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Abstract

SMOOTHING A PROBABILISTIC LEXICON VIA SYNTACTIC

TRANSFORMATIONS

Jason Michael Eisner

Supervisor: Professor Mitch Marcus

Probabilistic parsing requires a lexicon that specifies each word’s syntactic preferences

in terms of probabilities. To estimate these probabilities for words that were poorly ob-

served during training, this thesis assumes the existence of arbitrarily powerful transfor-

mations (also known to linguists as lexical redundancy rules or metarules) that can add,

delete, retype or reorder the argument and adjunct positions specified by a lexical entry.

In a given language, some transformations apply frequently and others rarely. We describe

how to estimate the rates of the transformations from a sample of lexical entries. More

deeply, we learn which properties of a transformation increase or decrease its rate in the

language. As a result, we can smooth the probabilities of lexical entries. Given enough di-

rect evidence about a lexical entry’s probability, our Bayesian approach trusts the evidence;

but when less evidence or no evidence is available, it relies more on the transformations’

rates to guess how often the entry will be derived from related entries.

Abstractly, the proposed “transformation models” are probability distributions that

arise from graph random walks with a log-linear parameterization. A domain expert con-

structs the parameterized graph, and a vertex is likely according to whether random walks

tend to halt at it. Transformation models are suited to any domain where “related” events

(as defined by the graph) may have positively covarying probabilities. Such models admit
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a natural prior that favors simple regular relationships over stipulative exceptions. The

model parameters can be locally optimized by gradient-based methods or by Expectation-

Maximization. Exact algorithms (matrix inversion) and approximate ones (relaxation) are

provided, with optimizations. Variations on the idea are also discussed.

We compare the new technique empirically to previous techniques from the probabilis-

tic parsing literature, using comparable features, and obtain a 20% perplexity reduction

(similar to doubling the amount of training data). Some of this reduction is shown to stem

from the transformation model’s ability to match observed probabilities, and some from

its ability to generalize. Model averaging yields a final 24% perplexity reduction.
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Chapter 1

Overview: An Executive Summary

1.1 Context of the Work

Humans are experts in the languages that they speak. So too must be machines that

use language. Yet computational linguists are increasingly loath to build language-specific

“expert systems” by hand. Such systems tend to be both expensive and fragile.

Instead, the dominant strategy of the past decade has been to build machines that learn

statistically from raw or annotated language data. The computational linguist’s job is to

design an appropriately expressive statistical model whose parameters can be estimated,

using appropriate algorithms, from a reasonable amount of data. These algorithms then

learn the nuances of a particular language by tuning the parameters of the model to match

known data from the language.

To increase the linguistic expertise of such machines, one must design statistical models

that are sensitive to additional linguistic phenomena. But parameter estimation is harder

for more complex models—so in practice it is a challenge to add linguistic sophistication

that helps more than it hurts.

In the domain of syntax, the community has been adding sophistication carefully, one

step at a time. Statistical models have been extended to capture a succession of linguistic

phenomena, usually well enough in practice to exploit them for performance gains:

1. collocations (n-gram Markov models)
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2. word categories (hidden Markov models)

3. trees (probabilistic context-free grammars)

4. subcategorization (lexicalized context-free grammars)

5. selectional preferences (various bilexical grammars)

6. long-distance movement (statistical gap passing)

7. arbitrary tree properties (stochastic LTAG, DOP, log-linear LFG, etc.)

These are mainly models of what Chomsky calls the “surface structure” of syntax trees.

This thesis builds on that progress by offering a working statistical treatment of Chom-

sky’s “deep structure”—the transformational relationships among syntactic constructions

that are related in meaning. We will see that a statistical model can detect such rela-

tionships in an existing sample of syntactic constructions, and use them to better predict

the probabilities of constructions in the sample as well as new constructions that it has

never seen before. It is in this sense that the model does “transformational smoothing” of

probabilities.

In short, the model finds and applies language-specific generalizations about deep syn-

tax. The approach is declarative. First we quantify a notion of a good grammar. Then we

search in the continuous space of all possible grammars, trying to maximize the Bayesian

or MDL product

Pr(training data | grammar) · Pr(grammar) (1.1)

The first factor emphasizes description, the second generalization. The first factor is high

if the grammar assigns high probability to the constructions observed so far. The second,

trickier factor is the a priori probability of the grammar itself; we will define it to be high

if the grammar has strong, consistent internal structure with few stipulative exceptions.

The rest of this chapter is an overview of the scope and content of the work. It concludes

with a detailed guide to the rest of the thesis.

2



1.2 Motivations

Let us begin by motivating the work from the interests of four different fields: engineering,

linguistics, statistics, and child language acquisition.

1.2.1 The Engineering Problem: Learning More Syntax from Less Data

1.2.1.1 Probabilistic Parsing

Accurate parsing of natural language—discovering the recursive structure of an arbitrary

sentence—is a major roadblock for systems that attempt to understand or translate text.

A great many word meanings and grammatical constructions are possible (if rare) in the

language. The typical sentence therefore has combinatorially many parses. The task is to

output the right parse.

The trick is to search not for possible parses but for probable ones. A dynamic-

programming parser builds a parse tree by composing context-free rules, or other small

“chunks” of tree, according to some theory of syntax. One can define the tree’s probability

in terms of the probabilities of its component chunks (§5.3.3). The dynamic program can

then find the most probable tree that parses a given input. A parser with access to prob-

abilities can also run faster, by heuristically ignoring low-probability regions of the search

space.

Probably the best-known recent English parsers of this sort are (Collins, 1997) and

(Charniak, 2000), which are interesting, accurate and robust. However, this framework

boasts many other practical and theoretical papers worthy of mention, and the techniques

have been ported beyond English, e.g., (Collins et al., 1999).

1.2.1.2 The Need to Generalize

The trouble is that the chunk probabilities are hard to estimate from even a large sample

of (expensively annotated) data. Many chunks that are needed to parse test data correctly

are never observed at all in training data. In our data, derived from The Wall Street

Journal via the Penn Treebank (§6.2), a remarkable 49% of sentences in the development

set required for their correct parse at least one subcategorization frame (broadly construed
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to include slots for all arguments and adjuncts) that never appeared with any headword in

training data (§6.3). The parser cannot recover the correct parse if it assigns these novel

frames a zero or negligible probability.

Hence, the parser must be able to generalize from chunks it has seen during training to

new chunks that it has never seen. The list of chunks that actually appears in training data

tends to be large, unorganized, redundant, and—most harmfully—incomplete. To parse,

we need to reconstruct the true list of chunks in the language, and their true probabilities,

as well as possible. This means looking at internal chunk structure.

Parsers in the literature usually deal with this problem by building the “atomic” chunks

(or equivalently the parse trees) from smaller “subatomic” units that are more likely to

recur in training data: binary-branching rules or single dependencies rather than com-

plete subcategorization frames. However, even weak versions of this atom-splitting lead

to overly strong independence assumptions (§6.6.3). Other generative models for chunks

have occasionally been considered (Collins, 1997, model 2), although these were not the

best performers in our experiments either (§6.7.1).

This thesis explores a more sophisticated and apparently better-performing approach

to generalizing from old (observed) chunks to new ones. The approach is inspired by both

linguistic tradition (§1.2.2) and an analysis of the data (§2.4.2.1).

1.2.1.3 An Example

Concretely, consider the table in Table 1.1. It shows 6 words with all the subcategorization

frames they headed in our training data.1 (Since the words are uninflected verbs, they

only appear in infinitive or present-tense form in our unmorphologized data.) The symbol

“ ” stands for the headword in the subcategorization frame. For example, the second

row says the lexicalized context-free rule S→ To encourage NP PP was used once in the

hand-constructed training parses, while S→ To fund NP PP was used twice, and so forth.

In order to parse, we need to replace the counts in this table with probabilities Pr(frame |

headword), as shown in Table 1.3, such that
1For reasons discussed in §2.4.1, this thesis interprets “subcategorization frame” broadly to include all

dependents—including adjuncts (such as some PP’s) and subjects, which have traditionally been excluded
from subcategorization frames. To avoid confusion we will simply use the term “frame” in future.
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encourage question fund merge repay remove
S→ To NP 1 1 5 1 3 2
S→ To NP PP 1 1 2 2 1 1
S→ To AdvP NP 1
S→ To AdvP NP PP 1
S→ NP NP . 2
S→ NP NP PP . 1
S→ NP Md NP 1
S→ NP Md NP PP-TMP 1
S→ NP Md PP PP 1
S→ To PP 1
S→ To S 1
S→ NP SBAR . 2

Table 1.1: Counts of all the S→ · · · frames that appear with six particular words in training
data. The words were not specially chosen, except that they were all required to appear
with S→ To NP PP (so that they would be related) and to appear 4–7 times (so that
this example table would be small but not trivial).

Pr(RHS | headword,LHS) encourage question fund merge repay remove
S→ To NP 0.200 0.167 0.714 0.250 0.600 0.333
S→ To NP PP 0.200 0.167 0.286 0.500 0.200 0.167
S→ To AdvP NP 0 0 0 0 0 0.167
S→ To AdvP NP PP 0 0 0 0 0 0.167
S→ NP NP . 0 0.333 0 0 0 0
S→ NP NP PP . 0.200 0 0 0 0 0
S→ NP Md NP 0.200 0 0 0 0 0
S→ NP Md NP PP-TMP 0 0 0 0 0.200 0
S→ NP Md PP PP 0 0 0 0 0 0.167
S→ To PP 0 0 0 0.250 0 0
S→ To S 0.200 0 0 0 0 0
S→ NP SBAR . 0 0.333 0 0 0 0
(other) 0 0 0 0 0 0

Table 1.2: The probabilistic lexicon most likely to generate the counts in Table 1.1. While
it is trivial to compute, unfortunately it is an improbable lexicon a priori. It would be a
poor engineering choice since it assigns 0 probability to many plausible frames.
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Pr(RHS | headword,LHS) encourage question fund merge repay remove
S→ To NP 0.088 0.043 0.398 0.127 0.171 0.131
S→ To NP PP 0.030 0.016 0.101 0.114 0.032 0.048
S→ To AdvP NP 0.00017 0.000064 0.00019 0.00010 0.00020 0.033
S→ To AdvP NP PP 0.000057 0.000023 0.000049 0.000092 0.000038 0.012
S→ NP NP . 0.013 0.104 0.0021 0.0053 0.0063 0.0034
S→ NP NP PP . 0.016 0.0068 0.00095 0.0019 0.0021 0.0010
S→ NP Md NP 0.023 0.0020 0.0055 0.0030 0.035 0.034
S→ NP Md NP PP-TMP 0.00056 0.000061 0.000031 0.000079 0.0047 0.00030
S→ NP Md PP PP 0.00014 0.000032 0.000024 0.000089 0.00029 0.0018
S→ To PP 0.016 0.015 0.052 0.112 0.031 0.051
S→ To S 0.034 0.0061 0.010 0.016 0.012 0.0053
S→ NP SBAR . 0.018 0.111 0.0029 0.0076 0.0089 0.0048
(other) 0.762 0.696 0.428 0.613 0.695 0.675

Table 1.3: Part of the probabilistic lexicon induced from training data by the best model
from previous literature, a smoothed bigram model (§6.6.1.2). There exist many more
rows (in fact, infinitely many) and columns. Each column sums to 1 (if we consider only
the S→ · · · rows).

Pr(RHS | headword,LHS) encourage question fund merge repay remove
S→ To NP 0.142 0.117 0.397 0.210 0.329 0.222
S→ To NP PP 0.077 0.064 0.120 0.181 0.088 0.080
S→ To AdvP NP 0.00055 0.00047 0.0011 0.00082 0.00091 0.079
S→ To AdvP NP PP 0.00018 0.00015 0.00033 0.00037 0.00026 0.050
S→ NP NP . 0.022 0.161 0.0078 0.0075 0.0079 0.0075
S→ NP NP PP . 0.079 0.0085 0.0026 0.0027 0.0026 0.0026
S→ NP Md NP 0.090 0.0021 0.0024 0.0020 0.024 0.0026
S→ NP Md NP PP-TMP 0.0018 0.00016 0.00017 0.00016 0.069 0.00019
S→ NP Md PP PP 0.00010 0.000027 0.000027 0.000038 0.000078 0.059
S→ To PP 0.0092 0.0065 0.012 0.126 0.010 0.0091
S→ To S 0.098 0.0016 0.0043 0.0039 0.0036 0.0027
S→ NP SBAR . 0.0034 0.190 0.0032 0.0032 0.0032 0.0032
(other) 0.478 0.449 0.449 0.461 0.461 0.482

Table 1.4: Part of the probabilistic lexicon induced from training data by transformational
smoothing.
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1. Each column of the table sums to 1.

2. The observed counts constitute a likely sample from the probabilities.

3. The pattern of probabilities is a priori plausible.

The result is called a conditionalized “probabilistic lexicon.”

The maximum-likelihood estimate (Table 1.2) satisfies the first two properties but not

the third; it is too stipulative. A smoothing method such as our transformational smooth-

ing (Table 1.4) is designed to “smear” these estimates down the column, generalizing from

one row to another. This lets it place non-zero probabilities on rules that appear in the

correct parses of test data, including novel rules.

We would like a smoothing method to place high probabilities on the test rules so that it

can correctly choose the correct parses, which contain those rules. Thus, our cross-entropy

evaluation measure is (the log of) the product of the test probabilities (§6.1).

1.2.2 The Linguistic Problem: Stochasticizing Deep Structure

1.2.2.1 Background: Lexical Redundancy

Now let us turn to the linguistic motivation. Many modern theories of syntax are lexicalist.

They agree with the dynamic-programming parser of §1.2.1.1: a legal syntax tree is formed

by composing “chunks” of syntax, each of which is governed by some lexical item. The

collection of chunks is called the lexicon, and each individual chunk is called a lexical

entry.

The form of the chunks and the compositional mechanisms vary from theory to theory

(see Fig. 2.1 on p. 36 for examples), but the basic idea remains the same: there is no

language-specific grammar outside the lexicon.

This thesis responds to a problem faced by all such theories, known as “lexical re-

dundancy.” Suppose English has a lexical entry for the word fippened that calls for a

subject and a direct object: The beast fippened its dinner. It is then almost certain that

the English lexicon also lists a passive entry for fippened: The dinner was fippened by a

beast. One might also accept reasonable odds on a bet that English lists an intransitive

entry: The beast fippened (all day), or perhaps, The dinner fippened (slowly).
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The basis for these bets is that many other words in English, such as cooked, exhibit

the same pattern of lexical entries.2 A simple lexical theory would take these common

patterns to be coincidences, and would have to stipulate them over and over in order to

describe the behavior of fippened, cooked, and other words.

1.2.2.2 Lexical Redundancy Rules

Linguists prefer not to enlarge the grammar with such repeated stipulation. Occam’s

Razor calls for modeling the patterns somehow—both to improve the lexicon’s elegance

and to explain why a learner who observes the new word fippened in a single linguistic

context is immediately comfortable using it in the other contexts predicted above.

So lexicalist theories generally allow rules that derive lexical entries from one another.

Again, the form of these rules may vary from theory to theory (Fig. 2.1). They are the

spiritual descendants of transformations in transformational grammar, the main difference

being that they cannot modify any chunk bigger than a lexical entry, and do their work

before the chunks are assembled. There is still no language-specific grammar outside the

lexicon—but there is now a language-specific grammar inside the lexicon.

Thus, a grammar consists of a lexicon plus a system of lexical redundancy rules. The

lexicon is still the final arbiter of syntax, since it may include both positive and negative

exceptions to the rules. However, the rules encode the regular patterns that underlie most

of the lexicon.

1.2.2.3 Introducing Rule Probabilities

What this thesis contributes to linguistics is a sensible stochastic treatment of these lexical

redundancy rules, their exceptions, and their acquisition. Just as one can attach proba-

bilities to the lexical entries—so as to better model competence and performance—we will

attach probabilities to the rules.
2Transitive verbs’ ability to passivize is almost without exception in English, although they do not all

passivize equally often. The tendency of some transitive verbs to boast intransitive entries as well is weaker,
but still systematic and worth learning. Such “Object Drop” entries are used in the Brown corpus (Kucera
and Francis, 1967) about 55% of the time with eat and drink, 25% of the time with finish, and never
with devour. It is useful for a learner to recognize that Object Drop is at least plausible for a novel verb,
and then to be able to tune its rate of application from verb to verb.
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The stochastic framework will provide an attractive perspective on a number of lin-

guistic issues. In particular it allows a unified and gradient treatment of language-specific

syntactic generalizations at all levels: exceptions, subregularities (patterns of exceptions),

rules, and tendencies shared by many rules.

Just as important, the stochastic framework yields up statistical methods to learn

all these generalizations and exceptions from data. Learning the rules is of particular

interest, because they encode the deep structure of the language and because they often

have semantic consequences.

1.2.2.4 An Example

Consider again the data of Table 1.1. There are clear structural relationships among the

frames that appear with these six words.

The first two rows are heavily correlated, as discussed further in §1.2.3.3 below. They

correspond to frames that are related by a simple edit: the addition of a PP (prepositional

phrase) at the right edge. We can regard this as a PP-adjunction that transforms to

encourage loyalty ⇒ to encourage loyalty [with frequent-flier miles]. More precisely, it

transforms the lexical entry that licenses the former phrase into an entry that licenses the

latter. Indeed, the data suggest that a word must have the first entry to have the second.3

The same transformation relates rows 3 and 4. It so happens that remove likes to be

modified by an AdvP (adverbial phrase): to {completely,properly,surgically,. . . } remove the

asbestos. The same PP-adjunction transformation that can be learned from rows 1 and 2

(and other data) predicts that remove’s mildly idiosyncratic entry in row 3 predicts its

mildly idiosyncratic entry in row 4.

Meanwhile, rows 1 and 2 are themselves related to rows 3 and 4, by an AdvP-insertion

transformation. Notice that this transformation tends to apply in certain contexts: it

prefers to insert the AdvP immediately before the headword , even at the cost of splitting

an infinitive, as here. We will see below how to model this preference.

Rows 1 and 2 are also related to rows 5 and 6, by a more linguistically interesting
3Having the second entry was required for a word to be included in Table 1.1; see the caption. The

motivation for lexical redundancy rules is to explain the “coincidence” that these words all also appeared
with the first entry as well.
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sequence of transformations: to encourage loyalty ⇒∗ [Frequent-flier miles] encourage loy-

alty . First encourage acquires an NP (noun phrase) subject at the left edge. A sentence

with a subject is allowed to acquire tense as well, so a second transformation drops the

infinitive marker To. And tensed sentences are allowed to serve as main sentences, so a

third transformation can now add a final period.4

The next few rows undergo a similar process, except that they acquire tense differently:

not by dropping the infinitive marker To, but by substituting a modal Md (will, can, should

. . . ). This is a productive transformation in English.

Finally, the observations in the last three rows are lexically idiosyncratic exceptions.

Unlike in previous rows, most of the zero counts here are not accidental gaps in the data,

but actually reflect very low probabilities:

to merge/*encourage/*question [with First Hospital]

to encourage/*question/*merge [students to consider teaching]

Experts question/*encourage/*merge [whether the magazine can risk it] .

Though Table 1.1 shows only a small and somewhat artificial subset of the real data,

the similarity of the frames is striking. Regarded as strings, they are all closely related by

edit distance. If we ignore the edit needed to turn PP into PP-TMP (a temporal PP), then

each frame is at edit distance 1 from some other frame, and only two of the frames achieve

an edit distance of 3 from the first two frames. §2.4.2 will use this observation to define a

particularly simple set of “edit” transformations to be used in the experiments.

Even the lexically idiosyncratic frames in the last few rows appear to be licensed by

simple edit transformations. For example, the last row is a transformation of the fifth row:

some verbs, like question, can type-shift their NP complement (management’s credibility)

to an SBAR complement (whether the magazine can risk it). The table shows that question

tends to allow main-verb lexical enties of both sorts (but does not particularly like PP

modifiers). So it is an idiosyncratic verb, but its idiosyncrasies do follow a pattern. We

would like our statistical account of lexical redundancy rules to be able to capture such
4This particular sequence of three transformations is not the only reasonable way to describe this process.

It would in any case be preferable to use separate LHS nonterminals Sinf and Stensed, so that period-insertion
does not have to look non-locally in the frame’s RHS to discover whether it is licensed. (Separate LHS
nonterminals would also be desirable because other context-free rules subcategorize for one or the other.)
See §5.5.4.3 for more on how transformations that manipulate features might work.
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semi-productive processes.

1.2.3 The Statistics Problem: Capturing Covariance of Related Events

In language and in life,5 one often needs to estimate a probability distribution over a finite

or countably infinite set of mutually exclusive events. Some of the events in this set might

be related in ways that are known a priori to a domain expert. For example, linguistic

constructions may be related by lexical redundancy rules, web pages may be related by

links, movies may be related by their common personnel, and so forth.

One therefore wants a model that can, if necessary, capture the fact that related events

have related probabilities. Every type of potential relationship in the domain should cor-

respond to a parameter that models the actual strength of such relationships in the data.

1.2.3.1 Previous Approaches

An obvious attempt is to use a log-linear model, also known as a maximum-entropy or

Gibbs distribution. Each event is characterized by a set of features. Increasing a feature’s

weight will equally scale up the probabilities of all events bearing that feature (after which

the probability distribution over the full set of events must be renormalized).

However, this is not quite a solution. The log-linear model learns probabilities, not

relationships. A feature weight does not really model the strength of the relationship

between two events e, e′. It only influences both events’ probabilities. If the probability

of e is altered by some unrelated factor (another feature), then the probability of e′ does

not respond unless it happens to share this additional factor (feature). So the relationship

between e and e′ is a 100% correlation if all other parameters are fixed,6 but weakens

quickly as the other parameters are allowed to vary.

An alternative is to use a directed graphical model (Bayesian network). Such a model

can directly capture the causal relationship between e and e′. However, a graphical model

has the wrong form. It describes a joint distribution over multiple random variables—so
5My life, anyway, and probably the reader’s.
6Assuming that the feature with variable weight appears just as often on e′ as on e. More generally,

if it appears 0, 1, 2, . . . times as often on e′, then the relation will be absent, linear, quadratic, etc. The
number of appearances of each feature on each event is traditionally set by a domain expert who defines
the features, although learning it is an interesting possibility.
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e and e′ are not mutually exclusive and their probabilities may sum to more than 1—

whereas we are interested in the distribution over mutually exclusive values e, e′, . . . of

a single random variable. In addition, graphical models disallow causal cycles. So they

cannot model a situation where extraneous factors affecting e′ will affect e as well as

vice-versa;7 furthermore, learning the direction of causality requires learning the discrete

topology of the model.

1.2.3.2 Transformation Models

This thesis tries to fill the bill by introducing a class of “transformation models,” together

with natural priors and parameter estimation algorithms. The conceit in transformation

models is that events can spontaneously transform into one another. If e regularly trans-

forms into e′, then any effects that raise Pr(e) also raise Pr(e′). The strength of the

relationship between events e and e′ is represented by how often e transforms into e′.

The distribution being modeled is presumed to be a snapshot of the events after all

transformations have stopped. Observing this distribution provides evidence from which

we infer the parameters of the underlying transformational process. In particular, suppose

that a priori, e1, e2, e3, . . . have some relationship to e′1, e
′
2, e
′
3, . . . respectively, and that

empirically, variance among the Pr(ei) explains part of the variance among the Pr(e′i).

Then we have evidence that this type of relationship is strong and each ei tends to transform

into e′i.

Transformation models do have resemblances to log-linear and graphical models. Each

relationship’s strength (i.e., each transformation’s probability) is modeled log-linearly in

terms of features of the relationship; in fact log-linear models are a special case of trans-

formation models.8 And since e′ ⇒ e may have a different probability than e ⇒ e′, the

model describes asymmetric causal relationships just as directed graphical models do, with
7Unless one adds arcs to e from all ancestors of e′, and so forth. But then it would require a complex

parameterization to ensure that these arcs were mediated by the strength of the relationship between e′

and e.
8To convert a log-linear model into a transformation model, allow the initial event Start to transform

randomly into any other event (where the process then stops), with a probability that depends log-linearly
on features of the latter. The probability of this transformation is then the probability of the event. See
§7.3.4.2 for a kind of converse: a variant kind of transformation model can be regarded as a log-linear
model over events that have been augmented with derivational history.
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similar conditional independence and abductive (“explaining away”) properties.

A terminological note: Discussions of this work can help support web searches by stick-

ing to the term “transformation model” rather than “transformational model,” as the latter

collocation is already in online use (e.g., in nursing). I do however use “transformational

smoothing” to refer to the effect of a transformation model.

1.2.3.3 An Example

There is a relationship between rows 1 and 2 of Table 1.1. Across the board, row 2 is

(let us say) about half of row 1. We can model such a relationship by saying that for

every three instances of S→ To NP, one transforms into S→ To NP PP, leaving

the observations in a 2:1 ratio.

Of course, row 2 is not exactly half of row 1. Three explanations are available within

the model:

• The counts are merely samples of the true probabilities. The small counts observed

in rows 1–2 are certainly consistent with a true 2:1 ratio. This explanation becomes

less attractive as the counts get large.

• Row 2 is not solely derived from row 1. There may exist other transformations that

can also produce row 2’s S→ To NP PP. If the probabilities of all such trans-

formations are held fixed while others vary, then row 2’s Pr(S→ To NP PP) is a

fixed linear combination of row 1’s Pr(S→ To NP) and the probabilities of other

entries. While 1
2 may be the exact coefficient of row 1’s Pr(S→ To NP) in this

linear combination, other summands exist and affect row 2’s Pr(S→ To NP PP)

as well. So the ratio of the two probabilities is not 1
2 , although they are 100%

correlated. (The slope of the regression line is 1
2 but the intercept is not 0.)

• The six transformations that turn the six row-1 entries into their corresponding row-2

entries have probabilities that are loosely tied (because they share many features) but

need not be identical. S→ To merge NP may transform into S→ To merge NP PP

with some probability > 1
3 , thanks to headword-specific features that model the
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exceptional properties of merge, in particular its tendency to take a PP argument

(with NP or into NP).

1.2.4 The Language-Learning Problem

The long-term motivation of this thesis is to contribute to models of language learning by

human or computer. This section speculates on how this work might fit into that program.

The Achilles’ heel of current statistical parsing work is its dependence on a corpus of

sample parses. One would like to reduce or eliminate that dependence. Children learn

language from raw speech signals, situated in a real-world environment. Could a computer

induce a grammar from raw text? What statistical biases would help it do so?

1.2.4.1 Enriching EM with a Transformational Prior

For learning context-free grammars from raw text, Inside-Outside reestimation (Baker,

1979) looms large in the intellectual landscape. Yet it works poorly on language text (Lari

and Young, 1990; de Marcken, 1995).

One kind of improvement is to use a prior distribution over possible grammars. Since

Inside-Outside is an instance of the EM algorithm, it is possible to constrain it with a prior.

Using a linguistically sensible prior may help align EM’s goal of maximizing probability

with language learning’s goal of maximizing interpretability.

A transformation model of the lexicalized grammar offers a natural prior, which says

that low-cost lexicons—in §§1.3.2–1.3.3’s sense of having broad generalizations with few

exceptions—are a priori more likely. One could also modify the prior to include substantive

linguistic biases.

1.2.4.2 Failure-Driven Learning

A prior by itself is unlikely to rescue EM. One also needs some way of avoiding local

maxima. Let us consider a variant of EM that grows a labeling of the data slowly from

a small seed model. The strategy is inspired both by a reasonable perspective on human

learning and by several successful unsupervised learning algorithms for NLP (see §8.2.4).
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All the time that children are learning language from the examples they hear, they have

a more pressing concern: trying to make sense of those examples. It is well known that

children comprehend a wider variety of constructions than they can produce, or produce

correctly. Indeed, the same is true of adults, who can successfully guess the syntax and

semantics of novel words in context.

This suggests failure-driven learning: Suppose a child is unable to parse a sentence

according to her current grammar. If the sentence is hopeless gibberish to her, she ignores

it. But if the sentence lies at the edge of her grammar, so that a slight change to the

grammar would let her parse it and hence understand it, then she has an incentive to

make that change.

For example, The beast fippened all day requires a lexical entry e that licenses fippened

as an intransitive verb (§1.2.2.1). If the child does not have such an entry, she may be still

be able to settle on the best parse with reasonable confidence. This requires “stretching”

the grammar and adding the new entry to it.

1.2.4.3 Transformational Plausibility in Failure-Driven Learning

Of course, there may be multiple ways to stretch the grammar. An alternative is to treat

all day as a noun phrase rather than an adverbial. So for the child to have reasonable

confidence in the first parse, she must consider it to require a much less painful stretch.

Hence, the child must estimate how common it is for fippened to be used intransitively:

Pr(e | fippened). If she has seen fippened a million times and never as an intransitive,

then her estimate should be small (probably < 10−6). But if she has seen fippened only

once or twice, as a transitive verb, then she should be willing to back off to other verbs,

using the fact that many transitive verbs in English can also be used intransitively.

The transformation model of this thesis can make exactly such a smoothed estimate.

It interpolates in Bayesian fashion between the actual observations of fippened and the

generalizations it has extracted about English as a whole.

Our perspective is that all possible lexical entries are always in the lexicon. The

requisite entry e has been dormant in the lexicon all along, with some low probability. It

may be recruited into action to parse the newly observed datum The beast fippened all day.
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If the parse using e is much more probable overall than alternative parses, then an EM-

style algorithm will consider it likely that e has now been observed. This new observation

raises the probability of e for future use.

Similarly, Pinker (1989) notes that adults readily interpret novel lexical entries as the

result of applying semi-productive transformations to known entries. Again, our perspec-

tive is that these entries were dormant in the lexicon all along.

1.3 The New Idea

1.3.1 A Transformation Model of the Lexicon

Triangulating from the various motivations in §1.2, the shape of the solution should now

be clear.

If linguistic theory is right, then the distribution of chunks (lexical entries) in a parser’s

training data (§1.2.1) should provide statistical evidence of lexical redundancy transfor-

mations (§1.2.2). These transformations spontaneously select chunks for production and

convert them into one another at various rates. Several can apply in sequence. Of course,

these choices are not “really” spontaneous—they reflect the speaker’s intentions—but they

appear spontaneous to a listener or a model with no prior knowledge of those intentions.9

One can build a transformation model of this process (§1.2.3). The details of the

model—the form of the lexical entries, the set of possible transformations, and the param-

eterization of transformation rates—should be chosen on linguistic grounds. They specify

the substance of universal grammar. From a learning viewpoint (§1.2.4), they describe the

kinds of generalizations that a learner should be sensitive to in training data.

Learning a particular language is then a matter of estimating the parameters of the

model: the language-specific rates of the transformations. Once discovered, these non-

zero rates predict the existence and probability of an unbounded number of new chunks.

They also yield smoothed probability estimates for old chunks. A statistical parser (or

parse reranker) can therefore request a probability estimate for any potential chunk it is

considering.
9It is very common and very useful to account for the effects of unmodeled factors as some kind of

random noise, even in a deterministic physical process (Kalman, 1960).
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1.3.2 Stochastic Rules and Exceptions

We will have to attach probabilities to lexical redundancy rules. A typical low-probability

rule in English is Yiddish-movement: Breakfast, the beast fippened rarely. It is a com-

pletely regular process but simply does not apply very often, so that the entry it produces

for fippened (or any verb) has low probability, is rarely used in generation, and is avoided

in comprehension (when possible) in favor of better entries. A high-probability rule corre-

sponds to an obligatory or nearly-obligatory transformation.

The plan that Sofia will swallow illustrates the use of such probabilities in comprehen-

sion. To disambiguate this NP, the hearer must ask herself, among other things, whether

swallow is more likely to extract its object or drop it.10 Evidence for the extraction reading

is that the extraction rule has higher probability in English—at least in the Penn Treebank,

where more verbs undergo extraction than object drop, both by type and by token.

We treat not only rules but exceptions in a graded fashion. Taken together, the rules

predict probabilities for all lexical entries (from the probabilities of other entries). An entry

is exceptional to the degree that its probability deviates from prediction. Entries that are

“listed” in the lexicon are simply entries that occur much more often than predicted. All

other entries are derived.

We are concerned with the cost of a grammar rather than its size. The lexicon holds

every possible lexical entry,11 in the sense of assigning it a non-zero (but usually negligible!)

probability. This is perfectly fine so long as only a few of these probabilities need to be

strongly listed and the rest are highly predictable.

Our cost model for a grammar follows Occam’s Razor: it penalizes both generalizations

and exceptions. Exceptions are expensive, so the lexicon avoids adding strong exceptions

unless justified by a good deal of evidence. Adding a rule is expensive, for a learner or a

linguist, but worth it if it makes several lexical entries less exceptional. In short, a linguist

or learner will try to account for the data by deriving all lexical entries from a few listed

entries with a few rules. The minimum-cost lexicon is the one that multiplies entities to
10On the object extraction reading, Sofia will swallow the plan; on the object drop reading, the plan’s

content is that Sofia will make a swallowing noise, perhaps to distract the guards.
11“Possible” according to the syntactic theory being used—that is, the Universal Grammar that deter-

mines the allowable form of entries and rules.
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adjoin PP to S following NP adjoin AdvP to S following NP · · ·
adjoin PP to S following S̄ adjoin AdvP to S following S̄ · · ·
adjoin PP to S at left edge adjoin AdvP to S at left edge · · ·

...
...

Figure 1.1: A large set of rules characterized by a smaller set of underlying features (in
this case, what is being adjoined and where).

necessity but not beyond.

1.3.3 Rules and Their Features

A twist is that we do not take the transformational rules to be the deepest elements of the

grammar. Again, let us concern ourselves with the cost of the grammar rather than its

size. The grammar includes every possible rule with some non-zero (but usually negligible!)

probability. Again, this is fine so longer as the rules’ probabilities are predictable from a

small, finite set of rule features.

The motivation for rule features is to allow a more sensitive treatment of rule probabil-

ities. Instead of having one rule each for PP-adjunction and AdvP-adjunction, we can have

many of each kind, roughly as shown in Fig. 1.1. This improves both the descriptive and the

explanatory power of the theory. By splitting PP-adjunction into several context-sensitive

rules, which share only some of their features, we can assign them different probabilities

according to where the PP is adjoined. And since rows as well as columns in Fig. 1.1 share

features, we can also capture generalizations that cut across PP and AdvP: in English the

probabilities decrease downward in the table, just as they decrease rightward. (In practice,

we use tables with many more than two dimensions.)

Now it is not really adding a rule that is expensive; it is adding a feature. A feature

is influential in the grammar to the extent that its weight is far from zero. So a linguist

or learner will prefer to keep the number of influential features small. In other words, a

low-cost grammar is one that is described by a few broad generalizations.

Finally, rule features can unify the treatment of rules and exceptions. We can take

such a fine-grained view that PP-adjunction to two separate entries e and e′ is regarded as
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Figure 1.2: A fragment of a transformation model, showing arc probabilities. (Dashed
arrows stand for other arcs not shown in this figure.)

two separate rules. Even if e and e′ are identical except for their headword, the two rules’

probabilities can differ if we have features that are specific to e and e′. These features

suffice to describe exceptions.

So the grammar of English, say, is simply a collection of feature weights, which together

describe exceptions, rules, and generalizations about the rules. Occam’s Razor reduces to

a simple principle: keep all feature weights close to zero. To learn a language, we try to

find small feature weights that do a good job of modeling the data.

1.4 A Sketch of Transformation Models

We now see by example how the idea of the above section is turned into mathematics. For

example, “low cost” in the above section will be realized as “high prior probability.”

1.4.1 The Transformation Graph

Part of a transformation model for the lexicon is shown in Fig. 1.2. The vertices are lin-

guistically possible lexical entries; the arcs (directed edges) represent linguistically possible

transformations. The set of arcs leaving any given vertex has total probability 1.
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A transformation model gives a language-specific probability distribution over the lex-

ical entries. To sample from this distribution, take a random walk from the special vertex

Start to the special node Halt. The last lexical entry reached before Halt is the sample.

For example, the random walk might reach S→ To fund NP in two steps and sim-

ply halt there. This happens with probability 0.0011 · 0.06 · 0.18. Or, having arrived

at S→ To fund NP, it might transform it into S→ To fund PP NP and then further to

S→ To fund NP PP before halting at the latter.

The probability distribution over lexical entries is entirely determined by the prob-

abilities on the arcs. Crucially, if one increases the probability of an arc that goes

to S→ To fund NP, then the distribution allocates more probability mass not only to

S→ To fund NP but also to its child S→ To fund NP PP (not to mention its children).12

It is in this sense that the graph captures covariance among the entries’ probabilities.

1.4.2 Parameter Tying

The graph in Fig. 1.2 is language-independent, but the arc probabilities are language

specific. In principle the graph is infinite, since it assumes that lexical entries may take

arbitrarily many descendants.

Does this mean that a language learner must estimate infinitely many language-specific

probabilities, one for each arc in the graph? No, because many of the arcs have something

in common. Arcs that represent the same transformation will be constrained to have the

same probability. Arcs that represent similar transformations will be constrained to have

similar probabilities.

To accomplish this, we parameterize the arc probabilities with a small, finite set of

feature weights θ1, θ2, . . . ∈ R. The probabilities are defined in terms of these weights as

shown in Fig. 1.3. Notice that this is a conditional log-linear (maximum-entropy) model

of Pr(arc | vertex), i.e., of Pr(transformation | entry to be transformed).

For example, four transformations shown in Fig. 1.3 have the feature that they insert a

prepositional phrase (PP) somewhere or other. That feature’s weight θ3 is used for all such

transformations’ arcs. The transformations available at each lexical entry compete with
12I.e., raising the probability of the arc to S→ To fund NP increases the chances of sampling that entry

and its descendants. The random walk is more likely to reach them, hence more likely to halt at them.
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Figure 1.3: How the arc probabilities in Fig. 1.2 were determined from feature weights ~θ.
The Z values are chosen so that the arcs leaving each vertex have total probability 1.

one another; and if θ3 is positive, then PP-inserting transformations have an advantage in

this competition.

If PP-insertion is common among the frequent words where we have a chance to observe

it, we will learn that θ3 is large in this language. This generalization also raises the

probabilities of PP-insertion transformations that have never been attested, simply because

these transformations also have θ3. So it affects our estimates of lexical entries even for

poorly-observed words.

As another example, the weight θ9 is known as a “per-event” weight. It appears on

all and only the arcs to S→ To merge NP PP. Large θ9 says that that lexical entry—and

its descendants in the graph (§1.4.1)— have higher probabilities than one would otherwise

expect. Put another way, this single parameter value says that merge is listed as a transitive

verb with a role for a PP, and (other things equal) enjoys all the ordinary privileges of such

verbs.

To flesh out the first paragraph of this section: The vertex labels, graph topology, and

arc parameters of Fig. 1.3 are language-independent. More bluntly, this figure constitutes
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universal grammar. Learning a specific language’s syntax is now just a matter of learning

the weight vector ~θ. In other words, it is matter of learning what features of a linguistically

possible transformation make it likely in the language.

1.4.3 The Prior

“With three parameters I can fit an elephant,” wrote Lord Kelvin. There is always a

danger of having so many parameters that one overfits the training data. On the other

hand, having too few parameters is also dangerous, since elephants are sometimes the rule

rather than the exception. Our approach is to permit very many degrees of freedom, but

to use a prior to discourage their indiscriminate use.

While our use of feature weights (§1.4.2) may reduce the number of parameters, it still

leaves too many parameters to estimate them freely from the available data. Indeed, the

use of per-event weights such as θ9 means that there are usually more parameters than

training data—an underdetermined model.

Simply setting the weights to maximize the likelihood of training data would therefore

lead to serious overfitting. Rather than smooth the data transformationally, it would just

yield the maximum-likelihood multinomial, in which the estimated probability of a lexical

entry is simply proportional to the number of times it was observed (perhaps zero). This

is exactly the situation we were trying to avoid in §1.2.1.2.

The antidote is to assume a prior distribution over the parameters. We can then

learn by maximizing not the likelihood, but the joint probability of the training data and

parameters:

Pr(observed lexical entries | θ)︸ ︷︷ ︸
“likelihood”

= Pr(training data|grammar)

· Pr(θ)︸ ︷︷ ︸
“prior”

= Pr(grammar)

(1.2)

This is simply an instantiation of equation (1.1).

What prior Pr(θ) will we use? If a feature has weight 0, it has no effect on the

probabilities of arcs that bear it. We expect a priori that most features are innocuous in

most languages: θi ∼ N(0, σ2), so crosslinguistically feature weights tend to be close to 0.

It takes a fair amount of evidence to convince us that in the language we are learning, the
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unexpected is true and a particular feature θi has high weight.

If PP-insertion before NP has a specially high or low probability, the parameter θ4 lets

us model that probability accurately. But without such evidence we will try to respect

our prior belief that θ4 ≈ 0, meaning that PP is about as likely to insert before NP as

anywhere else. Similarly, without a lot of evidence that S→ To merge NP PP has a special

probability, we will tend to assume θ9 ≈ 0, meaning that Pr(S→ To merge NP PP) is

predicted by the same transformational processes as Pr(S→ To fund NP PP.

In practice, the evidence about S→ To merge NP PP is rarely either plentiful or ab-

sent. So rather than choose the empirically observed or the transformationally predicted

probability, we must interpolate between them to maximize equation (1.2). This is the

transformational smoothing effect.

It is really the prior that encourages transformational smoothing to find generalizations.

Since the model is underdetermined, there are multiple ways to account for the training

data with parameters. If during learning, S→ To fund NP PP and S→ To merge NP PP

are both observed more often in training data than predicted by the model, then one has

two alternatives:

• Raise their probabilities separately by increasing the per-event weights θ8, θ9. This

makes two stipulations.

• Raise their probabilities together by raising θ4 (or perhaps even θ3). This expresses

a broader generalization about PP insertion.

Both alternatives equally help the likelihood term of equation (1.2). So the latter is

preferred, other things equal, because it hurts the prior term less.

1.5 Results

1.5.1 Algorithmic Results

In Fig. 1.2, the arc probabilities define a recurrence relation in which each lexical entry’s

probability is a linear function of its parents’ probabilities. One can obtain the distribution
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over entries by solving this linear system.13 Using sparse matrix methods, this can be done

in O(n|F |) time and O(n) space,14 where n is the number of vertices and |F | is the total

number of feature weight tokens in Fig. 1.3 (the “size” of the model).

One can improve the objective function equation (1.2) by adjusting θ, using gradient-

based optimization or Expectation-Maximization. One step of either method—computing

the gradient or the expected traversals of each feature—corresponds to solving a linear

system, again in O(n|F |) time and O(n) space.

If n is large or infinite it is necessary to use approximations for all these methods

(solving the model, computing the gradient, and running EM). One can consider only

random walks of some length T or less. Then the runtime and space become O(T |F |T )

and O(nT + k), where |F |T is the size of the part of the model that can be reached from

Start by paths of length ≤ T , and k is the number of feature types. The algorithms are

closely related to propagation and back-propagation through time in “unrolled” recurrent

neural networks (§8.5.4), with some additional optimizations. Improving on this, a more

flexible class of algorithms is derived from relaxation methods.

Because our transformation model of the lexicon has a particular (not uncommon)

form, some additional model-specific optimizations are possible. Most importantly, one can

exploit the fact that the subgraphs corresponding to different headwords have isomorphic

topology and similar probabilities.

1.5.2 Empirical Results on the Test Set

§6.7 compares several modeling techniques, using comparable features, according to how

well they predict S→ · · · lexical entries in the Penn Treebank. A simple transformation

model, estimated without great care in the smoothing parameters, reduces test-set per-

plexity by 20% over the best model from the literature. This reduction is comparable to

doubling the amount of training data.

The reduction is somewhat greater on a smaller training set, highlighting the model’s
13If the transformation graph is acyclic, the solution is considerably faster. However, disallowing cycles

would force the model designer to decide in advance whether it is intransitives that are derived from
transitives, or vice versa, rather than learning this from data.

14Alternatively, O(|F |+ n|P |) time and O(|P |) space, where |P | is the number of arcs in Fig. 1.3.
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ability to generalize from sparse data, and can be increased somewhat by model averaging.

The improvement due to transformation modeling seems to stem from three sources:

fitting the training data more exactly, generalizing better, and weighting the backoff evi-

dence in a Bayesian fashion.

These experiments using comparable features show that transformational smoothing

can beat other methods even without wiring any real linguistics into the transformation

graph. In future work, we hope to increase its advantage—especially by adding “interest-

ing” transformations like extraction, passivization, and tense formation, which the other

methods have little hope of modeling—and translating this advantage into gains in parsing

performance, particularly on limited amounts of data.

1.5.3 Empirical Results on the Example

One can get a qualitative sense of how transformational smoothing performs, relative to

the best model from previous literature, by comparing their assessments of the lexical

entries in Tables 1.3 and 1.4.

• The average entry in the table is 1.44 times as likely as before (geometric mean).

Equivalently, the set of table entries has 31% lower perplexity.15

• The transformation model fits the training data more closely (because it can model

exceptions). It assigns 53% lower perplexity to the training set in Table 1.1. More-

over, on these test data it separates observed and unobserved entries, assigning prob-

abilities > 0.05 to the former and < 0.025 to the latter. Such a separation is not

observed for the competing model.

• The transformation model also assigns higher probabilities to the unobserved entries

in this table, reducing the perplexity of that set by 62%.

• The transformation model wastes considerably less probability on the “other” line—

the multitude of frames that did not appear with any of these words. Indeed, it

allocates more than 50% as much total probability to the entries in the table.
15Of course, this is not a typical test set: common and uncommon entries alike appear exactly once. As

a result it has twice the perplexity of the real test set.
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• One can observe transformational generalizations at work between S→ NP NP .

and S→ NP NP PP . (the frames in rows 5–6 of Table 1.4). These frames receive

probabilities of about 0.0076 and 0.0026 when neither has been observed with a

word (columns 4–6). But columns 1–2 show that observing either one increases the

probability of the other.

To be precise, observing S→ NP encourage NP PP . increases its estimated proba-

bility by quite a lot. Thanks to a Delete-PP transformation, S→ NP encourage NP .

then automatically increases by 18% as much. There is also an Insert-PP transfor-

mation giving the converse effect: twice observing S→ NP question NP . increases

its estimated probability; then thanks to Insert-PP, S→ NP question NP PP . au-

tomatically increases by about 4% as much.16

• Transformational smoothing smooths the probabilities of observed entries, not just

unobserved ones. In rows 3–4, as in rows 5–6, the expected probabilities of en-

tries with and without PP are in about 3:1 ratio. But S→ To AdvP remove NP and

S→ To AdvP remove NP PP have been observed in 1:1 ratio. The estimates in the

table interpolate between these: they have the compromise ratio of 1.6 : 1.

The first few bullet points above highlight the fact that the competing model of lexical

entries, a “bigram model,” is relatively indiscriminate as to where it throws probability.

§6.6.4 remedies this by improving the competing model, instead using maximum likelihood

with backoff from the headword and backoff to the bigram model.
16It is surprising, but consistently the case, that deletions emerge with higher probability than insertions.

There are two possible explanations. One is that this untraditional result should be regarded as correct,
on the grounds that most dependents fill semantic roles and are more like arguments than adjuncts. (Then
most variation among frames could be regarded as arising from deleting subcategorized roles rather than
inserting adjuncts.) The other explanation is that it is harder to learn insertions. For a given lexical entry,
a few deletion transformations are competing with literally hundreds of insertion transformations that want
to insert various nonterminals at various positions in the entry. This necessarily leads to a generic bias
against insertions, which the model must learn to overcome for particular kinds of insertions.

In principle, a transformation model will perform abduction (just like a Bayes net), reasoning back-
wards from effects to their causes. Thus, even if Insert-PP has probability 0, an observation of f2 =
S→ NP question NP . is still weak indirect evidence of f1 = S→ NP question NP PP . since the f1 is a
possible precursor of the observation f2 under Delete-PP. However, the model used in the experiments of
this thesis does not have enough free parameters to effectively abduce lexical entries like f1 that were never
observed. (As §6.4.3 explains, only other observed entries are permitted to have exceptional probabilities
that could be tuned to account for f2.)
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Figure 1.4: All probabilities in Table 1.4, plotted against the corresponding probabilities
from the best competing model (§6.6.4—an improvement on the model discussed in most
of §1.5.3). Lexical entries receiving a higher probability from the transformation model fall
above the middle diagonal. The dashed outer diagonals mark a factor-of-2 difference be-
tween the two models. The plotting symbol indicates the number of training observations:
◦ = 0, • = 1, � ≥ 2.
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In the final results (§6.7.1), that improved model was the best of the transformation-

free models. Fig. 1.4 shows that it allocates slightly more probability to training data,

but that the transformation model quite consistently assigns more probability to the novel

“test” data in our example. The exceptions (slightly below the diagonal) are novel entries

for the three frames that end in periods.17 The biggest winners under the transformation

model are some of the novel entries for fund, which was observed with the fewest and most

similar frames in training data; the transformation model extrapolated more aggressively

from these to the related frames in the table.18

1.6 Structure of the Thesis

To a large extent, the remaining chapters can be read independently, since they lay out

different facets of the work: linguistics, statistics, algorithms, parsing, and experimental

evaluation. However, the chapters are arranged in a natural sequence and sometimes refer

to one another.

This introductory Chapter 1 used an example (Table 1.1) to show how four problems

converge on a single approach: the engineering problem of generalizing better from data

when training a statistical parser (§1.2.1), the linguistic problem of attaching probabili-

ties to lexical redundancy rules and exceptions (§1.2.2), the statistical problem of modeling

positive covariance in the probabilities of mutually exclusive events (§1.2.3), and the learn-

ing problem of stretching a grammar to interpret new utterances (§1.2.4). Taken together,

these problems motivate a new approach to grammar cost (§1.3) that can be formalized

as a new kind of statistical model (§1.4). The approach is algorithmically manageable

(§1.5.1) and yields an empirical improvement over work from the literature (§§1.5.2–1.5.3).

So much for the overview.

Chapter 2 presents the linguistic idea of the thesis. It begins by describing lexicalized

theories of syntax (§2.1) and motivating them (§2.2). Such a theory describes a language
17The transformation model did not learn a high probability for period-insertion. Even in general it is

tricky to learn high rates for insertions (footnote 16), and in this case, the model did not have access to
the “tensed verb” feature on which period-insertion should be conditioned (see footnote 4 on p. 10).

18Part of the reason is that the backoff technique (§6.6.2) in the competing model did not back off very
far from the observed data for fund, taking the lack of 1’s in fund’s column in Table 1.1 as a sign that fund
had been well observed.
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on four levels (§2.1.5): (1) strings, (2) a lexicon of “chunks” of surface structure, (3) a

language-specific deep structure that interrelates the “chunks,” and (4) a Universal Gram-

mar that constrains and influences the form of the deep structure. Statistics is arguably

part of humans’ knowledge of language, and can be used to enrich each level (§2.3).19 In

particular, chunks have probabilities (§2.3.4), and we propose that deep structure concerns

correlated probabilities and can be modeled by stochastic transformations on the lexical

entries (§2.3.5). Since real grammars contain idiosyncrasies, these correlations are often

imperfect; but the imperfections (which are matters of degree) can be modeled as well,

and in such a way that a learning algorithm will attempt to characterize the lexicon in

terms of the strongest correlations and the mildest exceptions possible (§2.3.6).

Chapter 2 continues by outlining the particular lexicalized theory to be used in the

experiments. In this simple theory, lexical entries are “flat” context-free rules (§2.4.1).

Transformations act to insert, delete, replace, or permute the nonterminals in a rule

(§2.4.2). Such transformations serve to modify semantic argument structure, and their

effects are evident in the training data (§2.4.2.1). Other linguistic transformations could

also be useful (§2.4.3). The chapter closes by reviewing related work on lexical organiza-

tion (§2.5.1), lexicon smoothing (§2.5.2), the extraction of subcategorization frames from

text (§2.5.3), the modeling of optionality in subcategorization frames (§2.5.4), translation

and summarization based on local syntactic transformations (§2.5.5), and approaches to

grammar learning based on edit distance (§2.5.6) or priors on grammars (§2.5.7).

Chapter 3 presents the statistical framework (without reference to the linguistic ap-

plication), just as Chapter 2 presented the linguistic framework. It begins with a review of

probability notation and Bayesian smoothing (§3.1). Then it proposes a new class of sta-

tistical models (§3.2). These “transformation models” are related to random walks (§3.3).

The chapter continues with practical advice about how to compute with transformation

models (§3.4), how to design priors for them (§3.5), and how to design models that can

capture exceptions (§3.6).

Transformation models are designed to model probability distributions in which “re-

lated” events have correlated probabilities (§3.7.1). §3.7.2 sketches the application to
19§2.3.7 meditates on the consequences for grammaticality judgments.
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smoothing of a syntactic lexicon. §3.8 analyzes a very simple transformation model in

detail, showing that the prior prefers to capture generalizations (§3.8.4) but that the evi-

dence can motivate exceptions (§3.8.5). Estimating the parameters of the model yields a

smoothed distribution (§3.8.6). Qualitatively, frequent events in the training data influence

the smoothing of infrequent events more than vice-versa, but (fortunately) not in direct

proportion to their frequency; rather, they are influential to the extent that their proba-

bilities are nailed down by the evidence (§3.8.7). Parameter estimation can be difficult,

since while the prior is a unimodal distribution over distributions (§3.8.8), the posterior

unfortunately has local maxima. The chapter closes by proposing a variation, “perturbed”

models (§3.9, which model exceptions in a slightly different way (§3.9.3): such models

introduce extra parameters that correspond to flow multipliers in generalized network flow

problems.

Chapter 4 is the computational heart of the thesis. It presents parameter estimation

methods for arbitrary transformation models. §4.1 defines transformation models again,

this time with a concise matrix notation that is used throughout the chapter. It also

restates the objective function to be maximized during training (§4.1.4) and the evaluation

function for testing (§4.1.5).

It is possible to approximate the objective function by a simple and flexible relaxation

algorithm (§4.2), and to find the gradient of this approximation by “back-relaxation” (§4.3),

for which a correctness proof is given (§4.3.4). The method can be extended without much

difficulty to handle perturbed models as well (§4.4).

Chapter 4 closes with some ways to make relaxation and back-relaxation more efficient.

Many arcs in the transformation graph do not affect the computation much, or at all, and

can be ignored for speed (§4.5.2). Another important optimization applies to a common

class of transformation models that have repetitive topology (§4.5.3). For example, most

headwords agree on the probabilities of most syntactic transformations, so rather than re-

peat all computations for each headword, it is only necessary to propagate a few differences

from a template.

