed by additional
weight (coda consonant or 2nd half of a diphthong). Oostendorp, ROA-84.
ProJect($\overline{\mathrm{N}}$, lax): Only lax
vowels are followed by addivowels are followed by addi-
tional weight (as if tense vowels bore their own). Oostenels bore their
dorp, ROA-84.
3. $\quad(]_{\text {vel }}$ and $C[) \rightarrow(]_{\text {cont }}$ or $\left.]_{\text {voi }}\right) \quad$ No kC. Bradshaw, ROA-93j.
Prosody brosody

1. $] \mathrm{x} \rightarrow \mu[$
2. $\xrightarrow[\rightarrow]{(]_{\sigma} \text { and } \sigma[\mathrm{x} \text { or } \mathrm{x}[)}$

Rhythm: A stressed element must be followed by an unstressed element. Hung, ROA-9. (Also need $] \mathrm{x} \perp \mathrm{x}[$.)
NoLAPSE: No adjacent unstressed sy bles. Anttila, ROA-63.
3.
$\xrightarrow{(]_{\sigma} \text { and } \sigma[)}$
$\rightarrow(] \mathrm{x}$ or $\mathrm{x}[\text { or }]_{F}$ or
$F[)$
LapsE: Adjacent unstressed syllables are
ROA-45. by a foot boundary. Green,
c. I-O relationships

1. $H_{H}[\rightarrow]_{\underline{H}} \quad$ Local: An output TBU bearing tone t must be adjacent to [input] TBU b, where b [also] bears t,
Bickmore (credited to Myers), ROA-161. (Only right spreading actually appears. Note the variation $H\left[\rightarrow\left(\underline{H}[\text { or }]_{\underline{H}}\right)\right.$.)
d. Morphophonology
2. Affix $[\rightarrow]_{P r W d} \quad$ Align-SFX: Align(Affix, L, PrWd, R). Mc-AligN-SFX: Align(Affix
Carthy \& Prince, ROA-7.
(27) "Interior" implication:

Round \rightarrow Back. Cole \& Kisseberth, ROA-
98
2. nas \rightarrow voi NAsVor. Itô, Mester, \& Padgett, ROA-38; Yip, ROA-81.
3. $V \rightarrow$ ATRdom WSA-lf: Align([ItR]-dom, L. Word, L) Cole WSA-If: Align(|ATR]-dom, L; Word, L). Cole
\& Kisseberth, ROA-22. (This gets the cor rect, gradient effect of spreading as far as rect, grad
possible.)
Features like nas surface only if linked to a (faithful or epenthetic) segmental root. Zoll, ROA-143. Not explic
Not explicitly mentioned in Cole \& Kisseberth, ROA-22, but clearly needed there. Max-ET: Every TBU must have a corre-
spondent tone. McCarthy \& Prince (1995) spondent one. McCarthy \& Prince (1995)
SPEC(Tone): Every TBU has a tone. Zoll,
ROA-143, after Prince \& Smolensky (1993).
7. \rightarrow (front or round or low) $\begin{aligned} & \text { Color: A vowel is [front] or [round } \\ & \text { if it is [-low]. Kirchner, ROA-4. }\end{aligned}$
$C \rightarrow($ cor or lab or dors $) \quad \stackrel{C}{C \rightarrow F_{C}: \text { A }[+ \text { cons] root dom }}$ $\underset{\text { nates a consonantal place feature. }}{C}$ Oostendorp, ROA-84. Oostendorp, ROA-84.
Express: Express[ATR]. Cole Kisseberth, ROA-22.
9. (ATRdom and $V) \rightarrow A T R$

1. $\mu \rightarrow \sigma$. Farse μ : Every mora must be parsed into a syllable

Myers, ROA-6.
Weight-to-Stress: Heavy syllables are stressed
Hung, ROA-9 (following Prince 1990)
Pande(Root): Eyery root node must be associated with a syllable or mora
c. Feature-prosody interaction

1. $\quad \sigma \rightarrow H \quad$ Fill (σ) : A syllable must be asso-
ciated with a lhigh tone. Myers, ROA-6.
2. $V \rightarrow N u c \quad V \rightarrow \sigma: \mathrm{A}$ vowel must be a syllable
. $\mathrm{Nuc} \rightarrow$ head. Green, ROA-8
3. Nuc \rightarrow son $\sigma \rightarrow$. A ssiable head must be at
4. round \rightarrow (back or stress) MAV(Pro) (Marked Vowel (Prominent)): Umlauted vowels fall in prominent syllables. Féry, ROA-34.
Non-HEAD(ə): Stressed schwa is NON-HEAD($)$: Stressed schwa is
prohibited.
Cohn \& McCarthy, ROA-25.
 ROA-6 Prince 1995.

RA-4 Dep McCathy \& Prince 1995 Weight Dent: If an input vowel is bimoraic Pater, ROA-107. See also WeightIdent Stressident: Parse lexical stress. Pater ROA-107. Head-Max: Alderete, ROA-13
fixes. Alderete, ROA-13zes HEAD-MAX to ob-Dep: Every segment contained in a rosic head in S_{2} [output] has a corresponHead Syli-MAx $^{\text {(F) }}$: No features from (parsed?) segments in the head syllable. Head-Wt-Ident: No lengthening or shortening
131.
e. Morphophonology Frati, ROA-72; Zoll, ROA-143

1. $\underline{M W d} \rightarrow \mathrm{x}$
 lexical head must project a prosodic head: ev-
ery MWd constituent must include a stressed vowel. (A strengthened replacement for $\mathrm{Lx} \approx \mathrm{Pr}_{\mathrm{r}}$.) Kennedy, ROA-139
2. $M \rightarrow P r W d$ MorPA: At least one element of a morpheme is incorporated into a prosodic word. Oostendorp, ROA-84.
Ft-Root: The root must overlap with a foot. Buckley, ROA-93c.