Chapter 5 places the work in the context of statistical natural-language parsing. It

sketches how one might practically use a transformationally smoothed syntactic lexicon
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in a parsing system. While transformational smoothing could be used with any lexical-

ized theory of grammar, the framework assumed here is lexicalized, flattened context-free

grammar (§2.4.1).20 §§5.1–5.3 formally define this framework. In particular, they define

the probabilities of syntax trees in terms of probabilities in the lexicon, using a standard

generative model in which nonterminals are recursively expanded into full lexical entries.

Each expansion can be broken down into two steps (§5.4.1), both of which can exploit

the smoothed lexicon. The first step is a contextually appropriate choice of headword for

the nonterminal; since this choice must be compatible with the nonterminal (representing

the headword’s maximal projection) as well as with the governing lexical item, it is partly

a syntactic choice, and the syntactic lexicon can help determine its probability (§5.4.3).

The second step is to choose a sequence of dependent nonterminals for that headword;

specifying the probability of this choice is the main job of the syntactic lexicon (§5.4.2).

The two steps can be cleanly combined under certain Naive-Bayes assumptions (§5.4.5).

The rest of Chapter 5 is “armchair linguistics,” conducted in the interest of concrete-

ness and with an eye toward future experiments. It argues that with appropriate tricks,

the lexicalized, flattened context-free approach would in principle be good enough to ac-

commodate and exploit a variety of linguistic devices: category-changing transformations

(§5.4.4), morphemes (§5.5.1.1), semantic clusters of words (§5.5.1.2), word senses (§5.5.1.3),

long-distance movement (§5.5.3), syntactic as well as semantic heads (§§5.5.4.1–5.5.4.2),

feature agreement and checking (§5.5.4.3), dependencies on more than one word (§5.5.4.4),

thematic roles (§5.5.4.5), and dependence on greater amounts of context (§5.5.5).

Chapter 6 contains the experimental evaluation. Following the generative model of

syntax trees in the previous chapter, the measure used for comparison is the perplexity of

the right-hand-side of a context free rule (§6.1). The training and test data were lexical

entries extracted from the Penn Treebank (§6.2); there were substantial amounts of novelty

in the test data (§6.3).

The chapter continues by specifying the details of the transformation model (§6.4) and

the methods for estimating its parameters (§6.5) that were used in the experiments. The
20That is, each context-free rule (lexical entry) rewrites a maximal projection in one step as a headword

together with all its dependents. The resulting trees are similar in spirit to dependency trees, except that
the subtrees are labeled with nonterminals rather than semantic roles.
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competing models include a few from the literature (§6.6.1), with appropriate smoothing

(§6.6.2), and tested using both flat and non-flat lexical entries (§6.6.3). Some new hybrid

models are also considered (§6.6.4).

The experimental results examine the competing models and the overall perplexity

reduction (§6.7.1), as well as the consistency (§6.7.2), difficulty (§6.7.3), and training-size

sensitivity (§6.7.4) of this reduction. It used various additional experiments to investigate

the contributions of memorizing the training examples (§6.7.1), using a Bayesian scheme to

weight backoff evidence (§6.7.5), and generalizing better (§6.7.6). Finally, it briefly looks

at the time course of learning and the distribution of learned weights (§6.7.7).

The experiments having been described, Chapter 7 picks up where Chapter 3 left off,

and makes some further remarks on transformational smoothing. It draws connections

from transformation models to Markov processes (§7.1.1), finite-state machines (§7.1.2),

recurrent neural networks (§7.1.3), graphical models (§7.1.4), and Bayesian backoff (§7.1.5).

It also gives some non-linguistic applications of transformation models (§7.2). Finally, it

offers a number of possible variations on the formalism. One can modify the form of the

model (§7.3.1) or the form of the prior (§7.3.2). In fact, a simple modification to the prior

yields Zipfian (power-law) behavior of a sort often observed in languages (§7.3.3). One

can also interpret the model parameters differently so that the transformational process is

blessed with “lookahead” (§7.3.4): there are at least three ways to do this, including global

normalization of path probabilities (§7.3.4.2) and a “transformational circuit” approach

inspired by current flow in electrical networks (§7.3.4.3).

Chapter 8 similarly augments Chapter 4, offering some additional algorithms for es-

timating the parameters of transformation models. §8.1 shows that the objective function

and its gradient can be computed in closed form if desired (as opposed to the converging

relaxation algorithm of Chapter 4). Moreover, the computations can be made to exploit

the sparsity of the transformation graph. An alternative to gradient descent is to use

Expectation-Maximization (§8.2), where the hidden variables are the paths in the trans-

formation graph that generated the observed events. The M step of EM uses these paths

to estimate the parameters of a log-linear distribution (§8.2.1), using a standard method

like Improved Iterative Scaling (§8.2.2). The E step of EM reconstructs the paths for use
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by the M step: it is conceptually related to the forward-backward algorithm, and consists

of solving a single sparse linear system that is defined by the training dataset and current

parameters (§8.2.3). Some variations on EM are discussed in §8.2.4, including an algo-

rithm for the Viterbi approximation and confidence-weighted approaches, and §8.3 shows

that the central computation of EM can be efficiently approximated using the very same

back-relaxation algorithm proposed in Chapter 4.

§8.4 discusses when, why and how one might wish to renormalize the probability dis-

tribution ~p defined by a transformation model. The chapter closes with somewhat tedious

generalizations of two of the ideas from Chapter 4. The (back-)relaxation algorithm can be

replaced with a pedagogically simpler (back-)propagation algorithm (§8.5) that is related

to back-propagation in recurrent neural networks. The “template” approach of §4.5.3 can

also be generalized to a variety of other circumstances (§8.6), for both exact and approxi-

mate algorithms.

Chapter 9 offers some brief conclusions and a discussion of future work.
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Chapter 2

Lexicalized Syntax and

Probabilities

A major goal of this thesis is to recast certain long-standing linguistic intuitions in statis-

tical terms. Statistical models in NLP have gotten increasingly sophisticated over the past

decade. Incorporating linguistic insights is one way to continue improving their accuracy

and the usefulness of their output. Conversely, adding statistics to linguistic models is a

way for linguists to describe competence in a way that supports performance and learning.

This chapter lays out the basic linguistic territory and sketches how statistics will enter

the picture. The statistical approach is developed and tested in later chapters.

2.1 The Shape of the Lexicon

2.1.1 What Goes Into a Linguistic Lexicon?

The Oxford English Dictionary defines lexicon as follows:

2. Linguistics. The complete set of meaningful units in a language; the words,

etc., as in a dictionary, but without the definitions. (Opp. grammar sb.)

However, the modern use of the term is broader. No pure or computational linguist would

exclude definitions or grammar from the (mental) lexicon. Rather, the lexicon is the

repository of all word-specific information.
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This thesis focuses on just the syntactic information associated with words. (More

precisely, with morphemes, though we use the term “word” for convenience.)

2.1.2 Regular vs. Irregular Forms

The original conception of the lexicon was that it should be as small as possible, listing

only unpredictable word-specific information. Bloomfield (1933) wrote: “The lexicon is

really an appendix of the grammar, a list of basic irregularities.” The morphologists

DiSciullo and Williams (1987) famously characterized it as “a prison—it contains only the

lawless, and the only thing that its inmates have in common is lawlessness.”

But a competing view is that the lexicon is a convenient repository for regular as well

as irregular items. Once the prison is built, it makes a serviceable shelter for everyone, so

why bother building houses too? As many syntactic constructions are governed by word-

specific requirements of their headwords—e.g., a verb selects its complements, and whom

requires object extraction from its sentential complement—the lexicon turns out to be a

convenient place to stow information about syntax in general.

2.1.3 Lexicalized Theories of Syntax

Adopting the latter argument, recent “lexicalized” syntactic theories tend to push all

language-specific syntax into the lexicon.1 That is, they regard all language-specific syntax

as resulting from the properties (principally subcategorization) of particular function and

content words.

The lexicon is then a collection of language-specific building blocks. The mechanisms

that combine these building blocks into utterances are simple, language-independent, and

universally specified once and for all by the formalism.

Fig. 2.1 shows sample lexical entries and compositional mechanisms for several lexical-

ized theories.

The simplicity and uniformity of these lexicalized theories is both a virtue and an

apparent vice. On the one hand, they are easy to understand and to compute with.

On the other, there is now a great deal of unexplained redundancy in the lexicon. For
1As well as morphology: see e.g. (Butterworth, 1983).
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theory entry for devour composition
mechanisms

transformation
mechanism

flattened
lexicalized CFG
(as used in this
thesis)

S→ NP NP context-free
rewrites

transformations
on CF rules

LFG (Bresnan
and Kaplan,
1982)

V,
(↑tense) = inf

(↑pred) = ‘devour〈(↑subj)(↑obj)〉’

unification
under
control of
CF rules

lexical rules

CG (e.g.,
(Lambek, 1958;
Steedman,
1990))

(S\NP)/NP
λy.λx.devour(x, y)

application,
composition

lexical rules
(Carpenter,
1992)

LTAG (Joshi
and Schabes,
1991)

S

�
��

H
HH

NP↓ VP
�� HH

devour NP↓

substitution,
adjunction

e.g., lexical
redistribution
rules (Xia et al.,
1999)

link grammar
(Sleator and
Temperley,
1993)

SUBJ
↖
devour

↗
OBJ linking ?

HPSG (Pollard
and Sag, 1994)


Head verb[inf]
Subj 〈 1NP〉
Comps 〈 2NP〉
Arg-S 〈 1 , 2 〉


unification
under
control of
universal
schemata

metarules

minimalism
(Chomsky,
1995)

[+AgrS(1s)][+AgrO][+Acc][+EPP] move, merge ?

Note: Some other lexicalized formalisms resemble the first one in the above table:
notably Dependency Grammar (Tesnière, 1959; Mel’čuk, 1988; Milward, 1994) and
Head Automaton Grammar (Alshawi, 1996; Eisner and Satta, 1999).

Figure 2.1: The lexical entry that licenses the unmarked use of devour (as in Sara devoured
the apple), under each of several popular theories. (In these entries, devour and Arg-S

describe semantics, not syntax.)
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instance, all regular transitive verbs (such as devour) “happen” to list both active and

passive entries. Many also list intransitive variants.

2.1.4 Mechanisms for Lexical Redundancy

Every lexicalized theory solves the redundancy problem by positing additional mechanisms

that operate within the lexicon. Gazdar et al. (1985, p. 65) describe this as “using a

grammar to generate one’s grammar.”2

For example, a lexical-functional grammar (LFG) for English would include Bresnan’s

(1978) rule of Passivization. This generates a lexical entry for passive eaten from the

lexical entry for active eat, roughly by reordering the arguments. (See Fig. 2.6 on p. 65.)

Corresponding mechanisms in some other lexicalized theories are named in Fig. 2.1.

2.1.5 An Explanatory Hierarchy

Thus, a lexicalized theory of syntax describes a language on four levels:

1. At the simplest level, a language is merely a set of strings—an extremely simple and

uniform representation.

2. To explain regularities in the above set, it is taken to be generated (under universal

combination operations) from a more concise and perhaps finite lexicon of language-

specific syntactic substructures.

3. Regularities in the above lexicon are explained, in turn, via language-specific trans-

formations on lexicon entries.

4. Finally, a language’s system of transformations is itself licensed by Universal Gram-

mar. We will use this to explain regularities in the set of transformations.

Let us call this the explanatory hierarchy. Levels 2 and 3 are the lexicalized ver-

sions of Chomsky’s surface and deep structure, respectively, and level 4 corresponds to
2They attribute the idea first to the syntax of ALGOL 68 (van Wijngaarden, 1969). Wilson (in progress)

makes a similar point about Lisp and Scheme, which have an extremely simple context-free surface syntax
plus a deeper “transformational” syntax, in the form of code-manipulating macros, that the compiler must
also know about.
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Chomsky’s Universal Grammar. §2.3.2 will show how to introduce probabilities at all

levels.

Notice that each successive level results in a more detailed analysis of sentences. Level 1

treats sentences as unstructured strings. But level 2 describes each string as the result of at

least one derivation, typically tree-structured, from which it is possible to infer a surface

semantics: e.g., that a particular NP is the subject of taken. Level 3 allows a deeper

semantics by identifying the subject of (passive) taken with the object of (active) take.

Finally, our weak treatment of level 4 will relate the transformations themselves, explaining

PP-adjunction to NP as reflecting more general tendencies toward nominal modification, PP-

adjunction, and right-adjunction in the language. (See §1.3.3. Such “patterns in [the set

of] metarules” were treated non-statistically by Becker (1994; 2000).) This explanation

provides a better analysis of the strings because the semantic or pragmatic effect of a

transformation is often influenced by these more general features that describe it.

2.2 Benefits of a Lexicalized Theory

So lexicalized theories are possible. But what are their benefits other than homogeneity?

That is, is it really best to store regular (derived) syntactic building blocks alongside

irregular ones? And why should these building blocks be lexicalized, i.e., specialized to

particular words? There are several arguments:

statistical While the original role of the lexicon was to list only unpredictable information,

nearly every entry is unpredictable in a probabilistic grammar. Lexical entries that

are regular in form may still be exceptional in their probability. For example, verbs

that passivize or drop their objects tend to do so at different rates. To exploit

this fact, every lexical entry—whether regular (derived) or irregular—should list a

probability that may not be fully predictable.

(The reasons for these exceptional probabilities are genuinely extragrammatical.

Roland et al. (2000) studied the rate of intransitivization for 64 “single-sense” verbs.

Not only did the rate vary from verb to verb, but for 9 of the verbs it varied sig-

nificantly across three corpora because of the topics being discussed. For example,
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in balanced corpora, soften is transitive 70% of the time (soften butter), whereas

in financial news it is only 43% transitive, because when prices soften there is no

obvious agent to mention.)

The use of lexically specific subcategorization probabilities was pioneered in (Schabes,

1992; Jones and Eisner, 1992; Lafferty et al., 1992; Hindle and Rooth, 1993) and

investigated further in (Collins and Brooks, 1995). It is now used in virtually all

statistical parsing work.

semantic Although lexical semantics and pragmatics fall beyond the scope of this work,

they provide an analogous argument. Syntactically regular entries may acquire not

only idiosyncratic probabilities, but also idiosyncratic connotations that need to be

listed in the lexicon.. For example, retarded often has the implicit modifier “men-

tally” and can have perjorative force, which are not properties derived from the verb

retard, but rather have accrued from the word’s usage history.

paradigmatic We saw above that seemingly regular entries may have idiosyncratic statis-

tics or semantics. The converse also holds: seemingly irregular entries may be gov-

erned by subregularities. In DiSciullo and Williams’s metaphor (§2.1.2), it is not

really true that the prisoners have nothing in common but lawlessness: some of them

are doing time for the same crime. One would like to account for both regularities and

subregularities by a single mechanism (here, probabilistic transformations; see also

the neural-network approach first proposed by Rumelhart and McClelland (1986)).

Examples abound in the morphology of Romance languages, which boast multi-

ple conjugations and declensions as well as subfamilies of irregulars (“comprendre:

conjugate like prendre”). Similarly in English: ring/rang/rung, sing/sang/sung,

swim/swam/swum. In the syntactic domain, Levin (1993) lists many subfamilies

of English verbs that share unusual syntactic paradigms, such as certain verbs that

cover a surface with a mass or plural noun: load hay (on the truck) / load the truck

(with hay), spray paint (on the wall) / spray the wall (with paint), similarly lay, wipe,

paint, spread, etc.

The subregularities are themselves subject to exception: bring is not conjugated like
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ring and sing, and that the load/spray class does not include lay out or bedeck or even

cover. Our view of the lexicon is that it is ultimately just a set of entries related by

a number of loose tendencies (§1.3.3), and that learning the tendencies can help us

learn the entries.

computational Simple, efficient, dynamic-programming parsers are possible because the

model of generating sentences is so simple: lexical entries combine only by universal

operations. The parsing algorithms do not need any special handling for language-

specific transformations, in contrast to parsers for transformational grammar or simi-

lar non-lexicalized theories (Zwicky et al., 1965; Hobbs and Grishman, 1976; Wanner

and Maratsos, 1978; Marcus, 1980; Duffy, 1987; Fong, 1991). Recent improved algo-

rithms are available for lexicalized CFG and dependency grammar (Eisner and Satta,

1999), lexicalized TAG (Eisner and Satta, 2000), combinatory categorial grammar

(Vijay-Shanker and Weir, 1990; Eisner, 1996a), . . .

Bangalore and Joshi (1999) show that lexicalized grammars also allow efficient pars-

ing heuristics. Given an input sentence s, one can narrow down the grammar to just

those lexical entries most likely to be used in the correct parse of s—as predicted

from the words in s using a cheaper n-gram or dependency model. More generally,

one could use these cheap local predictions to help guide best-first or agenda-based

parsing (Caraballo and Charniak, 1998).

Of course, any lexicalized parser needs access to the lexical entries, and it may be

costly to use transformations to generate these on the fly as needed. However, they

may be cached once generated (Bresnan, 1978)—a lazy version of Aronoff’s (1976)

“full-entry” theory of the lexicon.

syntactic A lexicalized theory makes an empirical claim about natural-language syntax.

It regards a syntax tree as carved up into local domains, each of which is the size of a

word (or idiom chunk) and its modifier slots. It limits both regular transformational

processes and listed exceptions to a domain of this size.
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Thus, lexicalized theories are more constrained than early transformational approach-

es (Chomsky, 1965) or the generic Move-α (“move anything anywhere”) transforma-

tion of Chomsky (1981). The syntactic effect of a lexical entry tranformation is

limited to changing or rearranging the complement and modifier (argument and ad-

junct) positions that the entry permits for a given headword, and perhaps changing

the syntactic type of the resulting phrase or the morphological markings on the head-

word. This restriction captures the intuition that language-specific transformations

operate over the domain local to a single word: each transformation is licensed by

some word and can only affect the phrases governed by that word.

Note that this locality restriction does not preclude long-distance effects. A local

transformation on a lexical entry may turn out to have non-local effects on the

surface tree. For example, a transformation may introduce gaps that affect the way

the entry can combine with other entries (Fig. 2.5 on p. 64). In general, the theory’s

universal mechanisms for combining lexical entries may include mechanisms such as

adjunction (Joshi et al., 1975) or categorial gap-passing (Bresnan and Kaplan, 1982;

Gazdar et al., 1985). So long-distance effects such as extraction or question formation

arise from the interaction between (1) language-specific, local transformations within

lexical entries and (2) language-independent, non-local composition among lexical

entries.

Separately, Bresnan (1982a, p. 21) makes a rule-ordering argument for lexicalized

syntax. She observes that unsold is not the past participle of *unsell. Rather,

syntax precedes morphology here: sellV
syntax
=⇒ soldVpastpart

morph.
=⇒ soldAdj

morph.
=⇒

unsoldAdj. Assuming that the morphology acts on lexical entries before they are

assembled into sentences, so must a syntactic operation that precedes morphology.3

3Alternatives to this assumption are conceivable but may require more powerful mechanisms. One
possibility is to treat both morphology and syntax with sentential rather than lexical transformations:
· · · ⇒ goods that are not sold ⇒ · · · ⇒ unsold goods. A more recent alternative would be to interleave the
operations of transforming and assembling phrases, as in the Minimalist Program (Chomsky, 1995); sold
could be produced by tranformation before it is inserted as a complement of un-. In general, minimalism’s
(overly?) powerful ability to transform arbitrary subtrees before inserting them allows (among other things)
something quite like transformations of lexical entries, only with the arguments already instantiated.
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2.3 A Statistical Approach to Lexical Redundancy

2.3.1 The New Idea

Recall the explanatory hierarchy of §2.1.5. The contribution of this thesis is a statistical

treatment of levels 3–4. Previous statistical lexicalized theories have considered only levels

1–2. The thesis shows how to enrich such theories with lexicon-internal regularities, by

allowing them for the first time to capture the lexical transformations or redundancy rules

at level 3. The transformations are induced automatically from a sample of (known or

hypothesized) lexical entries at level 2, under the guidance of weak universal-grammar

preferences at level 4.

Knowing the transformations is important for learning a large lexicon from a sparse

sample. If a lexical entry is predictable by transformation, it need not be observed directly

in order to learn it.

The following sections sketch the solution, explaining how the statistical approach

works out at each level of explanation.

2.3.2 The Probabilistic Framework

While one could attempt purely symbolic learning and application of lexical transforma-

tions, it is preferable to use a probabilistic framework. Language learning, like parsing,

leaves us flailing in a sea of uncertainty. Probabilities have a role as beacons to guide us

to a probably correct shore.

In a probabilistic framework, our linguistic knowledge at every level of the explanatory

hierarchy (§2.1.5) must become gradient:

• At level 1, instead of describing strings as in or out of the language, we describe

them as more or less probable. (This is not the same as more or less grammatical:

see §2.3.7.)

• At level 2, instead of learning that entries are in or out of the lexicon, we learn that

they are common, not-so-common, or extremely rare.
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• At level 3, the transformations or lexical redundancy rules predict unobserved lex-

ical entries and their probabilities. Since the lexicon is specified by a collection of

probabilities. the redundancy rules must capture redundancies among probabilities:

for example, the fact that a typical English transitive verb’s passive entry is about
1
20 as likely as its active entry.4

Hence our transformations at level 3 must themselves be probabilistic. They must

derive new entries from old at particular rates. To explain the pattern above, one

could say that passivization has a rate of 1
21 ; then about 1 in every 21 tokens of a

typical transitive verb passivizes, and the other 20 remain active.

• Finally, at level 4, by turning Universal Grammar into a probabilistic prior that

prefers certain systems of transformations, we can learn the transformations within

a statistical framework. In other words, Universal Grammar includes soft preferences

(notably preferences for consistency) as well as hard constraints.

To expand on the last point, it may help to point out a strict analogy between statistical

grammar learning and statistical parsing. If we let “level 11
2” denote the set of trees of the

language, then levels 1, 11
2 , and 2 in parsing correspond to levels 2, 3, and 4 in learning:

• Probabilistic parsing lets us distinguish good parses from bad, by recovering likely

level-11
2 derivations of the level-1 strings under the probabilistic grammatical expec-

tations imposed by level 2. This procedure can simultaneously recover likely recon-

structions of any uncertain parts of the level-1 string (uncertain owing to speech

recognition, say).

• Similarly, probabilistic grammar learning should let us distinguish good generaliza-

tions from bad, by recovering likely level-3 derivations of the set of level-2 lexical

entries under the probabilistic universal-grammar expectations imposed by level 4.

This procedure can simultaneously recover likely reconstructions of any uncertain

parts of the level-2 lexicon (uncertain owing to sparse, noisy, or indirect data). In-

deed, fleshing out or smoothing the lexicon in this way is a primary goal.
4Capturing this generalization helps us estimate the probabilities of any particular verb’s passive entry,

taking into account both the typical 1
20

pattern and any evidence we have for the particular verb.
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We now consider in more detail how statistics benefit levels 1, 2, 3, and 4 of the

explanatory hierarchy.

2.3.3 Level 1: Strings

In formal language theory, a language is a set of strings. In the probabilistic approach, it

is a probability distribution over strings.

Most strings have very low probability, since a human language has very few fixed

utterances. Still, even among strings that have not yet been uttered in human history,

some have lower probability than others, in that they contain many unlikely words or

constructions. An extreme example (now rendered obsolete by frequent quotation) is

Chomsky’s contrast between Colorless green ideas sleep furiously and Furiously sleep ideas

green colorless. Abney (1996) shows that many apparent “word salad” examples like the

latter are actually grammatical—just very, very improbable, in a way that apparently

interferes with human language comprehension. (See §2.3.7 for more on ungrammaticality.)

Relative string probabilities are useful for applications where it is necessary to choose

one string over another, such as speech recognition or machine translation.

But level 1 has little practical use in applications such as parsing, where the string is

a fixed input, and one cares only about the relative probabilities of different derivations of

it. This takes us to the next level of the explanatory hierarchy. We will model the level-1

string probabilities by saying that the strings arise through a derivational process, such

as the composition of randomly chosen lexical entries. Some strings are more likely than

others to arise through this process.5

2.3.4 Level 2: The Stochastic Lexicon

The practical benefit of probabilities at level 2—a stochastic lexicon—has been well estab-

lished over the past several years (see §1.2.1.1). In parsing, a parse can be deemed likely to

the extent that it is composed of likely lexical entries. A probabilistic parser then returns

the most likely parse whose yield (i.e., fringe) matches the input sentence.
5There may be multiple derivations that yield the same string α, in which case the probability of α is

the total probability of all these derivations.
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Formally the parse’s probability is defined as some kind of product of the probabilities

of its component lexical entries. This ensures, for example, that the parse will have zero

probability if any of its components does.

The exact form of the product depends on the lexicalized theory of grammar we are

using. It is often motivated by a generative model of parse structures. For example,

in a lexicalized context-free approach, it is straightforward to use a stochastic lexicon to

generate random parse trees from the top down. One randomly chooses a lexical entry

(i.e., a lexicalized context-free rule) that specifies the head of the sentence and its argu-

ment/adjunct slots, and then chooses entries to fill those slots, continuing recursively until

no empty slots are left. The probability of having chosen the resulting tree is the product

of the (conditional) probabilities of all the choices of lexical entries made along the way.

This probabilistic context-free (PCFG) model of tree probabilities is detailed in §5.3.3.

It is used in the experiments of this thesis and in much other work that also uses the Penn

Treebank as data. But the same approach applies directly to any grammar formalism in

Fig. 2.1 that has tree-structured derivations, including non-context-free formalisms such

as CCG and TAG.

Some grammatical formalisms such as LFG, HPSG, and link grammar have more com-

plicated derivations that are not tree-structured, because mechanisms such as unification

allow for cyclic dependencies. However, they can still be accomodated within the general

approach of this thesis:

• One option is to use a more complicated but still sequential model of generation. For

example, each entry is chosen conditionally to fit the requirements of two previous

entries rather than one (Lafferty et al., 1992).

• A more general solution (Riezler et al., 2000) is to assign non-negative “weights” to

the entries in the lexicon. One can then directly define the probability of a parse as

proportional to the product of the weights of its component lexical entries.6

This is known as a log-linear model, since the log-probability of a parse is a linear

function of the log-weights of various local features. Scoring parses in this simple
6And perhaps also the weights of other features of the parse that cross lexical entries, as

Johnson et al. (1999) propose.
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way is an old idea. However, the feature weights were once typically chosen by

hand or by some unspecified psychological procedure (Schubert, 1984). Interpreting

linear “scores” of parses as log-probabilities makes it possible to estimate appropriate

weights automatically from a random sample of parses.

The weights may not have an interpretation as probabilities, and are harder to esti-

mate from parses. But the transformational approach of Chapter 3 could still be used

to smooth them, by redistributing weight rather than probability from one lexical

entry to another.

2.3.5 Level 3: Stochastic Transformations

Now for a brief sketch of how transformations apply to entries in the stochastic lexicon.

Full details are given in Chapter 3 (which uses a different notation).

A transformation is a partial function t : E → E for some set of objects E.7 Thus, it

can apply to certain objects and turn them into other objects.

For our purposes, E is a set of lexical entries allowed by some universal syntactic theory,

and transformations are rules that can derive new lexical entries from old ones. (Examples

are given in §2.4.2.) Transformations in other domains include general rewrite rules on

strings (Chomsky, 1959), production rules on declarative memories in ACT-R (Anderson,

1993), operators on states in SOAR (Newell, 1990),8 and the action of an input symbol on

the state of a deterministic finite-state automaton.

The transformation system specifies a set of allowable transformations ti, including

a special transformation tHalt. A given object e ∈ E may be in the domain of several

transformations.

Imagine a process that begins with the special object Start ∈ E, and passes it through

an arbitrary series of transformations ending with tHalt. The object to which tHalt was ap-

plied is considered to be derivable. Formally, an object e is derivable under the grammar,

with derivation 〈t1, . . . tn, tHalt〉, if it can be expressed as e = tn ◦ tn−1 ◦ · · · ◦ t1(Start) and
7Called Events in Chapter 3.
8In addition to operators, SOAR also has productions, which fire to indicate that the state is more

or less amenable to the application of this or that operator. While SOAR’s operators correspond to our
transformations, its productions correspond to the features we assign to a transformation, which determine
its probability (§3.2). (The assignment of features to transformations is the level-4 structure of §2.1.5.)
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also tHalt(e) is defined. (Usually Start itself will not be in the domain of tHalt, so will not

be derivable.)

Now let us make this a stochastic process—one that randomly chooses the transforma-

tion to apply at each step. This will tell us not only which objects in E (e.g., lexical entries)

are derivable, but the probabilities of deriving them. The probability of transforming e by

t depends only on e itself, not on e’s derivational history.

For each transformation t and object e, the transformation system must specify the

probability Pr(t | e) that t will be the transformation chosen apply to e. This must be a

true probability distribution:
∑

t Pr(t | e) = 1. Of course Pr(t | e) should be 0 if e is not

in the domain of t. The classical notions of optional transformation and obligatory

transformation correspond to the cases 0 < Pr(t | e) < 1 and Pr(t | e) = 1, respectively.

Now the probability of deriving e with derivation 〈t1, . . . tn, tHalt〉 may be written as

Pr(t1|Start) · Pr(t2 | t1(Start)) · Pr(t3 | t2(t1(Start))) · · · ·Pr(tHalt | e) (2.1)

Pr(e) denotes the total probability of all such derivations of e. This is the level-2 probability

of the lexical entry e.

The idea is that for any word w of the language, its lexical entries are derived from

Start (and hence at intermediate steps from one another) by such a transformation sys-

tem. Another word w′ will use another transformation system—identical to the first except

for a small number of stipulated changes to the probabilities, as described in the next sec-

tion.

A “shallow” learner would learn only the probabilities Pr(e) of the lexical entries. In

the terminology of §2.1.5, this is level-2 structure. However, shallow learning is hard in

the presence of sparse data. It is hard to determine Pr(e) if e is too rare to have been

observed. The system described here is therefore a “deep” learner. It tries to infer the

transformation probabilities Pr(t | e), in an effort to get better estimates of Pr(e). This is

level-3 structure: not just “what” is in the lexicon but “why.”

2.3.6 Level 4: Suffering Lexical Idiosyncrasy

In transformational accounts of grammar, there is a tension between regularity and id-

iosyncrasy. Generic transformations cannot perfectly predict every entry in the lexicon.
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They do not eliminate the need for lexically specific information. Words differ:

• A verb will tend to start the transformational process with different entries than a

noun (or a different verb). These entries are “listed” for the verb. Some of them

have higher probability than others and so are “listed more strongly.”

• Other entries must be “delisted” since derivations can be idiosyncratically blocked:

let in the sense of “allow” does not have a passive form (We let her play 6⇒ *She

was let (to) play).

• Some transformations such as Object Drop apply sporadically to some lexical items

but not others (see footnote 2 on p. 8). As noted in §2.2, they are the syntactic

analogue to morphological subregularities.

• Finally, even a transformation that applies regularly may apply at different rates to

different words (e.g., see footnote 2 on p. 8). So even derived lexical entries must be

weakly “listed” or “delisted” as occurring more or less frequently than the norm.

We will therefore store a positive or negative amount of “listedness” with every lexical

entry. Positive listedness inflates an entry’s probability over what would be predicted by

transformation; negative listedness deflates it.9 Transformations apply at the usual rate

to a (de)listed entry, so transformed versions of it also gain or lose probability.

Listedness comes at a cost, however. §3.7.2 will use a simple notion of universal gram-

mar (i.e., level 4) that acts much like a human linguist. It has a preference for general

principles over narrowly tailored exceptions. It consists in a prior probability distribution—

a universal belief that the lexicon being learned is a priori more likely to be simple and

regular. The more listedness in a hypothesized lexicon, the lower the lexicon’s prior prob-

ability, and the harder the grammar learning algorithm will try to avoid it. Just like a

linguist, the learner tries to explain the data with as little stipulation as possible.

While this section focuses on lexically specific exceptions, the prior of §3.5 actually acts

to discourage any narrow stipulation that disrupts a natural class of transformations. The

approach was laid out in §1.3.3.
9Two different formalizations will be offered in §3.6.1 and §3.9. The options are to adjust the entry’s

probability by adjusting the transformations or through a separate mechanism.
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It is of course an old notion that complicated grammars or lexicons with many listed

exceptions have high cost and should be avoided by a learning algorithm (McNeill, 1970).

But it is worth emphasizing that in probabilistic lexicons, listedness is a matter of degree.

Following the usual dictum that a lexicon need not list what it can derive, we need to list

only the discrepancy between the observed and predicted probabilities. To gradually reduce

the amount of listedness for a lexical entry, we can increase the probability of deriving it.

In the specific model to be presented in §3.6.1 (or the alternative in §3.9), the effect of a

given “amount” of listedness is multiplicative. This is a deliberate design decision: the prior

assigns cost to the ratio between observed and predicted probabilities.10 The consequence

is that it is not arbitrary which entries tend to be listed. The learning algorithm finds it

a priori more plausible to list high probabilities for lexical entries that are comparatively

easy to derive by transformation.

For example, it costs the lexicon much less in prior probability to inflate an entry’s

probability from predicted 0.31 to observed 0.51 (a ratio of < 2) than to inflate it from

0.01 or 0.0001 to 0.21 (a ratio of 21 or 2100). This makes it relatively inexpensive to add

0.2 probability mass to a lexical entry that is already predicted to be common. It also

means that among entries that are not predicted to be common, the ones that are at least

transformationally plausible (predicted probability 0.01) are much cheaper to list as prob-

able than those that can be derived from Start only by long or dubious transformational

sequences (predicted probability 0.0001). As an extreme case, it is impossible to list a high

probability for an underivable, 0-probability entry: no amount of listedness can rescue it.

The multiplicative cost model has several positive consequences:

• Lexicons that seem intuitively similar are close in parameter space and close in cost.

The intuition is that 0.31 and 0.51 are indeed more similar than 0.01 and 0.21. In

absolute terms, common frames vary more in probability from word to word than

uncommon frames do.

• When a lexical entry is transformationally plausible, then we are willing to list it
10The cost is assigned roughly as follows: a ratio of r will decrease the log of the prior probability by a

constant times (ln r)2. For example, (ln 2)2 to double the predicted probability, (− ln 2)2 to halve it, and
(ln 1)2 = 0 to leave it alone.
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further on the strength of not much additional evidence, since the cost is low for

increasing its probability to a given level. (See §3.1.3 for a Bayesian formulation.)

Consider especially the case of a learner parsing a difficult sentence (§1.2.4), who is

forced to posit entry e1 or entry e2, neither of which has ever been observed before.

Suppose the two parses containing these entries are equally likely overall. Then an

EM learner will consider the sentence to have provided half an observation of each

entry. But these equally weighted observations will increase Pr(e1) by more than

Pr(e2), if e1 originally had higher probability in isolation—i.e., if e1 is easy to derive

transformationally. This reflects the learner’s prior bias toward a transformationally

regular lexicon.11

• An old linguistic principle of Structure Preservation (Emonds, 1976) says that trans-

formations tend to output structures that are already common in the language. One

manifestation is that listed entries tend to be the same as transformational outputs.

The multiplicative cost model makes it cheap to list just those entries.12

• Transformational explanations are favored. The reason (explained more carefully in

§3.7.2.3) is that the multiplicative cost model—unlike an additive one—results in

an economy of scale for listedness. Suppose several correlated entries all need to

be inflated (listed). It is costly to inflate all their probabilities by 50% separately.

But inflating an entry’s probability by 50% has the same cost regardless of whether

that probability is large or small. So it is most economical to suppose that all the

probability for these entries starts out pooled at one of them—where it can be inflated

“in a batch” by 50%—and is then redistributed to the others by transformation. This

savings motivates the learner to find transformations that connect these corelated

entries.
11In other words, the greater transformational plausibility of e1 increases not just the probability of the

parse containing e1, so that it ties with the otherwise superior competing parse, but also the listability of
e1 in response to such parses. It is only the second effect that arises from the multiplicative cost model.

12The full effects of Structure Preservation can be captured more completely and directly by other means
(§3.7.2.5).
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2.3.7 Ungrammaticality and the Explanatory Hierarchy

To close this section on adding probabilities to linguistics, a remark on ungrammaticality

is in order. Although §2.3.2 substituted string probability for string grammaticality, the

former—however deeply it is modeled—is not really a replacement for the latter. It is true

that people’s grammaticality judgments are often gradient, but they do not seem to be

judgments of overall probability. It is an old observation that a long sentence with many

rare or nonsense words, or many rare constructions, may be judged grammatical although

it is extremely improbable. Conversely, a short sentence may be done in by a single bad

construction.

Modeling grammaticality judgments accurately would probably require a theory of

human sentence processing. But I suspect that such judgments depend more on the local

grammaticality of the level-2 structure that we recover for a string. If the best parse we

can manage to humanly recover has any “bad” lexical entries, then our judgment of the

sentence stems from our judgment of the worst of these entries.

Even our judgment of a single lexical entry is not a simple matter of its probability,

since the grammatical sentence Jack and Jill sprossified the cat contains at least one very

low-probability lexical entry. The judgment might however depend on the (estimated)

conditional probability of the entry given its headword. This should be fairly high for

sprossified—above the “grammaticality threshold”—since new words are quite often

transitive verbs.

With the statistical treatment in this thesis of levels 3–4, one could even go one step

further toward the standard linguistic notion of a legal grammatical derivation: namely, one

in which all moves are licensed. Suppose that we humans do not merely use a precompiled

lexicon, but have real-time access to our level-3 derivations of the lexical entries. (For

example, when parsing a difficult sentence, we try to derive new entries on the fly as

necessary.) In particular, suppose we can reconstruct the best way D to obtain a given

entry by derivation from an entry that is listed (or at least moderately likely given its

headword). Perhaps our judgment of the derived entry stems from the probability of

derivation D, or of the lowest-probability transformation in derivation D. Then one poor

transformation is enough to torpedo a lexical entry, and hence the whole parse in which it
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appears.

This is a very traditional approach: all moves in a derivation must be independently

acceptable. What probabilities contribute is a gradient notion of grammaticality. The

prediction is that a derivation is unacceptable if its worst transformation is unacceptable—

but marginally acceptable if its worst transformation has just enough probability to be

“vaguely plausible.”

An example of a “vaguely plausible” transformation is one that is being applied in

unusual circumstances:

• It is being applied to the wrong kind of lexical entry. In this case it is really a

new transformation that resembles an existing one: they select for slightly different

properties. But even if the new transformation is unattested, it will derive some

plausibility by having features in common with the existing one. (See §3.2 and §3.5

for how this is arranged.)

• It is being applied to the wrong lexical entry. Some transformations (e.g., dropping

a noun’s determiner, or changing its gender feature) are lexically selective: they are

observed to apply only to some arbitrary selection of lexical entries (e.g., the nouns

that can be used as mass nouns).

The entries that result from appropriate applications of a lexically selective trans-

formation have to be explicitly listed. A conventional grammar would therefore not

include the transformation at all. But in the statistical framework of §2.3.6, the

learner will prefer to assign the transformation some non-negligible probability, since

we have seen that this reduces the cost of listing its results (see §2.3.6). So the

transformation is to some small degree part of the grammar, and it is bad but not

crashingly bad to apply it to other lexical entries. Indeed, the probability assigned

to it increases with the evidence for it: so if many nouns are observed to also allow

mass-noun uses, then mass is not a particularly distinctive feature in the language,

and coercing other count nouns to mass nouns is marginally acceptable: ?Less desk

means less computer.

To move beyond armchair linguistics on this question, it would be interesting to fit
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a transformation model to data, as in Chapter 6 then try to use the above approach to

predict human grammaticality judgments.

2.4 A Flattened Lexicalized Context-Free Approach

The reader may find it useful to have a specific grammatical theory in mind when reading

the next chapters. Let us now, therefore, describe the choices that will be used in the

statistical model sketched in §3.7.2, the syntactic framework of Chapter 5, and the experi-

ments of Chapter 6—as well as their linguistic shortcomings (and how those shortcomings

might be remedied).

What do the lexical entries look like? Transformational smoothing does not much care.

The stochastic lexicon that it estimates is just a probability distribution Pr(·) over all pos-

sible lexical entries. These could really be any objects—a fact exploited by §7.2, which

suggests other useful probability distributions that could be transformationally smoothed.

Our approach applies so long as we start with a set of possible entries and possible trans-

formations on them, plus some observations of actual entries.

To put the approach into practice, however, we need to take the entries and transfor-

mations from some specific theory of grammar. For purposes of the experiments, we will

make simple choices.

2.4.1 Defining Lexical Entries as “Flat” Rules

The experiments in this thesis derive their data from the Penn Treebank (Marcus et al.,

1993), a collection of parses in a context-free style. So following much previous work

(§2.5), the experiments take lexical entries to be lexicalized context-free rules as shown in

Fig. 2.2a.13

But a choice that was not forced by the Treebank was to make the rules “flat.” For

example, a lexical entry for a verb describes how to construct a maximal projection of a

verb—usually a sentence—from the verb together with all its arguments and adjuncts.
13To extract lexicalized rules from the Treebank, it is necessary to identify constituent heads. See §6.2

for the method used.
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Figure 2.2: (a) Flat and (b) non-flat lexical entries for generating SVOX, and (c) a flat entry
that generates a non-flat structure (as in LFG, TAG, and other lexicalized theories). In all
cases, the probability of a rewrite rule is conditioned on the knowledge that the headword
of the phrase will be fills. The resulting tree structures are shown as (a’),(b’),(c’).
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There are several reasons behind the decision to use flat rules. Most crucially, a flat

lexical entry corresponds to the local domain of a headword—the word together with all its

semantic arguments and modifiers. As discussed in §2.2, this is the smallest appropriate

domain over which to define transformations and also to list exceptions.

One could also allow larger lexical entries, as in the treatment of idiom chunks in LTAG

(Abeillé, 1988) or TSG (Bod and Scha, 1996). The arguments below are only against using

smaller entries for purposes of transformational smoothing. Thus, the kind of straw man

being rejected (Fig. 2.2b) is that the grammar builds an SVO structure from at least two

separate entries or rules—one for the VP, one for the full sentence—and that these entries

have independent probabilities given their common head.

locus of transformations If instead we were to adopt the traditional phrase-structure

approach of Fig. 2.2b, in which fills has a separate lexical entry for VP, then many

natural transformations could not be defined over single lexical entries. Passivization,

unaccusative movement, and heavy-shift (past the PP) all move the NP object out of its

VP. Handling this in the statistical framework would require the use of long-distance-

movement mechanisms (§2.4.3). To make long-distance movement preserve bilexical

dependencies (see §5.3.3.2) has extra computational cost. With flat entries, however,

these local transformations only move the object within the subcategorization frame.

locus of exceptions Since lexical entries in the same parse are assumed to be statisti-

cally independent of one another (§5.3.3), capturing dependencies among argument

positions requires putting them in the same entry. Johnson (1999) shows that flat-

tening trees aids PCFG parsing for exactly this reason, and §6.7.1 will obtain another

such empirical result.

The canonical example is PP-adjunction. In the traditional structure of Fig. 2.2b,

each PP adjoins to the VP at a new level. Hence in the parsers of Collins and Charniak,

each instance of the context-free rule VP→ VP PP is independent of the others and

equally likely. In particular, adjoining a second PP to a given verb has the same

probability as adjoining the first PP. This is empirically false: the number of PPs

attached to a verb is not exponentially distributed.
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By contrast, our use of flat rules (lexical entries) allows separate 2-PP, 1-PP, and

0-PP rules for each word. Their probabilities need not be related, and can be learned

separately given enough evidence. (For example, the 2-PP rule is quite likely for verbs

of motion, which often specify both a “from” and a “to.”) But they need not be

learned separately. If there is not enough evidence, then transformational smoothing

assumes each is derived from the next by a PP-adjunction transformation. The model

can even learn that the transformation’s rate varies according to the number of PPs

already in the sentence. The rate of a PCFG adjunction rule VP→ VP PP is not

allowed to vary in this way.

other linguistic arguments Recent work in linguistics (especially HPSG) has argued for

a uniform treatment of complements and adjuncts, including lexical rules to insert

optional adjuncts. (These rules are analogous to our Insert transformation in §2.4.2

below.)

The grounds—cogently reviewed by Przepiórkowski (1999, chapter 9)—include facts

about obliqueness and agreement (Miller, 1992), approaches that flatten verb clus-

ters (van Noord and Bouma, 1994), the fact that complements and adjuncts (and

subjects) pattern together with respect to selection and extraction (Bouma et al.,

2001), an ordering effect (shown by semantics) that adjunction can optionally precede

passivization or causativization (McConnell-Ginet, 1982; Iida et al., 1994), and fi-

nally, theoretical parsimony given the weakness of evidence for a syntactic distinction

(Przepiórkowski, 1999).

availability of data Flat structures are easier for human annotators to produce, and easy

to recover from almost any syntactic annotation. In particular, they do not have to

make the traditional argument-adjunct distinction, which has many borderline cases.

All dependents attach at the same level. This is why the Penn Treebank uses some

flat structures (Marcus et al., 1993, p. 323), and part of the reason that several recent

European annotation projects have used dependency grammars. The experiments in

Chapter 6 take their data from the Penn Treebank.

Several other attempts to learn subcategorization frames, such as (Li and Abe, 1996;
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Carroll and Rooth, 1998), have also included both adjuncts and arguments on an

equal footing.

lexicalization One may prefer lexicalized theories of syntax on principle (see §2.2 and

Fig. 2.1). In such theories, a single word token projects a single lexical entry and so

has only one place to specify all its syntactic requirements, such as argument slots.

This rules out the articulated derivational structure in Fig. 2.2b, where fills heads

separate V, VP, VP, and S entries, in favor of a flat one.

A lexicalized theory need not be quite as flat as Fig. 2.2a. Lexicalized tree-adjoining

grammar (LTAG) (Joshi and Schabes, 1991) and combinatory categorial grammar

(CCG) (Steedman, 1990) adopt a convention whereby optional modifiers such as ad-

juncts select for the phrases that they adjoin to, rather than other way around.14

Then the PP with glee would not be part of the entry for fills. Rather, the preposi-

tion with would have its own entry (roughly, VP→ VP NP) that combined with

fills’s entry S→ NP NP15 by a special “adjunction” operation not available in

context-free grammar. It is possible to attach sensible statistics to this operation

(Schabes, 1992).

The lexical entries of LTAG or CCG still require lexical redundancy rules, which

could be treated by statistical transformations as in this thesis. But for statisti-

cal reasons, we prefer not to treat adjuncts as heads as they do, preferring instead

to insert optional modifiers into an entry by transformation (as first proposed by

Miller (1992)).16 As discussed earlier in this section, it is too strong an indepen-

dence assumption to assume that adjuncts attach to a phrase independently of one
14An advantage of this convention is that the entry for a given Romance adjective can directly specify

whether that adjective selects for a noun on its right or its left.
15Or actually S→ NP [VP [V ] NP ]: it must mark an internal VP node so that with’s VP entry

knows where it can adjoin. See below.
16The same proposal was made by Bouma and van Noord (1994) on empirical grounds. In Dutch, an SOV

language, any adverb can left-adjoin to any verb, regardless of the verb’s nonterminal category (transitive,
intransitive, S-complement, etc.). This particular kind of polymorphism in the adverb is easy to describe
with mechanisms in CCG and TAG. But in plain categorial grammar (CG) it is problematic, leading Bouma
and van Noord, who were working in CG, to reject the idea that adjuncts select for their targets. Instead
they adopted an “adjuncts as arguments” approach, positing a transformation that essentially inserts an
adverb anywhere into a flat verbal frame, just like our Insert transformation in §2.4.2.
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another. In any case, the LTAG/CCG approach could not have completely unflat-

tened our structures anyway: the category of a transitive verb must still specify both

its arguments, subject and object.17

generality Finally, nothing appears to be sacrificed by the use of flat entries. This remark

requires some explanation.

There is of course much linguistic evidence that a maximal projection can have

internal structure. Internal units such as VP and N̄ may be targeted by transforma-

tions, semantically modified by other internal units such as adverbs, and indexed for

anaphoric reference. In fact, the internal structure may be recursive18 (Hornstein

and Lightfoot, 1981).

Fortunately, this internal structure can be marked in the entry itself, as in Fig. 2.2c.

(See also Fig. 6.7 on p. 201.) It is even possible to build up such a structured entry

by a series of (perhaps obligatory) transformational steps that correspond to the

rewrites of Fig. 2.2b. The traditional unflattened tree can be fully recovered from

the complete entry. So on this interpretation, a lexical entry is a tree fragment

that represents the high-level structure of a maximal phrase (cf. Tree Substitution

Grammar (Bod and Scha, 1996)).

The advantage of marking internal structure is that transformations might be sensi-

tive to it in some way. This is a subject for future experiments; the transformation

model evaluated in Chapter 6 just takes lexical entries to follow the simple structure

Fig. 2.2a.19

One particularly interesting and useful kind of transformation on Fig. 2.2c is the

adjunction of other (non-lexicalized) subtrees into the structure, in the sense of tree-

adjoining grammar (TAG). Thus, Fig. 2.2c itself might be taken to have been derived
17Heads with multiple arguments cannot reasonably be eliminated altogether. If no word in a sentence

could have more than one dependent, then the dependency structure or derivation tree of the sentence
would be a non-branching tree (i.e., a straight line). Equivalently, each nonterminal node in the phrase-
structure tree would have to branch into one terminal and one nonterminal child. This representation is
not rich enough to describe natural language.

18Although always left- or right-recursive, as far as I am aware, so that it can be described and modified
by finite-state methods.

19Chapter 6 does evaluate some non-transformational methods that use Fig. 2.2b. (This turns out to
hurt the performance, compared to versions that versions that use the flat Fig. 2.2a.)
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from S→ NP [VP [V ] NP ] by adjoining VP→ VP PP. (On a subsequent step,

the PP would then select a head with and expand with the conventional lexical entry

PP→ with NP.

This adjunction-as-transformation approach differs from the conventional LTAG

or CCG approach described above, in that its result is a bona fide lexical entry with

full privileges. In particular, Fig. 2.2c may have an idiosyncratic probability that

can be learned, and can also be subjected to further transformations (heavy-shift,

standard question formation with or without pied-piping, etc.). So the approach

retains the benefits of flat rules that were first mentioned in this section: that they

are the locus of exceptions and the locus of transformations.

It has often been observed (Carroll and Rooth, 1998) that the distinction between

arguments and adjuncts is not particularly useful for parsing. A verb selects for both

to some degree, and both need to be modeled.

2.4.2 Defining Transformations as String Edits

The flat lexical entries of Fig. 2.2a can be regarded as strings. The transformations allowed

in the experiments correspond to single edit operations (Levenshtein, 1966) on the right-

hand side (RHS)20 of such strings:

• Insert a single nonterminal into the RHS

• Delete a single nonterminal from the RHS

• Substitute a single nonterminal for another in the RHS

• Swap two adjacent elements in the RHS

(one may be a terminal, namely the headword of the entry)

Their effects are illustrated in Fig. 2.3.

These transformations were selected by manually examining the training data drawn

from the Treebank (see §6.2 for details of data preparation). Presumably, they are common
20That is, the substring written to the right of →, consisting of a terminal symbol and 0 or more

nonterminals.
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Insert S→ NP see NP ⇒ S→ NP see NP PP
fill a semantic role I see you I see you with my own eyes
Delete S→ NP see NP ⇒ S→ NP see
suppress a role I see you I see
Insert S→ NP see NP ⇒ S→ NP see SBAR
type-shift a role I see you I see that it’s love
Swap S→ NP see SBAR PP ⇒ S→ NP see PP SBAR
heavy-shift, etc. I see that it’s love with my own eyes I see with my own eyes that it’s love

Figure 2.3: Edit transformations.

in language because they manipulate the argument (or adjunct) structure of a headword

in useful ways: adding or deleting arguments, changing their type, or changing their order.

Indeed, Carpenter (1991) remarks:

The form of lexical rules that we propose to add to the basic categorial system

are what Keenan and Faltz (1985) have termed valency affecting opera-

tions. These operations allow the permutation, addition, or subtraction of

complements and the modification of the head or functor category. . . . The

same general lexical rule format has been proposed by virtually everyone con-

sidering the lexicon from a categorial perspective . . . [and by] recent work in

HPSG, which admits lexical rules that do the same work as the ones employed

here.

Some authors have, like us, allowed these operations to act on adjuncts as well as comple-

ments: see in §2.4.1 the material on “other linguistic arguments” and footnote 16.

The edit transformations are nicely “complete” in that any change to the RHS of a rule

can be carried out by some sequence of single edits.21 The flip side is that the generative

power of the system is very high: Carpenter (1991) shows that any recursively enumerable

set of lexical entries can be generated from a finite starting lexicon using a finite set of

edit-like transformations on unbounded flat frames.
21When such a sequence is common, however, it is useful to package it up as a new transformation that

gets its own probability. This is why we do not simply get by with the complete set {Insert,Delete}: it is
so common to follow a deletion with a nearby insertion that we introduce Substitute and Swap, rather than
accept equation (2.1)’s assumption that the deletion and insertion are independent. See §2.4.3 for remarks
on even more powerful transformations.
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2.4.2.1 Two Empirical Sanity Checks on These Transformations

Table 2.1 illustrates just how common the simple edit transformations are in training data

(§6.2), among the relatively frequent “frames” (as defined in §5.1). These frequent frames

will provide most of the evidence from which the smoothing model learns the probabilities

of transformations.

How about rare frames, whose probabilities are most in need of smoothing?22 Are

the same transformations that we can learn from frequent cases appropriate for predicting

the rare cases? The very rarity of these frames makes it impossible to create a table like

Table 2.1.

However, rare frames can be measured in the aggregate, and the result suggests that the

same kinds of transformations are indeed useful—perhaps even more useful—in predicting

them. Let us consider the set S of 2,809,545 possible lexical entries that stand at edit

distance 1 from the set of entries observed in training data. That is, an lexical entry is in

S if it did not appear in training data itself, but could be derived by a single transformation

from some lexical entry that did appear.

A simple “bigram model” of lexical entry probabilities (see §6.6.1.2) was used to identify

2,714,763 rare entries in S—those that were predicted to occur with probability < 0.0001

given their headwords. 79 of these rare entries actually appeared in a development-data

set of 1423 entries. The bigram model would have expected only 26.2 appearances, given

the lexical headwords in the test data set. The difference is significant: the bigram model

would be quite unlikely to draw as many as 79 appearances by chance (p < 0.001 by a

non-parametric test).