(28) "Mixed" implication

a. Feature

1. upper $\rightarrow{ }_{\mu}[$
2. (]$_{A_{0}}$ and $A_{f}[) \rightarrow p a l$
3. (]$_{C}$ and ${ }_{C}[) \rightarrow($ cor or dors $\ldots)$
4. (]$_{\text {nas }}$ and $C[) \rightarrow v o i$
5. (voi and C [) $\rightarrow]_{\text {nas }} \gg \ldots$
6. $F \rightarrow \mu$
7. PrWd $\rightarrow \sigma$ [

Tinimal Tone Association (MTA): [upper] must be linked to more NoAfF: Disallows non-palatal africates. Bakovic, ROA-96.
Contact: Coda should share place with the following Onset [if any] Kenstowicz, ROA-30.
*NC. No nasal NC. No nasal - voiceless obstruent \gg No-NC-Link, Itô, Mester,
\& Padgett, ROA-38.
Min-2m: A metrical foot contain at least two moras. Green \& Kenstowicz, ROA-101.
DISYLL: The left and right edges of the PrWd, must coincide, respec-
tively, with the left and right edge of different syllables. Kager, ROA 70. (Also need PrWd $\left[\rightarrow S_{\text {eg }}[\right.$, $\left.]_{P_{r} W_{d}} \rightarrow\right]_{\text {Seg }}$.
 units should be parsed by a foot , ROA-35. Parse-Adj-Syll Alderete, ROA-94.
c. Feature-prosody interaction

1. $\quad\left(F[\right.$ and $\underline{\text { Root })}) \rightarrow c\left[\quad\right.$ FtOnset $^{\{r t\}}: \operatorname{Align}(\mathrm{Ft}$ that is in root, L, C or Root, L). Buckley
2 $(V$ and [)\rightarrow low Lower: $V_{\mu \mu} \rightarrow[L o w]$ Cole \& Kisseberth ROA-98.
2. $(H \text { and } \sigma[) \rightarrow]_{\underline{H}} \quad$ T-Bin: A tone span can have at most one non-head (in a domain);
limits spread to one syllable from underlying tone. Myers, ROA-6.
3. ($]_{\text {vel }}$ and $\left.]_{\text {cont }}\right) \perp_{\text {lab }}[\quad$ No VelCont Lab: No sequence of a ve ar continuant before a labial. Bradshaw, ROA-93j.
4. ($]_{\text {nas }}$ and $C[) \perp$ voi No-NC-Link. Itô, Mester, \& Padget ROA-38
b. Prosody

Prosody

1. $] \mathrm{x} \perp \mathrm{x}\left[\quad{ }^{*}\right.$ Clash: No adjacent strong beats on the grid Kager, ROA-35. NoClash. Anttila, ROA-63 Cf. Rhythm, Hung, ROA-9.
2. $]_{F} \perp_{F}[\quad$ FTFT: Feet must not be adjacent. Kager, ROA35.
(31) "Interior" clas
a. Features
3. \quad voi $\perp g l \quad *$ [voiced, gl]: No implosives. Buckley, ROA-57.
tense \perp low *TENSE-low: No tense low vowels. Benua, ROA-
4. \quad phar \perp dor *Mid (no mid vowels): *[Phar, Dor]. Alderete,
5. $h i \perp l o w$

ROA-94.
ROA-4.
5. Seg \perp Word *Structure(Root). Myers, ROA-6
6. $H \perp$ Word *Struct(A): There must be no association. Myers,
7. low \perp Word *[low]. Oostendorp, ROA-84 (following Prince \&

Smolensky 1993

1. $\sigma \perp \operatorname{Pr} W d \quad$ Monosyllabicity: The fewer syllables, the bet Monosyllabicity: The fewer syllables, the bet-
er. Noske, ROA-109. *Struc (σ) : No syllables. ter. Noske, ROA
Zoll, ROA-143
c. Feature-prosody interaction \quad 1. $\mu_{w} \perp(g l$ and $\ldots) \quad$ CodA-h: A $/ \mathrm{h} /$ may only occur in an onset. Oos1. $\mu_{\omega} \perp$ ($g t$ and \ldots) tendorp, ROA-84

(32) "Mixed" clash

a. Features

1. $h i \perp_{S e g}\left[\right.$, lo $\perp S_{e q} \mid$
2. front $\perp \underline{\text { front }}$, etc.
*Mult-Height: No multiply linked height features. Kirchner, ROA-4.
. $R d D o m \perp{ }_{\text {HiDom }}[$, etc. lines.

Uniformity: The (round-)harmony domain must be monotonic: high or low Cole \& Kisseberth, ROA-98. (Cf. parasitic harmony.)
4. ($\|_{V}$ and $v[) \perp h i$, etc. NoLongVowel: Two adjacent vocalic roots may not be linked to the same matendorp, ROA-84.
2. $]$ son \perp woi $[$
rg: No sonorant-voiced clusters. Nì
Chiosáin, ROA-89.
3. (]$_{\text {nas }}$ and $\left.C_{C}[) \perp\right]_{\text {woi }} \begin{aligned} & \text { Chiosáin, ROA-89. } \\ & \text { *NC: No nasal - voiceless obstruent se- } \\ & \text { quences. Pater, ROA-160. }\end{aligned}$ quences. Pater, ROA-16

```
(29) "Same edge" clash:
    Prosod
        *FinAL STRESS. Anttila, ROA-63. Non-Fin(\sigmá
        ROA-9
        ROA-9
            Ni Chiosin, ROA show not be word-final
        1. \sigma[ 
        3. lobs }\perp\mp@subsup{]}{\mp@subsup{\mu}{w}{}}{\prime
            *ObsNuc. Pater, ROA-107.
            CodaCond: Syllable-final consonant may not
                    *AligN(H,L)-I/O: High tone in output must not
                            left-align with its position in input. Bickmore
                    ROA-161
                            Free-V: PrWd-final vowels must not be parsed.
                    So final heavy syllables are CVC, not CVV
                    Kager, ROA-70.
    d. Morphophonology
        a]: No low vowel in a morpheme-final open syl
        able. Kager, ROA-93c
        *)
(30) "Opposite edge" clash:
    1. 和 \perpH
OCP: FF , where F is a parsed [output ] feature specification. "Furthermore, we will consider two tones to be adjacent
if they are associated by parsed associations with adjacent tone bearers" (so domains are unnecessary). Myers, ROA-6.
```

1. $F \perp{ }_{M}\left[\quad\right.$ Tautomorphemic-Foot: $\quad *_{F}\left[\sigma_{M}[\sigma]_{F}\right.$.
2. $\quad \mu_{s} \perp$ Seg [$\quad \begin{aligned} & \text { Crowhurst, ROA-19. } \\ & \text { *Branch(S) } \mu \text {. Walker, ROA-142. }\end{aligned}$

3. $F[\perp \sigma \quad$ SymLInt: Syllable integrity (violable). Everett,
than one of the next lower prosodic category more than one of the next lower prosodic category $\mathrm{p}-1$.
A. Green, ROA-115. A. Green, ROA-115
4. $\sigma \perp\left(l_{c}\right.$ and $\left.c \mid\right) \xrightarrow{\text { Complen }}$
*Complex: O
coda position.
c. Feature-prosody interaction
5. $C \perp]_{\sigma} \quad$ Geminate: No geminate consonants. Oosten-
${ }^{*}$ Complex(T): A tone-bearer must not be asso-
NoComple more than one tone. Myers, ROA-6.
6. $\quad \mu \perp c[\quad$ *Complex: No complex onset or coda. Kenstowz, ROA-103.
7. rime $\perp_{\text {nas }}[$, etc. Rhyme Harmony: All segments in the rhyme must share any nasal specification. Yip, ROA-81,
d. Morphophonology
8. Red $\perp_{F}[, \quad$ Red $=$ Foot. Carleton \& Myers, ROA-16. (Also
need Red $\left[\rightarrow{ }_{F}[,]_{\text {Red }} \rightarrow\right]_{F}$.)
9. lab $\perp{ }_{M}[$ Monolog: The edges of a morphological domain should be crisp; no feature should be linked both to an edge segment of that domain and to an el84. (Also need lab $\left.\perp]_{M}.\right)$
FTONST ${ }^{\{r t\}}$: Align (Ft that is in root, L, C or

Root, L). Buckley, ROA-56.

7. Straitjacketing phonology keeps it local

Two important differences between ${ }_{F}\left[\rightarrow_{P r W d}[\right.$ and $\operatorname{AligN}(F, \mathrm{~L}, \operatorname{Pr} W d, \mathrm{~L})$

- The \rightarrow family doesn't measure distance.
- The \rightarrow family isn't only used for edges.

Interestingly, Zoll (1996:137-38) has independently argued that licensing jut those properties (leading to her constraint Coincide (X, Y)):
"There are two properties of licensing which distinguish it from the cases of affixation discussed [in M\&P (1993)].
First, licensing of marked structure never involves an injunction to be as close to a
strong position as possible strong position as possible. Rather, licensing always constitutes an all-or-nothing
proposition whereby marked structures are licit in licensed positions but ill-formed everywhere else."
"The second important difference is that licensing does not strictly involve coincidence
of edges or distance from an edge, but is concerned rather with membership in a
constituent which may be peripheral ... [e.g.] heavy syllables belong to the first foot."
Q: Is this local version of alignment powerful enough?
A: Perhaps so. For cases where it's really necessary to measure distance, for example to control the width of a feature domain:
(33) a. $\sigma \rightarrow$ XDom: X-domain should be as wide as possible (contain many σ 's). b. $\sigma \perp$ XDom: X-domain should be as narrow as possible (contain few σ 's that this trick, unlike GA, automatically specifies the units of measurement. It also avoids other definitional problems with GA.
Q: Is Generalized Alignment too powerful?
A: Probably. It's a family of non-local constra
express very non-local, unattested phenomena. Example of unwarranted power: The GA constraint in (34) wants the floating tone to anchor as
constraints)
(34) Notes

1. ' denotes tone, not stress.
2. The $n^{\text {th }}$ column records the degree of misalignment of the $n^{\text {th }}$ syllable, at least Gag measures this in syllables rather than segments (or moras: see Mester \& Padgett (1993)
3. Assume that high-ranked faithfulness constraints rule out other candidates, For example, as
out by $\operatorname{DEP}(H)$.