In other words, the bigram model underpredicts the transformational neighbors of

observed entries by a factor of 3. Similar results are obtained when we examine just one

particular kind of edit transformation (or lexical entries of one particular size). One can

therefore hope to use these edit transformations to improve on the bigram model. For

example, the edit transformations correctly recognize what these experiments show: that

if · · · X Y Z · · · is common, then · · · X Z · · · is plausible even if the bigram X Z has not

previously been observed.
22More precisely, what we smooth is the probabilities of lexical entries that use these frames.
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MI α β MI α β
9.01 [np adjp-prd] [np rb adjp-prd] 2.04 [to np] [np s]
8.65 [np adjp-prd] [np pp-loc-prd] 1.99 [to np] [np np]
8.01 [np adjp-prd] [np np-prd] 1.69 [to np] [np np .]
7.69 [np adjp-prd] [np adjp-prd .] 1.68 [to np] [np np pp .]
8.49 [np np-prd] [np np-prd .] 1.03 [to np] [ np]
7.91 [np np-prd] [np adjp-prd .] 5.54 [to np pp] [np to np]
7.01 [np np-prd] [np adjp-prd] 5.25 [to np pp] [np md np .]
8.45 [np adjp-prd .] [np pp-loc-prd] 4.67 [to np pp] [np md np]
8.30 [np adjp-prd .] [np np-prd .] 4.62 [to np pp] [to ]
8.04 [np adjp-prd .] [np np-prd] 3.19 [to np pp] [to np]
7.01 [np adjp-prd .] [np adjp-prd] 2.05 [to np pp] [ np]
7.01 [np sbar] [np sbar . ”] 5.08 [ np] [advp-tmp np]
4.75 [np sbar] [np sbar .] 4.86 [ np] [advp np]
6.94 [np sbar .] [“ np sbar .] 4.53 [ np] [ np pp-loc]
5.94 [np sbar .] [np sbar . ”] 3.50 [ np] [ np pp]
5.90 [np sbar .] [s , np .] 3.17 [ np] [ s]
5.82 [np sbar .] [np advp sbar .] 2.28 [ np] [np np]
4.68 [np sbar .] [ sbar] 1.89 [ np] [np np .]
4.50 [np sbar .] [np sbar] 4.89 [np np .] [np advp-tmp np .]
3.23 [np sbar .] [np s .] 4.57 [np np .] [np advp np .]
2.07 [np sbar .] [np ] 4.51 [np np .] [np np pp-tmp]
1.91 [np sbar .] [np np .] 3.35 [np np .] [np s .]
1.63 [np sbar .] [np np] 2.99 [np np .] [np np]
6.13 [to np] [to np sbar-tmp] 2.96 [np np .] [np np pp .]
5.72 [to np] [to np pp pp] 2.25 [np np .] [ np pp]
5.36 [to np] [np md rb np] 2.20 [np np .] [ np]
5.16 [to np] [to np pp pp-tmp] 4.82 [np s .] [ s]
5.11 [to np] [to np advp] 4.58 [np s .] [np s]
4.85 [to np] [to np pp-loc] 3.30 [np s .] [np ]
4.84 [to np] [md np] 2.93 [np s .] [np np .]
4.49 [to np] [np to np] 2.28 [np s .] [np np]
4.36 [to np] [np md s] 4.76 [to s] [ s]
4.36 [to np] [np to np pp] 4.17 [to s] [to np pp]
4.26 [to np] [np md np pp] 2.77 [to s] [to np]
4.26 [to np] [to np pp-tmp] 4.75 [s , np .] [np sbar .]
4.21 [to np] [to prt np] 4.52 [np s] [np s .]
4.20 [to np] [np md np] 4.27 [np s] [ s]
3.99 [to np] [to np pp] 3.36 [np s] [np ]
3.69 [to np] [np md np .] 2.66 [np s] [np np .]
3.60 [to np] [to ] 2.37 [np s] [np np]
3.56 [to np] [to pp] 2.56 [np np] [np np .]
2.56 [to np] [np np pp] 2.20 [np np] [ np]

Table 2.1: The most predictive pairs of sentential frames. (A frame, §1.2.1.3 and §5.1, is
a template for lexical entries: the headword is to be filled in at .) If S→ α occurs in
training data at least 5 times with a given headword, then S→ β also tends to appear at
least once with that headword. MI measures the mutual information of these two events,
computed over all words. When MI is large, as here, the edit distance between α and β
tends to be strikingly small (1 or 2), and certain linguistically plausible edits are extremely
common.
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2.4.2.2 Edit Distance is Weighted and Context-Sensitive

If the edit distance between α and β is k, then by definition, S→ α can be transformed

into S→ β by a sequence of k transformations. Other sequences of length ≥ k may also

do the job. The probability of transforming S→ α into S→ β is the total probability of

all these sequences.

But the probability of a given transformational sequence is determined by more than

just the number of edits (e.g., k). This is because different edits have different probabil-

ities, as illustrated in Table 2.1. For instance, insertions are more probable than swaps,

insertions of optional categories are more probable than insertions of required categories,

and insertions are more likely in some contexts than others. The log-probability of the

sequence is therefore a weighted edit distance (Bahl and Jelinek, 1975; Ristad and Yianilos,

1996; Tiedemann, 1999) with context-dependent weights.

What determines the probability of applying a given transformation to a given lexical

entry? A preview: Any instance of a transformation has certain descriptive features. Its

probability is determined from these features—or rather, from weights that have been

learned for the features. §1.3.3 and §1.4.2 gave examples; §3.2 will explain how this is done

in general; §6.4.4 will describe the particular features used in the experiments.

2.4.3 Other Possible Transformations (future work)

The above section shows that the single-edit transformations are attested in real data.

But it does not show that they are the only attested transformations. Indeed they are not.

They are merely a reasonable starting point for experimental work.

What other linguistic transformations could we consider in future work, and how would

we apply them to lexical entries in §2.4.1’s “flat rule” format? Some key examples:

category changing Transformations should be able to affect the left-hand-side (LHS)

nonterminal category of a lexical entry. (§5.4.4 discusses the statistical benefits of

considering such transformations.)

Many languages feature category-changing transformations (Fig. 2.4): Sstem be-

comes NP (nominalization), Stensed (finitization), or Sinv (inversion). We can also
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Possessivize NP→ Det lamb ⇒ NPposs → Det lamb ’s
the lamb the lamb’s

Nominalize Sstem → NP bleat ⇒ NP→ NPposs bleat -ing
the lamb bleat the lamb’s bleating

Tense Sstem → NP bleat ⇒ Stensed → NP bleat -ed
the lamb bleat the lamb bleated

⇒ Stensed → NP did bleat
the lamb did bleat

Invert Stensed → NP did bleat ⇒ Stensed,question → did NP bleat
the lamb did bleat did the lamb bleat

Figure 2.4: Some transformations that change the category of the phrase. See §5.5.4.3 for
a more principled treatment of the morphology.

ProduceGap S→ NP detect NP ⇒ S/NP→ NP detect
I detect enthusiasm I detect
PP→ for NP ⇒ PP/NP→ for
for rice for

PassGap NP→ enthusiasm PP ⇒ NP/NP→ enthusiasm PP/NP
enthusiasm for rice enthusiasm for
S→ NP detect NP ⇒ S/NP→ NP detect NP/NP
I detect enthusiasm for rice I detect enthusiasm for
Note: Most gaps are consumed by lexical entries such as
SBAR→ that S/NP that subcategorize for them, as in the rice that [I
detect enthusiasm for]S/NP. More such entries are created by FillGap.

FillGap S→ NP detect NP AdvP ⇒ S→ NP detect NP/PP AdvP PP
I detect enthusiasm today I detect enthusiasm today for rice
S→ NP rose AdvP ⇒ S→ NP/PP rose AdvP PP
enthusiasm for rice rose today enthusiasm rose today for rice

(cf. *Spirits rose today for rice)
S→ it seems Stensed ⇒ S→ NP seems Sinf\NP
it seems she likes rice she seems to like rice

Figure 2.5: Gapping transformations; these too change the category of a phrase. Following
GPSG and CCG, S/NP (respectively S\NP) is the category of a sentence (S) missing a
post-head (respectively pre-head) noun phrase (NP). (See Fig. 5.2 for more examples of
ProduceGap.)
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SubjDrop NP→ NPagent AdvP sink NPpatient ⇒ S→ NPpatient AdvP sink
(unaccusative) mice often sink boats boats often sink
ObjDrop S→ NPagent AdvP eat NPpatient ⇒ S→ NPagent AdvP eat

mice often eat rice mice often eat
Passivize NP→ NPagent eat NPpatient ⇒ S→ NPpatient is eat -en

mice eat rice rice is eaten
NP→ NPagent eat NPpatient ⇒ S→ NPpatient is eat
mice eat rice -en [PP by NPagent ]

rice is eaten by mice

Figure 2.6: Linguistically complex transformations: unaccusativity and passivization.
Again, see §5.5.4.3 for a more principled approach to the morphology. The theta-role
subscripts agent and patient are discussed in §5.5.4.5.

regard feature-changing transformations such as pluralization or possessivization as

category-changing.23

Notice that many of these transformations have morphological reflexes. They do not

merely modify the argument structure and the type of the result, but they insert

extra morphemes to show they have done so. See §5.5.4.3 for how to treat this more

cleanly.

gapping Long-distance and control phenomena, as noted in §2.2, can be handled by

passing gaps through “slashed” nonterminal categories (Gazdar et al., 1985). This

would require further category-changing transformations like those in Fig. 2.5.24 The

fact that gap-passing is mediated by a lexical entry, which may have a low probability,
23One might imagine that the feature-changing cases are simple enough to handle with a weaker mech-

anism such as feature passing: that is, we estimate identical probabilities for NP[α]→ Det N[α] Sbar

regardless of whether α = −plural or α = +plural. However, this simple design is too restrictive. It
appropriately recognizes that singular and plural uses of an NP are correlated—e.g., both rumor and rumors

can take sentential complements—but goes too far by assuming that they are identical. Singular and plu-
ral NP rules do differ in more than their ±plural feature: plural NPs are more likely to lack determiners.
(A more interesting example: possessive NPs are more likely to be head-final.) So we wish to estimate
separate—but related—frame distributions for different kinds of NPs.

rephrase without talking about frames: need to talk about conditioning on LHS.

24Multiple gaps in the same phrase are possible. Things are somewhat complicated by the possibil-
ity of recursive gaps, as in the enthusiasm that [I detect for rice today]S/(NP/PP)—a simplified version of
an example that actually appears in the Penn Treebank—or enthusiasm seems [to have risen for rice
yesterday]

Sinf\(NP/PP).
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allows for island effects.

See §5.5.4.3 for additional uses of gapping transformations. The transformation Pro-

duceGap has appeared (under other names) in early GPSG work (Gazdar, 1981) and

in HPSG (Pollard and Sag, 1994, chapter 9). Collins (1997) gave the first statistical

treatment of gap-passing.

We leave experiments with gapping transformations to future work. In the meantime,

given only the more impoverished transformations of §2.4.2, the model can only model

extraction and control as deletion. In our current datasets, the gapped lexical entries

of Fig. 2.5 are given left-hand-side nonterminals of S rather than the more accurate

S/NP (thereby conflating two kinds of phrase that have rather different distributions).

As a result, the model guesses that these entries were derived from the non-gapped

entries by subject deletion rather than subject extraction.

unaccusativity and passivization Various other linguistically useful transformations

are also not considered in the current experiments. Even when they only affect the

RHS and therefore can be simulated by edit sequences (§2.4.2), it would be helpful

to add them explicitly in future (see footnote 21 on p. 60).

We focus here, as above, on examples that are attested in English. Fig. 2.6 shows

that while object drop is a simple edit to the RHS, unaccusative movement and

passivization require longer movement of arguments within an RHS. (Unaccusative

movement is a version of passivization, available to some verbs, that has no morpho-

logical reflex.)

Notice that object drop is distinguished from unaccusative movement in Fig. 2.6 only

by the thematic-role subscripts. The subscripts indicate that for unaccusative move-

ment, the object in S→ NP NP tends to have the same heads as the subject in

S→ NP . That is, the subscripts serve to help describe the selectional preferences

of the head (§5.5.4.5). Using a model of selectional preferences, we could in principle

distinguish the two transformations (§5.5.4.5).

What if the agent of a passive is displaced to a by-phrase? One possibility is to

handle this in the semantics: i.e., the by-phrase is an ordinary instrumental PP that
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is interpreted as specifying the agent because there is no other agent. Handling it

in the syntax instead is stickier because of the notion that transformations are local

to a frame. It requires that the agent and patient switch places, with by inserted as

an additional morphological reflex. This requires something like the structure at the

end of Fig. 2.6, where the by-PP has been flattened into the S frame.

To regard the latter move as an instance of Structure Preservation (mentioned in

§2.3.6), one would have to represent all PP’s as flattened into their parents in this

way (or simply regard PP’s as a species of case-marked NP). This is not a wholly unrea-

sonable representation, as it would allow our selectional preference model (§5.4.1) to

capture a statistical dependence in between saw and telescope, the parent and child

of the preposition, in saw the man with the telescope. The preposition by or with

becomes “transparent.” Such statistical dependence does exist, not just in the case of

passivization but more generally. It has been exploited by Collins and Brooks (1995)

and in subsequent work on PP attachment disambiguation.

Some additional transformations are discussed in §5.5.4.2.

2.5 A Review of Related Work

There has been much work over the past several years on probabilistic lexicalized gram-

mars, including the induction of subcategorization frames or dependency frames.

However, there has been relatively little work on smoothing the probabilities of lexical

entries. In particular, there is little work assigning non-zero probability to lexical entries

that contain novel dependency frames. Such entries are surprisingly common (§1.2.1.2).

2.5.1 Non-Statistical Approaches with Similar Concerns

The idea of uniformly representing generalizations, partial generalizations, and exceptions

in a computational lexicon (§§1.3.2–1.3.3) goes back a long way, at least to the non-

monotonic multiple-inheritance hierarchies that Flickinger (1987) introduced to HPSG.

His approach is similar to object-oriented programming. Like an object-oriented class, a

lexical entry type may inherit all its properties from its parents, or define some of its own.
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The defeasible inheritance relationships in Flickinger’s HPSG hierarchies can be re-

garded as transformations that specialize and partially override the parent to derive the

child. HPSG also allows more general transformations, called lexical rules or metarules.

While these were originally exceptionless, Briscoe and Copestake (1999) show how to make

them defeasible as well.

Evans et al. (2000) make a very similar set of arguments, and propose to represent

LTAG lexicons efficiently using the DATR formalism, which allows them to encode both

generalizations and exceptions in a unified fashion.

Schütze (1994) studies only the dative alternation between give her a cat and give

a cat to her, but shares our interest in modeling lexical idiosyncrasy. He uses a feed-

forward neural network that maps a verb’s name and its semantic features to output units

that correspond to the two possible frames. Such a model can learn arbitrary exceptions.

Schütze introduced a learning bias in favor of generalizations over exceptions. He artificially

made the verb’s name pass through an extra network layer, so that it had less influence

than the semantic features during the initial stages of back-propagation training. Hence

the network initially paid more attention to the verb’s semantic features than to its specific

identity (and passed through a stage of overgeneralization, as children do).

2.5.2 Previous Statistical Methods for Smoothing Lexical Entries

Methods that can generalize to arbitrary novel frames—those that were not observed in

training data—are at the core of this thesis. For the sake of brevity they are discussed

only in §6.6.1, where they are replicated. The reader is welcome to peek ahead to that

section now.

This thesis focuses on using syntactic similarity to smooth lexical entries. By con-

trast, Korhonen (2000) uses semantic similarity. As in Chapter 6 here, she does estimate

Pr(frame | headword). But whereas we exploit similar frames, she exploits similar head-

words, by backing off to Pr(frame | Levin class of headword). This approach relies on

Levin’s (1993) insight that semantically similar verbs tend to appear with the same frames

(see §5.5.1.2).

While Korhonen defined semantic similarity by using Levin’s existing verb classes, it

68



is possible to discover semantic clusters of verbs or verb senses by more automatic means.

§5.5.1.2 notes several papers, such as (Rooth et al., 1999), that cluster word types or tokens

by their lexical selectional preferences, and obtain clusters that are indeed semantically

coherent. Charniak (1997) achieved a small improvement in predicting subcategorization

frames by backing off to such clusters.

It is worth noting that one could also combine backoff to semantic clusters with syn-

tactic methods for predicting subcategorization frames. Any of the models in §6.6.1 could

readily back off from word to cluster. In the case of transformational smoothing, the

method of (Rooth et al., 1999) could for example be used to replace each word token in

a parsed corpus with a coarse sense category corresponding to that token’s best cluster.

One could then apply transformational smoothing to the “lexical” entries extracted from

this altered corpus. Such “lexical” entries would be headed by quasi-semantic categories,

not words. Underlying this scheme is Levin’s notion that frames and transformations are

in fact properties of such categories.

Finally, unbeknownst to us, Briscoe and Copestake (1999) independently arrived at

something like the high-level idea of this thesis. They too suggested smoothing Pr(frame |

headword) by redistributing probability mass among lexical entries according to (something

like) the relative rates of transformations. However, their smoothing technique was self-

consciously ad hoc:

• Specify the complete, finite set of frame types f1, f2, . . . fn and all legal transfor-

mations among them. (This is analogous to the transformation graph of §1.4.1,

but without arc probabilities or features or an unbounded number of novel frames.

Briscoe and Copestake explicitly reject the notion that adjuncts might be inserted

by transformation (see §2.4.1), which could make n infinite.)

• For each transformation fi ⇒ fj , where fi and fj are subcategorization frames, define

the transformation’s productivity as

Prody(fi ⇒ fj)
def=

# of word types observed at least once with fi and fj
# of word types observed at least once with fi

(2.2)

For example, in Table 1.1 on p. 5, the productivity of a transformation from row 1

⇒ row 3 would be 1/6, and the productivity of row 5 ⇒ row 6 would be 0/1. There
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is no significance testing for this ratio.

• Now, given a lexical entry (w, fj), one wishes to estimate Pr(fj | w). The maximum

likelihood (ML) estimate would be sj/
∑

k sk, where sj is the number of times (w, fj)

appeared in training data. What Briscoe and Copestake suggest is a way to avoid

zeroes by a Katz-style variation on add-one smoothing.25 Let m < n be the number

of frames unattested for w (that is, the number of sj that equal 0). Briscoe and

Copestake first suggest artificially increasing each of those m frames’ counts from

0 to 1, but this would not differentiate among the unattested frames at all. So

instead they divide up the m extra counts among the unattested frames by a kind

of lower-order model (by analogy with (Katz, 1987)). That is,

Pr(fj | w) is estimated as


sj

m+
∑
k sk

if sj > 0
m

m+
∑
k sk
· Prlower(fj) if sj = 0

(2.3)

The lower-order model is a probability distribution over just the unattested frames,

and tries to favor frames that are commonly produced by transformation. Let tj
def=

(fi ⇒ fj) denote the unique transformation that derives fj . (It is unclear how

to define tj uniquely if there are zero or two choices for fi, or whether fi can be

considered if si = 0.) Then define

Prlower(fj) =
Prody(tj)∑

k such that sk=0 Prody(tk)
(2.4)

Notice that this technique (unlike ours) does not redistribute mass along the transfor-

mation arcs. That is, it does not redistribute mass from the frames attested with w to

their children or other descendants in the transformation graph. Rather, it redistributes

mass from all frames attested with w to all frames unattested with w. Other things equal,

any of the following conditions help to increase Pr(fj | w) for unattested fj : (1) w was

poorly observed (small
∑

k sk). (2) fj appears to have been frequently derived (with other

words). (3) The other unattested frames for w appear not to have been frequently derived

(with other words).
25The connections to add-one smoothing and (Katz, 1987) are not tight. 1 is added only to 0 counts,

not to all counts; and then only these extra 1 counts are redistributed.
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Our transformational smoothing is a conceptual improvement in several ways. For

example:

• It redistributes mass along the transformation arcs from attested frames. So Pr(fj |

w) will be increased if (1) fj ’s parents or other ancestors are frequently attested with

w, and (2) the necessary transformations appear to be probable (with other words).

• Mass is redistributed to fj as above even if fj is itself attested. So positive proba-

bilities can be smoothed upward, not just downward, as appropriate to correct for

sampling error.

• The amount of mass redistributed is not determined by the raw number of unattested

frames (allowing us to have arbitrarily many unattested frames without sucking all

the probability from the attested ones).

• It is possible to derive novel frames that were not attested with any word. Indeed,

n need not be finite.

• Parameters can be tied interestingly across transformations (§1.3.3), so that evidence

for one transformation may increase the probabilities of similar transformations.

• A prior discourages spurious generalizations from little evidence.

• Sequences of transformations are allowed.

• Transformations compete only if they apply to the same lexical entry.

• The approach can in principle do abduction and explaining-away of frames, as in

Bayes nets.

2.5.3 Extracting Subcategorization Frames from Text

A great many recent papers have tried to automatically build dictionaries of subcatego-

rization frames. (Sarkar and Zeman (2000, Table 2) give a comparison.) Such dictionaries

could serve as input to our generalization methods. In particular, an attempt to bootstrap

the acquisition of syntax, as sketched in §1.2.4.2, should be initialized with some reasonable
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(if imperfect and incomplete) guess as to the correct grammar, so that it is less likely to

get stuck in a poor local maximum.

In the case of English, there already exist manually-constructed subcategorization dic-

tionaries, such as COMLEX (Grishman et al., 1994), FrameNet (Johnson et al., 2001),

and their predecessors intended for human consumption (Procter, 1978; Sinclair, 1987;

Hornby, 1989). However, it is still useful to augment such dictionaries from large or

domain-specific corpora (Manning, 1993). In addition, some researchers have been inter-

ested in the language-learning problem for its own sake.

This line of work began with Brent (e.g., (1993; 1994)), who used heuristic, English-

specific surface cues to extract a few types of frames from transcribed speech to children.

The work of Ushioda et al. (1993) is similar. Manning (1993) followed the same scheme

but used newspaper text that had been automatically tagged and chunked, allowing him

to design cues for a wider variety of frames.

Subsequent researchers have used text that was parsed automatically or else semi-

automatically (Ersan and Charniak, 1995; Delisle and Szpakowicz, 1997; Korhonen, 1997;

Carroll and Rooth, 1998; Green, 1997; Arriola et al., 1999; Sarkar and Zeman, 2000). It is

then possible to simply read the subcategorization frames off the parse trees, as we will do

in §6.2. Most of these systems did not attempt any further generalization or smoothing.

However, Ersan and Charniak (1995) made an effort to normalize the observed frames by

deleting adjuncts, and some systems zero out the counts of observed frames not on a pre-

approved list (Ersan and Charniak, 1995; Korhonen, 1997; Carroll and Rooth, 1998). or

require a user in the loop during frame extraction (Delisle and Szpakowicz, 1997; Arriola

et al., 1999).

Loosely related are the systems of Siskind (1996) and Thompson and Mooney (1999).

These greedily construct lexical entries by “aligning” raw sentences with detailed semantic

representations, which are assumed to be given.

All these methods can in principle discover novel frames, if the input cannot be ac-

counted for in any other way (see §1.2.4.2 on failure-driven learning). However, they do

not generalize from one frame to another, nor do they learn frame probabilities.

Most of these systems try to correct for noise that arises from fallible heuristics or
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fallible parsing of the input. They use various significance-testing techniques to filter the

output. (Brent’s (1993) original binomial significance test is most common; (Korhonen et

al., 2000; Marques et al., 2000; Sarkar and Zeman, 2000) compare some techniques used.)

The result is generally a dictionary of lexical entries with no probabilities and no rare

entries.

In principle, one could try to correct for noise by instead producing smoothed probabil-

ities or confidence intervals, which would be more useful to a statistical parser. However, it

would remain difficult to distinguish rare entries from spurious (or, in our terms, extremely

rare) ones, and impossible to include frames that were not in the data. Such behavior re-

quires procedures for generalizing from one frame to another, such as the transformational

smoothing proposed here.

2.5.4 Modeling Optionality in Verb Subcategorization

The work in the previous section tries to compile arbitrary lists of subcategorization frames

for each headword.

In a variation, a number of researchers have tried to induce more structured represen-

tations of each headword’s syntactic preferences. These researchers conceptualize a lexical

entry as a headword together with a core ordered list or unordered set of roles to be filled.

Roles are typically identified by case marker (e.g., preposition) or syntactic position. For

example, an English verb may have roles “subject,” “object,” “for,” “in,” “to,” etc.

A given token of a headword may appear with only some subset of these roles (the

others being realized as the empty string ∅, leaving the hearer to infer them from context).

It may also appear with additional adjuncts not in the core role set. So these researchers

allow operations that either suppress roles from this set (realizing them as the null string

φ) or add roles to the set. As a result, they get a degree of generalization from lexical

entry to lexical entry, an idea at the core of this thesis.

2.5.4.1 Non-Stochastic Optionality

Webster and Marcus (1989) considered input that was parsed and annotated with roles;

they simply kept track of which roles for a verb appeared to be obligatory or optional in
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the input.

Basili et al. (1997) used a similar approach in the pursuit of distinguishing verb senses.

Observed role sets were organized into a subsumption lattice. The senses were derived from

this lattice and mapped onto dictionary senses. Thus, lexical entries connected by small

edit distance were considered to be related, as in transformational smoothing.

Sarkar and Zeman (2000) assumed that an observed lexical entry was derived by ad-

junction if the frame and headword were not sufficiently associated—if they might well

have occurred together by chance. In this case, they chose a putative adjunct in the frame,

and reclassified the observation as if the adjunct were deleted. Smaller lexical entries could

thereby accumulate more observations than they would have received by chance, allowing

them to survive. Maragoudakis et al. (2000) ported this approach from Czech to Modern

Greek.

Buchholz (1998) used memory-based learning to train a system that classified each

nonterminal in a verb frame as either an argument (presumably obligatory) or adjunct

(presumably optional). She found that the nonterminal, its closed-class headword if any,

and the previous nonterminal were the most important predictors.

2.5.4.2 Stochastic Optionality

More relevant to our work are approaches that determine the contextual probability that

an optional role will be realized or suppressed.

Collins (1997) used a hard-coded heuristic (rather than learning a classifier à la Buch-

holz) to distinguish arguments from adjuncts in each training frame. He used this to

train an interesting model in which unboundedly many adjuncts could be probabilistically

inserted among the arguments. We will discuss and replicate this approach in §6.6.1.3.

The “slot-based model” in (Li and Abe, 1996) models the contextual probabilities of

role suppression. The model says that for a given verb, each role depends on at most one

single “previous” role: its suppression probability is conditioned on whether that previous

role was suppressed. In other words, the model is a tree-structured Bayesian network (a

dendroid distribution). The tree topology specifies which roles depend on one another; it is

chosen as a minimum spanning tree of a graph in which roles with high mutual information
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are considered to be close together.

Since Li and Abe learned a separate dendroid distribution for each verb, sparse data

considerations limited them to high-frequency verbs (≥ 50 training tokens). (Typically

they learned that a verb was more likely to take certain PP-arguments in the presence of a

direct-object NP.) Miyata et al. (1997), who extended Li and Abe’s approach to Bayesian

networks with more complicated structure, considered only verbs of even higher frequency

(≥ 300 training tokens). However, one could presumably share parameters across verbs in

order to extrapolate patterns for low-probability verbs.

Utsuro et al. (1998) also treated role suppression, modeling lexical entries using a

rather complicated log-linear technique. A verb’s lexical entry is the set containing the

verb and its roles. They greedily grew a collection of increasingly larger subsets from

which one could assemble each training lexical entry by disjoint union. For example, one

might derive an training entry as the union of a basic subcategorization frame with various

adjuncts, or with pairs of adjuncts such as from . . . to. Any putative lexical entry then has

zero or more derivations as a disjoint union of such subsets. The entry’s features in the

log-linear model are exactly the subsets that appear among its derivations (or a special

feature “underivable”). Notice that growing the collection of available subsets amounts to

feature selection; they add subsets in general-to-specific order, and use an MDL criterion

to decide when to stop growing.

These papers are actually more sophisticated than described here. Except for Collins’s,

they try to learn not only the roles for a verb, but the selectional restrictions on those roles

with respect to a semantic hierarchy. For example, the object role of drink can only be

filled by liquids. Learning these selectional restrictions is part of the interest of the papers,

though we have ignored it here for simplicity’s sake.

2.5.5 Other Uses of Syntactic Transformations

While the present work uses probabilistic syntactic transformations within the grammar

of a language, they can also be used to model the process of translating to a different

language.

Yamada and Knight (2001) focus on transformations that permute the subconstituents
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of a constituent. They model Pr(Japanese tree | English tree) as a noisy channel that

modifies each maximal projection in the English tree by (among other things) stochastically

reordering its children.26 Like us (§2.4.1), they operate over flattened structures such as

[S NP V NP ], since this is a natural domain over which to define cross-language as well as

within-language transformations. Thus, they are concerned with estimating probabilities

such as Pr(Japanese [S NP1 NP2 V ] | English [S NP1 V NP2 ]), which is the probability of

transforming SVO into SOV word order. This is similar to the probability of Swap in our

§2.4.2.

More relevantly, the same translation approach can be applied to rephrasings within a

language. This is close to Chomsky’s original idea of transformations. Instead of regard-

ing Japanese sentences as noisy translations of English ones, Knight and Marcu (2000)

regarded long English sentences as noisy expansions of short English sentences. Removing

the noise then corresponds to summarization rather than translation. They are concerned

with estimating probabilities such as Pr(long [S NP VP PP ] | English [S NP VP ]). This is

similar to the probability of Insert in our §2.4.2.

Both the above problems differ from ours in that they are formally translation problems.

The training data were clearly separated into paired “before” and “after” sentences, where

each pair was assumed to be related by a single transformation. By contrast, we are

concerned with the case where any training datum may be derived from any other by a

sequence of transformations.

2.5.6 Edit-Distance Methods

The method of this thesis is to notice when frames that are similar—e.g., in the sense of

having small weighted edit distance from one another (§2.4.2)—tend to appear with the
26Their noisy channel also inserts, translates, and deletes nonterminals. It is worth drawing a contrast

between their approach and synchronous grammars. Recall that the noisy-channel approach to translation
(Berger et al., 1994) translates Japanese to English by trying to undo the effect of a putative noisy channel
that stochastically translated English to Japanese. In this case, this means choosing the English tree that
maximizes the product Pr(English tree) · Pr(Japanese string | English tree). Rather than assume separate
processes for generating English (the first factor) and translating it into Japanese (the second factor),
an alternative is to assume that the English and Japanese were generated in parallel by a synchronous
grammar (Wu, 1997); in this case the “original” English and “transformed” Japanese phrase structure
rules are generated together with some joint probability, and there is no separately modeled transformation
probability.
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same words.

Weighted edit distance has sometimes been employed in other natural-language tasks,

such as modeling pronunciation variation within a language (Ristad and Yianilos, 1996;

Ristad and Yianilos, 1998) and either detecting (Tiedemann, 1999) or predicting (Knight

and Graehl, 1997) cognates across languages.

The alignment-based learning (ABL) technique of van Zaanen (2000) is like us con-

cerned with inducing linguistic structure, though at level 2 rather than level 3 of the

grammar (§2.1.5). The technique uses a (slightly hacked) unweighted edit distance to de-

tect and align similar sentences in a raw corpus.27 If two sentences are similar, their best

alignment partitions each of the sentences into substrings that are preserved and substrings

that are replaced when editing one sentence to yield the other. If substring x is replaced

with y, then ABL guesses that x and y (either of which may be empty) are constituents

of the same nonterminal type.

The analogy-based lexical acquisition system (ABLAS) (Calzolari et al., 1998) tries to

find new subcategorization frames in chunked text. It does so by alignment with already-

known subcategorization frames.

It may be worth noting that memory-based learning (Zavrel and Daelemans, 1997) can

be regarded as using a kind of weighted edit distance between feature vectors. Feature vec-

tors have fixed length, so the only edit allowed is Substitute, but some feature substiutions

have greater cost than others. Other k-nearest-neighbor methods such as similarity-based

smoothing (Dagan et al., 1997) have a comparable flavor.

What all these methods crucially have in common is that they attend to the superficial

relations among surface phenomena in an unstructured set. They may or may not posit

underlying mechanisms, but the basis for their learning is pairs of similar observed events.

A caveat is that such pairs may be hard to find in very small corpora (see footnote 27 on

p. 77), so it may sometimes be helpful to incorporate or back off to some generative model

of single events.
27The work uses the ATIS and OVIS corpora, which fortunately contain many similar sentences. Speech

to children also contains much near-repetition.
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2.5.7 Priors on Grammars

One of the distinctive aspects of the present work is the assignment of a prior probability

to each possible grammar §1.3, so that learning can favor grammars that we have deemed

a priori likely. This idea was first proposed by Solomonoff (1964) in the form of Minimum

Description Length (MDL) learning.

In MDL, the log prior probability of a grammar is considered to be the number of

bits it takes to describe the grammar in some notation (code). While any prior can be

implemented by use of a sufficiently convoluted notation, certain simple styles of notation

are traditional in the MDL community.

Several recent attempts have been made to learn context-free grammars from text, using

the MDL framework.28 The descriptions chosen lead to priors that are rather different from

ours:

• Stolcke and Omohundro (1994b) consider a non-lexicalized, probabilistic context-

free grammar to be likely if (1) the total length of all its rules is small—i.e., it contains

few rules of non-zero probability and these rules have short right-hand sides—and

(2) the several rules that rewrite a given nonterminal are roughly equiprobable.

• Chen (1996, chapter 3) takes a context-free grammar of restricted form to be likely

if it has few nonterminals and few rules, and the rules are about equiprobable.29

Certain types of rule are more probable than others since they can be coded econom-

ically.

• de Marcken (1996, chapter 4) takes a hierarchical lexicon of strings to be likely if the

lexicon lists few strings, and the strings it does list are predicted to have fairly high

probability even without such a listing. (That is, listed strings would be expected

to arise frequently anyway by random selection and concatenation of other listed

strings.) It also helps if most listed strings e are listed with “standard” probabilities

(specifically, common values of the integer dlog2 Pr(e)e).
28Cracking this problem seems to be a common grad-student ambition: four of the five citations here are

to theses or portions thereof!
29The latter point arises from the fact that Chen codes the rule probabilities in terms of observed counts

in training data, and it is cheaper to code equal counts (that add up to a fixed training data length) than
unequal ones.
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De Marcken also suggests (his Figure 4.1) that when a complex lexical entry is not

fully predictable from its parts, then its exceptional properties—perhaps including an

exceptional probability—should be listed with it at extra cost. But he does not make

the cost of such an exceptional probability depend on the degree of its exceptionality,

the way we do (§2.3.6).

• Grünwald (1996) takes a non-lexicalized context-free grammar to be likely if it has

few productions.

• Osborne and Briscoe (1997) take a lexicalized, probabilistic categorial grammar to

be likely if (1) the total length of all its frames is small—i.e., it contains few frames

of non-zero probability and these frames have short right-hand-sides—and (2) each

word tends to list only a small number of frames and these frames are frequent. They

argue that (2) can be ignored in practice.

The prior used in this thesis is quite different in spirit. Rather than try to keep the

number of rules in the grammar small, it takes the view that any grammar contains all

possible rules or lexical entries (§1.2.4.3). Grammars differ only as to the probability

distributions they impose over these rules or lexical entries. In general, all grammars

assign non-zero probability to everything.

Given that framework, it would still be in the spirit of the above methods to assert

that a good a priori probability distribution is one with high entropy, or low entropy,

or some other figure of merit that depends only on the histogram of event probabilities.

But that is not the assertion of this thesis. Rather, the prior proposed here says that a

good probability distribution is one that is “internally coherent,” in the sense that most

of the probabilities are well-predicted from other probabilities in the distribution, using

a small and simple set of transformational generalizations that take the events’ structure

into account.
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Chapter 3

Smoothing Using Transformation

Models

This chapter introduces transformation models, a new class of parameterized prob-

ability distributions. We will see that such models allow us to do transformational

smoothing of sparse data.

The rest of the thesis applies this new statistical technique to one important problem

in computational linguistics. The technique may also have other uses inside or outside

computational linguistics (see §7.2 for examples).

The reader who just wants the equations in a concise form should look ahead to §4.1.

3.1 Preliminaries

Let us begin by spelling out the conceptual framework of Bayesian smoothing, as well as

the notation used in this thesis. The ideas and notation will be familiar to many readers.

Most previous work in grammar learning has not used this Bayesian framework. How-

ever, (Stolcke and Omohundro, 1994b; Grünwald, 1996; Chen, 1995; de Marcken, 1996;

Osborne and Briscoe, 1997) have followed Solomonoff (1964) and used the Minimum De-

scription Length (MDL) framework, which is technically equivalent—although MDL phi-

losophy and practice favor a style of prior different from the one used in this thesis.
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3.1.1 Probability Distributions

Suppose we are considering a set Events of events whose probabilities are of interest, such

as the set of possible sentences, syntax trees, or poker hands. (In the main application

of this thesis, Events consists of all possible lexical entries: that is, objects that have the

correct form to serve as entries in a human syntactic lexicon, under some linguistic theory

of the lexicon.)

A probability distribution over Events is any function Pr : Events → [0, 1] such

that
∑

e∈Events Pr(e) = 1. It is extended to event sets E ⊆ Events by defining Pr(E) def=∑
e∈E Pr(e).1 As a matter of notation, the set E is usually specified by a predicate or

partial description that matches just the elements of E: so Pr(S) might mean the total

probability of all lexical entries of category S. Commas stand for conjunction: Pr(S, devour)

is the total probability of all lexical entries that have category S and headword devour.

The conditional probability Pr(E | F ) is defined as Pr(E ∩F )/Pr(F ). Finally, if ~e is a

finite sequence (vector) of n events, then Pr(~e) is usually defined as
∏n
i=1 Pr(ei), that is,

the probability of obtaining ~e by drawing a sequence of n independent samples from Pr.

When we have such a sequence of samples, let #(e) denote the number of times event e

was sampled, i.e., the number of components of ~e that are equal to e.

We will sometimes use mnemonic names for distributions, such as Prlex(w, f) for a

particular probability distribution over (w, f) pairs.

The functional notation for Pr faces a standard ambiguity. For fixed w, the notation

Pr(f | w) might refer to a particular probability (when f is also fixed). Or it might refer

to the entire distribution, a function that maps any f to Pr(f | w). We sometimes use the

conventional notation Pr(· | w) to emphasize the latter interpretation.

3.1.2 Parameterized Probability Distributions

Often one wishes to consider a parameterized family of probability distributions

together with prior probabilities on the parameters. Such a family-with-prior may be
1Actually, this intuitive definition only works if Events is countable (or has countable support), unless we

find some way of defining uncountable summations over infinitesimals (the same problem faced by integral
calculus). The solution (measure theory) can be found in any textbook on probability theory. The details
need not concern us here—although this thesis will in fact have to consider distributions over uncountable
sets of events, namely the the parameter space Rk and the set of walks in a finite graph.
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formalized as a single probability distribution Pr over Θ× Events, where Θ is a set called

the parameter space. Each element θ ∈ Θ is called a parameter value (but is typically

a fixed-length real vector that specifies several scalar parameters). For each θ, let Prθ(e)
def=

Pr(e | θ), and note that this is a probability distribution over Events—giving us a family of

distributions Prθ for different values of θ. Now for θ ∈ Θ, e ∈ Events, it is true by definition

that

Pr(θ, e) = Pr(θ) · Pr(e | θ) (3.1)

When defining a parameterized family in practice, the two factors in equation (3.1) are

defined independently. That is, one must define

• a parameterized family {Prθ : θ ∈ Θ} of distributions over Events

• a prior probability distribution Prprior over Θ

Then one can set Pr(θ) = Prprior(θ) and Pr(e | θ) = Prθ(e), in equation (3.1), to define the

parameterized family-with-prior, a distribution over Θ× Events:

Pr(θ, e) = Prprior(θ) · Prθ(e) (3.2)

What this really defines is a prior probability distribution over probability distributions!

Prprior(θ) is a prior distribution over values of θ, each of which defines a distribution Prθ.

3.1.3 Smoothing via Bayes’ Theorem

Smoothing is a traditional term for estimating a distribution from a sequence ~e of indepen-

dent samples of that distibution. An “unsmoothed” estimate sets Pr(e) to be proportional

to #(e), the number of occurrences of e in ~e: in particular it sets Pr(e) = 0 if e happened

not to be sampled. Smoothing is any technique for improving on that naive approach.

The unsmoothed estimate of Pr has the virtue that it maximizes the likelihood Pr(~e).

Smoothing methods guess that some other distribution is nonetheless more plausible, be-

cause of its smoother, more reasonable shape. Such methods essentially make prior as-

sumptions about the distribution class and parameters. If such prior assumptions can be

stated explicitly, they immediately give rise to a principled (though perhaps computation-

ally expensive) smoothing method via Bayes’s Theorem.
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Specifically, suppose one believes a priori that ~e consists of independent samples drawn

from the same distribution in some parameterized family: that is, drawn from Prθ for some

single but unknown parameter vector θ. One also has a prior distribution Prprior(θ). The

goal is to guess the underlying θ.

Bayes’ Theorem helps make such a guess. It tells us how probable each possible θ is

given what we know. The likelihood of a given θ is defined as

Pr(~e | θ) = Prθ(~e) =
n∏
i=1

Prθ(ei) (3.3)

and the posterior probability of θ is then

Pr(θ | ~e) =
Pr(θ) · Pr(~e | θ)

Pr(~e)
∝ Pr(θ) · Pr(~e | θ) = Prprior(θ) · Prθ(~e) (3.4)

where ∝ is read “proportional to.” It is convenient to guess that the underlying distribution

is Prθ̂ where θ̂ maximizes Pr(θ̂ | ~e) (or, more conveniently, its logarithm). This is known as

a maximum a posteriori or semi-Bayesian estimate.2 By equation (3.4), this estimate
2As contrasted to the full-Bayesian estimate Propt, defined by

Propt(e) =

∫
θ

Prθ(e)Pr(θ | ~e)dθ (3.5)

which is superior in principle and sometimes in practice, but which is far harder to compute and which
usually does not itself fall into the parameterized family. For the record, Markov chain Monte Carlo
(MCMC) techniques such as Gibbs sampling can be used to estimate Propt(e).

In general, any parameter of a model can be (a) integrated out in full-Bayesian style, or it can be (b)
estimated by maximizing equation (3.4), (c) estimated by maximizing the learned model’s performance on
held-out data, or (d) set by hand.

Sometimes it is even useful to treat different parameters differently. Suppose we have partitioned θ into
four subvectors ~a,~b,~c, ~d, to be respectively treated in these four ways. We are given a joint prior on θ, and
~d is constant. Given an observed sample ~e of Pr~a,~b,~c,~d(·), define

Pr(~a | ~b,~c, ~d,~e) def
=

Prprior(~a | ~b,~c, ~d) · Pr~a,~b,~c,~d(~e)∫
~a′ Prprior(~a′ | ~b,~c, ~d) · Pr~a′,~b,~c,~d(~e)

(analogous to equation (3.4)) (3.6)

Pr~b,~c,~d(e)
def
=

∫
~a

Pr~a,~b,~c,~d(e) · Pr(~a | ~b,~c, ~d,~e) (analogous to equation (3.5)) (3.7)

Pr(~b,~c, ~d | ~e) def
= Prprior(~b,~c, ~d) · Pr~b,~c,~d(~e) / const (analogous to equation (3.4)) (3.8)

~bopt
def
= argmax

~b

Pr(~b,~c | ~e) (3.9)

~copt
def
= argmax

~c

(some performance measure of Pr~bopt,~c,~d on held-out data) (3.10)

We then estimate
Propt(e)

def
= Pr~bopt,~copt,~d(e) (3.11)

See (MacKay, 1996) for discussion and experiments.
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must score reasonably high on the prior and also do a reasonably good job of predicting

the evidence.

3.1.4 Transformational Smoothing via Bayes’ Theorem

Transformational smoothing is precisely the above strategy when our parameterized

probability distribution Prθ is a transformation model (as defined in §3.2 below). It is

appropriate when our knowledge of the problem domain allows us to identify a plausible

transformation model. (That is, it should be plausible a priori that a parameter value θ

will be chosen according to the model’s prior, and that all our evidence and test data will

then be generated from Prθ.)

Specifying such a model requires us to specify a prior distribution Prprior(θ). Specifying

priors by hand is ordinarily a black art. Fortunately, we will see that transformation models

admit natural priors that implement a form of Occam’s Razor. These priors do nothing

but favor distributions Prθ that are “simple and regular,” so that equation (3.4) comes to

mean “do not posit a distribution that is more complex than necessary to fit the data.”

In the case of syntax, the transformation model—a family of distributions—corresponds

to the space of possible human languages (Universal Grammar). Different values of θ

correspond to particular human grammars, and each grammar θ defines a probabilistic

language Prθ. Given a monolingual sample ~e drawn from Prθ—which is roughly what

most children observe—the learner’s job is to guess θ. The learner’s prior distribution

Prprior(·) is one that expects to encounter grammars with simple regular rules and few

exceptions. (In principle, the prior could also be modified to favor some kinds of rules over

others, if we wished to give the learner substantive biases toward linguistic universals or

near-universals.)

Having guessed that θ = θ̂, the learner can use the probabilistic language Prθ̂ to assess

what other events in Events are probable in the language. This is useful for interpreting

novel inputs, for disambiguating ambiguous inputs, and perhaps for language production.

An instructive application of the Bayesian strategy to bigram smoothing is (MacKay

and Peto, 1995), which is sketched below in §7.1.5 but is worth reading in full.
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3.1.5 Other Forms of Evidence

The above discussion of smoothing suffices for many applications. But with an eye toward

the main application of this thesis, and other applications sketched in §7.2, it is worth

generalizing the notion of “evidence.”

We sometimes have evidence of a particular θ that does not come in the form of a

random sample ~e from Prθ. For example, if the parameters θ correspond to observable

mechanisms, then we might have direct evidence of them. Or perhaps Prθ indirectly

influences someone’s actions, and we observe those actions.

Equation (3.4) can easily deal with such cases. We need only be able to assess how

well θ explains whatever we have observed. Merely replace the likelihood factor Pr(~e | θ)

with Pr(evidence | θ).

As an example that we will actually use in §6.1, suppose we are only able to obtain n

“restricted” samples of Prθ. The ith sample, ei, was chosen randomly not from all of Events,

but only from a restricted subset Ei ⊆ Events. That is, it was chosen from Prθ(· | Ei).

Then replace equation (3.3) with the conditional likelihood

Pr(evidence | θ) =
n∏
i=1

Prθ(ei|Ei) =
n∏
i=1

Prθ(ei)∑
e∈Ei Prθ(e)

(3.12)

3.2 Transformation Models

This short section formally defines transformation models. (Some readers may prefer the

brief matrix presentation in §4.1.) An example is shown in Fig. 1.2 and Fig. 1.3, and the

next section (§3.3) offers some simple intuitions.

3.2.1 Specification of a Transformation Model

A (log-linear) transformation model is specified by a tuple

〈Events,Start,Halt,Features,Arcs〉

where

• Events is the (finite or infinite) set of events whose probabilities are of interest,
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• Start ∈ Events is a distinguished event,

• Halt is a distinguished object not in Events,

• Features = {t1, t2, . . . tk} is an arbitrary set of finite size k, whose elements are known

as features,

• Arcs ⊆ P(Events × (Events ∪ {Halt}) × P(Features)) is a set whose elements are

known as arcs.3

The model may be loosely regarded as a transformation graph. This is a directed

multigraph4 whose edges are labeled and whose vertex set is Events ∪ {Halt}. The edges

are given by Arcs: the triple 〈e, e′, F 〉 ∈ Arcs represents a directed edge from e to e′ labeled

by the feature set F ⊆ Features. Start and Halt are distinguished source and sink nodes.

We ordinarily impose two additional conditions on a transformation model:

• Finite-fanout property. There are only finitely many directed edges from any

vertex e.

• Coaccessibility property. If there is a path from Start to a vertex e, then there

must also be a path from e to Halt. (Equivalently, all accessible vertices of the

multigraph must be co-accessible.)

The next section will assign probabilities to the arcs. The finite-fanout property ensures

that the probabilities are well-defined. The coaccessibility property helps ensure that a

random walk from Start on the transformation graph reaches Halt in finite time with

probability 1.5

3This condition and some of the notation below imply that Arcs is a set. In practice we relax this to a
multiset, i.e., there is no objection to Arcs containing duplicates if convenient. The set notation is merely
more familiar and easier to follow.

4A multigraph is a slight generalization of a graph. Given two vertices e, e′, a graph has at most one
edge from e to e′. A multigraph may have multiple such edges (perhaps labeled differently). Allowing
multiple edges is only a matter of convenience and adds no extra power to the formalism: see footnote 1
on p. 115.

5The coaccessibility property is necessary for random walks to halt with probability 1. In the case
of finite graphs the coaccessibility property also turns out to be sufficient. For infinite graphs it turns
out not to be sufficient or even, in general, computable (see footnote 7 on p. 91), although models for
real applications can generally be shown to have the desired properties. In any case the issue is moot in
practice, since one must use approximation algorithms (especially for infinite graphs) that consider only a
subset of possible paths.

86



3.2.2 The Parameterized Probability Distribution Defined by a Trans-

formation Model

The above transformation model yields a parameterized probability distribution Prθ over

Events, as follows.

The parameter space Θ is simply Rk, where k = |Features|. Given a length-k real

vector θ ∈ Θ, first define Gθ : Arcs → R
+ to assign a positive G-value to every edge in

the transformation graph:

Gθ(〈e, e′, F 〉)
def= exp(

∑
i:ti∈F

θi) > 0 (3.13)

For example, an edge labeled by the feature set F = {t3, t8, t21} would have a G-value of

eθ3+θ8+θ21 . The parameter θi is called the weight of the feature ti. If several edges bear

feature ti, their G-values rise and fall together as θi rises or falls. (The variable G is meant

to suggest conductance, an analogy developed in the variant model of §7.3.4.3. However,

the G-values in the present section do not behave quite like conductances.)

Now define a normalized version Pθ : Arcs → (0, 1] that assigns a transition proba-

bility to each edge, by scaling the G-values such that the edges leaving each vertex have

total probability of 1:

competitors(〈e, e′, F 〉) def= {〈e, e′′, F ′〉 : 〈e, e′′, F ′〉 ∈ Arcs} (3.14)

Pθ(A) def= Gθ(A)/
∑

A′∈competitors(A)

Gθ(A′) (3.15)

(The purpose of the finite-fanout property (§3.2.1) is to ensure that A has only finitely

many competitors, so that the sum in equation (3.15) is finite.)

In other words, the parameter vector θ defines for each vertex e a log-linear probability

distribution Pθ over the arcs leaving e. Features with positive (or negative) weights raise

(or lower) the transition probabilities of the arcs on which they appear.

(Such conditional log-linear distributions (here conditioned on e) also play a central role

in the maximum-entropy framework that has lately become popular in statistical natural

language processing. We will take advantage of the connection in §8.2).
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Next let us extend Pθ over paths in the multigraph.6 A path is a finite-length vector

~A = 〈〈e0, e1, F1〉, 〈e1, e2, F2〉, . . . 〈en, en+1, Fn+1〉〉

where each ei ∈ Events and each Ai
def= 〈ei−1, ei, Fi〉 is in Arcs. The probability of the path

is defined as the product of its component arcs’ probabilities:

Pθ( ~A) def=
n+1∏
i=1

Pθ(Ai) (3.16)

Note that path probabilities are strictly positive. If e0 = Start and en+1 = Halt, then

the path ~A is said to halt at en.

All this notation lets us define the parameterized probability distribution specified by

the model. For θ ∈ Θ and e ∈ Events, we define Prθ(e) to be the total probability of all

paths that halt at e:

Prθ(e)
def=

∑
~A∈{paths that halt at e}

Pθ( ~A′) (3.17)

Some variants are discussed in §7.3.

As usual for a parameterized family of distributions, we will also want a prior distri-

bution Prprior(θ) over the parameters; see §3.5.

3.3 Some Simple Intuitions About Transformation Models

How should one think about transformation models? Here we give the most important

intuitions, in terms of random walks on a graph. (For the reader who prefers other for-

malisms, §7.1 gives connections to other familiar mathematical devices: finite-state ma-

chines, Markov models, neural networks, graphical models, and Bayesian backoff.)

3.3.1 An Interpretation Using Random Walks

Sampling an event from Prθ can be regarded as describing the outcome of a random walk

on the transformation graph. The random walk is a stochastic process that defines a

sequence of events ~e = e0, e1, e2, . . .:
6In this thesis the terms “path” and “walk” (as in “random walk”) are both taken to allow cycles. This

follows the usage of “path” in automata theory (as contrasted with graph theory, where paths are usually
defined to be acyclic walks). Here the two terms are essentially synonymous, although we tend to use
“path” when the representation is a list of edges, and “walk” when it is a list of vertices.
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1. Set i = 0. Let e0 = Start.

2. Randomly choose an arc of the form 〈ei, e′, F 〉—that is, an arc leaving ei. The

probability of choosing a given arc A is Pθ(A) as defined by equation (3.15).

3. If e′ = Halt, then return ei as the sample. Else:

4. Let ei+1 = e′.

5. Increment i and return to step 2.

Note that the probability distribution over arcs at step 2 is a log-linear distribution

determined by θ and the arc features. Prθ(e) may be regarded simply as the probability

that the walk halts “at vertex e,” that is, immediately after generating e.

To put this another way, we may regard Θ as a random variable that indirectly de-

termines the arc probabilities. ~E = 〈E0, E1, . . . EN 〉 is a random variable describing the

random walk; note that the walk’s length N is also a random variable. Then Pr(θ, e) is

the probability that the random variable 〈Θ, EN 〉 has value 〈θ, e〉. (See §3.1.2.) Condition-

alizing this distribution yields Prθ(e)
def= Pr(e | θ) as desired.

(On whether the random walk is guaranteed to halt with probability 1, see §3.2.1,

especially footnote 5.)

3.3.2 Random Walks as Transformational Processes

The model is called a transformation model because of the following interpretation of the

random walk. (See §2.3.5 for the linguistic relevance.) The stochastic process begins at

Start and randomly chooses an event e1. It may halt there and output e1, or it may

randomly decide to transform e1 into some e2. In the latter case, it may halt and output

e2, or it may decide to transform it further into e3, and so forth.