a. $\frac{\sigma}{} \sigma \sigma \sigma \sigma \sigma \sigma$]	ALGo		**	***	****	*****	***	
b. $\sigma \dot{\sigma} \sigma \sigma \sigma \sigma \sigma$	*	0	*	**	***	****	*****	$=21$ $=16$
	**	*	0	*	**	***	****	$=13$
९ d. $\sigma \sigma \sigma \bar{\sigma} \sigma \sigma$	***	**	*	0	*	**	***	$=12$
e. $\sigma \sigma \sigma \sigma \dot{\sigma} \sigma \sigma$	****	****	**	*	0	*	**	$=13$
f. $\sigma \sigma \sigma \sigma \sigma \frac{\delta}{}$ (*****	***	***	**	*	0	*	$=16$
g. $\sigma \sigma \sigma \sigma \sigma \sigma \bar{\sigma}$	******	$\underbrace{* * * * *}$	****	***	**		0	$\underbrace{-22}$

violations contributed by 2 nd syllable's misalignment
fhere were two floating tones, they'd want to anchor at $1 / 4$ and $3 / 4$ of the way hrough the word

This kind of non-local behavior via GA is unattested to my knowledge. It is also beyond the power of known computational OT methods, in particular the finite-state method of Ellison (1995) and the context-free method of Tesar (1996). The primitive constraints are provably incapable of producing such behavio

8. In dire straits: What about non-local phenomena?

Since OTP uses only the primitive constraints of $\S 4$, it claims that all phonology is
local.
Some apparently non-local phenomena can be reanalyzed:

- Metrical stress. Most non-local constraints in the literature concern metrical stress, which has received both local and non-local analyses in the past.

Local: Non-OT, iterative accounts (e.g., Prince 1983, Halle \& Vergnaud 1987, Kager 1993, Hayes 1985, 1995).

- Non-local: McCarthy \& Prince (1993) propose using Generalized Alignment constraints to measure the distance from each foot to the edge of the word.
- Local: Eisner (1997c) gives an OTP typology of metrical stress. See $\S 9$. - Local: "Incremental" constraints as described in §11. (Cf. Kager (1994), who argues for a greedy Align evaluated "foot by foot.")
- Intervocalic phenomena (e.g., lenition). A constraint like *VsV (Green \&颠 possible.

Sample reanalysis: For *VsV, say that /s/ always wants to surface as $[\mathrm{z}]$, but only succeeds in the VsV context. For instance: (cor and cont) \rightarrow voi rules out [s] in favor of $[z]$. It is outranked by $]_{z} \rightarrow$ ($]_{\text {voi }}$ or $v[$), which says that any surface $[z]$ not underlyingly voiced is followed by a vowel, and also by the mirror image of (${ }_{\text {cor }}$ and $]_{\text {cont }}$ and $]_{\text {voi }}$).

However, reduplication occupies a special role in phonology, in that it is inherently on-local; it cannot be reanalyzed as local

Therefore, to handle reduplication in OTP we need a representational trick (similar to Clements 1985). Translate the Correspondence account of McCarthy \& Prince (1995) into OTP as follows.
a. As for all relations, OTP can enforce Correspondence only locally, so

Correspondent elements must always overlap on the timeline
b. Thus, I-B faithfulness requires I and B to occupy the same portion of the ,
c. B-R faithfulness apparently requires R and B to occupy the same portion of the timeline. But this would rule out B-R juncture effects. which require
B to precede R or vice-versa. (e.g., enforcement of *VhV in Javanese)
d. So instead require R (on the output tier) and a copy of B (on its own
special tier) to occupy the same portion of the timeline.
e. Gen produces only candidates in which this copy of B is perfect. Thus, Gen f. Now all the non-locality is handled within Gen (the locus of motion. see §5). The violable constraints remain local.
(35) Some candidates produced by Gen on RED(bədah)-e. In Javanese, first
a. \qquad bad Input tier (used for I-B faithfulness) Output tier: passed to phonetics (here violates Max-IO bada Morphemic tier: mentioned by some constraints Exact copy of base (used for B-R correspondence)
b.
badah-e bədahbadah-e
[Red][Base][Af] badah ${ }^{2}$

Satisfies Max-IO, but violates surface constraint * VhV
Exact copy of this candidate's base (enforced by Gen)

c. \qquad | badahbada $-\frac{\text { bedan-e }}{}$ |
| :--- |
| [Red | [Red][Base][Af] Satisfies Max-IO \& *VhV, but not Dep-BR, i.e., $C \rightarrow \underline{\underline{C}}$ Exact copy of this candidate's base (enforced by Gen)

d.
bəda badah-e [Red][Base][Af] $\underline{\underline{\text { bdah }}}{ }^{\boxed{ }}$

Satisfies Max-IO, but not * VhV or MAx-BR, i.e, $\underline{\underline{C}} \rightarrow C$
Exact copy of this candidate's base (enforced by Gen
ais airng I-R faithfuiness (McCarthy \& Prince's (1995) Full Model), Gen must put two copies on the input tier: badah badah-e.
Haplology is a related example that may also be intrinsically non-local. (Yip 1995

9. Stress typology

Eisner (1997c) proposes a small set of primitive constraints, which are freely reranked o get the attested iambic systems. Replacing each constraint by its mirror image gives the attested trochaic systems. (All rankings have been tested exhaustively by nputer.)
The result is a unified fine-grained account of the following phenomena described by Hayes (1995):
(36) 1. asymmetric foot shape typology
2. iambic lengthening
4. simple word-initial and word-final stress
5. LR and RL footing, but no clear cases of RL iambs
6. syllable and foot extrametricality
7. no cases of final-syllable extrametricality for LR trochees (new!)
8. strong and weak prohibitions on degenerate feet
9. word-level stress, including prominence-based systems

The asymmetries in (36) are reduced to (i) the universal onset-coda asymmetry and
(ii) the universal tendency of extrametricality to be final.