The topology of the model (i.e., Arcs) determines which actions are available when

the current event is ei (namely, halting and various transformations). Meanwhile, the

probabilities of those actions are specified by Pθ, and hence determined by the parameter

vector θ together with the features F associated with each action, according to a log-linear

model.
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Note the Markovian independence assumption here: the final event is produced by a

sequence of independent transformations. The actions available when the current event

is ei, and their probabilities, depend only on ei. They do not otherwise depend on the

previous transformations that produced ei in the first place. (Of course, the transformation

model may be designed so that ei encodes some or all of this history, at the cost of increasing

the size of the event space Events. Recall that this space can be infinite.)

3.4 Solving a Transformation Model

To solve a transformation model means to find the distribution Prθ, given θ. (This is

easier than the separate problem of estimating θ from evidence.)

Even with a finite transformation graph, infinitely many paths may halt at e (thanks

to cycles). Nonetheless, it is straightforward here to solve for their total probability Prθ(e),

given θ.

For any node e, let Iθ(e) denote the flow to e. (The variable I is meant to suggest

current, an analogy developed further in §7.3.4.3.) This is defined to be the total prob-

ability of all paths from Start to e. Equivalently, it is the expected number of times e

is generated during the random walk: that is, the number of times that the walk visits

vertex e.

The following recurrence relates Iθ(e) to the values Iθ(e′), where e′ ranges over the

parents of e in the transformation graph:

Iθ(e) =
∑

A=〈e′,e,F 〉∈Arcs

Iθ(e′) · Pθ(A) + δ(e = Start) (3.18)

where δ(φ) has value 1 if φ is true and 0 otherwise.

Each vertex e in the transformation graph contributes one variable Iθ(e) and one lin-

ear equation that is an instance of equation (3.18). The linear equations may be solved

simultaneously for the Iθ(e) values in cubic time, using standard matrix methods (see §4.1

for details). Then for any arc A = 〈e, e′, F 〉, we can define the flow along A:

Iθ(A) def= Iθ(e) · Pθ(A) (3.19)

which is the expected number of times that the random walk traverses arc A.
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Now we can write

Prθ(e) =
∑

A=〈e,Halt,F 〉∈Arcs

Iθ(A)

= Iθ(e) ·
∑

A=〈e,Halt,F 〉∈Arcs

Pθ(A) (3.20)

This sum is the total flow from e to Halt. It describes how often the random walk reaches

e and then halts immediately via some arc from e to Halt—which is the definition of

Prθ(e), as desired.

For an infinite transformation graph, solving the above recurrence for Prθ(e) may be

harder or even uncomputable, depending on the structure of the model.7 But there are

general techniques for approximate solution, discussed in §4.2 and §8.5.

3.5 Priors For Transformation Models

The previous sections discussed the distribution Prθ when the parameter vector θ is known.

(Recall that θ = 〈θ1, θ2, . . . θk〉 specifies weights for the features t1, t2, . . . tk that appear on

the various arcs.) This section discusses the prior distribution Prprior(θ), which helps us

estimate θ given sparse evidence.

A natural prior for the parameter vector θ of a transformation model is specified in

terms of a variance σ2. We simply say that the weights θ1, θ2, . . . θk are independent

samples from the normal distribution with mean 0 and variance σ2:

Θ ∼ N(0, σ2)×N(0, σ2)× · · · ×N(0, σ2)︸ ︷︷ ︸
k

(3.21)

7Uncomputability is not surprising since the approach is designed to be able to capture lexical redun-
dancy rules. Uszkoreit and Peters (1985) famously showed that context-free grammars augmented with
simple lexical redundancy rules are r.e.-complete. Carpenter (1991) found similar results for categorial and
HPSG grammars.

Here, uncomputability shows up by reduction from the halting problem. Given a deterministic Turing
machine and an input, define Events as the infinite set of 〈state, tape contents〉 pairs of the TM. Each event
has a single child, possibly Halt, that represents the next configuration of the TM. The single child of
Start is the initial configuration 〈initial state, input〉.

The coaccessibility property holds iff the TM halts on this input, so is uncomputable in general.
Now we will see that even if the coaccessibility property is known to hold, it is uncomputable to determine

Prθ. To see this, modify the previous transformation graph so it satisfies the coaccessibility property:
Replace Halt with a new event H, and make Halt the second child of every event. Notice that no arcs
have any features, so both children of an event have probability 1/2. Now Prθ(H) is 2−n iff the TM halts
on this input in n steps. Thus it is uncomputable even to determine whether Prθ(H) is positive.
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or equivalently, that θ is drawn from the multivariate Gaussian with mean ~0 and diagonal

covariance matrix σ2I:

Θ ∼ N(~0, σ2I) (3.22)

That is, for θ ∈ Θ,

Pr(θ) = (2πσ2)−k/2 exp−(
k∑
i=1

θ2
i /2σ

2) (3.23)

ln Pr(θ) = −||θ||2/2σ2 + const (3.24)

This prior says that each weight is expected to be near zero. In other words, each feature

is a priori unlikely to have much influence on the probabilities of the arcs that bear it.

The smaller the variance σ2, the stronger the prior, and the more evidence is necessary

to override the prior’s preference for a given weight to be close to zero. This prevents

overfitting, i.e., choosing strongly positive or negative weights simply to fit one or two

examples. Thus the prior is responsible for feature selection, effectively turning off any

features that do not sufficiently help fit the data.

As a shorthand, we can say that the prior favors sparse parameter vectors θ—those

in which most of the components are zero or at least close to zero. More precisely, it

favors short parameter vectors, since equation (3.23) falls off with exponentially with the

(squared) Euclidean length of the vector θ.

This prior has already been proposed (originally by John Lafferty) for the feature

weights used in conditional maximum-entropy models (Chen and Rosenfeld, 1999). As

already hinted in §3.2.2, our transition probability function Pθ is really a conditional

maximum-entropy model. We will take advantage of this connection later to obtain an

EM algorithm for parameter estimation (§8.2.1).

We will assume this prior unless otherwise stated. Some other possible priors are offered

in §7.3.2.
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3.6 Per-Event Features and Output Features

3.6.1 Per-Event Features

A particularly useful architecture for a transformation model includes per-event fea-

tures. In a model with per-event features, for every e ∈ Events there is an associated

feature te ∈ Features with weight θe. This feature appears on all arcs that lead to e.

Formally, if 〈e′, e, F 〉 ∈ Arcs, then te ∈ F .

Such a model may include other features as well. But while the other features typically

capture generalizations, the per-event features serve to capture exceptions. Increasing θe by

± ln 2 serves, roughly, to double or halve Pr(e), respectively.8 (See §2.3.6 for motivation.)

However, notice that increasing θe by ln 2 will roughly double not just Pr(e) but I(e)

(defined in §3.4 above as the “flow” to e). The effect of this extra flow is not limited to e.

It is partitioned among e’s outgoing arcs, not just its Halt arc, and thereby flows through

to e’s descendants in the transformation graph. We will see shortly why this is useful.

(The increase in the probabilities of this complex of events comes at the expense of e’s

parents and siblings in the graph, and their descendants.)

If a transformation model has per-event features, it has more parameters than data,

and can fit nearly any probability distribution.9 Indeed, it can do so in multiple ways.

Multiple θ vectors will exist such that Prθ is the maximum likelihood distribution given

the observed data. So will other θ vectors such that Prθ is a smoothed distribution. As

always, the prior chooses among all these θ vectors, favoring those that are “sparse.”

In essence, the per-event features make the model sufficiently tunable that we can

capture any idiosyncrasies that are sufficiently well-observed that we need to capture them.

It is as if a little knob θe is attached to each event e so that we can match its predicted
8The actual effect may be less, since the probabilities of arcs to e (especially if large) will not quite

double or halve. The numerator of equation (3.15) does double or halve for each such arc A, but so
does one summand in the denominator. On the other hand, this consideration can be outweighed by the
feedback if e is one of its own descendants. Such feedback can sometimes magnify the effect of θe enough
that increasing it by ± ln 2 more than doubles or halves Pr(e).

9For this reason it is usually not necessary to specialize further to per-arc features. Having a separate
feature on every arc would really introduce far too many parameters for comfort, even though it is possible
to construct artificial data that motivate such targeting. (In the lexicon smoothing application, per-arc
features would allow a language θ to make a particular transformation target one specific lexical entry.)

93



probability to its observed probability. But a crucial feature of transformation models—

unlike, say, multinomial models—is that tuning a single event through its knob will also

tune the correlates of that event. (That is, the knobs at the event’s children automatically

turn as well, in proportion to the probability of the parent-child arcs. This turns the

grandchildren’s knobs, and so forth.)

While those correlates could then be “untuned” by turning the children’s knobs in the

opposite direction, this has a greater prior cost (imagine that all knobs have friction) and

so would require additional evidence. The default is therefore to preserve the correlations.

(In the terms of §2.3.6, we can list any event, and regular processes will derive new

events from the listed one.)

So any correlations captured by more widespread features remain important even in a

model with per-event features. If a feature t0 appears on many arcs, then giving it a high

weight θ0 captures the fact that the parent and child for each such arc tend to covary.

If something (even a per-event weight) tunes the parent upward, then the corresponding

child is a priori likely to follow at a rate determined by θ0. That is, it is a priori unlikely

that a given child will itself be tuned far away from following its parent, since the prior

says θchild ∼ N(0, σ2).

The qualitative effects of per-event features are further examined in §3.7.2 and §3.8.

3.6.2 Output Features

Output features are a generalization of per-event features. They can tune the probabil-

ities of classes of events, not just single events.

A particular output feature appears on a transformational arc from e to e′ just if the

“output” of the transformation, namely e′, has some particular property.

3.7 A Sample Application

Before turning to the detailed behavior and manipulation of transformation models, it

may help to sketch the model of the lexicon that will be used in the thesis. More sample

applications are sketched in §7.2, which the reader is free to glance at now.
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3.7.1 What Applications Are Appropriate?

What do the sample applications below and in §7.2 all have in common? In each domain,

events that are “related” in certain ways tend to have positively covarying probabilities.

By choosing the edges and features of the transformation graph, a domain expert can

describe possible patterns of relations among the events. Then feature weights θ can be

estimated from actual data. By assigning the arcs large or small probabilities, these weights

indicate which kinds of related events really do tend to covary in the data—i.e., which of

the possible relations actually do predict high covariance.

The correlations have a causal interpretation, which is why the transformation graph

has directed edges (as in Bayesian networks: see §7.1.4). Suppose we fix just the weights

on the arcs to and from event e, but allow other weights to vary randomly according to the

prior. Then the variance in Prθ(e) is explained by the total variance at its parents (not its

children). A consequence is that for e to be probable under a given choice of θ, all of its

correlated children—but perhaps only one of its correlated parents—need be probable. In

other words, only one cause of an event need be present for the event to occur and trigger

all its effects.

§1.2.3 argued that transformation models are more appropriate than other kinds of

models for capturing this kind of covariance.

It is worth remarking that transformation models are designed to capture only positive

correlations, not negative ones. (Negative weights push covariance toward 0, not −∞,

since they push arc probabilities toward 0.) Of course, since probabilities must sum to

1, it is true that the covariance between unrelated events will be slighly negative. But

these models cannot capture any more negative covariance than that.10 They are suited

to situations where events cause or transform into one another, not to “winner-take-all”

situations where events inhibit one another (i.e., where a high probability for event e

implies an especially low probability for event e′). Examples of the latter are mentioned

in §7.2.2 and in footnote 18 on p. 168.
10Actually this is not quite true. Siblings compete for a share of the probability arriving at their common

parent. If the parent’s probability is relatively invariant with respect to θ, the siblings therefore do covary
negatively over different values of θ, inded more negatively than pairs of unrelated events. But if the
parent’s probability itself varies widely, as is usual, then the effect is outweighed by the siblings’ positive
covariance with the parent and hence with one another. See also §3.9.
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3.7.2 Syntactic Lexicons

The motivating example of this thesis is the syntactic lexicon of a language. (See Ta-

ble 1.4 and Chapter 2.) The events are possible lexical entries, over which Prθ specifies a

probability distribution.

Put another way, Prθ specifies the lexicon of a particular language. It says which of

the universally possible entries are common in the language and which ones are extremely

unlikely (i.e., probably ungrammatical, though available in a pinch). Different parameters

θ yield different languages Prθ. The rest of this section explains how.

3.7.2.1 The Lexicon’s Transformation Graph

In the transformation model Prθ, the arcs are instances of linguistic transformations that

might relate lexical entries for the same word. Whether they do relate the entries depends

on whether θ assigns them high probabilities. A random walk in the transformation graph

chooses an initial version of a lexical entry by following an arc from Start, and passes

this initial form through a path of zero or more randomly chosen transformations (arcs)

before choosing to halt. Each transformation arc’s probability depends on θ together with

the arc’s features.

Broadly speaking, arcs have similar features if they serve to apply similar linguistic

transformations in similar contexts. A transformation arc’s features describe salient prop-

erties of the transformation, such as the type of transformation (PP adjunction) and the

syntactic context in which it is being applied (at the right edge of an intransitive S). Arcs

with similar features are a priori likely to have similar probabilities.11

To capture the data at the granularity of a linguistic theory, a complicated feature

space (including disjunctive features) would probably be necessary, in order to ensure

that any language’s clear-cut transformations are linearly separable from its clear-cut non-

transformations. Without linear separability in the feature space, no log-linear model can
11Indeed, for arcs to have similar probabilities, it is typically enough for them to share their “broad”

features. Features that are more specific (selective) tend to have weights close to zero. This is because
they appear on few arcs. Unless there is a great deal of relevant evidence ~e compared to the strength of
the prior (1/σ2), then even the few such features that are genuinely predictive are unlikely to have enough
explanatory power to overcome the prior of §3.5. This is why we say that the prior implicitly does feature
selection.
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capture this distinction exactly—although it may do a passable job.

The model also has per-event features (§3.6.1), which by definition are specific to single

lexical entries, headwords and all. But otherwise, the arcs relating lexical entries for word

w have exactly the same features as the arcs relating the corresponding lexical entries

for word w′. That is, transformations on a lexical entry are not sensitive to the entry’s

headword. (§4.5.3 will use this fact to speed up parameter estimation.)

(See §6.4 for more details of the model, in particular, the arcs from Start and to Halt

and their features.)

3.7.2.2 How Per-Event Features “List” Lexical Entries

It is the per-event features that allow words to differ from one another. They allow

individual entries to be tuned to their observed frequencies, to the extent that these can be

determined from the data. (The prior discourages overfitting if they cannot be determined

well.)

Stipulating that a particular lexical entry’s per-event weight is strongly positive has the

effect of “listing” that entry as having a high probability (§2.3.6). Stipulating a strongly

negative weight “delists” the entry, driving its probability close to zero.

As motivated in §2.3.6 and explained in §3.6.1, these effects are multiplicative, so that

it is easier to idiosyncratically (de)list an entry that already has non-negligible probability.

What makes the model attractive is that if an entry is listed (or delisted), transforma-

tions continue to apply to it at the usual rate. So as discussed in §3.6.1, listing an entry

has an effect that flows through the graph: it also increases the probabilities of derived

entries for the same word. The prior makes it relatively cheap to make all these increases

at once, since they are effected simultaneously by increasing a single weight.

For example, given enough evidence to list word w as a transitive verb, the prior

encourages us to also list derived entries for word w, such as passive and extracted forms,

with appropriate probabilities. The optimal lexicon (equation (3.4)) will do so unless the

data strongly suggest other probabilities for the derived entries.

θ specifies the lexicon by defining which transformations, listings, and delistings are

common in the language. If θ itself is a priori likely (§3.5), then Prθ is by definition
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a likely language. Assuming the prior of §3.5, this is so iff θ uses relatively few large

weights (including per-event weights). The language’s lexicon can therefore be described

by stipulating a small number of entries and transformational principles.

3.7.2.3 How Multiplicative Variation Encourages Transformations

§2.3.6 sketched why transformations were encouraged by our multiplicative cost model of

listedness, in which increasing the per-event weight θe by ln c roughly multiplies Pr(e) by

c. Let us now work out an example in the lexicon smoothing domain.

When the lexical entry S→ NP w is listed for some word w (an intransitive verb), so

is the entry S→ NP w PP. Suppose that that without listing, their probabilities given w

are (0.2, 0.1).

In a stochastic lexicon where the second entry is entirely derived from the first by PP-

adjunction,12 all 0.3 of the probability initially flows into the first entry. 0.2 of this flow

continues along the arc to Halt, and the remaining 0.1 flows to the second frame and then

to Halt. (There may also be additional flow to the first frame that ends up elsewhere.)

The two entries tend to be listed together. When w is an (intransitive) verb, they

both have higher probability given w—say 50% higher for w = rise, i.e., (0.3, 0.15). In

a stochastic lexicon Prθ with the PP-adjunction transformation, it is only necessary to list

the first entry, S→ NP rise. Raising its per-event feature by about ln 1.5 will increase

the flow to it from 0.3 to 0.45, thereby increasing the probabilities of both frames. In

a competing lexicon Prθ′ that has no such transformation, the per-event features of both

events must be raised by ln 1.5.

The extra per-event weight specified by θ′ reduces the second lexicon’s log-probability

(by (ln 1.5)2/2σ2). The first lexicon’s log-probability is also somewhat reduced by the need

for θ to specify extra weights of its own to encode the transformation; but the benefit of

these weights is amortized over all the intransitive verbs w. If there are enough such verbs,

the prior favors the first, transformational lexicon, Prθ.

Under an additive cost model of listedness, the transformational lexicon would have

no such advantage. The first lexicon adds 0.15 to the first entry and then shifts some
12The opposite transformation (PP-deletion) is equally plausible in this example. When more entries are

involved, it is possible to detect causality and so distinguish the two transformations: see §3.7.1.
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of it by transformation; the second adds 0.1 and 0.05 to the two entries separately, for

the same total change. Under an additive cost model these would be equally cheap. The

first lexicon would therefore be disfavored because of the extra prior cost of specifying the

transformation. It is only under the multiplicative cost model that scaling the total flow

of 0.3 to 0.45, “all at once,” constitutes an economy of scale that lets the first lexicon win.

3.7.2.4 Per-Event Features vs. Features on Start Arcs

One might be tempted to entertain an alternative scheme for listing lexical entries. Instead

of placing the special per-event feature te on all arcs to event e, one might consider placing

it only on the arc from Start to e.

Then different words would select for different initial frames, which would then be

transformed at a fixed rate regardless of headword. To list or delist a derivable entry like

S→ NP rise PP, the learner would have to manipulate just the probability of starting

with that entry (the arc from Start) rather than the probability of deriving it (the arc

from S→ NP rise). The start probabilities would be the only locus of variation.

There are reasons to avoid this alternative. Suppose the entry e is frequently derived

but has a start probability close to zero. Then under this scheme, only a drastic increase

in θe would have much effect on Pr(e), and even a drastic decrease in θe could reduce Pr(e)

by at most the start probability. Yet in practice, the probability of such derived entries

seems to vary rather freely. To consider two canonical examples:

• An entry of the form S→ NP w NP PP is presumably derived from S→ NP w NP.

But the relative probabilities of these two entries vary substantially among verbs

w, according to whether w provides a useful role for a PP argument. (For example,

S→ NP w NP PP has increased probability for verbs of movement such as move, push

or bring.)

• Passive-verb entries also presumably fall into this category, as we would like to regard

each as derived from an active entry for the same verb. But a few such entries are

delisted: let does not appear in the passive (§2.3.1).
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Merely adjusting the start probabilities cannot delist passive let (without also delist-

ing active let), since its start probability is already close to zero. There is no way

to block or weaken the transformation that yields most of passive let’s probability.

Both examples would militate against positing strong transformations in the first place.

Derived entries would be permitted little variability under this alternative scheme, so to

explain the variability in the example entries above, we would have to abandon the idea

that they are usually derived. Per-event features seem preferable.

Another alternative approach would be to place the feature te only on the arc from e

to Halt. Raising the weight of te would then increase Pr(e). However, it would do so at

the expense of e’s descendants in the transformation graph: listing e would tend to delist

its children. This anti-correlation seems to be the opposite of the empirical fact (§2.4.2.1),

which is that transformationally related lexical entries are positively correlated.

3.7.2.5 How Output Features Allow Structure Preservation

Structure Preservation (mentioned in §2.3.6) is the old observation that transformations

in a language tend to produce structures, or types of structures, that are already com-

mon in that language for other reasons. This suggests a conspiracy among one or more

transformations and listings to produce the same outputs.

How to specify the model so that the prior encourages such conspiracies? §2.3.6 noted

that if the model has per-event features, a transformation that outputs the exact entry e′

necessarily makes it cheaper to list e′. This might explain some conspiracies between trans-

formation and listing. But it cannot explain why two English transformations discussed in

§2.4.3—passivization and PP-adjunction—conspire with each other, both producing frames

that contain [PP by NP ].

The observation of §2.3.6 is also incomplete for another reason. Structure Preservation

in practice often involves conspiracies of multiple mechanisms to produce outputs that are

merely similar, not identical. For example, the lexically specific English “tough-movement”

transformation turns It is cruel to eat babies into Babies are cruel to eat. The resulting

frame for cruel is syntactically the same as the frame for tender in Babies are tender to

eat, but the two lexical entries are not exactly the same. They have different headwords
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and also different semantics: the latter is semantically related to Babies are tender, rather

than to It is tender to eat babies.

Output features provide a reasonable mechanism for modeling these conspiracies. In

English, a transformation’s probability is increased if it outputs an entry that contains [PP

by NP ], or an entry of the form Sstem → NP be S\NP/NP.13

3.8 Qualitative Behavior of Transformational Smoothing

This section carefully examines a simple transformation model, in order to demonstrate

some of the properties, virtues, and vices of the approach:

• The transformation graph ensures that related events have related probabilities.

• Feature weights far from 0 correspond to stipulated generalizations or exceptions.

• When we estimate those feature weights in a semi-Bayesian way (§3.1.3), our prior

(§3.5) enforces Occam’s Razor: namely, stipulate as little as necessary to explain the

observed probabilities.

• If those “observed” probabilities are not known precisely because of sparse evidence,

they too are estimated. They are smoothed away from the maximum-likelihood

model toward a model that has as little stipulation as possible.

• In the example, the smoothing backs off from the observed (maximum-likelihood)

probability of event e by considering events related to e. More precisely, if e and e′ are

transformationally related events, then the smoothing adjusts the ratio Pr(e)/Pr(e′)

toward the corresponding ratio for other pairs of events related by the same trans-

formation. The scheme resembles traditional interpolated backoff, but

– The backoff estimate is more like a type-weighted than a token-weighted average

of the related ratios. (In fact it is a principled middle road.)
13Of course, these output features do not count for much by themselves. The transformation’s probability

remains negligible unless it also has various other features. But multiple features that encourage the
transformation cooperate multiplicatively (equation (3.13)), including per-event features that encourage
listedness of the output.
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Figure 3.1: A canonical transformation model on the 2k events (A1, B1, . . . Ak, Bk). The
transformations from Start to Ai or Bi all have independent features, but the transfor-
mations from Ai to Bi all have the same feature.

– It can be arranged that if the related ratios vary widely, then the backoff esti-

mate is less influential. Intuitively, such a backoff estimate is unreliable because

the related events do not form a natural class.14

• Competing transformations are smoothed to have similar probabilities, absent suf-

ficient evidence to differentiate them. This avoids overfitting and winner-take-all

behavior.

• Optimizing the parameters unfortunately faces a pervasive problem of local maxima.

3.8.1 A Canonical Example

A sample transformation model is shown in Fig. 3.1. Recall that the vertices of this graph

correspond to events. Not all features are shown on the arcs.

For the sake of the discussion, assume that if the feature weights θ0, . . . θ2k are 0, then

the arcs shown have small probabilities, so the events A1, . . . Ak, B1, . . . Bk are all unlikely.

(In other words, it is unnecessary to drive a weight negative to effectively “turn off” its
14As usual, the backoff estimate is also less influential when smoothing a well-observed ratio.
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arc.) This will be the case if each of the arcs we care about has additional weights that

are strongly negative, or has competitors with strongly positive weights.

3.8.2 The Connection to Lexicon Smoothing

The example is a thinly disguised simplification of the lexicon-smoothing application.

Imagine that each i = 1, 2, . . . k represents a different word. Ai is a lexical entry licensing

the use of that word as an transitive verb, S→ NP i NP, and Bi is a related entry licensing

its use as an intransitive one, S→ NP i. We have to learn the probability distribution over

these 2k lexical entries.

The model would be uninteresting except for the Ai-to-Bi arcs. These encode a possible

transformation that detransitivizes a verb. The model is designed so that the transforma-

tion applies at the same (possibly negligible) rate to all the Ai. The rate depends on θ0

and might be negligible; part of our job is to learn it.

(Note: it is a pedagogical simplification for the transformation to operate at the same

rate always. In a real model, the Bi entries would have per-event features that could vary

the rate for different values of i. See §3.8.5 for discussion.)

3.8.3 The Effect of the Transformation Arcs

To the extent that θ0 is large, evidence that increases the estimate of Pr(Ai) implies a

proportionate increase in the estimate of Pr(Bi). Why? Because if there is a good chance

that the random walk will reach Ai and halt, then there is a proportionately good chance

(depending on θ0) that it will reach Ai and continue to Bi and halt. Any new evidence

about Ai “flows through” the graph to affect Bi (and nodes beyond).

To formalize this argument in the terms of §3.4, Prθ(Bi) is a linear function of Prθ(Ai),

because the flow to Bi, Iθ(Bi), is a linear function of Iθ(Ai):

Prθ(Bi) = const · Iθ(Bi) (by equation (3.20))

= const · (const + const · Iθ(Ai)) (by equation (3.18))

= const · (const + const · (Prθ(Ai)/const)) (by equation (3.20))

= a linear function of Prθ(Ai)
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Thus, raising θ5 will not only make Prθ(A3) increase but will also make Prθ(B3) increase

proportionately.15

The strength of this effect increases with θ0. Conversely, our estimate of θ0 will increase

with the observed strength of the effect.

3.8.4 Fitting Regular Patterns

Suppose the evidence sample ~e includes many examples of both “A” and “B” events, and

that for each i, the number of observations of Bi is about half the number of observations

of Ai. Qualitatively speaking, there are at least two ways to fit the parameter vector θ so

that these data look likely, i.e., so that Pr(~e | θ) is large:

• Coincidence: Raise all the weights θ1, θ2, . . . θ2k so that all the Ai and Bi events

become probable.

This approach independently stipulates that each of the events is probable.

• Correlation: Raise just the weights θ1, θ3, . . . θ2k−1, so that the events Ai become

probable. Then raise the single weight θ0 so that each token of Ai has a good

chance, say 1
3 , of transforming into a token of Bi. This accounts for the 2-to-1 ratio

of observations: for every 3 tokens of Ai, 2 halt at Ai and one transforms into Bi

before halting.

This approach independently stipulates that each A event is probable, and then

stipulates a single additional rule transforming a fraction of A events into B events.

The first approach requires raising 2k parameters above zero. The second approach

requires raising only k + 1 parameters. This means that the natural prior of §3.5 tends

to favor the latter: it is a priori more probable to have only a small number of non-zero

parameters. In other words, the prior prefers the approach with less stipulation.

When can the model discover the regular transformation required, which turns 1
3 of

Ai’s into Bi’s for each i? It is the model’s topology that encodes the possibility of such a

transformation: Arcs specifies that the A-to-B arcs exist and have a common feature t0.
15Unless raising θ5 substantially changes the constants in the linear function. This could happen if feature

t5 also appears on any of the arcs leaving A3 or B3.
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Meanwhile, the model’s prior is biased toward assuming that some regular transformation,

rather than some large set of features, carries most of the explanatory burden of the

grammar.

Of course, while the model’s structure is therefore amenable to this transformation

a priori, it does not by itself choose a transformation rate of 1
3 (rather than 10−9, say).

That depends on our data-driven estimate of θ and especially θ0. The evidence sample ~e

favors θ0 > 0 to the extent that ~e supports a correlation between the Pr(Ai) and Pr(Bi)

values—for example, if several pairs (Ai, Bi) are sufficiently well observed to establish

their probabilities, and these pairs demonstrate that Pr(Bi) tends to increase linearly with

Pr(Ai). The parameters can fit these Pr(Bi) values via either separate stipulation or a

common transformation, and the prior favors the latter approach.

3.8.5 Fitting Exceptions

A smaller set of parameters is easier to estimate accurately from a sparse sample of ev-

idence. In the above example, the second, transformational account requires only k + 1

non-zero parameters rather than 2k.

Formally, however, the model has fully 2k + 1 degrees of freedom (θ0, . . . θ2k). Indeed,

there are enough parameters in this case to model any distribution with arbitrary accu-

racy.16 The prior merely discourages the use of the extra parameters by favoring values

close to 0. The smaller σ2, the greater the burden of evidence necessary to justify a weight

of given magnitude. Thus, some parts of the distribution space are a priori less likely than

others.

The additional degrees of freedom are still available, and may come into play in order

to fit exceptions. If θ is chosen as described in the previous section, with θ0 set so that the

probability of a transformation is about 1
3 , then Pr(Bi) = 1

2Pr(Ai) for every i = 1, 2, . . . k.

But what if this ratio is not exactly the same for all i? If the evidence indicates that

Pr(B7) > 1
2Pr(A7), say, then other weights must be adjusted to arrange this result:

16That is, {Prθ : θ ∈ Θ} is dense in the space of all distributions over {A1, B1, A2, . . .}. In fact, something
even stronger holds: any distribution can be exactly modeled so long as it assigns probability > 0 to every
event. (To arrange Prθ(B7) = 0 we would need at least one −∞ weight on every path of the form Start,
. . .B7, Halt.)
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• One could increase θ14 above 0. This stipulates that B7 is probable, just as would

be necessary if there were no A7-to-B7 arc, or if its probability were low. However,

since that arc is already delivering a good deal of probability mass to B7, θ14 need

only be raised enough to pick up the slack.

The arc-specific weight θ14 only needs to be large if Pr(B7) is well above expectation.

Its magnitude corresponds to the degree to which B7 is exceptional or “listed” (in

the sense of §2.3.6). The prior functions to discourage “listedness.”

• Alternatively, one could increase the weight of some feature other than t0 on the

A7-to-B7 arc (or some other arc to B7). This raises the probability of that arc. As a

side effect, it also raises the probability of other arcs—if any—on which that feature

occurs, and lowers the probability of their competitors. Whether these changes help

or harm the overall likelihood of the evidence, Pr(~e | θ), depends on whether the

feature is indeed broadly predictive of “useful” transformations.

Using per-event features (§3.6.1) allows a transformation model to handle both “pos-

itive” and “negative” exceptions (that is, “listing” and “delisting”) quite gracefully. In

the present example model, as discussed in §3.7.2.4, “negative” exceptions are harder to

handle. This is because t14 does not appear on all arcs to B7 and so is not a true per-event

feature for B7. We cannot lower Pr(B7) below 1
2Pr(A7) simply by manipulating θ14. B7

already gets very little probability from Start, and making θ14 negative cannot reduce

this probability below zero. The only solution in the example model is along the lines of

the latter strategy above: decrease the weight of some other feature that is peculiar to

the A7-to-B7 arc. (Or one could simply reduce θ0 and treat all the other Bi as positive

exceptions, but this would greatly reduce the prior probability of θ!)

3.8.6 The Smoothing Effect

The discussion so far has assumed that the exact probability of each Ai and each Bi is

known from the evidence, and the weights must be adjusted to model them exactly.

But of course, the evidence sample is generally too small to get good direct estimates

of event probabilities. Indeed, the point of transformational smoothing is to get better
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estimates!

As in the previous section, suppose there is evidence of an exception. We have estimated

θ such that Prθ(Bi) = 1
2Prθ(Ai) for all i, but B7 was observed more than half as often as

A7 in the data: #(B7) > 1
2#(A7).

The question for the model is whether this discrepancy at (A7, B7) is a real exception

or can be written off to the vagaries of sampling. If it is real, then we should adopt one

of the solutions of the previous section, and adjust the weight vector θ so as to exactly fit

the observed frequencies of A7 and B7. But if it is a sampling error, we should not fit the

observed frequencies, but rather smooth them, supposing that for the true distribution,

Prθ(B7) really does equal 1
2Prθ(A7).

Which behavior is selected by our estimation procedure? Fitting the observations

exactly would reduce the prior Prprior(θ) because it recruits additional weights. On the

other hand, ignoring the observations would reduce the likelihood Pr(~e | θ). The maximum-

posterior estimate selects θ to maximize the product of both quantities (equation (3.4)),

so it strikes a compromise. In other words, it smooths the observed count ratio somewhat

toward the general 2-to-1 ratio.

How much smoothing happens depends—as always for a (semi-)Bayesian estimate—on

the relative strengths of prior and likelihood. In particular, small counts are smoothed

more, since a failure to fit them exactly makes less difference to the likelihood of the data.

Thus, suppose A7 and B7 were observed just once each in a sample of 40 events.

The maximum-likelihood estimates of their probability would be 1
40 and 1

40 . But since

those estimates are supported by scant evidence, transformational smoothing would guess

probabilities closer to 1
30 and 1

60 (totalling 2
40 , and in 2-to-1-ratio). Note the abductive

inference here: transformational smoothing guesses that A7 was more likely than in the

sample, because this helps explain why we observed B7. Smoothing the probabilities in

this way does not badly reduce Pr(~e | θ) since 1
30 ·

1
60 is not much less than 1

40 ·
1
40 .

By contrast, if A7 and B7 were observed 10 times each in a sample of 400 events, then

transformational smoothing would put their probabilities closer to 1
40 and 1

40 , since there

is more evidence here to motivate an exception. It is simply unlikely that a true 2-to-1

ratio would yield equal counts as large as 10 and 10: ( 1
30 ·

1
60)10 is several times less than
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( 1
40 ·

1
40)10.

Globally, the degree of smoothing can be controlled by setting σ2. It should be small

for strong smoothing (i.e., we expect weights to be small, so there are heavy penalties for

modeling exceptions by stipulating large weights).

3.8.7 Type-Weighted vs. Token-Weighted Smoothing

The above section assumed that θ0 is such that the probability of Ai-to-Bi arcs is 1
3 , so that

Prθ(Bi) = 1
2Prθ(Ai) by default. But of course θ0 is not handed down from the heavens

to yield an arc probability of 1
3 . Together with the other weights, it is chosen to allow

a reasonable fit to all the observed Ai and Bi counts. In other words, θ0 is chosen by

combining the various (#(Ai),#(Bi)) count pairs.

How much influence does (#(A7),#(B7)) have on this combined estimate? The higher

these counts, the more we trust them and their ratio as accurate—up to a point of dimin-

ishing returns!—so the more important it is for θ0 to fit them well. If these counts are

small enough to be unreliable, then they have less influence on θ0.

This is an attractive compromise between an weighted average of the (#(Ai),#(Bi))

data, where i with higher counts have proportionately more influence, and an unweighted

average, where all i are treated equally. Essentially the same compromise was used by

the Bayesian model of backoff proposed by MacKay and Peto (1995). We defer further

discussion to §7.1.5, which will describe that related model and the connection to the

present canonical example.

3.8.8 Effect of the Prior on Competing Arcs

A natural question about Fig. 3.1 concerns the Start node. Each of the 2k competing

arcs leaving Start has its own single weight, which does not appear anywhere else in the

transformation graph. In this canonical situation, does the prior prefer the competing arcs

to have similar probabilities or different probabilities?

The latter case would be unfortunate from a practical standpoint:17 the prior would
17Of course, such a prior (which is not used in this thesis) could still be appropriate from a modeling

standpoint; this depends on the problem domain. In the linguistic application of §3.7.2, where the arcs
from a node correspond to the transformations on a lexical entry, this would impose an a priori bias toward
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be “U”-shaped and multimodal, further complicating optimization. Gradient ascent, for

example, would function as a winner-take-all competition in which one arc from Start

would seize early advantage and suck most of the probability from its competitors. This

would make the result of optimization even more sensitive to the starting point.

Fortunately, the prior we have chosen (§3.5) prefers the probabilities on the arcs from

Start to be as similar as possible. Suppose ~p = 〈p1, . . . p2k〉 is a probability distribution

over the 2k arcs. Put θi = ln pi. From equation (3.13) and equation (3.15), ~p must have

arisen from the weight vector ~θ − d for some d ∈ R, where (~θ − d)i
def= θi − d = ln pi − d.

Let n, µ and v respectively denote the length (= 2k), mean, and variance (with de-

nominator n) of ~θ. (Or equivalently, of ~θ − d for any d.)

The prior probability of ~θ − d is

(2πσ2)−n/2 exp−
∑
i

(θi − d)2/2σ2 (3.25)

Integrating this over all d ∈ R, we obtain the total prior probability of ~p, which works out

to18

n−1/2(2πσ2)−(n−1)/2 exp−nv/2σ2 (3.26)

In practice we will not consider this integral, since we only have enough compute power

to do semi-Bayesian smoothing (see §3.1.3). The semi-Bayesian or maximum a posteriori

approach seeks the single weight vector with maximum posterior probability. To this end,

for any ~p we need only consider the corresponding ~θ−d with the greatest prior probability,

since a different value of d would lower the prior but leave ~p—and hence the likelihood19—

unchanged. Maximizing equation (3.25) over all d ∈ R (rather than integrating), we set

d = µ and obtain

(2πσ2)−n/2 exp−nv/2σ2 (3.27)

obligatory or nearly obligatory transformations (and halts), including the “transformation” of Start that
chooses an initial lexical entry. More concretely, it would smooth rarely observed lexical entries toward
probability 0, reallocating their observations to the most common entries. By contrast, we will now see
that the prior of §3.5 reallocates observations in exactly the reverse way, from the most-observed to the
least-observed events.

18The trick is to rewrite the exponential term of equation (3.25) as

exp−v/(2σ2/n) · exp−(d− µ)2/(2σ2/n)

The first factor is independent of d, and the integral of the second factor is
√

2πσ2/n.
19The likelihood of the data depends on the weights θ1, . . . θ2k through ~p alone, since by assumption none

of the weights are used on other arcs.
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Both equation (3.26) and equation (3.27) fall off exponentially as v increases. No

other term in these equations depends on ~p. Thus, regardless of whether we integrate or

maximize over the free variable d, the prior always pushes us to adjust ~p so as to reduce v

as much as possible. Remember that v is the variance of the log-probabilities on the arcs.

It is small just if the arc probabilities ~p cluster tightly around their geometric mean.

More precisely, the prior falls off exponentially with nv/2σ2. Thus, as usual, the prior’s

preferences are strongest when σ2 is small. The appearance of nv rather than v ensures

that a given outlier arc offends the prior equally no matter how many competitors it has.

(v is the average squared difference of the log-probabilities from their mean, which would

obscure the outlier for large n, but nv is the total squared deviation.)

For some applications, one might have a prior expectation that the probabilities of

competing arcs will obey Zipf’s Law. This can actually be arranged by a simple change to

the prior: see §7.3.3.

3.9 Variation: Perturbed Transformation Models

Per-event features (§3.6.1) are not the only way to tune the probabilities of individual

events. An alternative is to perturb the event probabilities directly. In fact, this is the

strategy used in the experiments of Chapter 6.

3.9.1 Specifying the Perturbed Model

A perturbed transformation model is a transformation model with some additional

parameters. For each event e that we wish to be tunable, there is an additional parameter

πe, known as a perturbation.

The value expπe serves as a flow multiplier: the idea is that the outflow of vertex e

does not equal its inflow (compare §7.3.4.3), but rather equals its inflow times expπe. In

the linear programming community, this framework is known as generalized network

flow.20

20The closest version of the problem is the single-source generalized shortest-paths problem, also known
as the “restricted generalized uncapacitated transshipment problem” (Oldham, 1999). Given ~π, a legal
flow is one that respects the multipliers (except at the source and sink), and the classical problem is
to find a legal flow that minimizes

∑
A cost(A) · flow(A). A Viterbi approximation to the E step of
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The perturbation πe is a replacement for the per-event weight θe. Their behavior is

extremely similar:

• Both parameters are usually given a Gaussian prior of the form N(0, σ2).

• Either parameter can be used to “list” or “delist” the event e, in the sense of §2.3.6

and §3.7.2.2.

• Transformations apply in the ordinary way to listed events, regardless of whether it

was θe or πe that accomplished the listing: so the effect of listing e “flows through”

the graph to affect e’s descendants.

• Either parameter has a multiplicative effect on Pr(e). Increasing πe or θe by ln 2

roughly doubles Pr(e); decreasing πe or θe by ln 2 roughly halves it.

πe may be regarded as a slack variable. Without it, Pr(e) is constrained to be exactly

a linear combination of the probabilities of e’s parents. The coefficients of this linear

combination are determined by θ; they are not specific to e unless θ includes per-event

features. πe captures the difference between the observed value of Pr(e) and its value as

predicted from θ. The prior says that this difference is probably small, which helps us

guess either Pr(e) and θ, or both, in case of uncertainty.

3.9.2 Solving the Perturbed Model

Given values for the θ and π parameters, the perturbed transformation model defines a

probability distribution Prθ,π(·) over Events. The new π parameters affect this distribution

by requiring the outflow of each event vertex—both to other events and to Halt—to

deviate in a particular way from its inflow. When solving for Prθ,π as in §3.4, we replace

the recurrence relation of equation (3.18) with the following, where Iθ,π represents inflow:

Iθ,π(e) =
∑

A=〈e′,e,F 〉∈Arcs

Iθ,π(e′) · expπe′ · Pθ(A) + δ(e = Start) (3.28)

Expectation-Maximization would require a non-linear variant: Let the cost of the arc from e to Halt be
the number of observations of e, and all other arcs have cost zero. Then find a legal flow that minimizes∑
A cost(A) · (− ln flow(A)), under the constraint that the total flow into the sink is 1. Things are more

complicated if ~π is unknown and must be estimated.

111



This “artificially” increases the outflow from e by a factor of exp pie over its inflow. That

is, e can visit its children more often (if pie > 0) than the number of times it is visited

from its parents.

As before, if Events is finite, this linear system of equations can be exactly solved for

the vector Iθ,π by matrix methods (see §8.4). If Events is infinite, we can use approximation

techniques (§4.2, §8.5).

We would then like to obtain Prθ,π by replacing equation (3.20) as follows, again

respecting the flow multiplier on the flow to Halt:

Prθ,π(e) = Iθ(e) · expπe ·
∑

A=〈e,Halt,F 〉∈Arcs

Pθ(A) (3.29)

However, this is not in general a probability distribution. It does not sum to 1 because

the perturbations affect the total amount of probability mass flowing through the trans-

formation graph.

It is therefore necessary to renormalize the “distribution” given by equation (3.29).

Rather than following equation (7.12) and computing the normalizing factor to divide by

as Iθ(Halt), which is the amount of unnormalized probability mass leaving the graph, it

is sometimes more convenient to compute it as the amount of unnormalized probability

mass entering the graph,

1︸︷︷︸
probability of

starting at Start

+
∑

e∈Events

Iθ,π(e) · (expπe − 1)︸ ︷︷ ︸
extra probability injected at node e

(3.30)

since this only requires summing over e such that πe 6= 0, and in practice this may be a

small set of events,21 whereas if Events is large (or infinite) then Iθ(Halt) may be hard to

compute.

3.9.3 Perturbations vs. Per-Event Weights

The discussion above exposes how perturbations work. A positive perturbation lists the

event e “directly.” It allows the transformational process to start at e rather than Start,
21E.g., one may have tied πe to zero for events that were not observed or well-observed.
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with some probability. As a result, the probabilities of starting at Start and other nodes

must be scaled down.

Similarly, a negative perturbation makes it less likely that the transformational process

will continue from e. It can be interpreted as making the process quit at e with some

probability, and restart from scratch. (It might choose to restart at Start or at any node

with a positive perturbation, just as if it were starting for the first time.)

As with per-event weights, the prior chance of shifting a given amount of probability

mass to e depends on the existing probability of e. That is, the transformational process

will not mind being asked to start often at e if it would have reached e often anyway from

other starting points.22

How do such perturbations differ from per-event weights? Raising the perturbation πe

makes e (and its descendants) more likely at the expense of all other events. By contrast,

raising the per-event weight θe improves e’s ability to compete with its siblings. It makes

e (and its descendants) more likely at the expense of e’s siblings and parents only.23

Thus the perturbed model eliminates some of the anti-correlation between sibling

events. (See footnote 10 on p. 95.) Since transformational arcs from the same node still

compete, siblings still compete with one another for a share of the flow to their common

parent. But that applies only to the regular processes described by θ, not to the exceptions

described by π. Being listed as a starting point is a competition among all nodes of the

transformation graph (including Start), and is less sensitive to the details of the model

topology.

22Or from e itself by a self-loop or other cyclic path in the transformation graph. It is an unfortunate
artifact of perturbed transformation models that if a cyclic path has high probability, then a “feedback
effect” means that small perturbations to events on that path can increase their probabilities greatly.

As an extreme case, suppose the transformation graph contains a cyclic path with probability 1. If the
path is accessible from Start, there is no solution to the recurrence (3.28), and if it is not accessible, there
are infinitely many solutions. In either case, equation (3.28) calls for the inversion of a singular matrix.

23The flow to the parents does not change, but when the random walk reaches a parent of e, it is more
likely to continue to e and therefore less likely to halt at the parent. Put another way, Halt may be one
of the siblings that e competes with.
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Chapter 4

Efficient Parameter Estimation for

Transformation Models

Chapter 3 introduced transformation models (defined more concisely below). Given a

transformation model of a domain, the transformations and exceptions in a given training

dataset are to be captured by an appropriate choice of parameters θ = 〈θ1, θ2, . . . θk〉 ∈

R
k. To fit the model to data in this way, we choose θ that maximizes Bayes’ Theorem

(equation (3.4)). (See footnote 2 on p. 83 for alternatives.)

But how can we carry out this maximization efficiently in practice? The experiments

of Chapter 6 simply use gradient descent. As preparation for reading about them, this

chapter develops the relevant methods for computing (1) an approximation to the objective

function and (2) the gradient of this approximation.

Later, Chapter 8 will give a fuller presentation of possible algorithms for these tasks—

slow exact algorithms as well as faster approximate ones. One important result postponed

to that chapter is an EM algorithm, which is closely connected to the gradient computation.

That chapter will also draw algorithmic connections to the solution of linear systems and

to back-propagation in neural networks. Finally, that chapter will show how to handle the

variant models to be discussed in Chapter 7.
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4.1 A Matrix Definition of the Objective Function

Let us first summarize the definitions of Chapter 3 using a concise matrix notation for

transformation models. This notation suffices when the transformation graph is a finite

directed graph. (Not a multigraph, although this restriction implies no loss of generality,1

and in any case the algorithms we describe with the matrix notation generalize trivially

to multigraphs.)

4.1.1 Model Specification

Let 1, 2, . . . n be an enumeration of Events, with 1 representing Start. Let 0 represent

Halt 6∈ Events. The model is entirely specified (cf. §3.2.1) by a three-dimensional array

F ∈ R(k+1)×(n+1)×(n+1). (Array indices start at 0.) We will write |F | for the number

of non-zero elements in F . The element F hij ∈ R represents the coefficient of feature th

on the arc from event i to event j, that is, the number of times it appears on that arc.

(For the basic formalism of §3.2.1, F hij ∈ {0, 1}, but it is no trouble to allow arbitrary real

coefficients, as discussed in §7.3.1.1.)

Formally, if the transformation graph has no arc from event i to event j, we need to

put F 0
ij = 1 (and F hij = 0 for h > 0). This specifies a dummy arc bearing just the special

feature t0, whose weight θ0
def= −∞, ensuring that the arc has zero probability. Such a

dummy or missing arc is distinct from an arc that has no features.2 There must be no arcs

from event i = 0 (Halt), and at least one arc from each event i > 0.

In practice, it is not necessary to store F explicitly or have random access to its

elements. (This is good because F may be infinite and defined by some policy.) It can be

represented as any object that supports the following two methods:
1Given a multigraph transformation model in the notation of §3.2.1, one can easily construct a graph

transformation model that defines the same parameterized probability distribution. To eliminate an “extra”
arc 〈e, e′, F 〉, add a new vertex e′′ to Events and replace the arc with a pair of arcs 〈e, e′′, F 〉 and 〈e′′, e′, ∅〉.

This construction fails if e′ = Halt, since then the random walk will halt at the new vertex e′′ instead
of e. So if there are multiple arcs from e to Halt, some preprocessing is required. Add a new vertex ê to
Events; replace e with ê throughout the model; replace every arc of the form 〈ê,Halt, F 〉 with 〈ê, e, F 〉;
and finally add the arc 〈e,Halt, ∅〉. Now the multiple arcs go from ê to e, and the extras can be eliminated
by the previous construction.

2An arc with no features has positive probability since Gθ(arc) = 1. See equation (3.13).
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• Given a vertex i, it must be able to enumerate the arcs ij that exist in the transfor-

mation graph (i.e., for which F 0
ij = 0).

• Given an arc ij, it must be able to enumerate the features on the arc. Each feature

is a modifiable record that stores the feature’s current weight F hij and perhaps some

other information about the feature, such as the partial derivative ∂f/∂F hij .

It is convenient to implement these enumerators as “lazy list” objects so that other func-

tions can iterate over arcs and their features and perform arbitrary operations on them.

4.1.2 Defining Transition Probabilities

Given a parameter vector ~θ ∈ Rk (conventionally written just as θ), we define the matrix

P~θ ∈ R
(n+1)×(n+1) to represent the transitional probabilities of the transformation graph.

We will write |P | for the number of non-zero entries in P .

F and θ affect the computations of this chapter (and Chapter 8) only through Pθ.

Ordinarily Pθ is defined as shown below, following §3.2.2, although we will sometimes vary

the definition as discussed later:

(Gθ)ij
def= exp(~θ · ~Fij) = exp

k∑
h=0

θhF
h
ij (unnormalized probabilities) (4.1)

(Pθ)ij
def=

 (Gθ)ij/
∑n

j′=0(Gθ)ij′ if i > 0

0 if i = 0

 (transition probabilities) (4.2)

(The special case for i = 0 is necessary to prevent division by zero: there are no arcs from

event 0 (Halt), so the zeroth row of Gθ is identically zero and Pθ follows this.3)

P is often too large to store in memory (indeed infinite). However, the non-zero el-

ements in each row can be enumerated on demand, via the above equations and the

methods supported by F (§4.1.1). It is very useful for each vertex i to cache the value of∑n
j′=0(Gθ)ij′ ; this value is used many times each time that that row i is enumerated. The

cached value becomes stale when θ changes.
3One might try to clean this presentation up by giving Halt a self-loop so that all rows of Pθ would

sum to 1. But then the flow to Halt, I0, would be infinite, with the result that (1− Pθ) in equation (4.5)
below would have no inverse.
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4.1.3 Model Solution

Following §3.4, we now define the row vectors ~b, ~Iθ ∈ Rn+1, the latter by a matrix equation:

~b
def= 〈0, 1, 0, 0, 0, . . .〉 (initial probabilities) (4.3)

~Iθ
def= ~Iθ · Pθ +~b (4.4)

whence

~Iθ = ~b · (1− Pθ)−1 (flow to vertices) (4.5)

(here 1 denotes the identity matrix of order n+ 1)

Recall that Ii is called the inflow to vertex i, and denotes the expected number of times

that a random walk will visit i.

Equation (4.5) requires a matrix inversion that is impractical to compute for large

models. Avoiding such inversions will be the main goal of the algorithms in this chapter

and Chapter 8.

The probability distribution over events that the model specifies is now

(pθ)i
def= (Iθ)i · (Pθ)i0 (observable probabilities) (4.6)

which is the pointwise product of the flow vector ~Iθ with the halt probabilities in the 0th

column of Pθ. We can more neatly rewrite the last equation as

~pθ
def= ~Iθ � (Pθ)·0 (4.7)

using the pointwise product operator �, defined by (~a �~b)i
def= ai · bi (or equivalently

~a�~b def= diag(~a) ·~b), and the convention that P·i represents the ith column of matrix P .

4.1.4 Objective Function

Following §3.1.3, our objective function is the logarithm of the posterior probability of

θ. Let si denote the number of times event i was observed in the training sample (else-

where denoted #(i)). Using the Gaussian prior of §3.5 together with Bayes’ Theorem

(equation (3.4)), the quantity to maximize is

f(θ) def= −
k∑

h=1

θ2
h/2σ

2 +
n∑
i=1

si · ln
(pθ)i
Z

(4.8)
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Here the normalizing factor Z def=
∑

j(pθ)j . It can be ignored for the time being, since

it equals 1 under the definitions so far. We will need it later, for instance to renormalize

the perturbed models of §3.9 (see §4.4).

4.1.5 Evaluation Function

The success of the method can be evaluated by passing the result of optimization, θ̃, to an

evaluation function g. Our current evaluation function measures the log-probability of a

test sample under the fitted model pθ̃. If ui denotes the number of observations of event i

in the test sample, then

g(θ̃) def=
n∑
i=1

ui · ln
(pθ̃)i
Z

(4.9)

Larger values are better.

When reporting the objective and evaluation functions, it is customary to divide

them by −n ln 2, yielding a positive value measured in bits per test entry. In particu-

lar, −g(θ̃)/n ln 2 is called the cross-entropy of the test sample under the fitted model.

Another convention is to report exp−(g(θ̃)/n), known as the perplexity of the test sam-

ple under the fitted model. (Smaller values of cross-entropy and perplexity are better.)

However, the intermediate computations are easier to perform and describe in terms of

natural logarithms, hence the definitions (4.8) and (4.9).

4.1.6 A Caveat on Numerical Accuracy

One must be unusually careful when solving numerically or approximately for the flow

vector ~Iθ, and hence for the probability vector ~pθ. As noted, the probability vector must

sum to at most 1, to avoid giving the method an unfair advantage in evaluation. And

because the objective and evaluation functions (equations (4.8) and (4.9)) are sensitive to

the logarithm of probability, relative error in every component of ~pθ must be kept small. If

event i has been observed, and especially if it has been observed several times, then even

a small value of (pθ)i, such as 2 × 10−8, must be computed accurately. Computing it as

1 × 10−8 due to numerical error will decrease the objective or evaluation function by the

observation count of i. Computing it as 0 can drive the objective or evaluation function to
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−∞. And computing it as a small negative number makes it impossible to interpret the

results as probabilities at all.

4.2 Solving the Model by Relaxation

We wish to compute an approximation ~p to ~pθ without carrying out the matrix inversion of

§4.1.3. The following relaxation algorithm gradually increases the elements of ~p toward

their desired values.

We can then substitute ~p for ~pθ in equation (4.8), thereby defining an approximation

f̃ to the objective function f ; and similarly in equation (4.9) to define an approximation

g̃ to the evaluation function g.

4.2.1 The Relaxation Algorithm

Each vertex i 6= 0 stores its current estimate of pi. This represents the total probability

of all random walks considered so far that have halted at i (i.e., taken the arc from i to

Halt).

Each vertex i 6= 0 also defines Ii, which represents the total flow (§3.4) that has been

propagated to i so far. This value need not actually be stored. What vertex i 6= 0 does

store is a value Ji ∈ [0, Ii], which is the portion of Ii that it has still not propagated to its

children.

Initially, ~p = 0 and ~J = ~b (and ~I = ~b), where ~b is the start vector defined by equa-

tion (4.3). A step of the algorithm consists of selecting any vertex i 6= 0 such that Ji 6= 0

and propagating Ji to the children of i, including Halt:

1. Let z = Ji

2. Reset Ji = 0

3. Increment pi by z · Pi0

4. For each vertex j 6= 0 that is a child of i (that is, Pij 6= 0),

increment Jj (and Ij) by z · Pij
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This is called relaxing vertex i. Notice that Pi0 is considered separately from Pij for

j 6= 0. Full pseudocode for relaxation will be given in §4.3.3 below.

The algorithm can be motivated from the random-walk interpretation of the transfor-

mation model (§3.3.1). Picture a large army of N ants that begins at Start. The ants

take independent random walks on the graph—but not synchronously. When a vertex i

is kicked (relaxed), its ants swarm one step away from the vertex along its out-arcs ij, in

proportion to the arcs’ probabilities Pij . Then JiN represents the number of ants currently

at i (with
∑

i Ji = 1 since there are always N ants in the graph), and IiN represents the

total number of ant visits to i so far. piN represents the number of ants that have followed

the i0 arc (from i to Halt) so far.

Mohri (2000) independently proposed the same relaxation algorithm,4 working not

with the reals but in a different class of “k-closed” semirings in which the algorithm was

guaranteed to converge.5 He also noted a connection to shortest-path algorithms. His

application was to compute ε-closures for weighted finite-state automata, a problem whose

connection to transformation models will be elaborated in §8.2.3.

4.2.2 Disciplines for Relaxation

Different strategies are possible for selecting the vertex i to relax at each step. A straight-

forward one is to choose i such that Ji is maximal. This can be arranged by maintaining a

priority queue of the vertices {i 6= 0 : Ji 6= 0}, with the priority of i being Ji. (Footnote 15

on p. 134 gives an improved definition of priority.)

The algorithm will never succeed in emptying the queue if the graph is cyclic, but it may

be stopped at any time, with longer runs giving better approximations.6 A straightforward
4Aside from notation, Mohri’s version differs only in that he accumulates ~I instead of ~p. (In principle we

could likewise accumulate ~I, and define ~p by equation (4.7) only after the algorithm terminated. However,
that would force us to hold the halt probabilities constant throughout the algorithm, whereas it is sometimes
useful to vary them: see §6.5.3 and §8.4.)

5Mohri (p.c.) did note that the algorithm might be used as an approximation in the reals, which do not
form a k-closed semiring.

6As the algorithm runs, it effectively considers more and more prefixes of possible random walks. pi
accumulates the total probability of prefixes that are actually complete walks that have halted at i. It is
not hard to see from this that pi increases monotonically, and that it converges to the true value if every
vertex is relaxed infinitely often, so that every random walk prefix is eventually considered. (The same
argument also demonstrates that Ii converges from below to its true value.)
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criterion is to stop when J0 is close to 1 (i.e., most of the ants have reached Halt).7

Alternatively, one can stop when the priorities of all remaining vertices are below some

threshold. For example, if the priority of vertex i is defined to be Ji, this means stopping

when Ji is close to 0 for every i 6= 0: that is, when no single node has enough ants to make

it worth kicking.

Relaxing vertex i takes time proportional to its number of out-arcs. The overall runtime

of the algorithm depends on how long one chooses to run it, e.g., how long it takes to

converge with a given model and given parameters θ.

It is sometimes useful to exploit information about the transformation graph’s topology

when choosing an order for relaxation. To minimize the number of relaxations, one would

like to wait until a lot of ants have accumulated at a vertex before relaxing that vertex. In

the case of an acyclic graph, relaxing the vertices in topologically sorted order will empty

the queue with only one relaxation per vertex. A generalization of this trick applies to

cyclic graphs, as noted by Mohri (2000). Any graph can be decomposed into its strongly

connected components, and the components of this graph may be topologically sorted into

an order C1, C2, C3, . . ..8 Then a good strategy is to relax only vertices in C1 until some

stopping criterion is reached, then relax only vertices in C2, and so on. This strategy

ensures that when a vertex is relaxed, it has already received as many ants as it ever will

from other strongly connected components.

The version of relaxation used in the actual experiments took advantage of the particu-

lar transformation graph used, in order to arrange a natural way of stopping the algorithm.

See §6.5.3 for details.
7Above we only defined Ji for i > 0. However, one can also maintain J0 by allowing j to also take value

0 at step 4 of relaxation, above. Note that J0N represents the total number of ants that have halted so
far, and equals I0N because vertex 0 is never relaxed (i.e., all the ants at 0 stay there forever).

8A strongly connected component of a graph is a maximal subset S of vertices such that for any
two vertices i, j ∈ S, there is a directed path from i to j. Any cycle in the graph falls within some
strongly connected component. If the strongly connected components are not known, they may be found
in linear time (for a finite graph) by Tarjan’s (1972) algorithm. The order C1, C2, C3, . . . is also found by
that algorithm; definitionally, this order results from contracting each component to a single vertex and
topologically sorting the resulting acyclic graph.
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4.2.3 Relaxation Produces a Deficient Solution

Because the relaxation algorithm must be halted before convergence, in general ~p will be a

deficient distribution, leading to a pessimistic approximation g̃ of the model’s performance.

However, §6.5.3 and §8.4 will later describe ways to avoid this deficiency if desired; the

strategy of §6.5.3 is actually used in the experiments reported in Chapter 6.

In particular, if pi is underestimated as 0 for some i observed in training or test data,

then f̃ or g̃ will be underestimated as −∞. Several solutions are possible:

• Simply ignore such vertices i during training, treating si as 0 in the definition of

f̃ . This at least allows training to go forward: optimizing f̃ tries to raise the joint

probability of θ and the part of the observed data that we can account for. However,

it does not necessarily help in testing.

• Take care to continue relaxation until f̃ or g̃ becomes finite.9 This is loosely related

to the strategy actually used in the experiments (§6.5.3).

• Back off to a lower-order model ~q that assigns non-zero probability to all events:

replace the estimated distribution ~p in the definition of f̃ with α~p(T ) + (1− α)~q.

4.3 Computing the Gradient

We wish to optimize the approximated objective function f̃ . A gradient-based numerical

optimization technique, such as gradient descent or conjugate gradient, takes as inputs

the function f̃(θ) and its gradient ∇f̃(θ). Notice that this is the exact gradient of the

approximate objective, in order to guarantee that the optimizer will work correctly. It is

not just some approximate gradient of the exact objective.

The technique for computing this gradient is similar to back-propagation in recurrent

neural networks—a connection that will be further explored in §8.5.4.
9This is fair provided that ~p is not renormalized, even though the computation of pi uses the knowledge

that pi is in the test set. The computed pi is still an underestimate of the true value that would be found
if relaxation were allowed to converge. It is not exaggerated at the cost of some other pj . Nonetheless, this
evaluation procedure does raise concerns about replicability, since pi might receive a different approximation
in the context of some other test set that arose in practice. One could answer this concern by defining
the approximation pi to be the first positive value of pi after relaxation had run for at least some preset
amount of time, ignoring any further increases to pi.
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4.3.1 Notation

For any real variable x, let gx denote ∂f̃/∂x, the partial of the approximated objective

function with respect to x. The chain rule for derivatives is then gx =
∑

y gy ·
∂y
∂x . We will

write ~gx for 〈gx1, gx2, . . .〉.

Some more notation will be developed in §4.3.4.

4.3.2 Approach

We will implicitly use a common trick for computing partial derivatives. If a variable x is

used several times in the computation of f̃ , then we may regard these mentions as if they

were separate variables x(1), x(2), . . ., and compute gx as gx(1) + gx(2) + · · ·.10

For example, the transition probability Pij may be used several times during the relax-

ation algorithm (since i may be relaxed several times). Suppose these mentions are called

P
(1)
ij , P

(2)
ij , . . . P

(T )
ij . We will compute the partials with respect to these mentions in a nat-

ural order—in fact, in the reverse of the order in which the probabilities were used during

relaxation. As we compute gP
(T )
ij , . . . gP

(2)
ij , gP

(1)
ij , we add them into an accumulator for

gPij that was initialized to 0.

4.3.3 Back-Relaxation

Let us first give a basic version of the algorithm in which the transition matrix is a fixed

matrix P . This basic version builds up a matrix of partials gP as described above. It is

the version that is most closely analagous to back-propagation: the transition probability

matrix P corresponds to the weight matrix in a neural network.

(§4.3.5 will extend this to the full case, in which P so is itself parameterized by the

more compact ~θ (i.e., P = Pθ); then what we really want is ~gθ.)

To compute the gradient it is necessary to work backwards from the final computation

of f̃ , assessing how the various uses of Pij will eventually affect f̃ . To enable this, the
10Formally, we have a function f̃(. . . , x, . . .). Define a new function F (. . . , x(1), x(2), . . . , x(T ), . . .) that is

computed in exactly the same way but with the T mentions of x replaced respectively with x(1), x(2), . . . x(T ).

Then f̃(. . . , x, . . .) = F (. . . , x, x, . . . x,︸ ︷︷ ︸
T

. . .). By the chain rule,
∂

˜f
∂x

=
∑T
i=1

∂F

∂x(i) · ∂x
(i)

∂x
=
∑T
i=1

∂F

∂x(i) .
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computation of f̃ must be modified to do some additional bookkeeping (the new line 5

below):

Relaxation():

1. Stack1 := ∅ (* Stack2 and ~gJ retain their values from previous Back-Relaxation, if any *)

2. ~p := 0; ~J := ~b

3. repeat until stopping criterion met

4. choose i 6= 0 such that Ji 6= 0 (* e.g., by popping priority queue or Stack2; see §4.5.1, §4.5.2 *)

5. push (i, Ji) onto Stack1

6. z := Ji; Ji := 0

7. increment pi by z · Pi0
8. for each child j 6= 0 of i

9. increment Jj by z · Pij
10. return ~p

To compute partial derivatives is to play a game of hypotheticals: how would the result

~I of the above relaxation, and the objective function f̃ that is computed from this result,

have differed if a Pij value had been infinitesimally different during relaxation?

Having run relaxation to compute f̃ , we can now run relaxation backwards to play this

game. (Ignore the use of Stack2 for the time being.) Each vertex i must maintain a value

gJ i. The quantity gpi is defined as

gpi = si/pi (4.10)

by differentiation of equation (4.8).11

Back-Relaxation():

1. Stack2 := ∅ (* Stack1 retains its value from end of previous Relaxation *)

2. ~gJ := 0; gP := 0

3. repeat until Stack1 = ∅
11In the event that the denominator p

(T )
i = 0, then gp

(T )
i is 0 or +∞ according to whether si = 0 or

not. The latter case forces f̃ = −∞. Modifications to make f̃ finite were discussed in §4.2.3, and it is
straightforward to modify gp

(T )
i accordingly:

• If we treat si as 0 in the definition of f̃ , then we should also do so in the definition of gp
(T )
i .

• Suppose we replace ~p(T ) in the definition of f̃ with a backed-off model ~p
def
= α~p(T ) + (1− α)~q. Then

gp
(T )
i = αsi/pi. (Also, gα = (p

(T )
i − qi)si/pi, a fact that can be used to optimize α.)
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4. pop (i, Ji) from Stack1 (* this sets Ji for use below *)

5. push (i, gJi) onto Stack2 (* for possible use by a subsequent call to Relaxation *)

6. z := 0

7. increment

 z by Pi0 · gpi
gPi0 by Ji · gpi

8. for each child j 6= 0 of i

9. increment

 z by Pij · gJj
gPij by Ji · gJj

10. gJi := z

11. return gP

Relaxation visits vertices in an order recorded on Stack1, and Back-Relaxation

visits those vertices in reverse order by popping the stack. The two algorithms run equally

fast, up to a constant, even though the latter is computing a larger set of values.

4.3.4 Correctness of Back-Relaxation

The correctness of back-relaxation holds by induction, as we will now see. (This section

may be skipped on a first reading, but the notation will be used in later sections as well.)

The proof requires a notation for referring to the values of variables at different times

t. Thus, as a preliminary step, let us formally rewrite the relaxation and back-relaxation

algorithms to use different names for these different values. Also, P (t)
ij refers to the mention

of Pij on iteration t, in the sense of §4.3.2. Finally, gpi refers to g(p(T )
i ) and is computed

just as before. It is easy to see by inspection that the new versions do the same thing as

the old ones.

Relaxation(): (* transformed version, for correctness proof and discussion ONLY *)

1. t := 0; Stack1 := ∅ (* Stack2 and ~gJ retain their values from previous Back-Relaxation, if any *)

2. ~p(t) := 0; ~J (t) := ~b

3. repeat until stopping criterion met

4. t := t+ 1

5. (* Now construct ~I(t), ~J(t) from ~I(t−1), ~J(t−1), and P (t). *)

6. choose i(t−1) 6= 0 such that Ji(t−1) 6= 0 (* e.g., by popping priority queue or Stack2 *)

7. let i := i(t−1); push (i, J (t−1)
i ) onto Stack1
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8. p
(t)
i := p

(t−1)
i + J

(t−1)
i · P (t)

i0

9. for j := 1, . . . n

10. J
(t)
j :=

 J
(t−1)
j if j 6= i

0 if j = i

+ J
(t−1)
i · P (t)

ij

11. increment Jj by z · Pij
12. T := t

13. return ~p(T )

Back-Relaxation(): (* transformed version, for correctness proof and discussion ONLY *)

1. Stack2 := ∅ (* t and Stack1 retain their values from end of Relaxation; in particular t = T *)

2. ( ~gJ)(t) := 0; (gP )(t) := 0

3. repeat until Stack1 = ∅ (* equivalently, until t = 0 *)

4. (* Now construct (gP )(t−1), ( ~gJ)(t−1) from (gP )(t), ( ~gJ)(t), and P (t). *)

5. pop (i(t−1), J
(t−1)
i ) from Stack1; let i := i(t−1)

6. push (i, (gJ)(t)
i ) onto Stack2 (* for possible use by a subsequent call to Relaxation *)

7. (* Initialize new values to be the same as on previous pass *)

8. (gJ)(t−1) := ( ~gJ)(t)

9. (gP )(t−1) := (gP )(t)

10. (* Now tweak row i of the new values. *)

11. (gJ)(t−1)
i := P

(t)
i0 · gpi +

∑n
j=1 P

(t)
ij · (gJ)(t)

j

12. (gP )(t−1)
i0 := (gP )(t)

i0 + J
(t−1)
i · gpi

13. for j := 1, . . . n

14. (gP )(t−1)
ij := (gP )(t)

ij + J
(t−1)
i · (gJ)(t)

j

15. t := t− 1

16. return (gP )(0)

The formal claim to be proved by induction is that for all t = T, T − 1, . . . 0,

( ~gJ)(t) = g( ~J (t)) (4.11)

(gP )(t) = g(P (t+1)) + g(P (t+2)) + · · ·+ g(P (T )) (4.12)

Then the second equation at t = 0 asserts that the return value of Back-Relaxation

correctly implements the strategy in §4.3.2.

What do equations (4.11) and (4.12) mean? Their left-hand sides are variables com-

puted by Back-Relaxation. But their right-hand sides are actual gradients of quantities
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used in Relaxation.

For example, what does g(J (t)
i ) mean? Suppose one interrupted Relaxation at line

line 3 and increased J
(t)
i by an infinitesimal ε. (Here t denotes the value of t at the time

of the interruption.) If one then resumed Relaxation and used its return value ~p(T ) to

compute f̃ , the final effect on f̃ would be an increase of ε · g(J (t)
i ), by the definition of

g(J (t)
i ).

If one were to increase Pij by ε under the same circumstances, so that the increase

affected all subsequent mentions (P (t+1), P (t+2), . . . P (T )), then the increase to f̃ would

by definition be g(P (t+1)) + g(P (t+2)) + · · · + g(P (T )). It is exactly these values that

Back-Relaxation is claimed to compute.

The base case for the induction is t = T . The claim holds here: in both equations,

the left-hand side is zero by the initialization of Back-Relaxation, and the right-hand

side is zero by definition. In particular, g( ~J (T )) = 0 because ~J (T ) is computed in the last

iteration of Relaxation but never subsequently used in the computation of f̃ .

For the inductive step, assume that the claim holds for t. We wish to show it for t− 1.

Let i = i(t−1). Now

g(J (t−1)
i ) = gpi ·

∂pi

∂J
(t−1)
i

+
n∑
j=1

g(J (t)
j ) ·

∂J
(t)
j

∂J
(t−1)
i

by the chain rule of §4.3.1 (4.13)

= gpi · P (t)
i0 +

n∑
j=1

g(J (t)
j ) · P (t)

ij by lines 8–10 of Relaxation (p. 126)(4.14)

= gpi · P (t)
i0 +

n∑
j=1

(gJ)(t)
j · P

(t)
ij by inductive hypothesis (4.15)

= (gJ)(t−1)
i by line 11 of Back-Relaxation (p. 126) (4.16)

while for j 6= i, similarly

g(J (t−1)
j ) = g(J (t)

j ) ·
∂J

(t)
j

∂J
(t−1)
j

= g(J (t)
j ) = (gJ)(t)

i = (gJ)(t−1)
i (4.17)

This proves the first part (4.11) of the claim. As for the second part (4.12), the definition

of the entries of g(P (t)) splits into three cases. Observe first that by a trivial induction on

line 8 of Relaxation (p. 126),

pi
def= p

(T )
i =

T∑
t=1

J
(t−1)
i · P (t)

i0 (4.18)
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whence

g(P (t)
i0 ) = gpi ·

∂pi

∂P
(t)
i0

= gpi · J (t−1)
i (4.19)

The corresponding formula for j 6= 0 comes directly from line 10 of Relaxation (p. 126):

g(P (t)
ij ) = g(J (t)

j ) ·
∂J

(t)
j

∂P
(t)
ij

= g(Jj)(t) · J (t−1)
i (4.20)

(gJ)(t)
j · J

(t−1)
i by inductive hypothesis (4.21)

Finally, consider k 6= i and any j: P (t)
kj is never used in the computation, so

g(P (t)
kj ) = 0 (4.22)

In summary,

g(P (t)
kj ) =


0 if k 6= i

J
(t−1)
i · gpi if k = i and j = 0

J
(t−1)
i · (gJ)(t)

j if k = i and j 6= 0

(4.23)

Line 9 and lines 12–14 of Back-Relaxation (p. 126) handle exactly these three cases,

respectively. In light of equation (4.23), they may be read as arranging that for all k and

j,

(gP )(t−1)
kj = g(P (t)

kj ) + (gP )(t)
kj (4.24)

= g(P (t)
kj ) + g(P (t+1)

kj ) + · · ·+ g(P (T )
kj ) by inductive hypothesis (4.25)

demonstrating the second part (4.12) of the claim.

4.3.5 Computing the Gradient With Respect to θ Instead

As explained at the start of §4.3.3, the basic back-relaxation algorithm applies to a model

parameterized by the transition probabilities Pij . It computes the gradient with respect

to those probabilities.

But in a standard transformation model, the transition probability matrix P is defined

as Pθ from equation (4.2). That is, the Pij are themselves parameterized by ~θ . So we only

really care about finding ∇f̃ = ~gθ.
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It is straightforward to convert gP to ~gθ by differentiating equation (4.8) (whose first

term is independent of P , and whose second term depends on ~θ only through P ):

gθh = −θh/σ2 +
∑
ij

gPij ·
∂Pij
∂θh

(4.26)

= −θh/σ2 +
∑
ij

gPij · Pij · (F hij −
∑
j′

Pij′F
h
ij′) (4.27)

However, it would be a waste of space to compute and store gP explicitly. Instead of

accumulating a large matrix gP of partial derivatives, we would like to accumulate only

the vector ~gθ, which is usually much smaller.

To do so, recall that gPij is computed as a sum
∑

t g(P (t)
ij ). We can apply the summands

toward ~gθ as soon as we discover them, rather than wait until they are added up. Rewriting

equation (4.26),

gθh = −θh/σ2 +
∑
i,j,t

g(P (t)
ij ) · ∂Pij

∂θh
(4.28)

This suggests that we modify Back-Relaxation as follows. There is no matrix gP

but rather a vector ~gθ. Initialize each gθh to −θh/σ2. Whenever the original version of

Back-Relaxation added a term to some accumulator gPij—call this term gP
(t)
ij —the

new version should instead add gP
(t)
ij ·

∂Pij
∂θh

to gθh, for each h.

While this solution saves space as promised, it is far too slow to be practical. Each

simple addition in the original version has been replaced with a nested loop! Not only

does each addend P
(t)
ij now require an iteration over all features h, but each of those

features h demands an inner loop over the arcs ij′ that compete with ij, since ∂Pij
∂θh

=

Pij · (F hij −
∑

j′ Pij′F
h
ij′).

So a further trick is necessary. Rewrite equation (4.27) in terms of an intermediate

vector ~m:

mi =
∑
t,j

gP
(t)
ij · Pij (4.29)

gθh = −θh/σ2 +

∑
i,j,t

gP
(t)
ij PijF

h
ij

−
∑

ij′

miPij′F
h
ij′

 (4.30)

This leads to the following, much faster modification of Back-Relaxation:
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• Initialize ~m = 0 and gθh = −θh/σ2 for each h.

• Whenever the original version of Back-Relaxation added a term gP
(t)
ij to some

accumulator gPij , the new version should instead

– add gP
(t)
ij · Pij to mi.

– also add gP
(t)
ij PijF

h
ij to gθh, for each h. This only requires an single loop, not

a nested loop, and crucially it is only necessary to loop over the small set of

features h that actually appear on arc ij (that is, Fij 6= 0).

• After Back-Relaxation finishes, iterate over all vertices i such that mi 6= 0. For

each such vertex, consider each of its out-arcs ij′, and for each feature h of that

out-arc (that is, F hij′ 6= 0), subtract miPij′F
h
ij′ from gθh.

This computation of ~gθ is still slower than the original computation of gP , but only by

a factor equal to the average number of features per arc. That is simply the increase in the

size of the model. After all, the new computation must consider all the non-zero entries

F hij , not just the non-zero entries Pij , and this increase exactly accounts for the slowdown.

4.3.6 Allowing P to Change

It is not strictly necessary for P to remain constant as the relaxation algorithm runs. We

will actually take advantage of this fact in the experiments (see §6.5.3).

In the metaphor of §4.2.1, the weather may change at any time between kicks of the

anthills, changing the ants’ preferences about which arcs to take. This does not change the

number of ants in the graph, so it does not threaten to yield a non-normalized probability

distribution. What is important is that if P changes, its row sums remain at 1.

In the terminology of §4.3.4, the different mentions P (t)
ij of Pij are formally different

variables, and need not have the same value. So it is all right to change P between

iterations t of the main loop.

If P is changed during relaxation, how does this affect back-relaxation? The changes

are minor. Obviously back-relaxation must use the same P (t)
ij values as relaxation did, so

it is necessary to keep some record (analogous to Stack1) of when and how P changed.
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Otherwise, the only changes are to §4.3.5, which assumes a particular fixed definition of

P , not a changing one. In particular, equation (4.26) must be changed to compute
∂P

(t)
ij

∂θh

as appropriate.

4.4 Handling Perturbed Models

The experiments of Chapter 6 use the “perturbed transformation models” of §3.9, since in

early experiments, perturbations led to slightly better results than per-event features.

There are different ways of adapting the algorithms to handle perturbed models; see

§8.4.1 for another. The method used in the experiments is to reparameterize the flow

multiplier parameters πi as “flow adder” parameters δi. The advantage of this technique

is that simple stopping conditions for relaxation (§4.2.2) remain sensible ones.12

The effect of a perturbation πi is to inflate the outflow of vertex i by a factor of expπi.

In other words, IiN ants enter the node and (expπi) · IiN ants leave it. This is equivalent

to injecting δiN extra ants into the graph at node i, where

δi
def= (expπi − 1)Ii (4.31)

δi is essentially a flow adder, as opposed to the flow multiplier expπi. That is,

it measures the difference between outflow and inflow instead of their ratio. Instead of

adjusting the πi values, our strategy is to adjust the δi values. This does not change the

model, only the parameterization. Thus the prior probability of a δi value is still defined

by the probability (under a Gaussian) of the πi value that would give rise to it, namely

πi = ln(1 +
δi
Ii

) (4.32)

Perturbed models need to be normalized because of the extra mass added to the graph.

Equation (3.30) is equivalent to defining equation (4.8)’s normalizing factor Z as 1 +∑n
i=1 δi.

12In relaxation, we usually gamble that small Ji need not be propagated. This is sometimes a losing
gamble, since the logarithmic objective function can be quite sensitive to small absolute errors in ~p (see
§4.1.6). Flow multipliers make the gamble slightly riskier, because a small Ji can be multiplied as it is
propagated; one cannot tell in advance whether kicking a small anthill will eventually turn it into an
important army. With flow adders, by contrast, it is known from the start how many extra ants are being
added to the graph, and it only remains to propagate them. What we lose with flow adders is knowledge
of the exact prior cost of the extra ants; in general Ii is underestimated so this cost is overestimated.
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To run relaxation with flow adders, we conceptually just want to initialize ~J not to ~b

but to ~b+~δ, and relax as usual. However, this may lead to negative elements in the vector

~J . In this case a subtle danger arises: the elements of ~p may subsequently decrease as

well as increase during the course of relaxation (compare §4.2). When relaxation is halted,

the elements of ~p may therefore be overestimates rather than underestimates, so possibly∑
i pi > 1, giving the model an unfair advantage in evaluation.

One possible solution is to normalize ~p more carefully, correcting for any (positive or

negative) probability mass that was left unpropagated in ~J when relaxation halts. However,

even this scheme is still not entirely safe. It can lead to a “probability distribution” ~p that

does sum to 1 but is negative at some vertices. If the test data happens not to include

observations of those vertices, one might not notice a problem, but the probabilities of the

remaining vertices would be unfairly inflated.

The safe solution is to make sure that ~J is, in fact, uniformly non-negative at all times.

This is done by introducing the extra flow δi into the graph not necessarily at the start

of relaxation, but sometime during it. In other words, when δi < 0, the algorithm should

wait to remove ants from i until they have actually arrived there. Usually δi is positive,

and can be added to Ji at the start. If not, up to −Ji of it can be added whenever Ji
becomes positive, and the rest, if any, waits around until Ji becomes positive again:

1. (* Ji has just been changed *)

2. if δi 6= 0

3. d := max(δi,−Ji)

4. decrement δi by d

5. increment Ji by d

6. increment Z by d

Note that only the part of δi that is used is added to the normalizing factor Z (which is

initially 1).

Back-relaxation must now compute gδi as part of the gradient (as well as still computing

gP or ~gθ). If we ignore the normalizing factor and the prior, this is already computed: it

is simply gJi
(t), where t is the step on which δi becomes 0 (is fully discharged).13 The full

13If δi was never fully discharged, then it must have represented a flow adder that was more negative than
the inflow Ii was positive. Such an extreme flow adder could never arise legally from any flow multiplier
(i.e., equation (4.32) has no solution). So in this case, relaxation is trying to evaluate the function f̃(~θ, ~δ)
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result is

gδi = gJi
(t) +−

∑
i si
Z︸ ︷︷ ︸

=gZ· ∂Z
∂δi

+−πi
τ2
· 1
Ii + δi︸ ︷︷ ︸

=gpi·
∂πi
∂δi

(4.33)

where πi is defined by equation (4.32) and τ2 is the variance of the Gaussian prior on πi.

4.5 Optimizations Used in the Experiments

4.5.1 The Double Stack

§4.2.2 recommended using a priority queue to determine the order in which to relax nodes

when evaluating the objective function f̃(θ). However, this means that the relaxation

order will depend on θ, possibly making f̃ a bumpy, nondifferentiable surface on which

optimization is difficult.

To keep the surface smooth, it helps to use the same relaxation order for many evalua-

tions of f̃ in a row. One implementation exploits the mirror symmetry between relaxation

and back-relaxation. Just as Back-Relaxation pops Stack1 to visit vertices in the re-

verse order of the previous Relaxation, Relaxation can pop Stack2 to visit vertices in

the reverse order of the previous call to Back-Relaxation. (This is why the latter was

defined to push vertices on Stack2 as it processed them.)

Thus, a series of evaluations f̃(θ),∇f̃(θ), f̃(θ′),∇f̃(θ′), . . . first creates Stack1 by a

priority queue, and then shifts the all nodes back and forth between Stack1 and Stack2

like a Slinky. The double stack can be regarded instead as an array, with relaxation

traversing the array forward (writing J-values) and back-relaxation traversing it backward

(writing gJ-values, whose use we will see in a moment).14

4.5.2 Path Pruning

A significant optimization comes from a graphical view of the algorithms. Relaxation may

be regarded as exploring the graph from Start (or more generally from ~b), in search

outside its legal domain. The gradient descent algorithm that presumably called relaxation has strayed out
of the legal domain of f̃ ; it must be able to handle this case, e.g., by reducing its stepsize and backtracking.

14However, in practice an array implementation this would make it difficult to drop useless vertices
heuristically from the stack (footnote 15 on p. 134). See footnote 23 on p. 141 for a note on implementing
the necessary stacks.
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of vertices i such that pi affects the objective function (during training) or the evaluation

function (during testing). A path that does not eventually lead to such a vertex is not worth

following, because it will have no effect on the function being computed (equation (4.8) or

(4.9)).

The first call to Relaxation must explore the graph blindly unless the graph is known

to have some special structure, but subsequent calls to Relaxation only need to follow

paths that turned out to be fruitful. In fact, Back-Relaxation specifically propagates

back the information about whether any paths from vertex j will be fruitful, and indeed

how fruitful. If gJj(t) = 0, then it is not worth propagating probability mass to vertex j

on step t, since the variable J (t)
j affected by this propagation will have no effect on the

objective function.

Thus, Relaxation can benefit at step t from access to the value of ~gJ
(t)

from the pre-

vious call to Back-Relaxtion. It can ensure such access by always popping (i(t−1), gJi
(t))

from Stack2 into the variables (i, gJi) at line 6 of Relaxation (p. 125). This policy en-

sures inductively that during step t = 1, 2, . . . T of relaxation, the variable ~gJ equals ~gJ
(t)

from the previous call, since ~gJ
(t)

is identical to ~gJ
(t−1)

in all but its ith component.

Thus, there is no need at all to propagate from i to j on step 0 if gJj(t) = 0. One

could also heuristically skip such propagation if gJj(t) is non-zero but small. In fact, the

importance to f̃ of that propagation can be measured by J
(t−1)
i · P (t)

ij · gJj
(t), a product

that one can use to measure whether propagation along ij is worthwhile.15

To compute the gradient quickly and accurately, the subsequent back-relaxation must

remember which arcs were ignored by relaxation—i.e., which entries of P (t) were treated
15Before computing any such products, it is worth checking first whether J

(t−1)
i · gJi(t−1) is big enough

that it is worth relaxing i at all. If this value is small, then Ji is not going to have much effect anyway
on the objective function, so we may as well skip it entirely. In this case we simply avoid pushing i onto
Stack1, so it will not be considered during back-relaxation or the subsequent relaxations. Of course, none
of these tricks can be used when running relaxation for the first time, because no estimate of gJi

(t−1) is
available yet.
J

(t−1)
i · gJi(t−1) also seems at first like a good definition of the priority of vertex i when it is time to

determine a new relaxation order. Unfortunately ~gJ is not available when choosing the new order (since
it is found by popping Stack2, whereas the new order is found by popping a priority queue). Nor would
gJi

(t−1) as determined from the old order be a plausible guess as to its true value during the (quite different)
new order. A reasonable approach in the same spirit is to define the priority of i (on step t) as the product

J
(t−1)
i · (ε+ maxTt′=1 gJi

(t′−1)) for some ε > 0. This says that i is an especially useful vertex to relax in the
new order if it was ever a useful vertex to relax during the old order; the use of ε also allows new useful
vertices to emerge.
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as if they were zero—and ignore those arcs too.16 In fact, it is usually more economical to

store the list of arcs that were not ignored. In the experiments of Chapter 6, most arcs can

be ignored most of the time. (After all, given the number of crazy transformations in the

graph, most paths from a given frame do not hit any legitimate lexical entry for English,

let alone one that was actually observed in the dataset.)

Thus, in the double stack, i(t−1) should carry around with it not only the value J (t−1)
i

or gJi
(t), but also the list of arcs ij that should be considered when i(t−1) is relaxed at

step t. (In other words, Stack1 and Stack2 now consist of triples (vertex, real, arc list).)

This list is used again during the corresponding step of back-relaxation; in both cases, the

line “for each child j 6= 0 of i” simply iterates over this list.

For efficiency, the same arc lists may be reused for many passes in a row without being

recomputed.17 This also keeps f̃(θ) smooth (differentiable), just as keeping the same

relaxation order from pass to pass does (§4.5.1). One does not want infinitesimal changes

in θ to have a discrete effect on either the relaxation order or the choice of arcs to skip, as

this would lead to discrete jumps in f̃(θ).

4.5.3 Templates: Exploiting Redundancy in the Transformation Graph

A final optimization makes use of redundancy in the computation. For example, in the

lexicon smoothing model used in the experiments of Chapter 6, most words do not differ

much from the “typical” word. We would like to save time by computing a template for

the typical word, and then handle each word by computing only its differences from the

template.
16If relaxation only skips arcs where J

(t−1)
i · P (t)

ij · gJj
(t) is actually zero, which is the policy in the

experiments of Chapter 6, then there is no effect on f̃ , so the only reason for back-relaxation to skip the
same arcs is to achieve the same speedup. If relaxation also heuristically skips arcs where this product is
small, then back-relaxation must skip the same arcs in order to get an accurate gradient of the approximation
f̃ .

17As a result, one should be somewhat conservative about ignoring arcs or halting relaxation early. It
has a long-term effect when one chooses not to propagate Ji along an arc from i. There may be good
reasons to skip that arc on this pass (or simply to halt relaxation before relaxing i), but weak paths may

sometimes become strong on later passes, as the parameters ~θ, ~δ change.
For example, suppose δi = 0 on the current pass. Then J

(0)
i = 0 so J

(0)
i ·Pij ·gJj

(1) is certainly zero, and
one might therefore wish to ignore all arcs from i on step 1 on the grounds that they are not contributing
to the objective function on this relaxation pass. But in fact the arcs may be useful to future passes. Not
ignoring them may result in a non-zero value for gδi during back-relaxation, yielding δi 6= 0 (and so making
them useful) on the next pass.
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Figure 4.1: A fragment of a transformation model whose events are frames rather than
lexical entries. Perturbation parameters are not shown.

For clarity, let us confine the discussion to that example. A more general presentation

will be given in §8.6.

4.5.3.1 Motivation for Templates

The experiments need to evaluate Pr(f | `) for various frames f and headwords `. They

use a (perturbed) transformation model of lexical entries like that shown in Fig. 1.3 on

p. 21,18 where the first step of a random walk samples Pr(`) (by transitioning to Start`)

and the remaining steps sample Pr(f | `).

Because the subgraphs reachable from the various Start` vertices are isomorphic, the

process of sampling Pr(f | `) is largely independent of `. One can regard it as sampling

f from the subgraph shown in Fig. 4.1, whose transition probabilities are independent of

` but whose perturbation parameters are specific to `.19 In other words, we will identify

every vertex in Fig. 1.3 (except Start) with the corresponding vertex in Fig. 4.1.

To compute the distribution Pr(f | `), one may perform relaxation on Fig. 4.1, ini-

tializing ~J (0) to include the flow adders that are specific to `. The desired distribution is
18Fig. 1.3 actually shows an ordinary model, not a perturbed one. In the perturbed model actually

used in the experiments and discussed here, the per-event arc weights such as θ8 and θ9 are replaced by
perturbations π8 and π9.

19To put this more formally, f is sampled from a perturbed transformation model of frames: a family
of distributions Prθ,π(f), defined by Fig. 4.1, where ~θ effectively specifies the language and ~π effectively

specifies the headword. ~θ must be learned for the overall language, and an appropriate ~π must be learned
for each headword, so that Pr(f | `) can be defined as some Prθ,π(f). The training data are samples of
frames from multiple headwords of the same language.
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returned in ~p. Such a relaxation must be performed for many different values of ` in order

to evaluate the objective function. However, a good deal of the work is repeated for every

`: namely, 1 is always propagated along the many paths from Start. The idea is to do

this part of the work in advance and reuse it for every `.

4.5.3.2 Relaxation Using a Template

The “template computation” of ~p is defined to simply set ~J (0) = ~b and run relaxation on

Fig. 4.1. This computes ~p for the “typical” word—one with no perturbations at all—by

propagating 1 from Start. The later propagation of flow adders for each ` then refers to

the Stack1 that was set by the template computation.

We will use tx to refer to the value of a variable x in the template computation. s`x

denotes the value x would have if we were to do the complete relaxation corresponding to

subgraph ` in the ordinary way: that is, if we were to set ~J (0) = ~b+s`~δ and run relaxation,

where s`~δ denotes the vector of flow adders for word `. Finally, ∆`x
def= s`x−tx. In general

it is more efficient to compute s`x as tx+ ∆`x than to compute it from scratch.

The strategy is to compute each s`~p by relaxation, using exactly the same vertex order

that was used in the computation of t~p. This order was conveniently stored in tStack1.

Since tStack1 also stores the values tJi, the computation has access to those values, and

can save time by propagating only the differences ∆`Ji. Thus the relaxation for s`~p is as

follows (cf. Relaxation on p. 124):

1. ∆`Stack1 := ∅

2. ∆`~p := 0; ∆`
~J := 0; ∆`Z := 0

3. for each (i, tJi) on tStack1 (* in order they were pushed (not reversed), and without popping *)

4. if δi 6= 0 (* this portion is essentially copied from §4.4 *)

5. d := max(δi,−(tJi + ∆`Ji))

6. decrement δi by d

7. increment ∆`Ji by d

8. increment ∆`Z by d

9. if ∆`Ji 6= 0

10. push (i,∆`Ji) onto ∆`Stack1

11. z := ∆`Ji; ∆`Ji := 0
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12. increment ∆`pi by z · Pi0
13. for each child j 6= 0 of i

14. increment ∆`Jj by z · Pij
15. return t~p+ ∆`~p (* also return tZ + ∆`Z *)

Line 9 is actually a little more complicated than shown. If ∆`Ji = 0 but could become

non-zero with a change to the parameters, then we do want to relax i, specifically so that

i will be pushed on ∆`Stack1. Under the discipline of §4.5.3.4, this ensures that back-

relaxation will compute and send back g∆`Ji 6= 0, allowing the parameters to change and

∆`Ji to become nonzero. It also ensures that i will be relaxed again on the next pass—at

which time relaxation will actually be useful since ∆`Ji 6= 0.

Conceptually, one should regard a “contingent” zero—such as a free parameter δi that

is zero only at the moment—as an infinitesimal. Infinitesimals act like nonzeros in their

effect on the algorithm’s bookkeeping, but they are so close to zero that they have no effect

on the algorithm’s answer.20

Thus, an infinitesimal acts just like zero except for purposes of line 4 or line 9, and

except that it yields infinitesimals rather than zeroes when added to zero or multiplied by

non-zero. If δi is an infinitesimal at line 4, then ∆`Ji becomes nonzero (and δi becomes

0) and i must now be relaxed at line 9. Relaxing i makes the children of i have nonzero

J-values, so they will have to be relaxed in turn (and pushed on ∆`Stack1).

4.5.3.3 Benefits of Templates

Thanks to the use of the template, each computation of f̃ in the experiments took less time

to compute the differences for all 3607 training headwords, in total, than to compute the

template. The algorithm would have been far slower if the computation of the template

had essentially been repeated for all 3607 headwords.

The benefit comes at line 9, which in most cases allows the relaxation of i to be skipped

entirely. For example, relaxing Start enqueues all children of Start. A straightforward

computation of Pr(· | `) would have to then relax all children of Start, whereas line 9
20In the methods without templates, there is no such thing as a contingent zero, because Pij 6= 0 iff the

arc ij exists, regardless of parameters.
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makes it possible to relax only the children that have flow adders, since the rest are no

different from the template. In the experiments of Chapter 6, this is the difference between

relaxing all observed frames while computing Pr(· | `) and relaxing only those frames that

were observed with headword `.

Another important benefit emerges from a synergy with path pruning (§4.5.2). Recall

that the first call to relaxation is slow, because it must explore the graph from Start

in search of observed vertices. It would be a waste to explore each subgraph of Fig. 1.3

separately, since they are identical. Again, the work can be combined across subgraphs.

Running back-relaxation immediately on the template (see below) will detect the many

arcs that are useless for all `. That is, they do not appear in a path to any observed frame

in Fig. 4.1.

Back-relaxation on the template records lists of just the useful arcs, as usual, on

tStack1. Now the subgraphs can take advantage of this work. Even the first relaxation for

subgraph ` need only explore along the arcs that were useful in the template—a significant

savings. Back-relaxation on subgraph ` will winnow this set of arcs further, to just those

that appear in a path to some observed lexical entry headed by word `.

4.5.3.4 Back-Relaxation Using a Template

To perform back-relaxation, the computation must be run in reverse as usual. Thus,

one must perform back-relaxation on each subgraph `, and finally back-relaxation on the

template.21

Back-relaxation on the subgraphs is essentially like back-relaxation for any model: it

propagates the base-case gradient g∆`pi = gs`pi = s`si
s`pi

backward from the frames observed

with headword `. It differs in the obvious ways from Back-Relaxation on p. 124:

1. ∆`Stack2 := ∅

2. ~g∆`J := 0 (* should set gP := 0 only once before back-relaxing all subgraphs and template *)

3. repeat until ∆`Stack1 = ∅

4. pop (i,∆`Ji) from ∆`Stack1
21The remark about path pruning in §4.5.3.3 suggested an initial run relaxation and back-relaxation on

the template, solely to find potentially useful paths. The gradients computed by this are not valid and
should be ignored. Thereafter, the discipline is to relax and back-relax all subgraphs in between relaxation
and back-relaxation of the template.

139



5. push (i, g∆`Ji) onto ∆`Stack2

6. z := 0

7. increment

 z by Pi0 · g∆`pi

gPi0 by ∆`Ji · g∆`pi

8. for each child j 6= 0 of i

9. increment

 z by Pij · g∆`Jj

gPij by ∆`Ji · g∆`Jj

10. g∆`Ji := z

11. (* no return value; should return the final gP only after back-relaxing all subgraphs and template *)

Back-relaxation on the template is exactly the same, except that ∆` is replaced by t

throughout. Here the base-case gradient is given by gtpi =
∑

` gs`pi·
∂s`pi
∂tpi

=
∑

` gs`pi. The

summation indicates that this is generally larger than for any single subgraph: after all,

the template computation affects the final probabilities of lexical entries in many different

subgraphs.

Notice that just as relaxation for subgraph ` only had to follow a few paths (the ones

along which ∆` was propagated), back-relaxation for subgraph ` only has to follow those

same paths backwards. Thus its pop move is to pop (i,∆`Ji) from ∆`Stack1. Moreover, it

uses the popped ∆`Ji in place of Ji when computing gPij , since it is measuring the effect

of the parameters P only on the subgraph-` computation. This measurement is combined

with back-relaxation on the template, which measures the effect of P on the template

computation.

Subgraph ` is generally much faster to process than the template. This is because

∆`Stack1 is generally considerably shorter than tStack1. Also, once path pruning has

been applied to ∆`Stack1 (§4.5.2), the arc lists it carries around are generally consider-

ably shorter than the arc lists for corresponding entries on tStack1. This is because the

subgraph-` problem only needs to follow paths in Fig. 4.1 to frames that appear with word

`, whereas the template problem has to follow paths to frames that appear with any word.

A subtlety is glossed over in the pseudocode above. We would like to use our usual

double-stack trick (§4.5.1), so that the next call to relaxation on subgraph ` will obtain its

vertex order by repeatedly popping (i, g∆`Ji) from ∆`Stack2. However, remember that
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relaxation will also need access to the corresponding values of tJi on tStack1.22 It is

therefore necessary for vertex instances on the subgraph-` stacks to maintain pointers to

the corresponding vertex instances on the template stacks.23

22To avoid problems with flow adders, and also for a more direct reason if templates are generalized
(§8.6.2.2).

23A good implementation is for every vertex token created during template or subgraph relaxation to be
a record stored at some fixed address in memory (no matter what stack it is on). The record specifies the
vertex; a real J or gJ value as appropriate; the arc list; a pointer to the underlying template record; and
a pointer to the next vertex on the same stack.
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Chapter 5

Trees and Transformations

Previous chapters defined transformational lexicons and transformation models. In partic-

ular, §2.4 described a particular format for a transformational lexicon, and §3.7.2 sketched

how to model it statistically with a transformation model.

But what is the practical use of such a model? In particular, how could we use it to

parse better? This brief chapter fleshes out the answer (following §2.3), before we move on

to actually fitting such a model in the next chapter. Old hands may want to skip ahead

to §5.4.

5.1 Dependency Frames

We take lexical entries to be the flat, lexicalized context-free rules of §2.4.1. A lexicon lists

the lexical entries of a language.

A frame (formally defined in §5.3.2) is a kind of template for lexical entries (not

in the sense of §4.5.3!). It looks just like a lexical entry, except that the headword

is a variable, written as . For example, the lexical entries S→ NP ate NP PP and

S→ NP drank NP PP are both instantiations of the same frame, S→ NP NP PP.

A frame specifies the dependents of the headword, their order, and their position rel-

ative to the head. The flat representation means that unlike a traditional subcategoriza-

tion frame, it mentions all dependents—specifiers and adjuncts as well as complements.

(The term “dependency frame” alludes to dependency grammar (Tesnière, 1959; Mel’čuk,
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1988).)

A lexical entry can be regarded as an element (w, f) of Words × Frames. Thus, the

lexicon specifies for each word the set of frames that it can project. The transformations

of §2.4.2 and §2.4.3 convert these frames into one another without changing the headword.

5.2 Probabilistic Lexicons

A probabilistic lexicon is a probability distribution Prlex(w, f) over the space of lexical

entries, Events
def= Words× Frames.

Our principal interest is in the conditionalized distribution Prlex(f | w), which specifies

for each word the frames that it is likely to project. Note that for any w, Prlex(· | w) is

itself a probability distribution, with
∑

f Prlex(f | w) = 1. Transformational smoothing

adjusts this distribution by shifting probability mass among the frames for w,1 on the

assumption that correlations observed among other words’ frames also hold of w’s frames.

For learning (smoothing), we will have to compare multiple possible lexicons. In this

case we will write a given lexicon as a function Prlex
θ (w, f), where θ is a large but finite

vector of parameters that fully determines the function Prlex
θ according to a transformation

model (§3.2.2).

This chapter describes how to do three related things with a probabilistic lexicon:

assign probabilities to trees As shown below in §5.4.4, we may use the conditional

distributions Prlex(f | w)—together with a second function that describes the con-

textual probabilities of each word w—to construct a distribution Prtree over syntax

trees. This is useful for training, parsing, and evaluation (§5.3.1).

induce a lexicon The goal of grammar learning is to determine θ such that Prlex
θ is likely

to be the lexicon of the target language. Given some evidence (sample lexical entries

or trees), we choose the lexicon Prlex
θ that has highest posterior probability according

to Bayes’ Theorem (§3.1.3).
1Why is probability mass shifted only among entries that share a headword w? Only because we do not

currently consider transformations that can change the headword of an entry.
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favor transformationally regular lexicons Bayes’ Theorem recognizes that some lex-

icons are a priori more likely than others. We will model Prlex
θ using a transformation

model (Chapter 3). The prior on θ plays the role of Universal Grammar. The result

is that

• Any θ has positive prior probability (Prprior(θ) > 0), so any lexicon Prlex
θ can

be learned given a sufficiently large data sample.

• The prior probability Prprior(θ) is high to the extent that the lexicon Prlex
θ is

“transformationally regular.” This means that many entries in the lexicon (i.e.,

individual probabilities Prlex
θ (f | w)) are roughly predictable from other entries,

using a “small” set of transformations that apply at consistent rates throught

the lexicon, transforming frames for a word into other frames for that word.

5.3 Tree Probabilities

5.3.1 The Importance of Tree Probabilities

The probabilistic lexicon Prlex(f | w) is useful only insofar as it helps us define a probability

distribution over syntax trees, Prtree(T ). We write Prtree
θ for the particular distribution

constructed from Prlex
θ .

• It is Prtree that is of primary interest for parsing. One can parse a sentence by

choosing its parse T for which Prtree(T ) is greatest.

• We can also use Prtree to define the likelihood
∏
i Prtree(Ti) of a corpus of trees

T1, T2, . . . Tn. This is an appropriate measure for evaluating and comparing statis-

tical models of syntax, even models that do not make an explicit estimate of our

probabilistic lexicon Prlex(f | w). A model is better than another if it assigns higher

likelihood (equivalently, lower perplexity) to the correct parse trees for a set of ran-

domly chosen test sentences.

• Finally, Prtree is also important for learning the probabilistic lexicon Prlex
θ . Ideally,
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we would choose θ that maximizes the posterior probability

Pr(θ | T1, . . . Tn) ∝ Pr(T1, . . . Tn | θ) · Pr(θ) (5.1)

def=
∏
i

Prtree
θ (Ti) · Prprior(θ) (5.2)

where Prtree
θ is constructed from Prlex

θ and the trees T1, T2 . . . Tn are an observed

sample from Prtree
θ . We cannot observe the transformational parameters θ directly,

so we have to infer them from this sample.

The following sections develop a context-free model of Prtree that is defined as much as

possible in terms of Prlex(f | w). Better techniques for estimating Prlex(f | w) from sparse

data—such as transformational smoothing—should then lead to better estimates of Prtree,

and thus, one hopes, to more accurate parsing.

5.3.2 Formal Definition of Syntax Trees and Frames

Let Words be the set of terminal symbols and Cats a set of nonterminal categories.

A frame is an object of the form X → Y1 . . . Y` Z1 . . . Zr, for some ` ≥ 0, r ≥ 0,

and X,Y1, . . . Y`, Z1, . . . Zr ∈ Cats.

We take a syntax tree to be any 4-tuple T = 〈T.w, T.f, T.leftkids, T.rightkids〉, where

• T.w ∈Words is the tree’s headword;

• T.f = X → Y1 . . . Y` Z1 . . . Zr is the tree’s root frame, with X ∈ Cats being

called the tree’s category and denoted by T.cat or LHS(T.f);

• T.leftkids is a sequence of syntax trees whose categories are Y1, Y2 . . . Y` respectively;

• T.rightkids is a sequence of syntax trees whose categories are Z1, Z2 . . . Z` respectively.

The sentence of which the tree is a parse is the tree’s yield, found by reading off the

sequence of headwords during an infix traversal:

yield(T ) = concat(yield(T.leftkids[1]), . . . yield(T.leftkids[`]), (5.3)

T.w, yield(T.rightkids[1]), . . . yield(T.rightkids[r]))
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Figure 5.1: A sample tree generated as described in the text. ♦ is a special “end of
sentence” symbol that serves as the headword of utterances.

An example is shown in Fig. 5.1. As motivated in §2.4.1, in this style of tree, each of the

frames is “flat,” in contrast to the more articulated “X-bar” style of representation. The S

tree does not have explicit subtrees VP, V, or V that share its head. Rather, all complements,

subjects, and adjunct modifiers attach simultaneously to the headword fills, yielding the

maximal projection S.

5.3.3 Stochastic Generation of Syntax Trees

5.3.3.1 A Context-Free Model

We first consider a lexicalized PCFG model of trees. A random syntax tree of category

X0 may be generated by the following multiply-recursive stochastic process (cf. (Charniak,

1997)).2

The process is defined by a set of expansion probabilities Prexp(w, f | X) where

w ∈Words, X ∈ Cats, and f is a frame with X = LHS(f). It has the following steps:

1. Choose a pair (w0, f0) at random, conditioned on X0, by sampling from the distri-

bution Prexp(w, f | X0). Concretely, suppose that f0 is X0 → Y1 . . . Y` Z1 . . . Zr.
2Unfortunately, as is well known, this process is not guaranteed to terminate everywhere; so for some

parameters of the stochastic process, the total probability of all (finite) trees can be < 1. We ignore this
issue; Chi (1999) provides a formal remedy through renormalization, and also shows that the issue does
not arise for maximum-likelihood estimates of the PCFG parameters.
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2. Recursively generate a list leftkids of ` syntax trees whose respective categories are

Y1 . . . Y`.

3. Recursively generate a list rightkids of r syntax trees whose respective categories are

Z1 . . . Zr.

4. Return 〈w0, f0, leftkids, rightkids〉 as the generated tree.

Any parse tree T can be generated in this way by a unique sequence of expansion

moves. The tree’s probability, given its category, is the product of the probabilities of all

the moves in this sequence, that is:

Prtree(T | T.cat) = Prexp(T.w, T.f | T.cat) ·
∏

T ′∈T.leftkids·T.rightkids

Prtree(T ′ | T ′.cat)(5.4)

=
∏

T ′ a subtree of T
Prexp(T ′.w, T ′.f | T ′.cat) (5.5)

We are especially interested in the special root category X0 = UTTERANCE. Define a

complete utterance as a tree of this category. Abusing notation slightly, we use Prtree(T )

as an abbreviation for Prtree(T | UTTERANCE), i.e., the probability that a random complete

utterance has structure T as its correct analysis. In particular, this was the meaning of

Prtree(T ) in §5.3.1 above.