A few key ideas in this analysis:
(37) Alternating stress is the result of constraints against unary feet (which prevents stress clash) and against stress lapse
(38) Stress prefers to fall on weak moras u_{w}, which carry weight

- Consequence in iambic systems: The strong (right) edge of the foot likes o be supported by a weak mora, so stressed light syllables are avoided iambic lengthening, and unbounded weight-prominence systems.
(Whereas in trochaic systems, stressed lights are no worse than
stressed heavies: there's never a weak mora at the strong (left) edge.)
- Consequence in trochaic systems: Moraic trochees of the form $\left(\mu_{s}^{\prime} \mu_{w}\right)$ onto μ_{w}. Such spreading yields syllabic trochees.
(Whereas in iambic systems, stress starts out on μ_{w} and has no
incentive to spread leftward: so there are no syllabic iambs.)
(39) The "natural" lapse-avoiding pattern on an odd string of light syllables is
 common case, LR trochees, results from right extrametricality, $(\sigma \sigma)(\sigma \sigma)\langle\sigma\rangle$
when right extrametricality is outranked by a desire to include another stress when possible: $(\dot{\sigma} \sigma)(\dot{\sigma} \sigma)(\dot{\sigma} \sigma)$. RL iambs aren't attested because left extrametricality is extremely rare (Kashaya).
Novel prediction from (39): When extrametricality is high-ranked enough to be surface-true, LR trochees are impossible. These two properties should be in comple (namely, the right edge of the word pushing feet away)

Confirmation: Among trochaic languages, Hayes (1995) lists 32 that are LR and 2 that have final-syllable extrametricality. There is no overlap! That is, no language
has preantipenultimate stress on even strings $(\hat{\sigma} \sigma)(\sigma \sigma \sigma) \sigma\langle\sigma\rangle$, but not on odd strings $(\dot{\sigma} \sigma)(\dot{\sigma} \sigma)\langle\sigma\rangle$. The right edge of the word can push feet away, but since primitive constraints are local, it can't demand that they be pushed all the way to the left of the word

10. Computational issues: Theories in straitjackets are docile

Q: Gen produces infinitely many candidates. How do we find the best?
A: By using intensional descriptions of the infinite sets. For example, son \rightarrow voi $\gg \mu_{w} \perp$ voi yields "Utterances in which obstruent codas are voiceless and

If we stick to the primitive constraints, we can use finite-state automata as our intensional descriptions. E.g., the infinite set of candidates that survive constraints $1-5$ can be described in finite space with an automaton. Then we use constraint 6 to
arrow this set down further, etc.
(Strategy is due to Ellison (1994); Eisner (1997b) gives an efficient version.)

Analogy: In mathematics, we don't work directly with the infinite sum

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+. .
$$

because that would take forever. Instead we manipulate the notation $\sum_{i=1}^{\infty} \frac{1}{i \cdot(i+1)}$

$$
\sum_{i=1}^{\infty} \frac{1}{i \cdot(i+1)}=\sum_{i=1}^{\infty} \frac{1}{i}-\frac{1}{i+1}=\sum_{i=1}^{\infty} \frac{1}{i}-\sum_{i=1}^{\infty} \frac{1}{i+1}=\left(1+\sum_{i=2}^{\infty} \frac{1}{i}\right)-\sum_{i=2}^{\infty} \frac{1}{i}=1
$$

BUT: To find the optimal candidate is NP-hard on the size of the grammar (Eisner 1997b). So while the automaton algorithm above is usually efficient, any algorithm will be slow for a pathological grammar. This is unfortunate for learning theories hat may blunder mo such a grammar and try to test it.
In addition to the algorithm to find the optimal candidate, we can also characterize the expressive power of OTP:
(40) a. Equal in power to OTFS (Ellison 1994), in which Gen is a finite-state transducer and the constraints are arbitrary weighted FSAs. Any formal OTP

OTP is nonetheless more restrictive. OTP grammars are more finegrained, so they make stronger predictions about the effect of reranking constraints. Also, they are limited to a smallish set of universal tiers.
b. Less power than if Generalized Alignment were allowed. The crucial example is (34)-a funny trick that GA can do but OTP can't.
c. More power than systems of ordered rewrite rules, i.e., finite-state transducers. The crucial example is a trick that OTP can do but finite-state transducers can't (adapted from a non-linguistic example in Frank \& Satta 1998):

This grammar puts H tones on either the high or the low vowels-

11. A possible extension: Incremental evaluation of constraints

The example in (40c) should make us uncomfortable about OT! Linguistically, grammars that count like that are unattested. So OT appears too powerful.

Indeed, ordered rewrite rules were always descriptively adequate. OT was supposed o give us more elegant or explanatory descriptions, not admit counting tricks as a possibility in human language. So:
(41)

Can we somehow pare OT back to the same descriptive power as
ordered rewrite rules-the power of a finite-state transducer?