The example tree in Fig. 5.1 has probability

Pr(♦ : UTTERANCE→ S | UTTERANCE) · Pr(fills : S→ NP NP PP | S)

·Pr(rice : NP→ | NP) · Pr(her : NP→ | NP)

·Pr(with : PP→ NP | PP) · Pr(glee : NP→ | NP) (5.6)

5.3.3.2 Enriching the Model With Context

The procedure just described makes the independence assumption that a subtree’s head-

word w and root frame f depend only on the subtree’s category X = LHS(f). This is the

standard PCFG assumption. However, recent statistical parsing models have also allowed

dependence on other parts of the tree that govern the node in question.
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We simply redefine the expansion probabilities to condition on more information: they

now have the form Prexp(w, f | X, γ), where γ is (the result of) some function that picks

out relevant contextual features from the part of the tree that was generated previously.

A common use of γ is to model “bilexical” selectional preferences (Eisner and Satta,

1999). For example, in Fig. 5.1, we might want to capture the fact that rice is a good sub-

ject of fills. We may do so by conditioning the choice of rice (and its frame NP→ )

not only on X = NP but also on the lexical governor γ = fills. (See §5.5.4 below for

more sophisticated variants.)

In general, we formally modify equation (5.4) to

Prtree(T | T.cat, γ) = Prexp(T.w, T.f, | T.cat, γ) ·
∏

Ti∈T.leftkids·T.rightkids

Prtree(Ti | Ti.cat, γi)

where γi may depend on γ, T.w, T.f, and the left sisters of Ti (defined as the trees that

strictly precede Ti in the sequence concat(T.leftkids, T.rightkids) of T ’s children).

For the bilexical case mentioned above, we would simply define γi (regardless of i) to be

T.w, the headword of the minimal supertree of T ′. This is the word on which T ′ depends:

T ′ fills one of its adjunct or argument roles.

5.4 From Lexical Probabilities to Expansion Probabilities

5.4.1 Insertion and Projection

We have just made an independence assumption that allows us to compute Prtree as a

product of expansion probabilities Prexp(w, f | X, γ), where X = LHS(f). The only

remaining question is how to model the expansion probabilities (and what this has to do

with probabilistic lexicons).

The usual approach in the literature (e.g., see §1.2.1.1) is to first decompose each

expansion probability as follows, via the laws of conditional probability:

Pr(w, f | X, γ) = Pr(w | X, γ) · Pr(f | w,X, γ) (5.7)

or, giving mnemonic names to the conditionalized distributions,

Prexp(w, f | X, γ) = Prins(w | X, γ) · Prproj(f | w,X, γ) (5.8)
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The first factor is a lexical insertion probability that controls the choice of headword

w, according to the selectional preferences of γ, and the second is a frame projection

probability that controls the choice of arguments and modifiers for the headword w.

Applying this decomposition to equation (5.5), the probability of a tree or corpus T

has the form ∏
Ti

Prins(wi | Xi, γi) ·
∏
Ti

Prproj(fi | wi, Xi, γi) (5.9)

where Ti ranges over subtrees of T and (wi, fi, Xi) = (Ti.w, Ti.f, Ti.cat).

The recent probabilistic parsing literature (see §1.2.1.1) is largely about how to model

the conditional distributions Prins and Prproj.

5.4.2 Smoothing the Projection Probabilities

The main focus of this thesis is Prproj and how to smooth it using a transformation model.

A common independence assumption is that it is insensitive to γ:

Prproj(f | w,X, γ) = Prproj(f | w,X) (5.10)

This means that each subtree’s root frame f must match the headword w and LHS category

X already generated for it, but that the choice is not further influenced by anything else

in the tree.

We will adopt this assumption, which is intuitive and reasonable on linguistic grounds.

(See §5.5.5 for further discussion.)

Some techniques for estimating Prproj(f | w,X) are as follows:

• The simplest technique is to use a multinomial model, as if Prproj(f | w,X) were the

probability of landing on f when rolling a many-sided weighted die associated with

(w,X). The maximum-likelihood estimate would be a ratio of observed counts,

P̂rproj(f | w,X) =
#(f, w,X)
#(w,X)

(5.11)

• Standard backoff or discounting techniques can adjust the above maximum-likelihood

estimate to compensate for the sparsity of the observed data, in particular to avoid

estimating the probabilities of unseen events as 0.
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• §6.6.1 and §6.6.3 discuss some more sophisticated approaches that take the internal

structure of the frames f into account, so that “similar” frames are assigned similar

probability estimates.

• Transformational smoothing, the contribution of this thesis, also takes the inter-

nal structure of the frames into account. It redistributes probability mass among

frames that are transformationally related. Related frames receive related—but not

necessarily similar—probability estimates.

Given a transformationally smoothed lexicon Prlex
θ (w, f), or just its conditionaliza-

tion Prlex
θ (f | w), we compute projection probabilities as

Prproj(f | w,X) =
Prlex

θ (f | w)
Prlex

θ (X | w)
=

Prlex
θ (f | w)∑

f ′:LHS(f ′)=X Prlex
θ (f | w)

(5.12)

where X = LHS(f).

Equation (5.12) is especially easy to compute if the transformation model has no trans-

formations that change the category X (or headword w). In that case, the denominator

Prlex
θ (X | w) can usually be computed directly without a summation. It is simply the

probability that if the transformational random walk (§3.3.1) begins by choosing a frame

with headword w, then that frame’s LHS is X. This can usually be determined by looking

at the probabilities of arcs from Start.

5.4.3 Smoothing the Insertion Probabilities

Surprisingly, transformational smoothing can also help improve the estimate of the inser-

tion probabilities Prins(w | X, γ).

Typically γ is a governing word, so that Prins(· | X, γ) is a distribution over words

w that can fill the X role of γ. Just as for projection probabilities, several estimation

techniques are available:

• As before, the simplest technique is to compute the maximum-likelihood estimate

#(w,X, γ)/#(X, γ).

• As before, the maximum-likelihood estimate can be improved with standard backoff

or discounting techniques.
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• One can back off using semantic clusters of words; see §5.5.1.2.

• Another backoff estimate is the Naive Bayes estimate:

Pr(w | X, γ) =
Pr(w) · Pr(X | w) · Pr(γ | w)

Z(X, γ)
(5.13)

where Z(X, γ) is a normalizing factor chosen to make
∑

w Pr(w | X, γ) = 1.

One can estimate the “reversed” insertion term Pr(γ | w) using the same clustering or

transformational smoothing techniques as above. The payoff is in the term Pr(X | w),

which is obtained simply by marginalizing the probabilistic lexicon:

Pr(X | w) def=
∑

f ′:LHS(f ′)=X

Prlex
θ (f | w) (5.14)

Transformational smoothing of the lexicon helps equation (5.14) just if the transfor-

mation model includes category-changing transformations. We now examine this point.

5.4.4 The Benefits of Category-Changing Transformations

Cross-category transformations, while linguistically useful (§2.4.3), are not used in the

experiments presented here (see §2.4.2). However, they can help estimate both projection

and insertion probabilities. This would be particularly helpful for derived categories like

S/NP, where observed data tend to be sparse.

First consider projection probabilities. Suppose that during the stochastic generation

of a tree (§5.3.3), we need to sample Prproj(· | devoured, S/NP), in order to project an

S/NP frame headed by devoured. This distribution is partly predictable from Prproj(· |

devoured, S).

The two distributions are not similar in the sense of small divergence: we cannot back

off from one to the other. But they are related by an extraction transformation. If w

is a transitive verb, so that Prproj(S→ NP NP | w, S) is large, then we would expect

extracted frames to have largish projection probabilities as well: Prproj(S/NP→ NP |

w, S/NP) and Prproj(S/NP→ NP NP/NP | w, S/NP).

The transformation graph of Fig. 5.2 captures this expectation. When sampling from

Prproj(· | devoured, S/NP), we might start a random walk with the frame S→ NP NP
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S/NP→ NP devoured
the chips that [John devoured]

[John devoured] and [Mary eschewed] the chips

S/NP→ NP devoured NP/NP
the chips that [John devoured the remains of]

S→ NP devoured NP
[John devoured the chips]

S/NP→ NP devoured NP PP/NP
the gusto that [John devoured the chips with]S→ NP devoured NP PP

[John devoured the chips with gusto]

S→ NP rise
[we rise]

S→ NP rise PP
[we rise to an anthem]

S/NP→ NP rise PP/NP
an anthem that [we rise to]

Figure 5.2: A transitive verb has more ways than an intransitive one to end up as the head
of an S/NP. So Prproj will tend to select different S/NP frames for it, and Prins should be
more likely to choose it as the head of an S/NP.

and transform it into S/NP→ NP by object extraction. The second frame inherits

probability from the first even though they have different LHS categories.3

Now suppose we were sampling instead from Prproj(· | rise, S/NP). Since rise is in-

transitive, S→ NP rather than S→ NP NP would be a far more probable choice of

initial frame given the head. This cannot undergo object extraction, so we would have to

take a more roundabout route to convert it into an S/NP frame. We might choose to trans-

form it into S→ NP PP by adjunction and then S/NP→ NP PP/NP by extraction:

an anthem that [we rise to]S/NP.

So the transformation model says that rise tends to select for different S/NP frames

than devoured does, precisely because it selects for different S frames.
3Note that to sample from Prproj(· | devoured, S/NP), a single random walk on the transformation graph

does not suffice. Not all random walks halt at an entry of the form S/NP→ · · · devoured · · ·. To sample
from this conditional distribution, as defined in equation (5.12), we need a process that takes repeated
random walks from Start, trying again and again until it does halt at an entry of the appropriate form.
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How about insertion probabilities? It is also true that S/NP frames are rarely headed

by rise in the first place. That is, the insertion probability Prins(rise | S/NP, γ) is small.

(Intuitively, this is because none of the S/NP frames headed by rise are easy to derive.)

If the data are too sparse to learn this fact directly for a given γ, the Naive Bayes backoff

estimate of §5.4.3 predicts it perfectly. A random walk among the frames for intransitive

rise is unlikely to end up at an S/NP frame, so Pr(S/NP | rise) is small in equation (5.14);

this makes Prins small in equation (5.13), as desired. For transitive devoured the estimate

will be larger.

So the transformation model of the lexicon helps estimate insertion probabilities as

well as projection probabilities.

5.4.5 Recombining Insertion and Projection

When using the Naive Bayes estimate of insertion probabilities, as above, it is actually

convenient to estimate Prexp = Prins · Prproj directly:

Pr(w, f | X, γ) = Pr(w | X, γ) · Pr(f | w,X) by equations (5.7) and (5.10) (5.15)

=
Pr(w) · Pr(γ | w) · Pr(f | w,X) · Pr(X | w)

Z(X, γ)
by equation (5.13)(5.16)

=
Pr(w, γ) · Pr(f,X | w)

Z(X, γ)
(5.17)

=
Pr(w, γ) · Pr(f | w)

Z(X, γ)
(provided LHS(f) = X) (5.18)

=
Pr(w | γ) · Pr(f | w)

Z ′(X, γ)
(5.19)

where Z ′(X, γ) = Z(X, γ)/Pr(γ).

Giving the distributions mnemonic names as usual,

Prexp(w, f | X, γ) =
Prrevins(w | γ) · Prlex(f | w)

Z ′(X, γ)
(5.20)

If the denominator Z ′ has been precomputed, this equation figures the full expansion

probability with just one access to the transformationally smoothed lexicon Prlex. The

other term Prrevins can be estimated by any of several methods (§5.4.3).

To find Z ′(X, γ) more explicitly, observe that the distribution must sum to 1 over all
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words w′ and all frames f ′ such that LHS(f ′) = X. So we may rewrite as

Prexp(w, f | X, γ) =
Prrevins(w | γ) · Prlex(f | w)∑

w′ Prrevins(w′ | γ) ·
∑

f ′:LHS(f ′)=X Prlex(f ′ | w′)
(5.21)

when LHS(f) = X (and of course Prexp = 0 otherwise).

To understand the distribution defined by equation (5.21), note that it may be sampled

via rejection sampling (just as in footnote 3 on p. 152). We are given X and γ.

1. Choose a headword w from the multinomial distribution Prrevins(w | γ). This word

will be appropriate to γ but perhaps not to X.

2. Choose a frame f projected by w, using the transformationally smoothed distribution

Prlex(f | w). This requires a random walk on the lexical entries having headword w.

Set f to be the frame of the entry where the walk halts.

3. If LHS(f) 6= X then discard both w and f and return to step 1 to try again.

4. Return (w, f).

This procedure captures the linguistic idea of the previous section: even if we have few

observations of S/NP constituents, we should still be able to tell that intransitive rise is an

unlikely head for one. If we attempt to choose rise as head, the rarity of extraction from

intransitive frames means that rise will usually generate an S rather than S/NP frame,

causing us to discard rise and try again. A transitive verb devour will manage to choose

an S/NP frame much more often, so it will survive in this context at a higher rate.

The statistical idea behind equation (5.21) is that if Pr(w | X, γ) is difficult to estimate,

then the transformational smoothing model can absorb the dependence of w on X. The

reasonable Naive Bayes assumption about Pr(w | X, γ) (equation (5.13)) is what lets us

separate out w’s dependence on X from its dependence on γ.

A downside to equation (5.21) is that the denominator is complicated: the normalizing

constants Z ′(X, γ) may be inconvenient to compute. On the other hand, even simpler

uses of cross-category transformations (such as equation (5.12) used in the service of equa-

tion (5.8)) must do the trickiest part of that computation, namely the sum over f ′ of

transformationally smoothed probabilities.

154



5.4.6 Summary

In short, we now have a way to define the probabilities Prexp that are multiplied to yield

Prtree. When it is possible to estimate Prins accurately without backoff, then use Prins and

Prlex in equations (5.8) and (5.12). Otherwise, use Prrevins and Prlex in equation (5.21).4

Prins and Prrevins may be estimated in any of several ways described in §5.4.3. Prlex is

transformationally smoothed.

5.5 Remarks on Linguistic Adequacy

Any statistical model of language makes some implicit claims about linguistics, in both its

representations and its independence assumptions. A given model will be able to handle

some linguistic phenomena easily, others by representational tricks, and others not at all.

This section discusses the motivation and use of the kind of flattened context-free

approach given in §§2.4–3.7.2 and §§5.3.2–5.3.3. It includes a good deal of “armchair

linguistics” for English. In particular, although the experiments reported in this thesis use

relatively crude representations and transformations, we would like to hold out the hope

that the framework is on the right track, in that it would remain appropriate—though

perhaps not easily learnable—if one were to add more linguistic sophistication.

One could simply apply transformational smoothing to one’s favorite lexicalized theory

from linguistics, as in Chapter 2. (See especially §2.3.4.) But such theories sometimes take

an ad hoc or de minimis approach to lexical transformations, and they are not always

concerned with parsing efficiency, let alone with “soft” statistical issues such as word-to-

word generalizations or the statistical independence of lexical entries from one another. It

is therefore worth taking a few pages to develop our simple framework with respect to the

statistical and linguistic concerns of this thesis.

5.5.1 What is a Word?

The model of trees in §§5.3.2–5.3.3 relies on a set Words. (The headwords of a syntax tree

and its subtrees are drawn from this set; Prlex specifies a distribution of frames for each
4Or for simplicity, just use equation (5.21) always.
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w ∈Words; and Prins or Prrevins describes the contextual probabilities of each w.) But are

these orthographic words, morphemes, word clusters, or word senses?

In the experiments reported here, it was convenient to have Words consist of ortho-

graphic words. Below we will examine some possible extensions and their effects on Prins

(or Prrevins) and Prlex.

5.5.1.1 Morphology

Taking Words as a set of unanalyzed orthographic words has the unfortunate consequence

that Popeye devours the spinach and Popeye has devoured the spinach have different head-

words. So far as the statistical model knows, these headwords are unrelated. The model

must learn separately that both forms of devour are transitive (Prproj, via Prlex). It must

also learn that they select, and are selected by, the same heads (Prins).

If external morphological knowledge is available, a simple solution to the would be to

leave Words alone, but improve the models of Prins(w | X, γ) to recognize the common

root. For example, one might arrange that

Prins(w | X, devours) = Prins(w | X, devoured)

and that

Prins(devoured | X, γ) = Prins(devour−? | X, γ) · Prins(?−ed | X)

However, that trick would improve only the insertion probabilities Prins, not the project

probabilities Prlex.

A more thoroughgoing solution is to assume that Words is a set of morphemes, and

that the sentences presented to the learner have been preprocessed by a morphologizer

(or human annotator) that splits orthographic words into their component morphemes.

Then the correct analysis of the sentence Popeye has devoured the spinach would appear

to the learner as a syntax tree with yield Popeye have -Pres devour -PastPart the

spinach. We will discuss the form of this syntax tree further in §5.5.4.2 below.

Of course, a wholly unsupervised learner would have to learn the interword segmenta-

tion (de Marcken, 1996) and morphology (Goldsmith, 2001) along with the syntax.5 In this
5A sensible approach (Eisner, 2000) is to regard the raw data as having been generated by the com-

position of a PCFG with a probabilistic finite-state transducer (PFST). The PCFG generates morpheme
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case, an EM-style learner might entertain multiple parses of an input sentence like “Popeye

has devoured the spinach”: parses with the fringe shown above, in which devoured is re-

lated to devours, as well as parses with differently analyzed or unanalyzed fringes such as

Popeye has devoured the spinach. As with any statistically interdependent variables,

the parameters governing morphology and syntax would bootstrap off each other during

reestimation. If either morphology or syntax favors the correct analysis, the other benefits.

5.5.1.2 Semantic Clusters

One might wish the model to benefit from not only morphological but also semantic rela-

tionships among words. The selectional preferences of devour resemble not only those of

devoured but also those of eat.

Thus, Prins(w | NP, devour) ≈ Prins(w | NP, eat). Several researchers have used this

observation to better predict w by aggregating the estimates from similar parent words

such as devour and eat (Lee, 1997; Stetina and Nagao, 1997; Abney and Light, 1999; Li

and Abe, 1998; Miyata et al., 1997; Utsuro et al., 1998). A variant also considers similar

child words w (Rooth, 1995; Hofmann and Puzicha, 1998, §6.2). Some of these methods

pick out the similar words in an entirely unsupervised way, while others use the hand-built

WordNet hierarchy (Miller et al., 1990) as a source of constraint.

Clusters of words with similar selectional preferences can help estimate not only Prins

but also Prproj. Rooth et al. (1999) have shown, by clustering techniques, that words (at

least, verbs) with similar selectional preferences have similar meanings. Therefore the work

of (Levin, 1993; Pinker, 1989; Grimshaw, 1994) suggests that they will tend to project the

same frames: Prlex(f | drink) ≈ Prproj(f | eat) (and hence Prproj(f | NP, drink) ≈

Prproj(f | NP, eat)).6 Korhonen (2000) shows that Levin’s insight holds up statistically

even without word-sense disambiguation. There are many methods for clustering words

by selectional preference (Webster and Marcus, 1989; Pereira et al., 1993; Dagan et al.,

1997; Li and Abe, 1998; Rooth et al., 1999; Prescher et al., 2000), and Charniak (1997)

strings according to syntax, and the PFST post-processes them according to morphology. The learner must
learn the parameters of both the PCFG and the PFST.

6The converse insight is also true: words that project the same frames tend to have the same meanings
(Levin, 1993; Gleitman, 1990; Lapata and Brew, 1999; Schulte im Walde, 2000).
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actually achieved a small improvement in parsing accuracy by backing off to such semantic

clusters of words in estimating both Prins and Prproj. Possibly such clusters would also aid

syntax learning or the semantic interpretation of parse trees.

To apply such techniques it is not necessary to change Words, only the procedures for

estimating Prins and Prlex.

• Most obviously, one could back off just as Charniak does. For lexicon smoothing,

this would set the backed-off estimate of Prlex(f | w) to a weighted average of values

Prlex(f | w′) over the words w′ that are similar to w. That means estimating the

individual distributions first, ignoring the influence that they will have upon one

another once they are averaged.

• A more principled alternative is to augment the model with output features §3.6.2.

Transformations yielding a lexical entry (w, f) should have not only a per-event

feature specific to (w, f), but also a more general output feature sensitive to (C, f)

for every word cluster C that contains w. This means that f tends to be listed

or delisted for all words in the cluster together. In the case of soft clustering, the

coefficient of this feature (§7.3.1.1) should depend on w’s degree of membership in

C, and might perhaps be learned (§7.3.2.2).

• Finally, one could capture the insight of similarity-based smoothing (Dagan et al.,

1997) by allowing transformations that change the headword of a lexical entry.

5.5.1.3 Word Senses

Grouping words into clusters, whether by morphology or by semantics, has an opposite:

splitting them into senses. One can certainly let Words be a set of senses, provided that the

input to the learner is sense-disambiguated.7 But this has less use in a transformational

smoothing model than one might imagine.

Certainly there is no need to treat transitive and intransitive eat as different words.

Prlex(f | eat) specifies probabilities for both uses, and the whole point of transformational
7Or that one is willing to treat the input senses as hidden variables and run EM to fit the parameters

θ of the transformational smoothing model.
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smoothing is to estimate these probabilities better by recognizing that they are related

uses of the same word.

Even in cases where an orthographic word has clearly unrelated senses, it may not

be particularly important to distinguish them for purposes of the model. Although one

could certainly estimate separate distributions Prlex(f | bankN1), Prlex(f | bankN2), and

Prlex(f | bankV) for the classical two noun senses and one verb sense of bank, there is

little harm in simply estimating a single distribution Prlex(f | bank) instead, which is a

linear combination of the distributions for the three senses. Similarly, there is little harm

in conflating the senses when estimating Prins(w | NP, bank) (which specifies words that

can head NP arguments of bank—presumably bankV) or Prins(bank | NP, γ) (which specifies

words whose NP arguments can be headed by bank—presumably bankN1 or bankN2).

There are, however, a few advantages to “doing it right” and distinguishing senses,

particularly senses with the same part of speech:8

• When using the model Prtree to parse, it helps disambiguation if the input words have

sharp selectional preferences. Rolling unrelated senses together makes the correct

parse less certain.

• The transformational smoothing model learns transformations by looking at pairs of

frames that tend to appear with the same words. If senses are conflated, then more

frames appear with each word; the resulting spurious correlations can mislead the

model.

• Under our transformational prior, the prior probability of a particular distribution

P = Prlex(f | bank) is not quite the same as the prior probability of obtaining

separate distributions Prlex(f | bankN1), Prlex(f | bankN2), and Prlex(f | bankV)

whose average (weighted by the senses’ relative probabilities) is P . So distinguishing

senses has some effect on the estimation of Prlex.

• Under the independence assumptions of §5.3.3, ?insure the grassy bank appears to

have high probability because (river) banks are likely to be grassy, and (financial)
8If this were not true, one would not even have to distinguish orthographic words. It would suffice to

conflate them all into a single word um with 100,000 senses. This would certainly aid estimation of the
transformational smoothing model, but it is not a good idea.
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banks are likely to be insured. A model that distinguishes the two senses will not

make this mistake: ?insure the grassy bankN1 is unlikely. In general, the sense of the

word can mediate statistical correlations among the word’s dependents and governor.

• Similarly, ?kern the letter about your aunt incorrectly appears to have high proba-

bility, since (typographical) letters can be kerned and (mailed) letters can be about

something. In this case, a sense distinction is necessary to mediate a statistical

correction between a word’s frame and its governor.

• The Naive Bayes assumption used for Prins(w | X, γ) in §5.4.3 is less plausible if senses

are conflated. Naive Bayes implies that if w can occur with X and γ separately, then

it can occur with them when they appear together. This is false if only one sense

of w can occur with X and only another sense can occur with γ.9 Since a letter

about . . . is a “picture-NP” that permits extraction, the Naive Bayes assumption

would overestimate Prins(letter | NP/NP, kerned), allowing ?the subject you kerned

[a letter about]NP/NP.

On the other hand, it is also possible to make overly fine sense distinctions. If a

sense w ∈ Words is so specific that it appears with only a single frame, then it gives

the transformational smoothing model no evidence for transformations among frames. A

remedy is to use semantic clusters of senses as described above (§5.5.1.2). In essence, this

backs off to the orthographic word, by presuming that its senses will have similar if not

identical distributions of frames.

5.5.2 The Use of Flat Frames

A distinctive and important point about the representation of §5.3.2 is that frames are

flat. In the stochastic generation of a tree (§5.3.3), a frame such as !!! is generated all at

once, as a single sample from Prlex.

As a result, in the generated tree shown in Fig. 5.1, all arguments and adjuncts of fills

attach at the same level. There is only a single subtree headed by fills. This contrasts
9However, if γ specifies not only a lexical governor but also a theta-role for w, as suggested in §5.5.4.5,

then it is hard to find examples of this. The example given in the text works but is rather strained.
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with most of the other models currently used in the field for English parsing (exceptions

include the dependency parser of (Eisner, 1996c; Eisner, 1996b; Eisner, 1997; Eisner,

2000)). In those models, fills would project S and VP levels at separate, statistically

independent steps of the generation process.

The use of flat frames was motivated at length in §2.4.1, and discussed further in §2.4.3

and §6.7.1.

5.5.3 Long-Distance Movement

As discussed in §2.2 and §2.4.3, long-distance movement can be handled in the style of

GPSG (Gazdar et al., 1985) or categorial grammars (e.g., (Steedman, 1996)). The idea

is to use structured “slashed” nonterminals to pass gaps up the tree. Such devices can

increase the power of context-free grammar if they are allowed to introduce infinitely many

nonterminals. Collins (1997) was the first to use this scheme in a statistical parser.

A problem with modeling long-distance movement is that semantic dependencies be-

come non-local. The model of insertion probabilities in §5.4.3 tries to capture selectional

preferences, but cannot do so in non-local cases. In particular, it cannot use the subject

and object selectional preferences of eat to help disambiguate the hungry orphan whom

Bill wants to eat.

One solution would be to require the stochastic generation process of §5.3.3 to ex-

pand gapped nonterminals before their fillers; then the headword of the filler could be

conditioned on the lexical governor of the gap, which was previously generated. Another

solution would be to modify §5.3.3 to allow not only expansion but also adjunction at

nonterminal nodes. (Adjunction is used here in the sense of TAG (Joshi et al., 1975);

it could be constrained to non-wrapping adjunction in order to preserve context-freeness

(Schabes and Shieber, 1994).)

5.5.4 Capturing Bilexical Dependencies with Prins(w | X, γ)

The generation model of §5.4.1 assumes that every word w is chosen from a distribution

Prins(w | X, γ). So it depends only on X and γ, where γ is some previously generated

context. Usually γ is assumed to be a single previously generated word. Indeed, γ is
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traditionally chosen to be w’s parent in the tree (i.e., the tree headed by w is a child of

the tree headed by γ). Is there a style of annotation for which this choice is linguistically

apt?

5.5.4.1 Choosing Lexical Headwords

The first question is whether a phrase’s designated headword should be the morpheme

that contributes the phrase’s type or its core meaning. Is the tulips headed by the (the DP

hypothesis), tulip, or -s? Is The sailor has devoured the spinach headed by has’s present

tense morpheme -s, or the main verb devour?

For the experiments in this thesis, the data are consistently annotated (§6.2) with

lexical heads: tulip, devour.10 The phrase’s type is already reflected in its frame, so we

are free to use the headword to reflect the phrase’s meaning. This breaks with GB-style

linguistics, in which a phrase with obligatory features (e.g., IP) is headed by those features

(e.g., I). It also breaks to some extent with the parsers of Collins and Charniak, which

take a verb phrase to be headed by the tensed verb even if it is an auxiliary.

The decision to use lexical headwords is motivated by their role in selectional prefer-

ences. For example, in The sailor has devoured the spinach, the important dependency—

the one with high pointwise mutual information—is between sailor and devour. It is not

between the and has, or the and -s. Thus, we would like to choose the subject of has

devoured the spinach from the distribution Prins(w | NP+3s, devour). Moreover, to cap-

ture devour’s preference for animate, fierce subjects, we would like to choose the subject

headword w that determines the animacy of the subject: a noun, not a determiner.

5.5.4.2 Function Morphemes Remain Influential as Nonterminal Features

We cannot ignore function “heads,” however. Just as devour requires an animate subject,

the verbal affix -s requires a third-person singular (“3s”) subject. The subject of has

devoured the spinach should be both animate and 3s. Does this mean that -s has an equal

claim to be the headword?

To get the best of both worlds, the subject should depend on both devour and -s.
10Or actually, tulips and devoured, since there is no morphological preprocessing at present.
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Fortunately, in Prins(w | X, γ)—with or without the Naive Bayes assumption of §5.4.3—w

is chosen not only given γ = devour but also given X, the category that w is to head.

Above we supposed X = NP+3s, which does the trick. The +3s feature of X stands proxy

for the -s morpheme that has been suppressed from γ. This allows us to retain the formal

notion that w depends on only one word γ.

In short, the “right” model of English is for devour to project a frame such as

S→ NP+3s have -s -ed NP

5.5.4.3 Gap-Filler Conservation for Features

As the frame just mentioned is complex, we would like to consider how it can arise via

regular processes. (Again, the experiments reported in Chapter 6 ignore morphology, so

do not attempt anything so ambitious.)

Using structured nonterminals to handle agreement, we might write the above frame

as something like

S→ NP+3s have +Tense/3s -ed NP

Improving this further, the formalism of §5.3.2 suggests that rather than include a terminal

symbol such as have directly in the frame, we ought to use a nonterminal that rewrites as

have. Using further features for this, and encoding their semantic effect on the category

of the phrase, we get

S+Perfect+Tense→ NP+3s +Perfect/PastPart +Tense/3s +PastPart NP

The morphemes have, -s, and -ed will then be inserted as the respective headwords of

+Perfect/PastPart, +Tense/3s, and +PastPart.11

11This postpones morphological fusion to a later step. A notational alternative—in the lexicalist spirit
of precompiling all the hard work into the lexicon (§2.2)—is for the transformations that introduce the
morphemes to carry out the morphology directly on the lexical entry, in the style of word-based morphology
((Aronoff, 1976; Anderson, 1992; Sehitoglu and Bozsahin, 1999)). Instead of changing NP devour NP ⇒
NP +Perfect/PastPart devour +PastPart NP as below, a transformation would change it ⇒ NP have

devoured NP. (The headword would still be considered devour, for purposes of lexical insertion.) The same
transformation would have to know about irregular morphology: NP sing NP ⇒ NP have sung NP. The
resulting lexical entries permit a morphology-free account of generation and parsing. Aesthetically, although
these entries obscure the filler-gap conservation that is supposed to license the transformation, they do have
the advantage that affixes are never ordered with respect to their hosts. The transformation simply inserts
the auxiliary and modifies the adjacent word. There is no need to explain why the modificational affix
characteristically “hops” to the right edge of devour (or to the middle of sing).
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The “+ and /” notation (adapted from Stabler’s (1997) formalization of minimalism12)

is intended to suggest that the feature +3s satisfies the requirement /3s, just as a con-

stituent NP can fill a gap /NP. The pairing of fillers and gaps, which ensures that semantic

roles not filled locally will be filled at a distance, is a central theme of categorial gram-

mars ((Lambek, 1958; Steedman, 1990; Morrill, 1994)) and link grammars ((Sleator and

Temperley, 1991)). Similarly, the pairing of requirements and features is a central theme

of minimalist syntax ((Chomsky, 1995; Stabler, 1997; Epstein and Hornstein, 1999)); al-

though it is not quite as symmetric, since every / requirement must be “checked off” by

some + feature, but an + feature may check off zero or two / features in the course of a

minimalist derivation.

While minimalism generates and represents sentences very differently from what we

have assumed, embedding its ideas about features in our flattened CFG-like framework is

straightforward. The + features of a phrase are specified in its lexical entry (on the LHS),

and may or may not be introduced by transformation.

Recall that gap-filler transformations in Fig. 2.5 were careful to preserve the invariant

that gaps must be resolved locally or passed up. Featural transformations are similar,

modulo the asymmetry:

• A transformation may introduce a new LHS feature +x—provided it is not already

present on the LHS—together with some RHS morpheme bearing +x. (This is anal-

ogous to ProduceGap in Fig. 2.5. There is no analogy to PassGap, which would

propagate features up the syntax tree, because there is no need to propagate beyond

the maximal projection already represented by a flat frame.)

• A transformation may introduce a new RHS requirement /x together with a require-

ment that some other nonterminal on the RHS have a satisfying feature +x. This

may involve actually inserting such a nonterminal.

So in the final analysis, the frame above and its LHS features could be derived by trans-

formation from untensed frames as follows:
12Stabler uses + and -. However, we prefer to reserve the notation S-Tense for another use, so that NP

hope S+Tense and NP want S-Tense can be read as subcategorizing for sentences that are required to be
tensed and untensed, respectively.
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S→ NP NP

Popeye devour the spinach

⇒ S+Perfect→ NP +Perfect/PastPart +PastPart NP

Popeye have devoured the spinach

⇒ S+Perfect+Tense→ NP+3s +Perfect/PastPart +Tense/3s +PastPart NP

Popeye has devoured the spinach

The transformation that inserts the tense-and-agreement morpheme +Tense/3s (e.g., -s)

requires the presence of an agreeing subject. The +3s feature it introduces on the subject

NP serves as a restriction on how that NP can subsequently expand: the putative lexical

entry NP+3s→ I has very low probability (except in Popeye’s own dialect), so *I has

devoured the spinach is unlikely.

The above remarks about featural gaps and fillers are meant particularly to defend

the naturalness of transformations that insert auxiliary verbs into a core SVX structure

(where X represents any complements). They become more natural still if lexical en-

tries have internal structure (Fig. 2.2c). In this case, these insertions can be described

by transformational mechanisms that modify this internal structure—the “adjunction-as-

transformation” approach of §2.4.1. The inspiration comes from Lexicalized Tree-Adjoining

Grammar (LTAG), which also begins with a core SVX lexical entry and inserts auxiliaries.

The motivation is the same: since S and V are in the same structure to begin with, V can

impose selectional preferences on S, even though they will later be separated by auxiliaries.

LTAG aficionados call this an “extended domain of locality.” LTAG also provides a natural

mechanism (wrapping adjunction) for inserting matched gaps and fillers on either side of

a nonterminal, as in the Popeye example above.

5.5.4.4 Multiple Lexical Influences

There are various constructions in which a headword w arguably depends on two words

from the context, which in turn may depend upon one another. Such cases have gener-

ally been ignored by statistical models of syntax, excepting statistical approaches to link
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grammar (Lafferty et al., 1992) and unification grammar Johnson et al. (1999).13

A Naive Bayes model (§5.4.3) can be used to capture the dependency on both words,

just as it was used above to capture the dependency on both a word and a function

morpheme. For example, in

Bluto convinced NP [to explode]Sinf\NP,

Lafferty et al. (1992) would condition the generation of the NP’s headword jointly on

convinced and explode. The resulting sparse-data problem could be handled by backing

off to a Naive Bayes approximation.

It should be noted, however, that there is actually no good choice to head this NP.

Such an NP would have to be at once a good object of convince (hence animate) and a

good subject of explode (hence an explosive). For this reason, the entire template above

should have been unlikely in the first place: that is, explode with an unaccusative frame

is simply unlikely to be the complement of convince.14 The model above fails to capture

this fact; it will generate the template too often (and then be stuck with a choice among

bad alternatives for NP).

A nice solution is the kind of whole-parse maximum-entropy model that has been pro-

posed by Johnson et al. (1999) (although normalizing such models is difficult). Here the

parse probability is separately affected by the presence of the three pairwise (“bilexical”) re-

lationships convince
comp←−explode, convince

patient←− head(NP), head(NP)
patient−→ explode. (For

any choice of head(NP), at least one of these relationships is unlikely and knocks down the

parse probability, which captures the intuition described above that all such parses are

bad.) As noted in §2.3.4, one might attempt to apply transformational smoothing to the

weights of such a model.
13A link grammar would assign a cyclic dependency structure to the example below, while a unification

grammar would allow the same NP to appear as an argument of both convinced and explode.
14However, explode with a transitive frame is all right:

Bluto convinced NP [to explode the bomb]Sinf\NP

166



5.5.4.5 Theta Roles

Lexical insertion selects a headword to fill devour’s “NP” slot, according to the distribution

Prins(· | devour, NP). A subtlety is that devour really has two NP slots, which should be

distinguished because they are filled by different kinds of arguments—predators and prey.

These arguments fill different thematic roles or theta-roles of the verb (Fillmore, 1968).

Fig. 2.6 on p. 65 illustrated the obvious way of distinguishing these slots.15 There are

three consequences for the model of insertion probabilities, Prins:

no generalization within a frame The distribution Prins(· | devour, NPagent) will be

different from the superficially similar Prins(· | devour, NPpatient). One selects for

predators, the other for prey.

generalization across related frames As Rooth et al. (1999, p. 5) point out, Prins(· |

sink, NPpatient) is the same distribution whether it is used to select a head for

the object of transitive S→ NPagent sink NPpatient or the subject of intransitive

S→ NPpatient sink. This makes it possible

to generalize selectional preferences from the first (listed) entry to the second (de-

rived) one.

generalization across headwords Insertion probabilities may need to be smoothed as

in §5.4.3. Suppose theta-roles are considered to be comparable across different heads:

that is, NPagent appears in the frames of eat as well as the frames of devour. Then

one can back off from Prins(lion | devour, NPagent) to Prins(lion | eat, NPagent).16

In the limit—for example, the Naive Bayes model of §5.4.3—one would back off to

Prins(lion | NPagent), which asks whether lion is a good NPagent in some generic

sense. This question is not nonsense. Any transitive verb imposes various “proto-

agent” properties (animacy, volition, motion) to a greater degree on its agent than
15An alternative scheme (Charniak, 1997; Johnson, 1999) relies on the fact that subject and object NP’s

have different parent nonterminals (S and VP respectively). This scheme simply conditions the insertion
probability on this parent nonterminal as well. However, this scheme does not work for our flattened frames,
nor for frames in which the agent is not the subject.

16If theta-roles are not comparable, one can still back off to the less precise Prins(lion | eat, NP), as
computed over all NP arguments of eat.
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on its patient (Dowty, 1991)—this is what is meant by agent and patient—and lion

(as opposed to carcass) is quite easy to reconcile with those properties.17

A learner that does not observe the subscripted theta-roles might be able to use the

observed insertion probabilities to infer them (§2.4.3; Rooth et al. (1999)). Suppose, for

instance, that the learner observes everything but the theta-roles: it sees a sample of

trees from which the theta-roles have been removed. As usual, the learner tries to set

hidden variables—theta-roles and transformations—to maximize the probability of these

trees under Prtree (equation (5.2)).

As far as a learner is concerned, the correct tree for The boat sank might use either

S→ NPpatient sink or S→ NPagent sink. Both entries are plausible: they can be derived

from S→ NPagent sink NPpatient by transformations that are common in English (and

which Bresnan (1982b) calls Activo-Passivization and Intransitivization, respectively).

However, the subject headword boat is likely only in a tree that uses the first entry. We

know from observations of transitive sink that Prins(boat | sink, NPpatient)� Prins(boat |

sink, NPagent). More generally, we know from observations of other transitive verbs that

Prins(boat | NPpatient) � Prins(boat | NPagent). So the first entry produces a more likely

tree for The boat sank. If the learner observes several such trees, it will choose to list the

first entry but not the second in the lexicon.18 Rooth et al. (1999) can do this.
17Dowty further points out that a verb with multiple arguments tends to realize the most agent-like

argument in subject position. In English, where subjects are sentence-initial, this amounts to a bias toward
the frame S→ NPagent NPpatient. A transformation model can capture such a bias by learning the weight
of an output feature (§3.6.2) that picks out entries with this frame.

18The two entries are to some extent in competition, as they are derived by competing transformations
on S→ NPagent sink NPpatient. Raising the probability of one such transformation reduces the probability
of the others. However, one might suppose that the competition between these two entries is especially
fierce because of functional pressure for He sank to have only one meaning. In other words, one might
expect a prior bias against giving two lexical entries large probabilities in the same language if they are
identical except for theta-role. While transformation models are poor at learning such anti-correlations
from data (§3.7.1), this one should be universal across languages and so would be appropriate to hard-code
into the model. For example, the arcs leading to a frame like S→ NPpatient sink might be augmented with
negative copies (§7.3.1.1) of some of the features on the arcs leading to the twin frame S→ NPagent sink

(notably the per-event feature), and vice-versa. Then learning weights that list or derive one entry will
automatically delist or block derivation of the other.
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5.5.5 The Frame Independence Assumptions

Recall our lexicalized PCFG model for randomly generating trees (§5.3.3). It assumes that

each frame is chosen freely and independently of the others, based only on its previously

generated headword and LHS. This assumption is relaxed by some researchers.

5.5.5.1 Projection and Parent Nonterminals

In particular, Charniak (1997) conditions also on the LHS of the parent frame. Given the

style of tree he uses (Penn Treebank), this allows an NP to expand differently according to

whether its parent category is S, VP, or PP—that is, whether it is a subject, direct object,

or object of a preposition. Similarly, an S may expand differently according to whether it

is a matrix sentence and, if not, whether it has a complementizer.

Johnson (1999) shows that this trick improves the parsing performance of a non-

lexicalized PCFG. To incorporate it into our model, we could follow Johnson and expand

the set of nonterminals, annotating them with context. Thus, a token of S→ NP NP PP

that appears inside an SBAR would become SSBAR → NPS−subject NPS−object PPS. The

superscript on each nonterminal indicates the category of its parent’s frame, and perhaps

the position (subject or object) it occupies within that frame. The tranformations must

be rejiggered to respect these superscript conventions; note that the RHS superscripts are

fully predictable from the rest of the frame.

This approach also affects the lexical insertion probabilities, since they can also be

made sensitive to the nonterminal superscripts. The insertion probability Prins(· | w, PP)

becomes Prins(· | w, PPS). This recognizes that PP’s that modify S might have different

headwords than PP’s that modify noun phrases.19

5.5.5.2 Projection and Other Contextual Features

More generally, one can make the projection probabilities sensitive to some additional tree

context γ by abandoning the frame independence assumption of equation (5.10): thus,
19Charniak’s model does this, as already mentioned in footnote 15. The superscripts are partly redundant

with the theta-role subscripts of §5.5.4.5. The difference is that the superscripts encode syntactic role
(subject) while the subscripts encode semantic role (agent). One would expect Prproj to be sensitive to
the former and Prins to the latter, when available. If nonterminals are annotated with both, this can be
arranged by suitable independence assumptions.
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Prproj(f | w,X, γ). This means that Prlex must be estimated over triples (w, f, γ).20

In the case described above, γ is the nonterminal superscript on LHS(f), so the trans-

formations effectively relate frames of the form SSBAR → NP NP PP. This merely drops

the predictable RHS superscripts from the frames in the previous approach.

The main advantage to keeping those predictable superscripts, as Johnson does, is that

the result is still a PCFG—with an expanded nonterminal set—and therefore allows the

use of standard parsing algorithms. For example, a bottom-up chart parser will build not

just an NP but an NPS−subject, with a probability that reflects the typical form of subject

NP’s (for example, the fact that they are less likely to take sentential complements).

5.5.6 Semantics and World Knowledge

A final point is worth emphasizing. No matter how much syntax it takes into account,

Prtree(·) is ultimately an incomplete model of the trees that arise in a language. For

example, it does not reflect the tendency of speakers to say things that are topical, sensible,

interesting, easy to parse, semantically interpretable, or true.

The model does contain weak proxies for these phenomena. It knows how often people

talk about devouring. It knows that when they do, they usually mention who or what

gets devoured. And it knows what kinds of things do get devoured—at least up to their

headwords.

These proxies suffice for the task attempted by most current parsing work: parsing

reasonably unambiguous input (written text) using a well-trained grammar. They would

do less well at disambiguating noisy speech data, resolving ambiguities of scope or reference,

or reestimating a poor grammar in the course of language learning. For those tasks,

semantics and world knowledge become increasingly important. Young children who are

still learning the language appear to rely on such factors (Bever, 1970; Donaldson, 1978),

as do adults processing speech in real time (Tanenhaus et al., 1995).

Perhaps the most obvious deficiency of the lexicalized-grammar definition of Prtree is
20Or, rather than designing a transformation model over these triples, one can back off to a Naive Bayes

model of the form

Prproj(f | w,X, γ) =
Pr(γ | f) · Prlex(f | w)∑

f ′:LHS(f ′)=X Pr(γ | f ′) · Prlex(f ′ | w)
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that it identifies entities or events with the headwords of the phrases used to describe

them. A (far) more sophisticated generative model than §5.3.3’s would generate phrases

that refer felicitously to entities in the surrounding discourse and their plausible behav-

iors. In parsing, such a model would resolve these phrases’ referents, and recognize from

context that it or the lion is not just any it or lion, but is a particular tender-hearted,

toothachey lion who would (almost) certainly never devour anybody.

171



Chapter 6

Experimental Evaluation

This chapter evaluates a number of models for estimating frame projection probabilities

over a large or infinite set of frames. A frame projection probability (§5.4.2) is the proba-

bility of a lexical entry given its headword and LHS. Here we write it as

Pr(RHS | headword,LHS) (6.1)

For example, in the lexical entry S→ NP devoured NP PP, this is

Pr(NP NP PP | devoured, S) (6.2)

As explained in §5.4.1 with a different notation, such probabilities are useful in parsing. A

parser requesting probability (6.2) wants to know: Assuming that the rest of the parse tree

calls for an S headed by devoured, would NP NP PP be a plausible internal structure

for that S?

We call estimating such probabilities the frame prediction problem. This chapter

is almost the first to isolate this problem and evaluate solutions to it directly, using cross-

entropy, rather than as part of a larger parser. Carroll and Rooth (1998) also did so;

however, they spent their effort on creating a large training set (by developing a parser

and parsing raw data), rather than on generalizing from the training set or otherwise

smoothing it. Also, their test set used only 3 words and much more impoverished frames.

Here we will compare smoothing methods using fixed training and test sets extracted from

the Penn Treebank.
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As hoped, a quite simple edit-distance transformation model had the best performance,

even without exploring the additional parameter optimization techniques to be presented

in Chapter 8. It achieved a 20% perplexity reduction on test data over the best model

replicated from previous literature (namely (Eisner, 1996b)). Improving the models from

the literature also yielded performance gains, but somewhat less than the transformation

model’s.

6.1 The Evaluation Task

6.1.1 Conditional Cross-Entropy (RHS Perplexity)

Following (Carroll and Rooth, 1998), the evaluation measure used to compare various

frame-prediction models is conditional cross-entropy. That is, the test data is a collection

of lexical entries, and we hope to achieve a small value of

mean
i

(− log2 Prθ(RHS of test entry i | headword of test entry i,LHS of test entry i))

(6.3)

Following the convention in language modeling for speech recognition, we actually report

the perplexity of the RHS, defined as 2 to this conditional cross-entropy.

The justification comes from the previous chapter. If the dataset consists of all the

lexical entries in a corpus of parse trees, then equation (5.9) defined the joint probability

of the corpus. One might hope to set the transformation model’s parameters to make this

large (even though that is not quite a task-specific evaluation: see §6.1.2). If the first

factor of equation (5.9) is to be estimated without reference to these parameters, then one

can maximize equation (5.9) by minimizing equation (6.3).1

In the case of a transformation model, the conditional probabilities required by equa-

tion (6.3) are not the unconditioned probabilities Pr(headword,LHS,RHS) that would be

computed by equation (4.7). However, computing the conditionalized versions requires

only small adaptations to the algorithms of Chapter 4.2

1Granted the independence assumption (5.10). If one drops that assumption, or uses the transformation
model as described in §5.4.3 to help estimate the insertion probabilities in the first factor of equation (5.9),
then one might prefer to evaluate directly on equation (5.9). However, this complicates the evaluation and
we do not pursue it here.

2In particular, working with conditional probabilities throughout is trivial for the transformation model
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One could still fit a reasonable model by maximizing the unconditionalized objective

function (4.8). Since it is possible, however, it is better to use the conditionalized version

that corresponds to equation (6.3), that is,

log2 Prprior(θ) +
∑
i

log2 Prθ(RHS of training entry i | headword of training entry i,

LHS of training entry i) (6.4)

This is exactly (the logarithm of) the conditional Bayesian paradigm described in §3.1.5.

6.1.2 Why Perplexity?

Perplexity is not the only reasonable evaluation measure. As noted in the chapter intro-

duction, one could also evaluate a frame prediction model by embedding it in a statistical

parser and measuring parse accuracy.3 This is analogous to evaluating a language model

by embedding it in a speech recognizer and measuring recognition accuracy (word error

rate).

Perplexity directly measures a system’s inability to make quantitative predictions of

isolated data from the test set. However, parsing and speech recognition do not consider

words or frames in isolation—they perform a global optimization in which the input data

and the easy predictions can constrain the hard predictions—and at the end of the day

they are evaluated only on the qualitative classifications that result from maximizing a

predicted probability. As a result they can sometimes perform well even if they use high-

perplexity models. The parser of (Charniak, 1997) was state-of-the-art even though its

frame-prediction module assigned probability 0 to frames that were not observed in training

data, yielding infinite perplexity.

The hope is nonetheless that reducing perplexity will eventually improve task per-

formance. This is the working assumption of the speech community, even though small

perplexity improvements in language modelling do not always improve word error rate.

evaluated in this chapter. The model lacks any transformations that would change the headword or LHS
of a lexical entry. Indeed, any random walk commits to a headword and LHS on the first two arcs from
Start. The probability of the rest of the random walk generates RHS given the headword and LHS. It is
therefore straightforward to evaluate and optimize just the probability Pr(RHS | headword,LHS).

3Or as an approximation, one might use a weighted version of perplexity, where test data are weighted
by some loss function that estimates how important it is to get them right.
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There is some evidence for this hope in the parsing world as well. In the terms of §6.6.1

below, Collins (1997) improved parse accuracy by switching from a unigram model to an

subcategorization model, and Charniak (2000) improved parse accuracy by switching from

the aforementioned infinite-perplexity model to a bigram model. We will see in §6.7.1 that

the former change reduced perplexity, and obviously the latter change did as well.

It is certainly true that frame prediction at a certain level is necessary in order to parse

correctly. §6.3 below will note the high level of novel frames needed for the correct parses

of test data. Briscoe and Carroll (1993) found that half the parse failures in their non-

statistical, lexicalized wide-coverage parser were caused by inaccurate subcategorization

information in the lexicon.4

Just as in language modelling, there are three reasons to focus on perplexity when

trying to improve frame prediction. First, by isolating this problem from other parsing

issues, it makes it easier for different researchers to compare results. Second, isolating

the problem makes the choice of model less specialized to a particular task (e.g., parsing

newspaper text vs. parsing speech, generating text, or learning syntax (§1.2.4), which

was the original motivation of this work). Finally, as a continuous rather than a discrete

measure, it is more sensitive than parse accuracy, and is therefore a more helpful indicator

of whether a change to a model is promising.

6.2 Preparation of the Experimental Data

The experimental data, illustrated in Fig. 6.3, were derived from the Penn Treebank II

(Marcus et al., 1993; Bies et al., 1995). The Treebank is a representative collection of hand-

parsed sentences drawn from The Wall Street Journal, an English-language newspaper that

focuses on business and politics.

Some relevant features of the Treebank:

• The terminal symbols are generally inflected forms; the Treebank project performed

very little morphological analysis prior to hand-parsing.

• Punctuation symbols are treated like other terminals.
4As summarized by Briscoe and Carroll (1997).
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( (S
(NP-SBJ (JJ Big) (NN indexer) (NNP Bankers) (NNP Trust) (NNP Co.) )
(ADVP (RB also) )
(VP (VBZ uses)

(NP (NNS futures) )
(PP-LOC (IN in)
(NP
(NP (DT a) (NN strategy) )
(SBAR

(WHNP-1 (IN that) )
(S
(PP (IN on)

(NP (NN average) ))
(NP-SBJ (-NONE- *T*-1) )
(VP (VBZ has)

(VP (VBN added)
(NP (CD one) (NN percentage) (NN point) )
(PP-CLR (TO to)
(NP

(NP (PRP$ its) (JJ enhanced) (NN fund) (POS ’s) )
(NNS returns) )))))))))

(. .) ))

Figure 6.1: A “raw” sentence from the Penn Treebank II.
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( (S
(NP (JJ big) indexer (NPR (NNP Bankers) (NNP Trust) Co.) )
(ADVP also)
uses
(NP futures)
(PP-LOC in

(NP
(NP (DT a)

strategy
(SBAR that
(S

(PP on (NP average) )
(VBZ has)
added
(NP (CD one) (NN percentage) point)
(PP to
(NP
(NP$ (NP (PRP$ its) (JJ enhanced) fund) ’s)
returns) ))))))

(. .) ))

Figure 6.2: The sentence of Fig. 6.1 just after step 8 of data preparation. Notice the discov-
ery of subconstituents Bankers Trust Co. (a restrictive appositive) and its enhanced
fund, which were not marked in the Treebank, and the relabeling of its enhanced fund
’s as a possessive.
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frame
headword LHS RHS
big JJ →
indexer NP → JJ NPR
Bankers NNP →
Trust NNP →
Co. NPR → NNP NNP
also ADVP →
uses S → NP ADVP NP PP-LOC .
futures NP →
in PP-LOC → NP
a DT →
strategy NP → DT SBAR
that SBAR → S
on PP → NP
average NP →
has VBZ →
added S → PP VBZ NP PP
one QP →
percentage NN →
point NP → QP NN
to PP → NP
its PRP$ →
enhanced → JJ
fund NP → PRP$ JJ
’s NP$ → NP
returns NP → NP$
. . →

Figure 6.3: The list of lexical entries extracted from Fig. 6.2 at step 9. (No information
is lost in this step; it is reversible.) Each entry is shown partitioned into a headword
and a frame; we wish to estimate Pr(headword | frame). denotes the position of the
headword in the frame. Notice the flat frames for the lexical verbs uses and added, and
the fact that added is missing its subject.
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• Traces and other phonologically null elements are marked in the Treebank, so the

maximal projection of a verb is always a sentence or SBAR (perhaps with null subject),

never a VP.5

• Noun phrases and particularly noun-noun compounds are left relatively flat (a situ-

ation that we partly correct below).

• There are detailed conventions for where to attach punctuation in a tree. These are

complicated by the fact that conventional English punctuation processes like comma

absorption and quote ordering were not undone before hand-parsing.

Each Treebank tree was passed through the following sequence of modifications (com-

pare (Eisner, 1996b)), each of which was implemented as a Perl script.6 Some key steps in

the transformation are shown in Figures 6.1–6.3.

1. Canonicalize nonterminals. The Treebank has a large nonterminal set because non-

terminals sometimes include function tags or movement indices that indicate their

semantic role. For example, tomorrow is a temporal noun phrase NP-TMP, which

functions effectively as an adverb. Drop these tags and indices, except for those that

indicate the allowable syntactic role of the phrase: namely, TMP, LOC, ADV, PRD, and

the tags NOM, SBJ, PRP, TPC on sentential constituents. (Buchholz (1998) found that

function tags were helpful in making the argument-adjunct distinction.)