There are also computational reasons to ask this question. Transducers are efficient, well understood, and invertible. In particular, when an OT grammar can be解
(42) a. a much faster generation algorithm (UR \rightarrow its optimal SR or SRs) b. a comprehension algorithm (SR \rightarrow the UR or URs for which it's optimal)

Note that (42b) (which would be just as fast as (42a)) produces all possible URs; this possibly large set can be efficiently
(43) a. intersected with a lexicon to find legitimate UR
b. intersected with lexical constraints to guess URs for novel word
c. used for phonological learning

Well, imagine that we allow different modes of evaluation for each primitive constraint:
(44) Traditional Summing: The candidates with the fewest total violations survive to be considered by subsequent constraints.
(45) k-Bounded: Like (44), but the constraint can only distinguish among $0,1,2$, $\ldots, k-1$, or " k or more" violations; it can't count beyond k.
(For example, 1 -bounded evaluation just asks "were there violations?" without asking how many.)

Frank \& Satta (1998) and Karttunen (1998) recommend allowing only k-bounded constraints, since then we remain within finite-state power. This is true, but somewhat awkward as a solution: - Big inelegant transducers: A grammar that sets k just large enough to han-
dle "supercalifragilisticexpialidocious" would yield a much larger and more redund

- Lack of generalization: Moreover, unlike the derivational grammar, it would fail to generalize to longer words and phrases.
So I'll propose two additional modes
(46) Incremental LR:
- The constraint scores each candidate incrementally from Left to Right
- This LR scoring proceeds in parallel for all candidates, staying in
erence to the candidates' common UR.
- Sudden death for any candidate as soon as it incurs a violation, unles all other surviving candidates simultaneously suffer an equally bad violation.
(47) Incremental RL: The mirror image of (46).
summing evaluation is shown in (48-49). To understand incremental evaluation, consider a case where all (remaining) candidates have 4 syllables. Then (50) operates
as if exploded into (51). It prefers to postpone the pain of NoCoDA violations as long s possible, even at the cost of having more violations later
(48) NoCodA: $\left.]_{\sigma} \perp\right]_{C} /$ traditional summing
(49) \qquad
NoCodaLR: $\left.]_{\sigma} \perp\right]_{C} /$ incremental LR
(51)

(52) NoCodaRL: $\left.]_{\sigma} \perp\right]_{C} /$ incremental RL
(53)

	NoCoda- σ_{4}	NoCoda- $\sigma_{3} \mid$	NoCodA- $\sigma_{2} \mid$	NoCoda- σ_{1}
() bantondibo			*	*
bantodimbon	*!	*		

These ideas can be formalized, and the following theorem holds:
(54) Theorem: Suppose an OT grammar consists of primitive constraints each of which is evaluated as LR, RL, or k-bounded. (That is, the grammar never employs the traditional summation of (44).) Then one can construct finite-state transducer that is equivalent to the grammar

Now the question is: Can we get away with this linguistically?
Tentatively, yes:
Most of the time, incremental evaluation is indistinguishable from summing evaluation. When does it matter? Consider (51)

- Higher-ranked constraints have forced us to choose between satisfying NoCod on the 2nd vs. the 3rd syllable: we can't satisfy it on both
- This corresponds to the crucial-ranking pattern $\left.\stackrel{*!}{-}\right|_{*}$ in the tableau.)
- But the situation as depicted in (51) doesn't tend to arise, since the two codas don't interact in any way.
- Such tradeoffs arise (for syllabification) only in the context of directional syllabification (see Mester \& Padgett 1994) - which is resolved LR or RL
ndeed, such forced tradeoffs-where only one constraint is at issue, but the language nust choose where to violate it-are generally resolved by violating as late (LR) or as early (RL) as the higher-ranked constraints will allow. Examples
(55) 1. Directional syllabification: $/ \mathrm{cvcccv} / \rightarrow$ [cv.cVc.cv] vs. [cvc.cV.cv]. To favor the latter, as in Cairene Arabic, evaluate Dep incrementally LR so as to postpone epenthetic material; this is classically known as LR syllabification.

2. Footing: $(\sigma \sigma)(\sigma \sigma) \sigma$ vs. $(\sigma \sigma) \sigma(\sigma \sigma)$ vs. $\sigma(\sigma \sigma)(\sigma \sigma)$. (PaRse $(\sigma): \sigma \rightarrow F$.)
3. Infixation: Tagalog [gr-um-adwet]. (NoOverlap: $]_{A f f i x} \perp$ Stem.)
4. Docking of floating features (e.g., tone). (Either $V \rightarrow H$ or $V \perp H$.)
5. Resolution of OCP violations (e.g., Grassman's Law). (Likewise.)
6. End rule: $\grave{\sigma} \sigma \grave{\sigma} \sigma$. (Likewise.)
7. Marking of special domains that license additional material, like the first foot in a word. (Likewise.)
Warning: To evaluate a form incrementally, a constraint must be defined so as to secify not just how many violations there are, but also where they fall. I have not yet addressed this issue for the primitive constraint families.

2. A possible extension: Capturing tier adjacency

In a standard autosegmental representation (Goldsmith 1990), even feet with gaps between them would be treated as adjacent on their tier, as would adjacent tones and adjacent vowels. This makes it easy to discuss OCP effects, long-distance spreading, tonology, the notion of "leftmost X," etc.
The strictly local timeline representations of (15b) lose this adjacency. On the timeline, two H tones on the same tier can't see each other through intervening consonants.
One way out is provided by Optimal Domains Theory (Cole \& Kisseberth 1994): each phonetic feature silently projects a wider domain, and adjacency is defined locally in terms of these domains. This is functional but somewhat clumsy
A possible alternative, more in the spirit of autosegmental phonology:
(56) - Every constraint has a set of relevant tiers.

- The relevant tiers are those that participate directly in the constraint, plus any others mentioned on the side.
- When evaluating a constraint, we collapse (ignore, skip over) any time intervals where nothing is happening on the relevant tiers.

Under this "collapsing convention," we could write the OCP for H tone as in (57) This says that adjacent H's must be separated by a $]_{P r W d}$-where two H's are considered to be adjacent if there are no H's, PrWd's, or L's between them (these being the relevant tiers mentioned in the constraist). Effectively, (57) treats (58) as
(57) $\operatorname{OCP}(\mathrm{H}):(]_{H}$ and ${ }_{H}[) \rightarrow P_{P r W d}[$
(58) [

(59) $\underset{[\mathrm{HIH}]}{\mathrm{PrWd}}[\mathrm{H}]$
$\left[\begin{array}{ll}\text { I PrWd } \\ \mathrm{I} & \mathrm{H}\end{array}\right]$
Similarly, under this convention, (60) requires that any H tone be spread onto the vowel to its right. (61) restricts this requirement to within the PrWd (just as in (57)).
(60) $\operatorname{HHARm}(\operatorname{Right)}): H[\perp]_{V}$
(61) HHARMBouNDED(Right):
(61) HHARMBounded (Right): ($]_{H}$ and $\left.V[) \perp\right]_{P r W d}$

Note that (62) no longer enforces right extrametricality: it mentions only F and PrWd as relevant tiers, causing (64) to be interpreted as (65). Instead we need to use (63), which recognizes syllabified material and requires it to intervene.
(62) Extrametricality: $\left.]_{F} \perp\right]_{P_{r W d}}$
(63) Extrametricality:
$]_{F} \perp \perp{ }_{P r W d}$
(63) Extrametricality: $\left.\jmath_{F} \perp\right\rfloor_{P_{r} W d} \quad(\sigma)$

5) $\begin{aligned} & {\left[\begin{array}{ll}\text { PrWd } \\ {\left[\begin{array}{lll}\mathrm{F} & \mathrm{F}\end{array}\right]}\end{array}\right]}\end{aligned}$

A formal version of the collapsing convention:
(66) a. Any two brackets are considered to coincide in time unless they are separated by an entire constituent $x[]_{x}$ on a relevant tier, or more generally by a configuration $x[\quad]_{y}$ where x and y are both relevant tiers.
b. That is, configurations $x[]_{y}$ on the relevant tiers resist collapse.
c. Equivalently, imagine conflating the relevant tiers to get a sequence
labeled brackets in time. Any contiguous subsequence of the form $\cdots \cdots] \leq] \leq 1 \leq[\leq[\leq[\leq[\ldots$
(i.e., 0 or more] followed by 0 or more [)
is considered to be contemporaneous for purposes of this constraint
Really this interprets adjacency as in Goldsmith (1990), while allowing each contraint to specify which tiers to conflate. (Tier conflation is traditionally an operation that happens at some point during a derivation-but OT is not derivational.)

A weaker alternative to (66c) is also worth considering. This would not collapse (64)
into (65):
(67) Consider only sequences of the form $\cdots]=]=] \leq[=[=[=[$
to be contemporaneous.

The collapsing convention of (66) or (67) can easily be used to solve the problem noted in (24d).
It generalizes the previous solution to (24d) (outlined in Albro 1997), which effectively combined (67) with the notion that all surface tiers were relevant to a constraint that mentioned any surface tier, and all underlying tiers were relevant to a constraint that mentioned any underlying tier

13. What role do these primitive constraints play in OT?

Three kinds of constraints:

- Primitive: the implication and clash families.
- Compound: Expressible as a monolithic block of primitive constraints in fixed order. (Kennedy (1996) uses blocks of Align constraints.)
- Complex: Any constraint not expressible in this restricted framework.

The balance among these remains to be seen. It is not yet clear what compound o complex constraints are actually needed (and which of the primitive constraints are not needed!).

We must also discover which of the formally possible primitive constraints are favored in real languages (on phonetic or other grounds), and what rankings are avored. OTP claims that languages use only local constraints; but it does not say which local constraints.
Meanwhile,

- Primitive constraints are "safe to use." They're simple, radically local, and ubiquitous.
- The restricted version of OT allowing only primitive constraints-called OTP-
is easy to reason within and is computationally tractable.
- OTP is the simplest explanation that stands a chance. Let's refine it agains the data, adding new core constraints only as we're forced to
- If OTP is close to correct, it may be fruitful to reanalyze languages and typologies within OTP. (E.g., Eisner (1997c) gives a detailed reanalysis of stress typology that has some empirical benefits.)

References (exclusive of $\S 6$)

Albro, Daniel M. 1997. Evaluation, Implementation, and Extension of Primitive Optimality Theory. M.A. thesis, UCLA.
Abro, Daniel M. 1998. Three formal extensions to Primitive Optimality Theory. In Mark Ellison (ed.), Proceedings of the Fourth Meeting of the ACL Special Interest Group in
Computational Phonology. Association for Computation Linguistics. Quebec. July Computational Phonology. Association for Computation Linguistics. Quebec, July.
Bird, Steven, \& Ewan Klein. 1990. Phonological events. Journal of Linguistics 26, $33-56$. Bird, Steven, \& Ewan Klein. 1990. Phonological events. Journal of Linguustics 26, 33-56.
Buckley, Eugene. 1995. Alignment and constraint domains in Manam stress. Ms. ROA-
56 .