2. Articulate. Assign more articulated structure to certain kinds of subtrees that the

Treebank leaves flat. The idea is to group sibling phrases into a single phrase. Put
5Except in the case of reduced relative clauses: funds [VP tracked t by the report], a request [VP

seeking approval]. This convention for reduced relatives is of course arbitrary, and could be changed to
introduce a sentential projection with empty subject. (Whether this projection should be SBAR or Spart
is a matter of current debate among linguists. The reduced relative would end up with either the same
category SBAR\NP as full relatives, or a slightly different category Spart\NP. The first account would require a
classical “whiz-deletion” transformation that removes the complementizer and be-auxiliary from SBAR\NP.
The second would require a transformation that turns an SBAR\NP postmodifier into an Spart\NP, licensing
the latter wherever the former appears.)

6These scripts had many other options to allow the preparation of different styles of corpus. For
example, they can use the traces and other null elements in the Treebank to create a version of the corpus
that indicates long-distance movement as the passing of gaps (and occasional “antigaps”) through slashed
nonterminals, in the style of GPSG. However, the experiments reported here did not attempt to model
extraction transformations and so did not use this version of the corpus.
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another way, we are “unflattening” the RHS of overly flat rules that do not consist

of a head child and its dependents, as they should for our purposes.

(a) group sequences of proper nouns (NNP) into a proper noun phrase (NPR)

(b) group sequences of cardinal numbers (CD) into a quantity phrase (QP)

(c) group $ QP into QPMONEY7

(d) relabel QP as QPMONEY if it appears to be headed by a QPMONEY subphrase (e.g.,

[as much as [$ 200 million]])

(e) when a sequence of common nouns NN immediately follows a proper noun phrase

NPR, group the NN sequence into NP

(f) Correct some common annotator and tagger errors:

• following the first nominal in a noun phrase (NP), group any sequence start-

ing with a determiner or preposition8 into an NP or PP respectively.

• following the first preposition or adverb in a prepositional phrase (PP),

group any sequence starting with a determiner or preposition into an NP or

PP respectively.

• relabel POS as VBZ at the start of a phrase. This corrects a common tagger

error of mistagging ’s as a possessive morpheme when it is being used as

a contraction of is.

• group any maximal sequence preceding POS into a noun phrase (NP), and

group this phrase together with the POS into a possessive noun phrase

(NP$).9

3. Normalize case. Change the case of each sentence-initial word, and each word in

all-caps, to the most common case pattern for that word. For example, THE or

sentence-initial The becomes the, but IBM and WordStar are left alone.
7Usually this QPMONEY is the head child of its NP, in which case the QPMONEY node will disappear at

step 8. Before that, however, it is available for pattern-matching by the head-prediction rules at step 6.
8Up to the next determiner or preposition, or the end of the phrase. A PP created by this process is

given the substructure P NP.
9This rule is applied recursively in case of nested possessives.
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4. Discard conjunctive sentences. Discard sentences that contain conjunctions. This

is because the scope of conjunctions is not clearly marked in the Treebank; see

(Goldberg, 1999) for examples and a possible solution. Ignoring conjunctions also

circumvents the usual problems with defining the head of a conjunctive phrase.

5. Discard suspicious sentences. Discard sentences that use phrase-structure rules in a

list of “suspicious” rules that usually indicate annotation errors. These rules were

discovered while writing patterns to choose heads.

6. Predict heads. Identify the head child of every nonterminal, based on the nonterminal

tag and its child tags. The head child is usually identified by a set of hand-written

patterns, but a list of hand-written exceptions can override these patterns. (See

below for details.) If no head can be found, the rightmost child is chosen as the

head.

7. Delete traces. Remove phonologically null constituents. If this removes a phrase’s

head, the rightmost child is chosen as the new head.

8. Flatten structure. For each nonterminal X whose head child Y is also a nonterminal,

replace Y by Y ’s sequence of 1 or more children. This generally increases X’s number

of children and gives X a new head child (the old head child of Y ), which is replaced

recursively. In the resulting “flat” tree, each nonterminal X has a head child that is

a terminal—the headword—as well as 0 or more nonterminal children, which are the

dependents of the headword.

9. Extract lexical entries. It is simple to extract the phrase-structure rules that would

be needed to generate this flat tree, such as S→ NP devour NP PP. These rules are

our lexical entries (§2.4).

10. Discard long rules. To conserve memory and runtime, discard rules whose right-

hand sides include more than 4 nonterminals in addition to the headword.10 See

footnote 14 on p. 185 for more on this.
10Otherwise, the training data would include a surprising number of inordinately long rules—not only

for NP lists, but also for sentences whose headword has up to 15 dependents including punctuation. The
transformational paths that derive such a rule by inserting 15 nonterminals into S → include 215 =
32, 768 entries, which all require storage and processing time. Some examples giving rise to long rules
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The rules and exceptions used to choose heads (step 6) were developed as follows during

an earlier project (Eisner, 1996b). I built an annotation tool for viewing phrase-structure

rules from the corpus together with examples of each rule. Each rule was displayed with

its annotated head child (if any) and its predicted head child (if any).

The annotated head could be changed by clicking. The predicted head could be changed

by editing the head-prediction patterns in a Perl script, which were edited frequently to

try to reduce the number of discrepancies between the annotated and predicted heads.

The discrepancies that remained constituted the exception list.

The tool also made it possible to flag a phrase-structure rule as “suspicious,” when no

head could be annotated because the phrase-structure rule arose only (or usually) through

annotator error. Sentences containing suspicious rules were removed from the corpus in

step 5.

As the sole annotator, I found that it was quite fast to check whether predicted heads

were correct, and if not, to correct them. I stopped annotating when the patterns had

developed to the point where they seemed almost always right.

For each nonterminal LHS tag, the pattern for predicting the head child on the RHS was

a short decision list something like this: “If there is exactly one child from {X1, X2, X3},

then it is the head. Otherwise, if there is a final Y child, then it is the head. Otherwise,

if there is at least one child from {Z1, Z2}, then the rightmost one is the head. Otherwise

. . . ” If the RHS contained a comma, then the pattern was first used to try to find a head

in the portion of the RHS before the first comma. If this failed, the pattern was reapplied

to the entire RHS.

(headwords underlined, dependents in brackets):

• [“] [Who knows] [,] [”] [he says] [,] [“] [if he heard that soybeans make money today] [,] [he] [might]
[be] flying [out to Chicago] [tomorrow] [.]

• [With fast-food outlets on every corner] [,] [he] [,] [like many] [,] [does] [n’t] think [he has a choice in
the price war] [:] [“] [Our customers say that . . . ] [.] [”]

• [The bank] [, he wrote back,] [was] [“] [immediately] [”] lowering [the rate] [by 3.5%] [,] [“] [as a
concession to you] [.] [”]

There are various possible engineering solutions short of discarding such data (as here) or recoding it.
One is to modify the transformation graph so that (for example) successive insertions must proceed from
left to right, or be made simultaneously. (In the simultaneous case, the fan-out from each vertex of the
transformation graph would be dramatic; each arc’s probability would be determined from a complex
feature vector, or from a finite-state transducer as in footnote 12 on p. 229.) This is slightly tricky to
arrange but is probably doable.
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The annotation convention was to select the semantic head of a phrase rather than the

syntactic head. In particular, the head of a sentence was always the main verb, rather

than a tensed auxiliary. Punctuation never served as the head of a larger phrase.

6.3 Some Properties of the Experimental Data

6.3.1 Datasets

The experiments used sections 0–15 of the Treebank for training, section 16 as a devel-

opment set used to tune the models both automatically and manually, and section 17 for

final testing. (The remaining sections were reserved for future experiments; neither they

nor section 17 were looked at during the research.)

A very few of the entries in the development and test sets used nonterminals that never

appeared in the training set. These entries were discarded since any of the methods would

have assigned them 0 probability.

The present experiments considered only lexical entries of the form S→ · · ·, which rep-

resent a verb together with all its arguments (perhaps including a subject). Such entries

are highly varied, making their prediction especially challenging. They are also key to

successful parsing. Indeed, Johnson et al. (1999) evaluated parsing performance in part

on whether the parser found the correct lexical entry for the matrix S. Basili et al. (1999)

showed that a lexicon of S lexical entries, automatically acquired from the output of a

shallow non-statistical parser, could be used to improve the parser’s PP-attachment per-

formance. Similarly, Carroll et al. (1998) showed that a lexicon of S lexical entries, auto-

matically acquired from the output of a non-lexicalized statistical parser, could be used

to improve the parser’s precision at recovering labeled dependencies, without seriously

hurting recall. (See §2.5.4 for other work that has focused on predicting S entries.)

It was possible to focus on just the S entries because the particular transformation

model in the experiments did not allow category-changing transformations (§5.4.4). That

is, there are no transformations between S entries and other entries.

Fitting LHS-specific models in this way reduces the memory footprint of the programs.

It also means that parameters that control the strength of smoothing (see §3.5 and §6.6.2)
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all entries S→ · · · entries
train dev test train dev test

entry tokens 290903 24789 14941 18836 1588 973
entry types 66477 9188 5995 11565 1317 795
frame types 8732 1845 1361 2722 564 365
headword types 22084 4957 3610 3607 756 504
novel entry tokens 17.5% 17.7% 51.6% 47.8%
novel frame tokens 1.6% 1.5% 8.9% 6.3%
novel headword tokens 4.9% 5.4% 10.4% 10.2%
novel entry types 44.9% 42.1% 61.4% 57.5%
novel frame types 20.3% 15.4% 24.6% 16.4%
novel headword types 20.7% 18.9% 20.9% 18.8%
nonterminal types 121 78
# transformations 244n−1 244n−1 244n−1 158n−1 158n−1 158n−1

applicable to entry
with RHS length = n

Figure 6.4: Properties of the experimental data. For example, the training data consisted
of 290,903 (word,frame) entries (where frame=(LHS,RHS)), but only 66,477 of these entries
and only 8,732 of the frames were distinct. “Novel” means “never observed in training.”

are tuned specifically for estimation of a particular LHS. For example, S entries might

require different smoothing from, say, JJ (adjective) entries since it is rare for an adjective

to take dependents. On the downside, fitting LHS-specific models misses the potential

synergies of training simultaneously on more heterogenous data, namely, the ability to

combine evidence across LHS categories.11

6.3.2 Statistics

Statistics about the datasets are shown in Fig. 6.4—in particular, the degree to which

novel events appeared in the development and test sets. (The test set was somewhat less

novel.)

The rate of novel events is high in part because the dataset uses a large event space.

As Fig. 6.3 showed, a lexical entry specifies a particular headword and nonterminal slots
11Such synergies arise if parameters are tied across different LHS categories. This is true in all the models

in this chapter, making it possible for training frames X → · · · to improve the estimation of frames Y → · · ·.
In the transformation model, some feature weights are independent of LHS (§6.4.4). In the other models,
backoff from LHS is possible, although it happens only in the rare instances where the LHS category has
been poorly observed.
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for all arguments and adjuncts. However, a complex event need not be particularly hard

to model. The models we tried were allowed to “back off” from the headword, and also to

generate the frame piecemeal.

Fig. 6.4 also shows that there are still many novel frames even when headwords are

ignored. §1.2.1.2 mentioned that 49% of all sentences contain such a frame. The rate of

novel frames would have been still larger if the frames had included slashed nonterminals

(footnote 6 on p. 179).

§2.4.2.1 demonstrated that frames that appeared with the same word were dispropor-

tionately related by simple edit-distance transformations.

6.4 Topology and Parameterization of the Transformation

Model

To specify a transformation model (§3.2.1 or §4.1.1), one must specify the events; the

arcs, which represent possible transformations; and the features on those arcs. The model

used in the experiments was outlined and motivated in §2.4; this section gives details. A

fragment of the model is drawn in Fig. 1.3 on p. 21.12

6.4.1 Events

The events are flat lexicalized context-free rules, such as S→ NP devour NP PP, over a

finite set of nonterminals.13 As before, we refer to the nonterminal to the left of the

arrow as the left-hand side (LHS), and the string of nonterminals to the right of the arrow

as the right-hand side (RHS). Because the RHS can be arbitrarily long,14 the graph is
12However, that figure depicts per-event arc weights such as θ8 and θ9. The results reported here used

per-event perturbations π8 and π9 instead.
13We use the template strategy (§4.5.3) of processing the frames for each word separately. So we are pri-

marily interested in storing and manipulating frames like S→ NP NP PP. It is convenient to represent
frames as strings of nonterminals; then standard string libraries may be used to copy, compare, and hash
them. Each nonterminal should be represented as an arbitrary character, as should . A frame with k
symbols on the RHS can then be represented with k + 2 characters (LHS, RHS, terminator). When there
are more than 255 nonterminals (e.g., because nonterminals can encode gaps or features), this requires
library support for strings of so-called wide (2-byte or n-byte) characters. However, in C or C++, wide-
character strings can actually be handled without special support, provided that all bytes of all characters
are non-zero, except for the final byte of the terminator.

14The length of the RHS in training and test data was artificially limited by step 10 in §6.2. However,
the model does not know to expect data with this property (nor does it have any features, such as output
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conceptually infinite, although the relaxation algorithm explores only a finite portion of it

during training and testing (§4.2).

We use the term frame as defined in §5.1 and §5.3.2, to refer to a lexical entry with

the headword abstracted away.

There are also several special events that are not lexical entries. As always, there is a

distinguished node Start; and for every word `, there is a node Start`.

6.4.2 Arcs

There are arcs from Start to each Start`. For each `, there are arcs from Start` to

all lexical entries whose headword is word ` and whose frame appeared in training data

(perhaps with some other headword).

Finally, from each lexical entry e, there are arcs to Halt and to all other lexical entries

at edit distance 1 from e. These are entries with the same LHS and headword as e, but

their RHS has been modified by a single edit from §2.4.2 (Insert, Delete, Substitute, Swap).

The resulting transformation graph is a multigraph. For example, there are two arcs

from X→ Y Z to X→ Y Z Z, since there are two distinct “Insert Z” transforma-

tions that turn the former into the latter. Since these two transformations insert Z into

different contexts, they will in general have different probabilities: inserting Z at the right

edge of a frame may be more probable than inserting it medially.

Self-loop Substitute arcs from e back to e are disallowed, both for efficiency (as such

arcs would otherwise be pervasive) and to discourage the feedback effect for perturbed

models mentioned in footnote 22 on p. 113.

Fig. 6.4 notes that the graph has many vertices and quite large fan-out. The imple-

mentation allocates storage for as few vertices as possible, and generates arcs on the fly

when needed. Most arcs from each vertex can be ignored (§4.5.2), and the implementation

benefits greatly from storing at each arc the short list of out-arcs that should be used for

propagation or relaxation.

features in §3.6.2, that are sensitive to RHS length and so would enable parameter estimation to discover
this property in the training data). In particular, the transformation graph still includes arcs to and from
entries with longer RHS. These arcs have positive probability, so they do affect the performance of the
model. They may also contribute to useful paths.

186



6.4.3 Perturbations and Per-Event Features

The implementation can handle both per-event features (§3.6.1) and perturbations (§3.9).

These are used to tune the probabilities of individual lexical entries so as to better fit

the observed data. (The effect flows through the transformation graph to other entries.)

Without such tuning, frames and headwords would be statistically independent: Pr(f |

w) = Pr(f) regardless of w.

We allow only observed lexical entries to have per-event features or perturbations. This

keeps the number of parameters finite.15

6.4.4 Features of Transformations

An arc from one lexical entry e to another entry e′ represents an edit. For purposes of

defining features, it is characterized by

• the type of edit (Insert, Delete, Substitute, or Swap)

• the LHS nonterminal common to e and e′

• the target nonterminal (that is being respectively inserted, deleted, replaced, or

moved rightward)

• the replacement nonterminal (in the case of Substitute only)

• the nonterminal to the left of the target

• the nonterminal to the right of the target

• the side where the target appears (pre-head or post-head)

The left or right nonterminal may also be the special symbol , which represents the

headword, or the special symbol ♦ to represent the edge of the rule. In the case of Swap,

the target nonterminal may be .
15However, it partly precludes two potential uses of tuning. In principle, parameter estimation can tune

down Pr(e) to explain why e has been observed less than predicted, and it can tune up Pr(e) to explain
economically why several of e’s children have been observed more than predicted. These moves become
impossible if e is denied a tuning parameter because it has never been observed at all.
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(type) *(type, LHS) (type, target) *(type, LHS, target)
(type, left) *(type, LHS, left) (type, target, left)
(type, right) *(type, LHS, right) (type, target, right)
(type, left, right)
(type, side) *(type, side, LHS) (type, side, target) *(type, side, LHS, target)
(type, side, left) *(type, side, LHS, left) (type, side, target, left)
(type, side, right) *(type, side, LHS, right) (type, side, target, right)
(type, side, left, right)

Figure 6.5: Tuples that serve as templates for features on Insert and Delete arcs. (In
the experiments of this chapter, where LHS was fixed, the tuples marked with * were
suppressed as redundant.) The features of a given arc are found by instantiating these
tuples with the arc’s actual type, LHS, etc. Thus, ~θ specifies a weight for each instantiated
tuple.

Ignoring per-event features, each Insert or Delete arc has 22 features, corresponding to

the tuples in Fig. 6.5. Each tuple specifies the arc type, at most two of the nonterminals

{LHS, target, left, right}, and perhaps the side.

For example, the arc that transforms S→ NP devour NP into S→ NP devour NP PP

has 22 features corresponding to these tuples. One of these features indicates that (type,

target, right)=(Insert, PP, ♦), and appears on all arcs with that property. This feature has

high weight in English—making all such arcs probable—because English does indeed like

to insert PP at the right edge of a rule.

Each Swap arc has features corresponding to just those tuples above that do not mention

“left.” So the G-value of a Swap arc depends on the two nonterminals being swapped

(target and right) but not their context.

A Substitute arc uses the same tuples as a Swap arc, except with “replacement” in place

of “right.” So the G-value of a Substitute arc depends on the substitution (the target and

its replacement) but not its context, except as encoded by LHS or side.

6.4.5 Other Features

The features on arcs from Start to Start` do not matter for the frame prediction problem.

The probability β` on such an arc is the probability of choosing word ` as the headword.

As explained in §6.1.1, we are only concerned with a conditional probability given word
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`.16

The arc from Start` to a lexical entry e has an output feature (§3.6.2) that depends

on the frame of e. Thus, the arc from Startdevour to S→ NP devour NP PP has the same

feature as the arc from Startregurgitate to S→ NP regurgitate NP PP. This means—if

we ignore per-event features on these arcs and any perturbation parameters—that these

lexical entries have equal conditional probabilities given their headwords.

An arc from e to Halt has a single feature called the “Halt feature.” (It has no

features that are sensitive to the form of e.) All such arcs therefore have the same G-value,

so that their probabilities are determined entirely by the features on their competitors.

Notice that if e has many out-arcs, then almost any one of them—including Halt—will

have low probability. This happens in particular if e has a long RHS, because then there

are many different positions into which to insert a nonterminal; see Fig. 6.4.

6.5 Details of Computing with the Transformation Model

This section gives some details that would be necessary to replicate the results reported

here. The constants mentioned here were chosen informally, by trying a few values on the

development set of S→ · · · entries.

6.5.1 Smoothing Parameters

The prior was the simple one specified in §3.5, where the feature weights θi are IID ∼

N(0, σ2). All experiments took σ2 = 3.

The special features on arcs from Start` and arcs to Halt were treated exceptionally,

however. They were given a flat prior (e.g., a normal with σ2 → ∞), so they were not

biased toward zero at all.
16We use a template-structured computation (§4.5.3), which for ` a headword, computes Pr(`,LHS,RHS)

as a product
β`︸︷︷︸

Pr(`)

· s`p(LHS,RHS)︸ ︷︷ ︸
Pr(LHS,RHS|`)

So the probability we want is actually s`p(LHS,RHS)/
∑
RHS s`p(LHS,RHS). For the present experiments,

the denominator is 1 since we built LHS-specific models.
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These experiments used perturbations rather than per-event weights. The prior on

perturbations πi took them to be IID ∼ N(0, σ2) where σ2 = 5.

6.5.2 Parameter Initialization and Optimization

The ordinary parameters ~θ and ~π had to be learned from data. They were optimized using

adaptive gradient ascent on the objective function.

As the parameters changed during gradient ascent, the model’s performance (cross-

entropy) on the development set was monitored. Optimization was halted after the perfor-

mance appeared not to be improving any longer.17 The parameters used for testing were

the ones that minimized cross-entropy of the development set during this run.

Although simply initializing ~θ and ~π to 0 gave passable performance (see §6.7.7), a bet-

ter starting guess for the parameters proved important for two reasons. First, it allowed

gradient ascent to reach a better local maximum of the objective function. Second, it im-

proved efficiency by giving the paths unequal probability, so that the relaxation algorithm

was able to concentrate on propagating along the most promising paths.

To choose our initial value of ~θ, we performed a single pass of the EM algorithm that

will be described in §8.2, but with an easy-to-compute heuristic guess in place of the E

step. The intuition is that if two training-set entries differ by edit distance 1, then the

features of the relevant edit should get a high weight.

Specifically, recall that si denotes the number of training instances of the lexical entry

i. (If i is an event of the form Start`, temporarily define si to be the constant 0.4.) For

j 6= 0, let Nij , the guessed number of transitions from i to j, be (si/
∑

i′ si′)sj , and let Nj0

be sj . The M step then chose feature weights ~θ by Improved Iterative Scaling so that the

arcs with high Nij values also had high probability.

In other words, we guess that of the sj random walks that were observed to halt at

j (i.e., to traverse arc j0), the number that reached j from a given parent lexical entry i

is proportional to the number of other walks that are known to have actually halted at i,

namely si.18 We also guess that the number of walks that reached j from the appropriate
17In some cases the cross-entropy leveled off. In others it started getting worse, apparently representing

overfitting of the training data.
18This heuristic ignores the fact that the sj walks ending with 〈. . . , i, j,Halt〉 will have traversed other
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Start` vertex is proportional to 0.4.

Once the weight vector ~θ was initialized in this way, the perturbation vector ~π was

initialized such that the amount of flow added at vertex i (see §4.4), namely δi
def= (expπi−

1)(Iθ,π)i, was δi = 3 · (si/
∑

i′ si′). In this case si makes no special provision for Start`

nodes.

6.5.3 The Two-Stage Relaxation Strategy

To compute the objective and evaluation functions, it was necessary to solve the model for

the distribution. The technique used was interesting. It defined a non-deficient probability

distribution over the infinite lexicon such that the exact probability of any lexical entry

could be found in finite time.

A relaxation strategy (§4.2) was employed, with the same double stack usually used

for the entire run to avoid unnecessary bumpiness in the objective function (§4.5.1). The

relaxation was divided into two stages that used different transition matrices P (see §4.3.6).

The first stage propagates probability mass along all transformational paths of reasonably

high probability. The second stage continues the propagation indefinitely along Insert and

Halt arcs only.

The approximation here consists in the fact that the second stage does not use the

“true” probability transition matrix Pθ. Instead it uses a modified (but still Markovian)

version of this matrix, in which the probability of non-Insert arcs from each vertex i has

been reallocated to the Halt arc from i.19 So Delete, Substitute, and Swap arcs are only

available early in a random walk (i.e., during the first stage).

The idea is that relaxation can now be run, in effect, forever. The first stage is halted

early, but relaxation continues in a second stage that operates over an acyclic graph and so

can be regarded as if it had run forever. How so? During the second stage, the relaxation

priority queue is defined so that short RHS implies high priority. In other words, the

vertices on the queue are relaxed in topologically sorted order. Now suppose k is the

maximum length of any RHS in the test set. Then by the time all vertices with RHS

arcs in order to reach i.
19This requires a minor change to §4.3.5, since it changes the partials ∂P

(t)
ij /∂θh.
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length < k have been relaxed during the second stage, all the vertices in the test set have

settled on their final probabilities just as if the relaxation had continued forever. At this

point relaxation can be halted in practice, since we have our final answer.

Notice that vertex j will surely receive some probability mass during the second stage,

so long as it has some “Insert ancestor” i on the queue when the first stage ends. In

particular, if S→ is on the queue when the first stage ends, then all lexical entries

S→ · · · are guaranteed to end up with positive probability, preventing cross-entropy from

being infinite.

The first stage ends when no vertex on the priority queue has priority ≥ 0.0005. The

priority of vertex i is roughly defined as Ji. However, using Ji itself as the priority would

prevent the discovery of paths between uncommon lexical entries (which are very useful

clues to transformations).20 Instead, we take the priority to be a new variable Ki, which is

initialized and updated identically to Ji except that relaxing i = Start or i = Start` is

handled specially: each child j of such an i increases Kj not by KiPij , as usual, but by Ki.

In general Ki may be interpreted as the total probability of the edit sequences whereby Ji

was propagated to i.21

6.6 Competing Models

6.6.1 Models from the Parsing Literature

This section lays out the basic models being compared with the transformation models. All

of them are generative models. That is, Pr(RHS | headword,LHS) is obtained as the prob-

ability that some stochastic RHS-generating process (whose probabilities are influenced by

headword and LHS) would have generated RHS.
20To see why, note that the approximated objective function f̃ provides no incentive to adjust the weights

on a path i, i′, i′′, . . . unless that path actually affects f̃ by carrying probability mass to an entry that was
observed in training. For that to be so, i, i′, i′′, . . . must be dequeued in that order, and hence at a minimum
must all have priority > 0.0005. But if there are no high-probability paths from Start to these nodes—for
example, if i has only been observed once in training data and its children not at all—then they will have
small Ji; so we would like to define priority to be something larger.

21That is, the path probabilities along which Ji was propagated, if we consider only the part of the path
corresponding to actual edits, without the initial arcs from Start and Start`.
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6.6.1.1 Memorization Model

Some recent parsers (Charniak, 1997; Carroll and Rooth, 1998) have modeled Pr(RHS |

headword,LHS) as a simple multinomial distribution (with backoff to Pr(RHS | LHS)).22

That is, it generated RHS in a single step as if the RHS had no internal structure.

Charniak called this a “Treebank grammar” because the allowable phrase-structure

rules were limited to the ones that had appeared in the training data from the Penn

Treebank.

§6.1.2 already noted that this model assigns infinite perplexity to the full test set.

However, it does an excellent job of modeling the non-novel frames in the test set. We will

later combine it with other models.

6.6.1.2 Markov Models

In Fig. 6.3, the right-hand side (RHS) of each frame can be regarded as a string of nonter-

minals. A distribution over such strings can be modeled with an nth-order Markov model,

also known as an n-gram model. The idea is that the RHS is generated randomly from

left to right, with each nonterminal symbol chosen with a probability that depends on

the substring formed by the n − 1 previously generated symbols. The generation process

terminates upon generation of a special symbol ♦.23

There are two complications. First, the choice of RHS string should be conditioned on

the headword and LHS. Second, the RHS string must contain exactly one copy of . So

generation of each nonterminal should be conditioned on the headword, the LHS, and a

boolean variable indicating whether has been generated yet.24

For example, the probability Pr(PP VBZ NP PP | added, S) would be modeled un-

der a trigram (i.e., 3-gram) model as

Pr(PP | ε, added, S, false) · Pr(VBZ | PP, added, S, false)
22Actually, Charniak’s parser also conditioned on additional information not available in the frame pre-

diction problem. See §5.5.5.1.
23Which eventually happens with probability 1, if the model parameters were estimated in any sensible

way from a training set of finite RHS strings.
24If this variable is true, then the probability of generating (again) is 0, so there can be at most one
. If the variable is false, then the probability of generating ♦ is 0, so there must be at least one in

any completed string.
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· Pr( | PP VBZ, added, S, false) · Pr(NP | VBZ , added, S, true)

·Pr(PP | NP, added, S, true) · Pr(♦ | NP PP, added, S, true) (6.5)

Notice that the string of previously-generated symbols does not reach length n − 1 until

the nth factor.

There is some history in the literature of using Markov models for frame prediction.

The model C parser in (Eisner, 1996c; Eisner, 1996b) used a bigram model for frame

prediction. The model 1 parser of (Collins, 1997) used a unigram model. Charniak (2000)

tried both a unigram and a bigram model and found that the latter led to higher parsing

accuracy.

The head-automaton parser of (Alshawi, 1996) used a kind of hidden Markov model

that will be explored further in §6.6.3. Finally, the memorization model (§6.6.1.1) can be

regarded as an n-gram model with very large n and no backoff to smaller n (see §6.6.2).

6.6.1.3 Subcategorization Model

The model 2 parser of (Collins, 1997) relies on a heuristic distinction between argument

and adjunct nonterminals in the RHS. It cleverly combines a memorization model of the

argument sequence with a unigram model of the adjunct sequence.

Collins exploits the linguistic intuition that a verb subcategorizes for arguments but

not adjuncts. A given verb may strongly constrain the number and order of subjects and

objects (arguments) it allows, but not the number or order of adverbs and prepositional

phrases (adjuncts). For example, if an adverb can appear at a particular position among

the arguments with probability p, then a second adverb will appear there with probability

p as well, and so on. But subjects cannot be iterated in the same way as adverbs.

To generate the sequence of RHS nonterminals to the right of , Collins’s stochastic

process first chooses, in one step, the unordered collection CR of arguments that will appear

in that sequence. In our example PP VBZ NP PP, this is just {NP}. It then generates

the sequence of all RHS nonterminals to the right of , using a modified unigram model

in which each nonterminal is chosen with a probability that depends not only on the

headword and LHS, but also on the subset of CR that has not yet been generated.25 So
25Removing already-generated (close-to-the-head) arguments from CR is similar to category cancellation
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the NP is chosen given that arguments {NP} must still be generated, while the PP and ♦

are chosen given that {} is the set of arguments still to be generated (i.e., the generation

process is at the edge of the subcategorization frame). Notice that NP, PP, and ♦ are likely

choices in these respective contexts.

The sequence of LHS nonterminals is generated similarly, but in the opposite direction

(from right to left): VBZ, PP, ♦.

Collins’s model further conditions each nonterminal choice on a variable ∆, which

encodes whether there were any previous nonterminals generated and, if so, whether any

of them (transitively) dominated a verb or a comma. The latter test is not possible in the

pure frame prediction task studied here, since the RHS in our dataset does not indicate

which nonterminals dominate verbs or commas. However, we approximate the verb test by

assuming that nonterminals beginning with the letter S or V dominate a verb, and others

do not.

In replicating Collins’s model, we were careful to mark argument nonterminals with a

suffix -C, as he does, before processing the Treebank as in §6.2. This was important since

his heuristics for finding arguments assume standard Treebank structure. The -C marks

were preserved through the data preparation steps of §6.2, which otherwise ignored them.

6.6.1.4 Maximum Entropy Models

Charniak (2000) uses an approach that is “inspired” by maximum-entropy modeling, in the

sense that each probability is modeled as a product of weights. (The weights in Charniak’s

approach are themselves ratios of smoothed probabilities.)

We do not replicate Charniak’s technique here, because it does not yield normalized

probabilities—making it incomparable with other techniques on a perplexity measure, as

Charniak notes—and because crucial details are deferred to a longer version of the pa-

per that is not yet available. However, it is worth noting that actual maximum-entropy

(log-linear) approaches, which have not been tried for this problem, would be interesting

competition for transformational approaches. Johnson et al. (1999) model entire trees us-

ing a maximum-entropy approach, and with an appropriate feature set the same approach

in categorial grammars, or the Valence Principle in HPSG.
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could undoubtedly be used to model individual lexical entries.26 §1.2.3 gave an intu-

ition about why transformational approaches were more appropriate; however, maximum-

entropy models have the advantage that they allow global optimization of parameters.

6.6.2 Backoff

Most of the probabilities required by the above models cannot be estimated directly from

the amount of data available. For example, to estimate the following factor from equa-

tion (6.5),

Pr(NP | VBZ , added, S, true) (6.6)

one would like to measure how often NP was generated in training data, in the context

VBZ , added, S, true:
#(NP, VBZ , added, S, true)

#(VBZ , added, S, true)
(6.7)

where #(e) is the count of e in training data (§3.1). But the denominator may be too

small for this ratio to be reliable. Indeed the denominator is often zero.

The standard solution is to “back off” and combine equation (6.7) with a coarser

probability that considers how often NP was generated in a variety of similar contexts as

well:

Pr(NP | , added, S, true) (6.8)

This coarser probability may in turn be estimated by a second level of backoff, and so on

recursively.

To give these models a good chance of success, we will consistently use the “one-

count” backoff method devised by Chen and Goodman (1996), who compared a variety of

backoff methods for n-gram language modeling and recommended this one for its superior

performance and simplicity.27 The sequence of backoff contexts chosen for each distribution
26Although computing the partition function (normalization constant) might be difficult.

Johnson et al. (1999) circumvent this problem by adopting a conditional likelihood approach, where they
maximize the correct parse tree’s likelihood relative to competing parses. This approach is not obviously
applicable unless one parses the input and obtains a set of competing lexical entries for each word.

27The backoff method actually used by (Collins, 1997; Charniak, 1997; Carroll and Rooth, 1998) was to
interpolate directly among backed-off estimates. Carroll and Rooth condition their interpolation param-
eter on part of the denominator (the word); it is not clear what Collins and Charniak conditioned their
interpolation parameters on, if anything. But even if they conditioned on the full denominator (Bahl et
al., 1983), Chen and Goodman claim that one-count smoothing (which also conditions on the number of
singletons) works better.
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Model memorization trigram (other n-gram similar) mem + n-gram
Pr(· · ·) RHS | LHS, w Ri | (i < head), Ri−1, Ri−2, w RHS | LHS, w
Level 1 RHS | LHS Ri | (i < head), Ri−1, Ri−2 RHS | LHS
Level 2 Ri | (i < head), Ri−1 Prn-gram(RHS | LHS, w)
Level 3 Ri | (i < head)
Model subcategorization (Collins)
Pr(· · ·) Rhead | LHS, w Cside | side,LHS, Rhead, w Ri | side, Ci,LHS, Rhead,∆i, w
Level 1 Rhead | LHS Cside | side,LHS, Rhead Ri | side, Ci,LHS, Rhead,∆i

Level 2 Cside | side,LHS Ri | side, Ci,LHS, Rhead

Level 3 Ri | side, Ci

Meaning of variables for S→ NP told NP PP SBAR (He told her with rice that she was lovely):
w told

LHS S
RHS NP NP PP SBAR

R1, R2, . . . R6 NP, , NP, PP, SBAR, ♦
head 2 (position of head child; possible in §6.6.3 for Rhead 6= )
CR {NP,SBAR} (complements to right of head)

C3, C4, C5, C6 {NP,SBAR},{SBAR},{SBAR},{}
(Ci = subset of CR (or CL) not generated before Ri)

∆3,∆4,∆5,∆6 none,some,some,verb
(∆i describes symbols intervening between Rhead and Ri)

Figure 6.6: Backoff levels for all smoothed distributions. The Pr(· · ·) line describes the
conditional distribution being estimated, and subsequent lines describe successively coarser
backoff estimates.
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is shown in Fig. 6.6.

The one-count method modifies equation (6.7) by adding kp to the numerator and k to

the denominator, where p is the estimate of the coarser probability (6.8) and k is large if

equation (6.7) is likely to be an unreliable estimate. Specifically, k is an (increasing) linear

function of the number of different nonterminals x such that #(x, VBZ , added, S, true) =

1.

The slope and intercept of this linear function must be specified for each backoff level.

For example, if equation (6.8) is itself estimated by backoff, then there are 2 levels of

backoff and 4 parameters to specify. We consistently used Powell’s method (Press et al.,

1992) to search for the parameter vector that maximized the conditional cross-entropy

(6.3) on development data.

It is worth noting that the backed-off estimate a+kp
b+k can be written as αab + (1− α)p,

which interpolates between the “raw” estimate a
b and the coarser estimate p. Here α = b

b+k ,

so that for a given k, the raw estimate contributes more if it has a large denominator.

Again, k depends on the number of singleton events in the given context.

6.6.3 Unflattened Models and Head Automata

It might be argued that the models of §6.6.1 are operating at a disadvantage on the task of

this chapter. Most of them were developed to predict the RHS of Treebank-sized context-

free rules.28 By contrast, the rules in our dataset are larger, thanks to the flattening

in step 8 of §6.2. For example, Collins’s subcategorization model (§6.6.1.3) may have to

generate larger argument sets CL and CR in order to generate our frames.

Without flattening, the frame S→ PP VBZ NP PP would have been built up by a

sequence of context-free rewrites:

S→ PP VP VP→ VBZ VP VP→ VBN NP PP VBN→

(6.9)

where the underlined head child in each rule is expanded by the next rule. The parsers

discussed above therefore generally compute not Pr(PP VBZ NP PP | added, S) but
28Although Eisner and Alshawi did use dependency-style parses that were as flat as the ones considered

here.
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rather the more specific probability29

Pr(PP [VP VBZ [VP [VBN ] NP PP ] ] | added, S) (6.11)

= Pr(PP VP | added, S) · Pr(VBZ VP | added, VP)

·Pr(VBN NP PP | added, VP) · Pr( | added, VBN) (6.12)

Is flattening a good thing or a bad thing? §1.2.1.2 suggested that it was a good

thing because the articulated (non-flat) formula in equation (6.12) makes overly strong

independence assumptions. For example, equation (6.12) clearly misses the statistical

dependence between the past participle VBN and its auxiliary VBZ. Also, Johnson (1999)

systematically tried flattening certain Treebank constructions, such as PP-modification,

and found that this improved precision and recall of a non-lexicalized PCFG parser.

On the other hand, it might be argued that the articulated structure is better in

certain ways. The memorization and subcategorization models can more easily estimate

the probabilities of several small, common context-free rules than the probability of the big

frame that the rules collectively generate. Moreover, the generative process that produces

a frame by context-free rewrites is more powerful than any mechanism in the models of

§6.6.1.30 By encapsulating VP as a constituent, a rule such as S→ NP VP . can capture

the “long-distance” generalization that a VP followed by a period is likely to be preceded

by a subject, no matter how many arguments are in the expansion of the VP.

Indeed, the stochastic context-free rewrite model for generating a headword’s RHS is

equivalent to the head automaton model of Alshawi (1996). The internal nonterminals
29It should be noted that Charniak (2000) reports a substantial performance improvement by following

(Collins, 1997) and replacing the product (6.12) with

Pr(VBN | added) · Pr(PP VP | added/VBN, S) · Pr(VBZ VP | added/VBN, VP)

· Pr(VBN NP PP | added/VBN, VP) · Pr( | added/VBN, VBN) (6.10)

which we have not attempted to replicate (amusingly, since the above authors attribute the idea to (Eisner,
1996b)). Such a strategy of conditioning on the tagged headword, which among other things allows better
backoff in the competing models, would probably also help the transformation model. For example, the
transformation model learns that it is good to insert a modal before an untensed auxiliary verb VB (be
slowing ⇒ may be slowing), but it cannot generalize this to an untensed main verb VB because that tag
does not appear on the main verb in our dataset. Taking advantage of headword part-of-speech tags for
either model would require an augmented training set that mentioned those tags.

30Most dramatically, the process is capable of modeling the (linguistically useless) set of frames
S→ An Bn, although the fact that only the head child is ever rewritten—so rewrites must be nested—
prevents it from describing arbitrary context-free languages, such as the Dyck language of matched
parentheses.
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correspond to the states of Alshawi’s automaton for that headword.

For these reasons, and for comparison with previous literature, it seemed worth testing

such articulated models:

training Each model in §6.6.1 was used to train probabilities like those in equation (6.12).

This used the articulated training data in Fig. 6.7. (Thereby giving these models an

unfair advantage in the form of additional supervision. Unlike the flat models, they

had access to human annotation of the frames’ internal structure. This indicated

that (e.g.) VP was a natural class, and gave examples.)

development The smoothing parameters (§6.6.2) were set to maximize the cross-entropy

of a similarly articulated version of the development set.

testing In testing, each frame projection probability such as Pr(PP VBZ NP PP |

added, S) was computed as the total probability of all parses of the RHS. Equa-

tion (6.12) is only the probability of the single parse that agrees with the Treebank.31

The parsing procedure did consider rules it had never seen in training, evaluating

them by the appropriate model in §6.6.1. However, for speed, the procedure did not

consider parses in which X had a head child Y that had never served in training data

as a head child of X. It did consider parses with nested unary rules, but usually not

those with cycles of unary rules (e.g., X → Y → X).

6.6.4 Backed-Off Memorization Models

As we will see in §6.7.1, the transformation model performs rather better than the models

shown so far. One explanation is that it does a better job of “memorizing” lexical entries

that have been observed already, i.e., recognizing them as units to be awarded high prob-

abilities. This is possible because of the arcs to observed frames and the parameters that

are used to tune individual lexical entries. By contrast, the bigram model cannot throw
31Empirically, evaluating just the single parse that agrees with the Treebank turns out to be a poor

choice. For example, replacing VBN (past participle) with VBG (present participle) in equation (6.12) yields
another legal parse. The second parse has about the same probability as the first, if the model has not
seen added before and does not know its correct part of speech. So counting both will double the estimated
probability.
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frame
headword LHS RHS
big JJ →
indexer NP → JJ [NN ] NPR
Bankers NNP →
Trust NNP →
Co. NPR → NNP NNP [NNP ]
also ADVP → [RB ]
uses S → NP ADVP [VP [VBZ ] NP PP-LOC ] .
futures NP → [NNS ]
in PP-LOC → [IN ] NP
a DT →
strategy NP → [NP DT [NN ] ] SBAR
that SBAR → [WHNP [IN ] ] S
on PP → [IN ] NP
average NP → [NN ]
has VBZ →
added S → PP [VP VBZ [VP [VBN ] NP PP ] ]
one QP → [CD ]
percentage NN →
point NP → QP NN [NN ]
to PP → [TO ] NP
its PRP$ →
enhanced → JJ
fund NP → PRP$ JJ [NN ]
’s NP$ → NP [POS ]
returns NP → NP$ [NNS ]
. . →

Figure 6.7: A version of Fig. 6.3 if frame-internal brackets are retained at step 8 of data
preparation (§6.2).
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probability mass at an observed lexical entry without splashing heavily onto other entries

that contain many of the same bigrams.

To test this hypothesis, we can try a hybrid approach that starts with the memorization

model of §6.6.1.1 but backs off to a lower-order Markov model, especially for rare words.

Like the transformation model, this combines the abilities to memorize and generalize. It

assigns positive probability to all possible frames. Carroll and Rooth (1998) used a similar

technique for evaluation purposes, backing off to a poor “spelling model.”

Two backoff techniques were implemented. Each technique discounts the maximum-

likelihood (“memorized”) probabilities of lexical entries with low counts, and reallocates

their probability mass to a lower-order Markov model.

The first technique is Katz backoff (Katz, 1987), which applies the Good-Turing dis-

counting formula to counts ≤ 5.

The second technique is one-count smoothing, with a backoff scheme as sketched in

Fig. 6.6. For reasons described in §6.6.2, it may be interpreted as follows. We try to

estimate Pr(RHS | headword,LHS). To the extent that the word (or LHS) is rare, then

we will back off to a weighted average. Prmem(RHS | LHS) and Prlower-order(RHS |

headword,LHS). (The weight in this average depends only on LHS.) All of the smoothing

weights were estimated simultaneously, so that the Markov model was smoothed specifically

to perform well on rare words.

6.7 Results and Analysis

The empirical comparison should be regarded as a proof of principle. Once the bigram

model was determined to be the best from previous literature, the transformation model’s

features (§6.4.4), including “side,” were carefully designed to use only as much informa-

tion as the bigram model. No feature could depend on more than two nonterminals.

There were no specially linguistic features, and no output features (§3.6.2) that judged a

transformation’s probability by its output’s well-formedness (or probability under another

model).

At most, the feature weights could only indicate whether it would be good to transform
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memorization+backoff
basic Katz one-count

flat non-flat flat flat non-flat
1-gram 1774.9 86435.1 340.9 160.0 193.2
2-gram 135.2 199.3 127.2 116.2 174.7
3-gram 136.5 177.4 132.7 123.3 174.8
subcat 363.0 494.5 197.9
transf 108.6
combined 102.3

Table 6.1: Perplexity of the test set of S→ · · · entries under various models.

an S entry so that two given nonterminal children would (or would no longer) be adjacent

on a particular side of the head.

So the comparison aimed to see whether the transformation model could match the

bigram model, using the same kind of information in a very different way.

Of course one putative strength of transformation modeling is that it could incorporate

more informative features, as well as more linguistically interesting transformations and

representations (§2.4.3, §5.5). However, before doing such work, it is necessary to develop

good estimation methods and show that transformation models are not sunk by their own

complexity even on simple cases.

6.7.1 Basic Comparison of Models

The perplexity of the test set under various models is shown in Table 6.1. The smallest

(best) perplexities appear in boldface. The key results:

• The transformation model was the winner, reducing perplexity by 20% over the best

model replicated from previous literature (a bigram model).

• Much of this improvement could be explained by the transformation model’s ability

to model exceptions (§6.6.4). Adding this ability more directly to the bigram model

reduced perplexity by 6% or 14%, depending on whether Katz or one-count backoff

was used, as compared to the transformation model’s 20%.

• Averaging the transformation model with the best competing model improves it by
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an additional 6%.32 This gives a total perplexity reduction of 24% over the best

previous model from the literature and 12% over the best new model that does not

use transformations.

• It is much better to predict flat frames directly than by summing over their possible

articulated structures.

• One-count smoothing works better than Katz smoothing when backing off from the

memorization model. (Katz appears to discount the observations too heavily.)

A useful qualitative comparison of the transformation and bigram models can be found

in §1.5.3.

6.7.2 Consistency of the Improvement

Fig. 6.8 (analogous to Fig. 1.4) shows that averaging the transformation model with the

memorization+bigram model improves the latter not merely on balance, but across the

board. In other words, there is no evident class of phenomena for which incorporating

transformations would be a bad idea.

• Transformations particularly helped on low-probability novel frames, as hoped.

• Transformations also helped on frames that were observed once in training with

relatively infrequent words. (In other words, the transformation model does less

backoff from singletons.)

• Transformations hurt slightly on balance for frames observed more than once, but

the effect was tiny.

Of course, all these differences are slightly exaggerated if one compares the transfor-

mation model directly with the memorization+bigram model, without averaging.
32Model averaging is a common technique for exploiting the strengths of two probability distributions

Pr1 and Pr2, each of which underestimates some probabilities. It defines a new distribution Pr(x) =
(Pr1(x) + Pr2(x))/2. This can be regarded as a mixture model in which each sample is drawn from either
Pr1 or Pr2 according to a coin flip, so that x is fairly likely if either distribution deems it likely.
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Figure 6.8: Probabilities of test set lexical entries under the averaged model, plotted against
the corresponding probabilities under the best transformation-free model. Improvements
fall above the main diagonal; dashed diagonals indicate a factor of two. The three plots
(at different scales!) partition the entries by the number of training observations: ◦ = 0,
• = 1, � ≥ 2.
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memorization+backoff
basic Katz one-count

flat non-flat flat flat non-flat
1-gram 1991.2 96318.8 455.1 194.3 233.1
2-gram 162.2 236.6 153.2 138.8 205.6
3-gram 161.9 211.0 156.8 145.7 208.1
subcat 414.5 589.4 242.0
transf 124.8
combined 118.0

Table 6.2: A version of Table 6.1 when the amount of training data is reduced by half.

6.7.3 Annotation Cost

What would be the cost of achieving such a perplexity improvement by additional annota-

tion? Training the transformation model on only the first half of the training set (Treebank

sections 0–7), with no further tuning of any options, yielded a test set perplexity of 124.8.

Similarly training an averaged model yielded 118.0.

So by using transformations, we can achieve about the same perplexity (118.0) as the

best model without transformations (116.2), even using only half as much training data.

6.7.4 Graceful Degradation

Results for all models trained on only sections 0–7 are shown in Table 6.2. In general,

Tables 6.1 and 6.2 have the same pattern of results.

On this halved training set, the perplexity of the bigram model and its memorization

variant increase by 20%. (The inferior models also increase by about this much, except for

unigrams without memorization, which can be well-estimated from a small sample, and

the basic subcategorization model.) But the perplexity of the transformation model and

the averaged model increase by only 15%. This suggests that the transformation model

generalizes better from sparse data, as hoped.

As a result, on the smaller training set, the advantage of using transformations is

increased by another 3 percentage points. Thus, its improvements over the bigram model

and its memorization variant rise to 23% and 10% respectively (as compared with 20%
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and 7% on the full training set). The averaged model has corresponding improvements of

27% and 15% (as compared with 24% and 12%).

These results are encouraging for the use of transformational smoothing in language

learning. In EM-style language learning, the training data are much noisier than here,

because the lexical entries must be inferred by parsing strings badly. §1.2.4.2 and §8.2.4

suggested using a thresholded version of EM that reestimates parameters from only the

most confidently labeled data. In this case the data are less noisy, but sparser. The claim

of §1.2.4.3 was that transformational smoothing might be useful in extrapolating from such

sparse data.

6.7.5 Type-Weighting

Besides its ability to memorize, the transformation model was supposed to have other

desirable properties. §3.8.7 hinted that it should not be led astray by common but atypical

types such as function words (see §7.1.5 for full details).

To test this proposition, we considered the set of SBAR→ · · · frames. In our dataset

these happen to form a heterogeneous set with two types of lexical entries, exemplified

by SBAR→ that S and SBAR→ NP MD remain PP-LOC. The former type is headed by a

closed-class complementizer that, which, or a question word. The latter type is headed

by a lexical verb such as remain, and has the same form as an S→ · · · frame from the

previous experiment.33

This dataset is challenging for backoff smoothing methods, including the new memo-

rization model with one-count backoff. A poorly observed word w cannot get a good direct

estimate of Pr(RHS | w, SBAR). It must back off to the distribution Pr(RHS | SBAR). But

the latter distribution is heavily influenced by the first type of lexical entry and so predicts

an RHS of S with probability 2
3 . The trouble is that a poorly observed word is likely

to be an open-class word, not a lexical complementizer. The backoff distribution is helpful

for predicting the frame of new word tokens, but not new word types.

By contrast, the transformation model should do better at using just a few perturbation
33The latter type began life with a null complementizer as SBAR→ ∅ S. Since our dataset does not allow

null headwords, the data-preparation scripts were forced to take S as the head child. Therefore the SBAR

inherited the headword and dependent slots of the S.
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parameters to model the common lexical entries as exceptions. For example, it can learn

that Startthat has an especially high-probability arc to SBAR→ that S. A word that is

not known to be exceptional will be governed by more regular processes.

As predicted, the transformation model does do substantially better on this dataset.

The bigram model achieves a perplexity of 8.3 (i.e., the average SBAR’s RHS can be

encoded with about half as many bits as the average S’s RHS). The memorization model

with one-count backoff to the bigram model only reduces the perplexity by 4% (to 8.0);

after all, the bigram model can do a good job of learning S. But the transformation

model reduces perplexity by 29% (to 5.9). So the margin of victory over the best competing

model is substantially greater here.

This is true although the transformation model was trained with the same options and

priors as before, with no further tuning to the development set. This presumably put it at

a disadvantage against the competing models, whose smoothing parameters were chosen

afresh to minimize perplexity on SBAR frames in the development set.

6.7.6 Generalization: The Forced-Match Task

Finally, the transformation model was supposed to be able to generalize better from the

frames that are known for a word to new frames, which are plentiful in test data (Fig. 6.4).

To test its success at this, we compared it to the bigram model on a pseudo-disambiguation

task.

Each instance of the task consisted of a pair of lexical entries from test data, (w1, f1)

and (w2, f2), such that f1 and f2 are “novel” frames that did not appear in training data

(with any headword).

Each model was then asked: Does f1 go with w1 and f2 with w2, or is it the other way

around? In other words, which is bigger, Pr(f1 | w1)·Pr(f2 | w2) or Pr(f2 | w1)·Pr(f1 | w2)?

Since the frames were novel, the model had to make the choice according to whether

f1 or f2 looked more like the frames that had actually been observed with w1 in the past,

and likewise w2. What this means depends on the model. The bigram model takes two

frames to look alike if they contain many bigrams in common. The transformation model

takes two frames to look alike if they are connected by a path of probable transformations.
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The test data contained 62 distinct lexical entries (w, f) in which f was a novel frame.

This yielded 62·61
2 = 1891 pairs of lexical entries, leading to 1811 task instances after

obvious ties were discarded.34

Baseline performance on this difficult task is 50% (random guess). The bigram model

chose correctly in 1595 of the 1811 instances (88.1%). Memorization does not help on this

task, as it involves only novel frames, so the memorization+bigram model had the same

performance.35 By contrast the transformation model got 1669 of 1811 correct (92.2%),

for a more-than-34% reduction in error rate.

Since the 1811 task instances were derived non-independently from just 62 novel lexical

items, this result is really based on a small sample. However, some additional support for

the transformation model is provided by the similar results on the development set rather

than the (smaller) test set.36 Here the bigram and transformation models got 8592 (82.1%)

and 9184 (87.7%) of 10474 forced matches correct, meaning that the transformation model

reduced error rate by over 31%.

6.7.7 Learning Curves and Weight Distributions

Let us close with a look inside the optimization. The long dashed line in Fig. 6.9 shows

the continual improvement in the objective function g̃ for a typical run of optimization.

(The function has been rescaled to units of bits-per-training-frame, so smaller values are

better.)

In this run, ~θ was initialized to 0 (except for the weights of the special features in §6.4.5),

while perturbations ~π were initialized as in §6.5.2. The first 150 iterations of gradient

descent are shown, enough to surpass the performance of the bigram model though not

enough to converge. The lower and upper solid lines show cross-entropy on training and

test data, respectively. As the optimization proceeds, performance on test data improves,
34An obvious tie is an instance where f1 = f2, or where both w1 and w2 were novel headwords. (The 62

lexical entries included 11 with novel headwords.) In these cases, neither the bigram nor the transformation
model has any basis for making a forced-match decision: the probabilities being compared will necessarily
be equal.

35To be precise, it got 1596 correct (still 88.1%). The trivial difference in performance can be attributed
to the fact that headwords vary in how strongly they back off from memorization to the bigram model.