Clements, G. N. 1985. The problem of transfer in nonlinear morphology. Cornell Working
Papers, Cornell University, Ithaca, NY, Fall.
Cole, Jennifer, \& Charles Kisseberth. 1994. An \qquad
Studies in the Linguistic Sciences 24: 2.
Crowhurst, Megan 1994 Prosodic alignment and misalignment in Diyari, Dyirbal, and Gooniyandi: an optimizing approach. WCCFL 13. ROA-19. \qquad
Gisner, Jason M. 1997a. What constraints should OT allow? LSA Annual Meeting
Chicago, January.
Eisner, Jason. 1997b. Efficient generation in primitive Optimality Theory. Proceedings of the 35 th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Association for Computational Linguistics, Madric Eisner, Jason. 1997c. Foorform decomposed: Using primit \qquad
8. MIT Working Papers in Linguistics, Cambridge, MA
lison, T. Mark. 1994. Phonological derivation in optimality theory. Proceedings of
ING, 1007-1013.
Fery, Caroline. 1994. Umlaut and Inflection in German. Ms. ROA=34.
Frank, Robert, and Giorgio Satta. 1998. Optimality theory and the of constraint violability. Computational Linguxistics 24(2):307-315.
ond
oldsmith Jon
Goldsmith, John A. 1990. Autosegmental and Metrical Phonology. Cambridge, MA:
Blackwell.
Green, Thomas and Michael Kenstowicz. 1995. The Lapse constraint. FLSM 6,1: 1-14.
Bloomington, Ind: Indiana University Linguistics Club. ROA-101. Bloomington, Ind: Indiana University Linguistics Club. ROA-101.
Green, Thomas. 1994. The conspiracy of complete of Rutgers
Green, Thomas. 1994. The conspir
Otimality Workshop I. RO- 8 .
Halle, Morris and Jean-Roger Vergnaud. 1978. Metrical structures in phonology. Ms.,
Dept. of Linguistics, MIT.
Hayes, Bruce. 1985. Iambic and troch
Hayes, Bruce. 1995. Metrical Stress Theory: Principles and Case Studies. University of
Chicago Press.
Itô, Junko, \& Armin Mester. 1994. Realignment. Proceedings of the June 1994 Utrecht Prosodic Morphology Workshop.
Kager, René. 1993. Alternatives to the Iambic-Trochaic Law. LI 11, 381-432
Kager, René. 1994. Ternary rhythm in alignment theory. Ms. ROA-35.
Kartunen, Lauri. 1998. The Proper Treatment of Optimality in computational phen
ogy. Proceedings of FSMNLP'98 (International Workshop on Finite-State Methods in Natural Language Processing), 1-12. Bilkent University, Ankara, Turkey.
Kirchner, Robert. 1993. Turkish vowel harmony and disharmony: an optiality theoretic account. Proceedings of Rutgers Optimality Workshop I. ROA-4. McCarthy, John, \& Alan Prince. 1986. Prosodic morphology. Ms., Brandeis University.
McCarthy, John, \& Alan Prince. 1993. Generalized alignment. Yearbook of Morphology, CCarthy, John, \& Alan Prince. 1993. Generalized alignment. Yearbook of Morpho
ed. Geert Booij \& Jaap van Marle, pp. 79-153. Kluwer. ed. Geert Booij \& Jaap van Marle, pp. 79-153. Kluwer.
McCarthy, John and Alan Prince. 1995. Faithfulness and reduplicative identity. In
Jill Beckman et al., eds., Papers in Optimality Theory. UMass, Amherst: GLSA. Jill Beckman et al., eds., Papers in Optimality Theory. UMass, Amherst: GLSA
$259-384$. 259-384.
Alignment and Jaye Padgett. 1994. Directional syllabification in Generalized Alignment. Phonology at Santa Cruz 3, October. ROA-1.
yolgs, Scott. 1994. OCP effects in Optimality Theory. Ms. ROA-6.
Prisztina. 1995. Derived Environment Effects and Optimality Theory. Handout, Tilburg "Derivational Residue" Conference. ROA-93i.
Prince, Alan, \& Paul Smolensky. 1993. Optimality theory: constraint interaction in gen erative grammar. Technical Reports of the Rutgers University Center for Cognitive
Science.

Prince, Alan. 1983. Relating to the Grid. LI 14, 19-100
elkirk, Elizabeth. 1980. Prosodic domains in phonology: Sanskrit revisited. In Mark Aranoff and Mary-Louise Kean, eds., Juncture, pp. 107-129. Anna Libri, Saratoga
CA. CA. Colensky, Paul. 1995. On the structure of the constraint component Con of UG. Talk at UCLA, April 7. ROA-86.
nel, Bernard. 1994. French liaison and elision revisited: A unified account withi Optimality Theory. In Claudia Parodi et al., Aspects of Romance Linguistics:
Selected Papers from the Linguistic Symposium on Romance Languages XXIV. Washington, D.C.: Georgetown University Press. ROA-15.
Yip, Moira. 1994. Phonological constraints, optimality, and phonetic realization in
ip, Moira. 1995. Identity Avoidance in Phonology and Morphology. Proceedings of the Conference on Morphology and its relation to Syntax and Phonology. University of California at Davis, May. ROA-82.
Zec, Draga. 1988. Sonority constraints on prosodic structure. Ph.D. dissertation,
Zec, Draga. 1988. Sono

Zoll, Cheryl. 1996. Parsing Below the Segment in a Constraint Based Framework. Ph.D. dissertation, University of California at Berkeley. ROA-143.