36The development set contained 147 rather than 62 lexical entries not seen in training, yielding more
than five times as many task instances. The transformation model had been tuned on the development set
to obtain good perplexity, but had not been tuned for the forced-match task.
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Figure 6.9: Learning curves during adaptive gradient descent (smaller y-values are better).
Long and short runs correspond to different initialization schemes. Solid lines show cross-
entropy per frame on training data (lower line) and test data (upper line). The dashed
line represents the objective function: it is like the training line but adds in the cost of the
prior, amortized over all training frames.
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somewhat at the expense of training data—a smoothing effect, although as already noted,

the model continues to assign rather high probability to training data.

Fig. 6.9 also displays such curves for a different run, identical except that this time ~θ

as well as ~π was initialized as described in §6.5.2. This was in fact the run reported in

Table 6.1. The initial model was much better than the previous run’s, although it did

not have much room to improve locally: it was stopped after only 3 passes (based on its

performance on held-out data, where after 3 passes it began to overfit training data).

The x-axis in the figure is not the number of steps of the gradient descent algorithm,

but rather the cumulative length of the algorithm’s trajectory in parameter space. This

yields a smoother graph because the algorithm is adaptive, varying its stepsize from pass

to pass.

Fig. 6.10 shows the distribution of weight magnitudes at the point where each of the

two runs was stopped. There are about 70000 non-zero weights—including 2482 output-

feature weights used on arcs from Start`, which do not describe transformations. (The

11274 perturbation parameters are not shown here.)

For a weight to have become non-zero, it must have had some effect on the objective

function. Specifically, it must correspond to a feature of an arc on a path that generates

an observed lexical entry, or on an arc that competes with probability for such an arc. The

competitor arcs are one common source of negative weights, so only about 11% of weights

are positive, though these tend to be larger.

A few hundred weights are strongly positive or negative; all but a few thousand weights

are negligible. For the long run whose transformational features’ weights were initialized

to 0, only 3109 of the 70000 weights end up with absolute value > 0.1, and this includes

many (non-transformational) weights that were initialized that way.37 For the shorter run,

12282 weights end up above 0.1. Notice that a single feature of weight ±0.1 suffices to

alter an arc’s probability by about ±10%.

One might wonder whether small weights gang up for a substantive combined effect.

The answer turns out to be no.38 As Fig. 6.10 shows, zeroing out all the small weights
37The long run has trouble escaping an apparent local maximum in which there is little transformational

action. Transformational features having been initialized to 0, gradient descent preserves a rather sharp
distinction between strong output features and weak transformational features.

38Remember that a given arc has only 22 features at most. This does not provide much opportunity for
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(without retraining the others or the perturbations) has no discernible effect on the re-

sulting distribution, or at least on its perplexity. This suggests that it may be possible to

speed up the system by eliminating low-weight features. One must work up to zeroing out

all weights of magnitude 0.1 or 0.2 before one sees even a small effect.

gang effects: the sum of 22 tiny weights would still be tiny.
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Chapter 7

Variations and Applications of

Transformation Models

Chapter 3 gave an introduction to transformation models as abstract devices. In this

chapter, we return to that viewpoint and flesh it out a bit more with additional connections,

applications, and variations.

7.1 Connections to Other Techniques

Transformation models have resemblances to other familiar mathematical devices, and to

a Bayesian smoothing technique in the literature.

7.1.1 An Interpretation as a Markov Process

A transformation model may be interpreted as a Markov process whose state set is Events×

{0, 1}. A transition to 〈e, 0〉 corresponds to generating the event e in the random walk of

§3.3.1. A transition from 〈e, 0〉 to the absorbing state 〈e, 1〉 corresponds to halting at e.

Formally, write Pθ(e, e′) to abbreviate
∑

A=〈e,e′,F 〉∈Arcs Pθ(A). Then the transition prob-

abilities are given as follows, where e, e′ ∈ Events:

• The transition probability from 〈e, 0〉 to 〈e′, 0〉 is Pθ(e, e′).

• The transition probability from 〈e, 0〉 to 〈e, 1〉 is Pθ(e,Halt).
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• The transition probability from 〈e, 1〉 to 〈e, 1〉 is 1. So 〈e, 1〉 is an absorbing state.

• All other transition probabilities are 0.

The initial distribution of the Markov process assigns probability 1 to 〈Start, 0〉 and

probability 0 to all other states. If plim is the corresponding limit distribution of the

process, then we define Prθ(e) = plim(〈e, 1〉). Footnote 5 on p. 86 briefly discussed when

this distribution sums to 1 (that is, (∀e)plim(〈e, 0〉) = 0).

Note that the Markov process is non-ergodic because of the absorbing states 〈e, 1〉. So

the limit distribution Prθ(e) is sensitive to the initial distribution (which places all the

probability mass at Start). Indeed, it is sensitive to the distribution on the following

step: so the model’s preference for choosing certain initial events e1 to transform (§3.3.2)

is reflected in the events that tend to emerge from the sequence of transformations.

7.1.2 An Interpretation as a Probabilistic Finite-State Machine

Another useful intuition about transformation models comes from the world of automata

theory. Probabilistic finite-state machines have been the subject of much recent interest

(e.g., (Mohri, 1997)). They are ordinary finite-state machines augmented with probabilistic

information: each state specifies a probability distribution over the arcs leaving the state.

It is helpful to regard a probabilistic finite-state automaton as writing the labels of

the arcs it traverses, rather than reading them. Such a machine may be regarded as

stochastically choosing a string.1

A path in such an automaton from the start state to a final state, whose arcs are

respectively labeled α1, α2, . . . αn, is said to output the string α1α2 · · ·αn. The probability

of the path is the product of the probabilities of all its arcs (just as in a transformation

model).2 One is usually interested in the probability of generating a particular string

α—i.e., the total probability of all paths that output that string.

Given a transformation model and parameter vector θ, the distribution Prθ over Events

1Or equivalently, stochastically transducing the null string ε to some output.
2In so-called subsequential machines, this product also includes the halt probability of the final state.

(The probability distribution specified by a state is modified to be a distribution over all the state’s “exit
options”—its out-arcs and, if the state is final, the option of halting.) But if ε arcs are allowed, as in our
case, then introducing a Halt state lets us avoid this complication without loss of generality.
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can be described using a probabilistic finite-state automaton, provided that Events is finite.

The transformation graph described in §3.2.1 provides the automaton’s topology (states

and arcs). Start is the start state, and Halt is the only final state. Any arc from a state

e to Halt is labeled with e; all other arcs are labeled with ε. Finally, the probability of

an arc A is given by Pθ(A).

Now the probability Prθ(e) is defined to be the probability of generating the length-1

string e.

Eisner (2001) presents a general scheme for parameter estimation in finite-state recog-

nizers and transducers, including those with ε-cycles. The method given here in §8.2 is a

special case of that general scheme. In particular, an implementation of the general scheme

could be applied to estimate the parameters of transformation models. Conversely, nearly

all the algorithmic tricks given here could be applied in the general case of finite-state

machines. See §8.2.3 and §8.3.1 for further discussion.

If Events is infinite, then a transformation model corresponds to an infinite-state ma-

chine. §4.2 showed how to approximate the necessary computations by exploring a finite

portion of the automaton graph “on the fly” as necessary Sproat (1996, §6) calls this

architecture a “Generalized State Machine.”

7.1.3 An Interpretation as a Recurrent Neural Network

Like any Markov process, a transformation model may be interpreted as a possibly recur-

rent neural network. We will exploit this connection in one of our algorithms for training

transformation models (§8.5.5), which computes the gradient in a way that resembles

back-propagation.

The units, connections, and weights of the network correspond to the states, transitions,

and transition probabilities of the Markov process described above (§7.1.1). The activation

squashing function is the identity function rather than a sigmoidal threshold function.

The network always has the same input vector: the Start node receives activation of

1, and no other node receives input. On each timestep, each unit’s activation is propagated

along its outgoing connections (scaled by the connection weights), and is removed from

the original unit. In the limit, the network settles. Prθ(e) is the limit activation of the
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unit 〈e, 1〉.

It is worth remarking that recurrent networks that settle are often used to implement

associative memories that can complete an input activation vector (Hopfield, 1982). One

could imagine using this approach to smooth a syntactic lexicon. The input activation

vector would specify the observed probabilities of the lexical entries, and the network

would be allowed to settle into a smoothed version. However, it is doubtful that this

approach can be made to work.3

7.1.4 An Interpretation as a Cyclic Graphical Model

A transformation model can also be regarded, somewhat awkwardly, as a kind of directed

graphical model (Pearl, 1988). Every vertex e in the transformation represents a real

variable Pr(e). More precisely, it represents the real variable I(e), defined in §3.4; this is

proportional to Pr(e).4 (Most graphical models are defined over boolean variables, but the

formalism allows any kind of variable.) What a graphical model does is to define a joint

prior distribution over these real variables. In this case, that amounts to a distribution

over distributions (see §3.1.2).

The transformation graph makes conditional independence assertions about the indi-

vidual variables, just as a graphical model does. The probability of e depends only on

the probabilities of e’s parents. Given the latter, knowing other probabilities in the graph

cannot tell us anything about e (their conditional mutual information with e is zero).

Of course, the probability at e also depends on components of θ. So to turn the

transformation model into a graphical model, we must give e some new parents. We add

each θi as a new vertex and add links from these nodes to the original vertices as necessary.

This graphical model now has an odd property. The vertices θi are ordinary free
3If the idea is to run the model on different inputs (corresponding to different words, say) and get

different outputs, then it is problematic that only a handful of outputs are possible (the fixed points;
indeed, to get multiple fixed points the model must be made nonlinear). This is appropriate for a memory
but not for a smoother. It is also unclear what the objective function should be for training the network,
or the balance between representing exceptions in the network vs. in the input. Finally, this approach
would require a different style of transformation graph, one in which transitions to Halt are not used and
recurrent transitions become crucial.

4It has to represent I(e) rather than Pr(e) because Pr(e) can always be recovered from I(e) (by equa-
tion (3.20)), but not vice-versa (since if there is no arc from e to Halt then solving equation (3.20) reduces
to 0/0).
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parameters; the prior of §3.5 says that they are normally distributed random variables with

variance σ2. But each I(e)—and hence each Pr(e)—is merely a deterministic function of

its parents. Pr(e) has no additional variance; its conditional distributions are spikes. This

is legal for graphical models but highly unusual.

A perturbed transformation model, though, is not unusual in this way: there is addi-

tional variance at I(e), provided by the perturbation πe. Unlike θi, πe is not a vertex of the

graphical model. The usual graphical model property holds: the node e is conditionally

independent of its parents. That is, the prior probability that I(e) will have a particu-

lar value depends only on θ and on the values {I(e′) : e′ is a parent of e}. Specifically,

under the assumption that πe ∼ N(0, σ2), equation (3.28) says that I(e) is distributed

log-normally about a linear combination of those values: namely,

∑
A=〈e′,e,F 〉∈Arcs

I(e′) · p(A) + δ(e = Start)

A more important hitch in the analogy to graphical models is that our graphical model

may inherit cycles from the transformation graph. Cycles are not standardly allowed in

directed graphical models, because they may prevent the existence of any joint distribution

that is consistent with all the conditional independence assumptions. Happily, however,

this is not a problem for our model. The defintion in terms of path probabilities or random

walks means that a unique consistent solution is guaranteed, as computed in §3.4.

7.1.5 Bayesian Backoff

Some of the desirable properties of transformational smoothing arise from the fact that it is

a Bayesian method. It is influenced not only by what evidence is available but also by how

much. The prior and the various pieces of evidence all put pressure on the parameters, so

weak evidence is likely to be overruled (smoothed) to appease a coalition of strong evidence

and the prior.

Other Bayesian methods have this property as well. For example, one of the nice

properties of simple Bayesian backoff (MacKay and Peto, 1995) is that it treats frequently

observed phenomena as trustworthy but not necessarily typical. This makes it a sensible

compromise between two non-Bayesian techniques for choosing a backoff estimate, namely,
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averaging related estimates by type and by token. This section explains that comment and

shows that it also applies to transformational smoothing, in particular the example model

discussed throughout §3.8.

7.1.5.1 The Bigram Smoothing Task

Given a word wj , suppose one wishes to smooth the distribution Pr(wj+1 | wj), which

predicts the word wj+1 that will follow wj . The traditional approach5 interpolates between

the maximum-likelihood estimate PrML(wj+1 | wj), which is unreliable when there are few

observed samples of the distribution (i.e., for infrequent wj), and a generic backoff estimate

Prbackoff(wj+1):

P̂r(wj+1 | wj)
def= αwjPrML(wj+1 | wj) + (1− αwj )Prbackoff(wj+1) (7.1)

The interpolation parameter αwj depends on how well the distribution is observed: the

more infrequent the conditioning word wj , the more strongly the backoff estimate is

weighted.

7.1.5.2 Token-Weighted Bigram Smoothing

In the traditional approach to bigram smoothing, the generic backoff estimate can be

regarded as a weighted average over all context words wj :

Prbackoff(wj+1) def= PrML(wj+1) =
∑
wj

PrML(wj+1 | wj) · PrML(wj) (7.2)

The weighting factor Pr(wj) indicates that it is a token-weighted average, i.e., more

frequent words have more influence on the backoff estimate.

7.1.5.3 Type-Weighted Bigram Smoothing

This strategy is called into question by Baayen and Sproat (1996), who show (for a some-

what different problem) that for the rare words wj where the backoff estimate actually

matters, it is better to use a backoff estimate based only on other rare words. Baayen
5Encompassing both Jelinek-Mercer smoothing (Jelinek and Mercer, 1980; Bahl et al., 1983) and sim-

ple additive smoothing. Common alternatives such as Katz backoff (Katz, 1987) and similarity-based
smoothing (Dagan et al., 1994) use the backoff estimate only when the maximum-likelihood estimate is 0.
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and Sproat do not try using the type-weighted average where all words (both rare and

frequent) are weighted equally,

Prbackoff(wj+1) =
∑
wj

PrML(wj+1 | wj) ·
1
n

(7.3)

(n being the number of summands). However, this would presumably be similar to Baayen

and Sproat’s backoff estimate, since rare words tend to greatly outnumber frequent words

when counted by type (Zipf’s law).

7.1.5.4 Bayesian Bigram Smoothing

MacKay and Peto’s approach can also be described as an instance of equation (7.1). It is

derived by treating the words observed to follow each wj as samples from the distribution

Pr(· | wj), and by also treating all the distributions Pr(· | w′j) as vector-valued samples

from a single Dirichlet function. The Dirichlet is itself a distribution (over distributions)

whose parameters must also be estimated.

Prbackoff(·) emerges as the mean of the Dirichlet. If the Dirichlet has low variance,

then each conditional distribution Pr(· | wj) is expected a priori to be close to this mean,

and will therefore be smoothed aggressively toward it. But to the extent that a given

wj is well-observed, the evidence about wj may overwhelm this prior expectation, so that

Pr(· | wj) is modeled as exceptional. This is the same Bayesian idea discussed in §3.8.5.

What determines Prbackoff in the MacKay and Peto model? Unlike the token-weighted

average PrML(wj+1) used by traditional backoff, the Dirichlet mean is effectively estimated

as a type-weighted average. Each of the distributions Pr(· | wj) counts as a single sample

from the same Dirichlet, without regard to how frequent wj is. So the Dirichlet mean (and

variance) must be chosen so that all these samples are plausible.

However, this type-weighted average is complicated by the fact that in practice it is an

average of unknown distributions. Each word-specific distribution Pr(· | wj) in the average

is “fuzzy” in the sense that it is not known precisely: it is being estimated along with

the average. If wj is rarely observed, then there is considerable “give” or uncertainty in

that estimate. Indeed, it is exactly this uncertainty that smoothing resolves by expecting

a priori that word-specific distributions tend to be close to the average. As an extreme
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case, if wj has never been observed at all, then Pr(· | wj) is wholly underspecified, and is

estimated as equal to the background distribution—its most likely value. It provides no

information that can influence the background distribution; rather the influence is in the

other direction.

So the MacKay-Peto model actually does grant a frequent word more influence than a

rare word on the background distribution, but only because it asserts its preferences more

confidently. As in traditional backoff smoothing, the flow of information is largely from

frequent to rare words: frequent words help determine the behavior of the “typical” word,

which in turn influences the estimated behavior of rare words.

The extra influence of frequent words in the MacKay-Peto model differs from their extra

influence in the token-weighted average of traditional backoff. It does not increase linearly

with the counts but rather faces diminishing returns once there are enough observations

to allow a reasonably sharp probability estimate. (That is, a word with 100 observations

has barely more influence than a word with 50, and because of type-weighting, both are

outweighed by just a handful of words with one observation each.6)

In short, the Bayesian approach combines the virtues of token-weighting and type-

weighting. It correctly recognizes that frequent words tend to contribute more evidence

about the language, without incorrectly supposing them to be more typical of words in

general.

7.1.5.5 Bayesian Backoff Behavior in a Transformation Model

In the bigram smoothing example above, Pr(wj+1 | wj) for each wj is smoothed toward a

common background distribution Prbackoff(wj+1). Whether we use type-weighted, token-

weighted, or Bayesian smoothing, poorly observed distributions are smoothed more ag-

gressively.
6A concrete example: Let k

n
denote k observations of event Ai and n − k observations of Bi. Suppose

for i = 1, 2, . . . 8 we observe 0
1
, 0

1
, 0

1
, 0

1
, 0

1
, 1

1
, 1

1
, 5000

7000
respectively. The maximum-likelihood Dirichlet turns

out to have a mean of 〈0.44, 0.56〉, indicating that the backoff distribution takes A events to be less likely
than B events. So the several rare cases that total 2

7
actually outweigh the frequent but atypical case 5000

7000
,

which takes A events to be more likely. Nonetheless, the frequent case, being well-observed, does have
more influence than in the straight type-weighted average, which would be 〈0.34, 0.66〉. (If the other cases
were scaled up to be just as well-observed, so that sparse data were no longer a worry, the MacKay-Peto
estimate would go to 〈0.31, 0.69〉, which is indeed in the ballpark of the type-weighted average though it is
not quite the same thing.)
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Recall the canonical transformation model of §3.8.1, which was discussed throughout

§3.8. It must similarly smooth (Pr(Ai | i),Pr(Bi | i)) for each i toward a common back-

ground distribution (2
3 ,

1
3). The transformation model is Bayesian, like the MacKay-Peto

model for bigram smoothing. We now see (as §3.8.7 promised) that it strikes the same

middle ground between type-weighting and token-weighting.

Stipulating an exception for any pair (Ai, Bi) is equally costly, regardless of how rarely

Ai and Bi are observed. But if Ai and Bi are particularly rare, they may not insist as

strongly on a particular exception. So rare event pairs have less influence on the transfor-

mation probability.

For example, the counts #(A8) = 1,#(B8) = 0 are consistent with many transfor-

mation probabilities, so this pair has little influence on θ0 or other weights, and will be

heavily smoothed. It would take many such (1, 0) pairs to establish that the transformation

probability is small for the typical word.

But on the other hand, having many such pairs is in fact good evidence about the typical

word, whereas a single well-observed pair (A7, B7) is not, even if it has more observations

than all the other pairs combined. Indeed, if A7 and B7 are the only pair with an unusual

probability ratio, then the optimal parameter vector θ will tend to use θ0 to model the

usual ratio and θ14 to model an exception for (A7, B7).

Multiplying all the evidence counts by a factor of 1000 (while keeping σ2 constant)

would ensure that all pairs (Ai, Bi)—even the comparatively infrequent ones—were sup-

ported by enough evidence that they would all insist, almost equally strongly, on having

their observed ratios closely modeled. Such modeling would involve a type-weighted com-

promise for the parameter θ0 that describes the typical case, together with enough other

non-zero weights in θ1, . . . θ2k to capture how each pair has been observed to differ from

this typical case. In other words, more evidence justifies more non-zero parameters.

7.1.5.6 How Does This Pattern Generalize to More Complex Models?

In a more complex transformation model, Bi might have several parents in the transfor-

mation graph, not just Ai and Start. Then the model smooths probabilities so that each

Bi is close to a linear combination of all its parents’ probabilities. (Pr(Bi) ≈ c ·Pr(Ai) was
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a special case.)

The coefficients of the linear combination correspond to the “generic” probabilities of

transforming the parents into Bi—that is, the probabilities determined by equations (3.13)

and (3.15) if features peculiar to Bi are ignored. If Bi and its parents are well-observed,

they have a stronger say in determining these generic coefficients. If they are not, their

probabilities will be more aggressively smoothed by recourse to the coefficients.

If Pr(Bi) is exceptional and does not quite match the standard linear-combination

prediction, parameter estimation can fit it by adjusting weights that are peculiar to Bi.

(In our example θ2i is such a weight; more typical models will adjust the weights of per-

event features.) This modifies the coefficients for Bi in particular, picking up the slack

in equation (3.18) so that Pr(Bi) is exactly equal to a linear combination with modified

coefficients. The prior prefers these additional features to have low weights so that the

modifications are not great.

7.1.5.7 Learning the Strength of Smoothing

In the MacKay-Peto approach to bigram smoothing, the interpolation parameter αwj of

equation (7.1) is related not only to the count of wj , as in traditional backoff, but also

to the learned variance of the Dirichlet. If the aggregated distributions Pr(· | w′j) are

quite different from one another—i.e., they do not form a natural class—then this variance

will be estimated as high and backoff will automatically be weak. Notice that αwj is set

without the use of held-out data.7

Thus, the MacKay-Peto approach learns the degree of consensus among the individual

words’ distributions (the Dirichlet variance), as well as the consensus distribution itself

(the Dirichlet mean). Poor consensus among the individual distributions means that they

will be smoothed less toward the consensus distribution.

Our example transformation model can be augmented to have a similar property.

§7.3.2.2 describes how to learn a common variance for the weights θ2, θ4, . . . θ2k. This

variance estimates the degree of listability (idiosyncrasy) of the Bi events. If the Bi events
7Suppose the parameter vector of the Dirichlet is α~m where

∑
imi = 1. Then ~m is the mean and α is

inversely related to the variance. The full-Bayesian posterior estimate of Pr(· | wj) is equivalent to setting
Prbackoff = ~m and αwj = #(wj)/(#(wj) + α). The latter is close to 1 if the variance is high.
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appear to be derived at a constant rate from the Ai events, then the estimated variance

will be low to explain why the aforementioned weights tend to be close to zero. In that

case, smoothing will be more aggressive. But if the Bi events are highly (de)listable—their

probabilities are hard to predict from the Ai events—then the estimated variance will be

high, making smoothing weaker.

7.2 More Sample Applications

Recall that §3.7.1 described the kind of domain that are amenable to transformation mod-

eling. We now examine a few more examples.

7.2.1 Google’s PageRank

7.2.1.1 Original PageRank

A rather different example is the PageRank distribution used by the Google search engine

to assess the quality of pages on the World Wide Web (Brin and Page, 1998). In Google’s

view, a web page is good if many other good pages link to it. More precisely, it is good if

a web surfer randomly clicking on links would be likely to happen upon it (and stop and

read it).

Imagine that the surfer takes a random walk on the web, where the pages are regarded

as graph vertices and the links are edges. At any page, the walk has an 0.15 chance of

halting, and an 0.85/k chance of continuing along any one of the page’s k outgoing links.

PageRank(e) is defined as the probability of halting at page e, just as in our §3.3.2.

PageRank can be described as a transformation model Prθ with fixed θ. An arc repre-

senting a link from page e to page e′ has no features (hence has G-value of exp(0) = 1),

and for every such arc, there is also an arc from e to Halt with a feature t0. The weight

of t0 is θ0 = ln(0.15/0.85).8 There are also featureless edges from Start to every page e,

so all pages are equiprobable start points in the random walk.
8The use of k parallel Halt arcs from a page with k links ensures that the page’s halt probability is

constant (at 0.15) regardless of k. An alternative solution is to give each page a second, auxiliary vertex in
the graph. The page’s original vertex has only two outgoing arcs, one to Halt (probability 0.15) and one
to its auxiliary vertex (probability 0.85). The auxiliary vertex has k outgoing arcs corresponding to the k
links.
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7.2.1.2 Improving PageRank by Learning Features

One could presumably improve PageRank by using more features and learning their weights

under a prior. This improves the random walk, by modeling a web-savvy surfer who has

good intuitions about which links from a page are worth clicking on. The features help the

model distinguish links of differing quality:

• An arc from e to e′ ought to have features that might correlate (or anti-correlate)

with the strength of page e’s recommendation of page e′—for example, the placement

of the link, words in the link anchor text, or similarities in the texts or URLs of the

two pages.

• An arc from e to Halt should have features that correlate with page e’s recommen-

dation of itself as a place to stop and read. For example, a page that consists entirely

of links (someone’s bookmark collection) might be an excellent place to pass through

but a poor place to halt.

• Finally, an arc from Start to e (or better, all arcs to e: see §3.6.1) should have

features that correlate with the “intrinsic” merit of page e, such as good spelling, a

short URL, a recommendation from a third-party rating service, or—in the case of

a specialized topical search engine—keywords that indicate topicality.

To learn the weights of these features—i.e., to model the savvy surfer—we need evidence

of the desired PageRank distribution: that is, evidence as to which pages are “really”

good or bad. This lets us choose among candidate models Prθ according to how well

they predict this evidence. A random sample from the desired distribution would be one

form of evidence, but any correlates of the desired distribution will do (see §3.1.5). Some

possible correlates include measures of where actual surfers spend their time (similar to

a random sample of PageRank), third-party awards, manual annotations of a subset of

the pages, Brin and Page’s original PageRank distribution,9 and user responses to search
9Of course, if we try to find θ such that Prθ exactly reproduces the original distribution, we will end up

choosing the same θ = 〈ln(0.15/0.85), 0, 0, 0, . . .〉 that the original distribution used, unless we modify the
prior so that it hates this θ. A different strategy is to randomly remove some arcs from the transformation
graph when estimating the new θ. This demands that we find “smart” features that can reproduce the
rankings of the “dumb” model despite having less help from web page authors. Once the new θ is estimated,
the missing arcs can then be restored to yield a final definition of Prθ.
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engine results.10

The smoothing attempts to predict this evidence using just the features that are avail-

able to it, with a priori reasonable feature weights, and thereby reconstructs a plausible

PageRank distribution underlying the evidence. The size of 1/σ2 determines the impor-

tance placed on reasonableness of the feature weights.

Other refinements are possible. For instance, one could use the transformational looka-

head of §7.3.4 below, which effectively downweights links to a page that recommends

neither itself nor other pages very strongly.

7.2.1.3 Incorporating Finer-Grained Evidence Into PageRank

Suppose the available evidence about PageRank includes user-specific or query-specific

page ratings. This finer-grained evidence makes it possible to learn more specific features.

The trick is to define the events not as pages but as 〈user,page〉 or 〈query,page〉 pairs,

where an arc connects 〈x, y〉 to 〈x′, y′〉 iff x = x′ and page y links to page y′. The

transformation graph now consists of many parallel copies of the web graph, one per user

or query. In particular there are many arcs that correspond to the same web link. Any

feature describing that link—even a feature wholly specific to that link—will now be shared

by all those arcs. The model will now estimate a high weight for that feature if the two

pages connected by the link have correlated ratings across the many users or queries,

implying that surfers who are interested in the first page tend to follow the link to the

second page.

Given user-specific or query-specific ratings, and the above transformation graph, we

can even arrange for the same page to have different ratings depending on the user or the

user’s query. Such personalized ratings are potentially useful. They require additional

features that are sensitive to the particular user or query. For example, per-event features

(§3.6.1): by increasing the single weight θ〈x,y〉, we can increase user x’s predicted interest

in page y and all of y’s near descendants. Another example is a feature that appears on

arcs to 〈x, y〉 just if the words in query x appear (prominently) on page y. A high weight
10Suppose the search engine recommends pages e, e′ and the user clicks on e. This is weak evidence

about PageRank: it is somewhat more likely if PageRank(e) > PageRank(e′) than vice-versa, so we would
prefer a model Prθ of PageRank with this property.
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for this feature means that a query rates a page highly if the page is easy to reach by a

random walk through pages that tend to mention words of the query.11

7.2.2 Collaborative Filtering

A related task is collaborative filtering, also known as recommender systems or “automated

word of mouth” (Goldberg et al., 1992; Shardanand and Maes, 1995). An example is

§7.2.1’s proposed extension of the PageRank transformation model over 〈user,page〉 pairs,

which estimates user-specific ratings of web pages. Exactly the same approach applies to

other domains.

Suppose a video rental store plans to make recommendations. It wants to estimate

how much each of its customers would like each of its videos. In other words, it wishes to

estimate an interest function over 〈customer,movie〉 pairs. If this function is non-negative

and is normalized to sum to 1, then it may be regarded as a probability distribution over

such pairs.

Imagine that the distribution is generated as follows. A random customer walks into

the store and randomly thinks of a past movie (or genre) that she liked. Her mind then

drifts knowledgeably from that movie (or genre) to other movies of related interest, taking

a random walk in cinematic space until she randomly decides to stop and rent the movie

she is currently thinking of.

Such a distribution may be regarded as emerging from a transformation model over

〈customer,movie〉 pairs (and Start). For example, if the store suspects that interest in

movie1 may translate into interest in movie2, then it arranges for the transformation graph

to include an arc from 〈customeri,movie1〉 to 〈customeri,movie2〉 for each i. Such an arc

bears features that jointly describe the pair of movies, as well as output features (§3.6.2)

that describe movie2 or 〈customeri,movie2〉.

Learning the feature weights will allow the store’s computer’s mind to drift knowledge-

ably on behalf of a customer who may not be so knowledgeable. For example, the model

might learn that customer C likes cinematographer X, or that customers who like films
11By contrast, in Google (Brin and Page, 1998), a page is rated highly if it is easy to reach through any

old random walk. The words in the page or query are taken into account only during a post-processing
step, and the words on the intermediate pages of the random walk are never considered.
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starring actor Y also tend to like the ones starring actor Z. (See §7.3.2.2 for an extension.)

A nice feature of the model is that it need not be misled into false generalizations by

popular movies. Let all arcs leading to a given movie carry an output feature specific to

that movie. If the movie is unusually popular within its genre—customers’s minds tend

to drift to it from related movies—the best explanation is to raise that specific feature’s

weight. It is not necessary to suppose that the movie’s director or star is the reason for

its success, unless other movies with the same director or star are also unusually popular.

As mentioned in §3.7.1, the transformational approach will not capture negative cor-

relations: “If you liked this movie, you’ll hate that one.” For instance, suppose that many

Monty Python fans also like grade-B sci-fi flicks, which lovers of art movies always hate.

The model’s weights can capture the fact that there is no particular crossover appeal di-

rectly from art movies to sci-fi, and even that a given customer tends to love art movies

and Monty Python and hate sci-fi. But it cannot learn that in general, an interest in

art movies will inoculate a Monty Python fan against the usual crossover to sci-fi. This

weakness might or might not be a practical obstacle.

7.3 Variations on the Theme

To round out our formal discussion of transformation models, we now sketch several possi-

ble variations on the basic idea. Some of these variations might be useful for the syntactic

smoothing task of this thesis, or for other linguistic or non-linguistic applications. For

most of the variants it is obvious how to adapt the algorithms of Chapter 4; for others,

algorithms will be considered in §8.4.

7.3.1 Other Ideas of the Transformation Graph

7.3.1.1 Variation: Non-Binary Features

In the basic transformation models of §3.2.1, each edge in the transformation graph is

labeled with a subset F of Features = {t1, t2, . . . tk}. For a given edge and a given feature

ti, either ti appears in the edge’s label or it does not.

A natural generalization is to allow the same feature to appear multiple times on an
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edge, or even fractionally or negatively many times.

In the general case, the label of an edge is a real vector ~F = {F1, F2, . . . Fk} ∈ Rk,

where the coefficient Fi is interpreted as the “number of times” that ti appears on the

edge, or the “strength” of ti as a description of that edge. Our original definition restricted

Fi ∈ {0, 1}. If Fi is allowed to range over the integers, non-negative reals, or reals, we

simply generalize the definition of Gθ in equation (3.13) as follows:

Gθ(〈e, e′, ~F 〉)
def= exp(

k∑
i=1

Fi · θi) = exp(~F · ~θ) > 0 (7.4)

§7.3.2.2 discusses the possibility of learning these coefficients.

7.3.1.2 Variation: Other Distributions Over Competing Edges

In §3.2 we defined log-linear transformation models. Instead of log-linear distributions,

one might allow other classes of parameterized distributions over sets of competing edges.

Note that in this case we may not need the finite-fanout property of §3.2.1.12

What is important is to tie the parameters so that edges that encode the “same”

transformation, or similar transformations, will have similar probabilities. For example,

in the case of log-linear distributions, such edges are labeled with identical or overlapping

feature sets.

Like the topology of the model, the tying of parameters is up to the domain expert

who designs the model. It is supposed to capture relevant facts about the domain.

One advantage of the log-linear approach is that features need not be orthogonal.

Hence if the model designer is unsure whether a given set of edges should have correlated

probabilities, then he or she can leave it up to the data: introduce a feature ti shared by
12As an example, let Events be Σ∗, the set of all strings over some alphabet Σ, and use a probabilistic

finite-state transducer to specify the model’s arcs. If the transducer maps string α to string β with proba-
bility p > 0 (conditioned on α), then the model has an arc from α to β with probability p. Assuming that
the transducer has the correct form, the arcs from α (perhaps infinitely many) will have total probability
of 1.

The parameters of this model are simply the parameters of the transducer—namely, the transducer’s arc
probabilities or underlying variables used to define them. Although the distribution defined by the model
is in general uncomputable, it can be approximated by composing several copies of the transducer. (Note
that even one copy of a simple transducer can make random contextual edits throughout a string.)

One could similarly let Events be a set of trees and use a tree transducer, yielding something like a
classical transformational grammar.
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just those edges, impose a prior that encourages the weight θi to be close to zero, and

let the learning algorithm decide whether the data justify a large |θi| that will drive all

those edges up (or down) at once. Of course this approach will not work well if taken to

extremes—for example, introducing a feature for each subset of edges. Unless the priors

are very strong, having more features than nodes would make it harder to learn the model

parameters than to learn the distribution over nodes directly.

7.3.1.3 Variation: More General Transductions

Recall from §7.1.2 that a transformation model can be regarded as a finite-state automaton

that produces outputs—or equivalently, transduces ε to outputs.

One could in principle generalize to allow non-ε input symbols on the arcs of the

transducer. This would allow the stochastic transformational process to be externally

constrained. One would be interested in the conditional probability of transformationally

generating event e given that the transformational process reads a particular string α. We

do not pursue this possibility here.

Another interesting possibility is to allow non-ε output symbols to appear freely in the

transducer. In this case, the transformational process would output a sequence of symbols,

not just one.

7.3.1.4 Variation: Learning the Model Topology

Rather than fixing the topology of the model (i.e., the transformation graph) in advance,

one might treat it as an additional parameter to learn, something not attempted here.

Similar problems have been studied. For example, there exist methods for learning

small arbitrary topologies for hidden Markov models (Stolcke and Omohundro, 1994a),

finite-state automata (Lang et al., 1998), and Bayesian networks (Heckerman, 1995).

7.3.2 Other Priors

While the simple Gaussian prior given in §3.5 is often sufficient, generalizations are possible.

We consider several.
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7.3.2.1 Variation: More General Gaussian Priors

If the features ti ∈ Features fall into natural classes, one may wish to specify a different

variance for each class (or, more precisely, for the weight parameters θi associated with

that class). In general one can separately specify a variance for each component of θ:

θ ∼ N(0, σ2
1)×N(0, σ2

2)× · · · ×N(0, σ2
k)

One could also specify a mean for each component:

θ ∼ N(µ1, σ
2
1)×N(µ2, σ

2
2)× · · · ×N(µk, σ2

k)

Why? If there is a prior reason to believe that arcs with feature ti are more or less likely

than their competitors, then one might set µi to be positive or negative, respectively. µi

describes the size of this anticipated effect and σi describes the modeler’s uncertainty in

µi.

The above generalizations simply allow Prprior(θ) to be any multivariate Gaussian with

diagonal covariance matrix.13

7.3.2.2 Variation: Variances and Feature Classes

The previous section allowed that different classes of features might have different vari-

ances. One might wish to learn these variances from data. (These remarks also apply

to the features of ordinary maximum entropy models with priors (Chen and Rosenfeld,

1999).)
13Generalizing further to an arbitrary covariance matrix would allow the modeler to specify first-order

correlations among the feature values. If different values of θ correspond to different languages, then such
a correlation is a cross-linguistic typological generalization. For example, θ2 might be expected to rise and
fall with θ4, or more generally with a linear combination of several components of θ.

However, this does not really increase the power of the formalism, since a coordinate transform on θ can
then restore us to the diagonal case (perhaps at some cost to efficiency). In the example, θ4 could be added
to every feature set F containing θ2, and then θ2 would only have to capture the difference between θ2 and
the old θ4.

For such a transform to work in general, we must allow real feature vectors rather than just feature
sets (see §7.3.1.1). Suppose we have a transformation model, and the prior is given by a multivariate

Gaussian with mean ~µ and covariance matrix Σ: then Prprior(θ)
def
= (θ − ~µ)TΣ(θ − ~µ). But by Singular

Value Decomposition, we can find square real matrices Σ′ and U , where Σ′ is diagonal, U is invertible, and

Σ = UTΣ′U . Define θ′ = Uθ, ~µ′ = U~µ, and Prprior
′(θ′) = (θ′ − ~µ′)TΣ′(θ′ − ~µ′) = Prprior(θ). Construct a

new transformation model that is identical to the old except that each arc A with feature set F has been
replaced by a new arc A′ with feature set FU−1, so that Gθ′(A

′) = FU−1 · θ′ = F · θ = Gθ(A). The new
model with prior Pr′prior is therefore equivalent in all respects to the old model with prior Prprior.
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For example, in the collaborative filtering application of §7.2.2, a given customer C

might place great stock in the director of a movie. Features that capture this customer’s

preference for particular directors—features of the form “customer is C and director of

movie2 is D”—tend to have weights far from 0. How to capture this generalization? We

need to learn that these weights have high variance. That has the desired effect: that when

the customer likes a new movie, we will prefer to explain this by raising these weights,

guessing that the customer’s interest will transfer better to other movies with the same

director than with the same star.

As a final example, in the lexicon smoothing model of §3.7.2, some types of lexical

entries are more idiosyncratic or “listable” than others. For example, active-verb entries

are idiosyncratic in English. Some of the possible active-verb entries have large per-event

weights (§3.6.1), meaning that their headwords are listed for use as active verbs, while

others do not. By contrast, passive-verb entries are derived from active-verb entries at

a fairly constant rate. Their derived probabilities tend to be correct, so their per-event

weights can generally stay close to zero. We would like to learn that the per-event weights

for active verbs have higher variance than the per-event weights for passive verbs. A similar

case was discussed in §7.1.5.7.

If the features can be partitioned into natural classes, each with its own variance, then

things are conceptually simple. We consider the variances to be additional parameters. We

can impose a simple prior on them, for example, that they are independent and identically

distributed according to some gamma distribution.14 Then we estimate the parameters as

before (§3.1, perhaps considering footnote 2).

If a feature can belong to multiple overlapping classes, each with its own variance

parameter, then it is necessary to combine these different variances in some way into a

single variance for the given feature. A reasonable combination function is the harmonic

mean: that is, to define the reciprocal variance 1/σ2 for the feature, average the reciprocal

variances 1/σ2
i associated with the classes.15

14This independence assumption might not hold in all domains. In the word-sense disambiguation model,
for example, the variances would presumably tend to decrease as one travels down the WordNet hierarchy.

15Motivation: If one class suggests that the feature’s weight should be sampled from N(0, σ2
1) and the

other suggests it should be sampled from N(0, σ2
2), we would like our sample to be consistent with both

distributions. (That is, each class containing the feature is a source of constraint: if σ1 is small, then we
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If it is confusing to write Θi ∼ N(0, σ2
j ) where σj is itself a random variable that

depends on the class or classes of feature ti, this so-called “hierarchical Bayes” technique

can be avoided by reparameterizing slightly. Simply replace θi with σjθi in equation (3.13),

and write Θi ∼ N(0, 1). This formulation is equivalent. It also shows that learning the

variances amounts to learning a multiplier for the coefficient of ti (§7.3.1.1). Occurrences

of ti on different arcs may have different coefficients, fixed by the modeler, but they all use

the same multiplier, unless they are considered to fall into different classes.

7.3.2.3 Variation: Asymmetric Gaussian Priors

It is not necessary to use normal (Gaussian) priors on feature weights. Keeping the as-

sumption that each component of θ is independently sampled from some distribution, a

useful distribution to use is the asymmetric Gaussian:

Pr(x) =


c exp(−x2/2σ2

+) for x ≥ 0

c exp(−x2/2σ2
−) for x ≤ 0

(7.5)

where c is the normalizing factor 2/(
√

2πσ2
++
√

2πσ2
−). This density function is continuous

and differentiable at 0.

If one believes that ti is the kind of feature that might seriously help, but is unlikely

to seriously harm, the probability of the arcs on which it appears, then one can give θi an

asymmetric Gaussian prior with σ2
+ > σ2

−.

7.3.3 Variation: Exponential Priors and Zipf’s Law

A further change to the prior is also worth considering. Our univariate Gaussian density

in x is obtained by exponentiating a quadratic in x (i.e., eax
2+bx+c, a < 0). The variations

expect the weight θi to be close to 0 even if σ2 would allow it to be far away.) So let us sample both

distributions independently and require the samples to agree on θi: Pr(Θi = θi)
def
= Pr(X = Y = θi |

X = Y ) where X ∼ N(0, σ2
1) and Y ∼ N(0, σ2

2). The density of Θi is then the normalized pointwise
product of the two normal densities. However, it seems preferable to correct for the number of classes
(two in this case) by taking the normalized pointwise geometric mean (rather than product). Then Θi ∼
N(0,harmmean(σ2

1 , σ
2
2)), as is easy to show. Note that the harmonic mean of k positive numbers lies

between their minimum and k times their minimum—regardless of their maximum—so smaller variances
can mostly overrule larger ones as hinted above.
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above stayed within this framework, but we now consider exponentiating other powers of

x.

7.3.3.1 Zipf’s Law Exactly

The motivation comes from Zipf’s Law. As in §3.8.8, consider the canonical situation

where each of k competing arcs has a single feature and all k features are distinct. When

the feature weights are IID normal (equation (3.21)), the resulting arc probabilities are a

priori distributed log-normally about their geometric mean. But suppose the competing

arcs are being used (for example) to choose a word at random. (This is true of the arcs from

Start in §6.4.2.) Then a priori we would expect the arcs’ probabilities to fall according

to a power law—since in practice the distribution of words in a language, like many other

naturally occurring distributions, has this form (Zipf, 1932; Zipf, 1949). For example, the

tails of the distribution should be longer than predicted by equation (3.21).

This could be arranged with a different prior on θ. Replace equation (3.21) with

Θ ∼ E(λ)× E(λ)× · · · × E(λ)︸ ︷︷ ︸
k

(7.6)

so that the weights are independently exponentially distributed instead of independently

normally distributed. That is, for θ ∈ Rk≥0,

Pr(θ) = λk exp(−λ
k∑
i=1

θi) (7.7)

Then a sample distribution over k competing arcs (for large k) will follow a power law

with exponent −1/λ: i.e., the ith most probable arc will have probability proportional to

i−1/λ.16 To match the empirical distribution of word frequencies (Zipf, 1932; Zipf, 1949),

we would want to put λ ≈ 1.

Notice that we are modeling the Zipf distribution as a double sample. The first chooses
16Proof: Given an arc whose weight is θj . What is its expected rank i? That is, on average, how

many of the k weights will be ≥ θj? Integrating equation (7.7), we obtain i = k · exp(−λθj). Then
i−1/λ = k−1/λ · exp θj , which is indeed proportional to the arc’s probability. It is easy to confirm this by
generating such a sample distribution, say over k = 10000 arcs, and plotting the log-samples as a function
of their log-ranks. The plot will be a straight line with slope −1/λ, indicating a power law.
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a language (really a weighted vocabulary), by sampling feature weights θ1, . . . θk indepen-

dently from the prior (7.6), yielding a probability distribution over the k arcs, or equiv-

alently k word types. The second chooses a corpus in that language, by sampling that

probability distribution to obtain a number of word tokens. If both samples are large,

then the corpus will look Zipfian.

This is not to claim that a competition among word types with independently chosen

weights, most of them low, is necessarily the cause of Zipf’s Law. (Many other explanations

have been proposed, some of them (Li, 1992) even simpler.) But since our model assumes

some sort of competition among word types, the prior of equation (7.6) would be at least

a convenient way of favoring languages that agree with Zipf’s Law.

The choice among word types is, of course, only one instance of a competition among

arcs in our model. It is particularly simple because each arc has a single unique feature.

It remains to be seen whether the exponential prior (7.6) is also useful for modeling other

sets of competing arcs. Notice that if the set of competing arcs from a lexical entry tended

to follow Zipf’s Law directly, this would mean that one or a few transformations (perhaps

including Halt) would have good probabilities of applying to that entry, with most of the

rest having negligible probabilities.

7.3.3.2 Allowing Negative Weights

The main objection to the exponential prior of equation (7.6) is that it disallows negative

weights, assigning them a probability of zero. Negative weights are not always as useful as

positive ones (§7.3.2.3), but they remain useful, since some features may indicate that a

transformational arc is less probable than its other features might suggest. Can we modify

the prior to allow negative weights?

One solution is to replace equation (7.7) with the symmetric version

Pr(θ) =
1
2
λk exp(−λ

k∑
i=1

|θi|) (7.8)

so that the weights 3 and -3 are equally likely.17 In our simple case where each competing

arc has a single, unique weight, the resulting distribution is hard to distinguish in practice
17One could however reduce the probability of the negative weights along the lines of §7.3.2.3.
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from the Zipfian one, because it simply extends the tail with additional word types that

are so rare as to be almost unmeasurable.18

Like the Gaussian prior of §3.8.8, either of these new priors—equation (7.7) or equa-

tion (7.8)—assigns a higher probability to a weight vector θ if the weights in the vector

are close together. Given θ, recall that θ− d for any d ∈ R will yield the same probability

distribution over competing arcs, but that the prior prefers some d values to others. If

we maximize over d, the prior probability falls off exponentially with the total absolute

distance of the weights θ from their minimum (i.e.,
∑

i(θi −min(θ)) in equation (7.7)) or

from their median (i.e.,
∑

i |θi − median(θ)| in equation (7.8)). Integrating over d gives

similar results.19

7.3.3.3 Differentiability and Curved Power-Law Distributions

Since equation (7.8) is not differentiable at zero, making it harder to maximize the posterior

distribution of equation (3.4), one might prefer to substitute

Pr(θ) =
1
Z

exp(−λ
k∑
i=1

|θi|α/α) (choosing Z for normalization) (7.9)

for α slightly above 1. This density is everywhere singly differentiable if α 6= 1.

Notice that the new density “interpolates” between equation (7.8) (α = 1) and our

original Gaussian prior (α = 2). Increasing α towards 2 also has an empirical benefit:

it captures the slight downward curvature that is characteristic of many Zipf distribu-

tions in nature. Fig. 7.1 shows how this slight curvature in the Brown corpus can be

matched by using α = 1.323. (Other methods of modeling this curvature are discussed by

Montemurro (2001).)
18Not only are the individual word types that correspond to negative weights rare, but even their aggregate

effect is hard to discern in practice. Yes, other things equal, the proportion of word types that appear only
once is predicted to be slightly greater under equation (7.8) than under equation (7.7). But it takes
a very large corpus to see that effect. When we generated many corpora experimentally according to
equations (7.7) and (7.8)—even “large” corpora that contained as many as 105 or 106 word tokens of
only 104 word types—the proportion of singletons was indeed slightly higher in the average vocabulary
from equation (7.8), but this difference paled next to the variation among corpora generated by the same
technique. (In any case other things are not equal: one can fit empirical distributions quite well by freely
varying λ, k, and α in equation (7.8) or equation (7.9). See Fig. 7.1.)

19Integrating the exponential density simply scales it, giving Pr(θ − min(θ))/λk. Integrating the sym-
metric version gives

∑k
i=1 Pr(θ − θi)(( 1

λ(k−2i+2)
or θi) − ( 1

λ(k−2i)
or θi)), where “x or y” denotes x if it is

defined and y otherwise. This still requires clustering about the median, but penalizes outliers slightly
more.
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Figure 7.1: (a) Frequency counts of the 53849 word types in the Brown corpus, plotted
on a log-log scale against their rank. The data approximately follow a power law with
exponent -1.29 (the steeper regression line), but for the 1000 most common words, the
exponent is more like -1.04 (the shallower line). (b) A very similar artificial “corpus”
can be generated from equation (7.9) (k = 1110384 types, most of which never appear;
α = 1.323; λ = 0.405). The background lines and curve are copied from graph (a).

7.3.4 Variation: Transformational Lookahead

Recall the interpretation of transformation models as stochastic transformational processes

§3.3.2. At each stage, the process stochastically chooses a new transformation to apply to

the current event, or else chooses to halt and output the current event.

One might wish to equip this process with some sort of lookahead. For example,

suppose we abandoned the coaccessibility property (§3.2). Then an arc from e to e′ might

have features with strongly positive weights, yet be a “poor route” because there is no

path to get from e′ to Halt. Then one might like the process to avoid transforming e to

e′ despite the high weights. This requires lookahead.

More subtly, even if there is a path from e′ to Halt, it may still happen that (for

given parameters) there is no “good” path from e′ to Halt. For example, perhaps all the

arcs leaving e′ describe “poor” transformations in the sense that they have low G-values

(§3.2.2).

Our original definition of transformation models simply normalizes those G-values to
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Pθ probabilities that sum to 1. That is, the random walk is required to leave e′ somehow,

so it is only concerned with the relative values of the arcs from e′, not their absolute

values. But as an alternative, we might want to capture the latter notion. We might want

to recognize that there is no way or no “good” way to leave e′, or to get from e′ to Halt,

and have this affect the chance that the process will choose a path leading to e′ in the first

place.

We now consider three approaches to lookahead, focusing primarily on the case of finite

transformation graphs. Estimation procedures will be given in §8.4, especially §8.4.1.

7.3.4.1 Renormalizing Prθ

First we consider a simple renormalization that does not avoid “poor” random walks,

except to ensure that the random walk does get to Halt by some route.

As noted above and in §3.3.1, our original definition of Prθ might yield a deficient

probability distribution,20 at least on an infinite transformation graph, because the prob-

ability may be < 1 that the random walk halts at all. This probability of halting is

conveniently given by the flow (expected number of visits) to Halt: Iθ(Halt).

Usually deficiency is not a problem. We are guaranteed that (∀θ)Iθ(Halt) = 1 for

many transformation graphs, such as finite graphs with our usual coaccessibility property

(§3.2.1). Even if not, we may still be willing to fit a deficient distribution to the evidence.

(We will tend to choose θ so that Iθ(Halt) ≈ 1 anyway, since the likelihood of the data

tends to be higher when Prθ is not very deficient.)

But in general, one can simply normalize the probability model, redefining Prθ(e) as

the probability that the random walk halts at e given that it halts at all. This means

dividing the right-hand side of equation (3.20) by Iθ(Halt):

Prθ(e) =
∑

A=〈e,Halt,F 〉∈Arcs

Īθ(A) (7.10)

= Īθ(e) ·
∑

A=〈e,Halt,F 〉∈Arcs

Pθ(A) (7.11)

20That is,
∑
e∈Events Prθ(e) < 1.
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where we define the normalized flows Īθ via

Īθ(e)
def= Iθ(e)/Iθ(Halt) (7.12)

Īθ(A) def= Iθ(A)/Iθ(Halt) (7.13)

An interpretation of the normalized model is that when a random walk turns out to

take infinite time, we throw it away and try another random walk, repeating until we

finally get one that halts. The normalized flow Īθ(e) can then be regarded as the expected

number of visits to e in the random walk that we actually keep.

The notion of normalized flow will also come in handy in the lookahead models below.

7.3.4.2 Late Normalization

We now consider the more general problem of using lookahead to avoid “poor” transfor-

mations (not merely dead-ends).

One technique is to normalize G-values over competing paths rather than competing

arcs. In §3.2.2, we normalized the value Gθ(A) to a probability Pθ(A), and then extended

Pθ(A) over paths ~A:

Pθ(A) def= Gθ(A)/
∑

A′∈competitors(A)

Gθ(A′) (7.14)

Pθ( ~A) def=
n+1∏
i=1

Pθ(Ai) (7.15)

But an alternative way to define the path probability function Pθ is to extend the definition

of G-value over paths first, and then normalize:

Gθ( ~A) def=
n+1∏
i=1

Gθ(Ai) (= exp(
∑

all weights along path ~A)) (7.16)

Pθ( ~A) def= Gθ( ~A)/
∑

~A′∈{paths from Start to Halt}

Gθ( ~A′) (7.17)

Now there is no notion of arc probabilities, but only of path probabilities. A path is

likely to the extent that strongly positive features anywhere along it outweigh strongly

negative features anywhere along it. In short, we have a single log-linear model over the

infinite set of paths, rather than a combination of separate log-linear models over finite
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sets of competing arcs. The same idea was independently proposed by (Lafferty et al.,

2001) for parameterizing path probabilities in finite-state machines.

Indeed, we can regard the model as a kind of maximum-entropy model over the

set Events. Like any maximum-entropy model, it must define the pertinent features of

each event. The twist here is that the features of an event are primarily features of its

“pedigree”—the path that derived the event. If an event has multiple pedigrees, each

yields a different probability under the model, and these probabilities are summed.

In the case where Events is finite, the normalization over all paths from Start to

Halt is straightforward to carry out. Redefine the flow Iθ(e) by replacing Pθ(A) ∈ (0, 1]

with Gθ(A) ∈ (0,∞) in the recurrence relation of equation (3.18). We can still solve

simultaneously for all the Iθ(e) values by matrix inversion. Now observe that the redefined

flow Iθ(e) is the total G-value of all paths from Start to e. In particular, Iθ(Halt) is the

desired denominator of equation (7.17).

As usual, Prθ(e) is defined as the probability of choosing a path from Start to e and

then halting immediately (equation (3.17)). By the properties of Iθ(e) and Iθ(Halt) just

mentioned,

Prθ(e) =
Iθ(e) ·

∑
A=〈e,Halt,F 〉∈Arcs Gθ(A)

Iθ(Halt)
(7.18)

= Īθ(e) ·
∑

A=〈e,Halt,F 〉∈Arcs

Gθ(A) (7.19)

where Īθ(e) denotes the normalized flow through e as in equation (7.12). Note that this

definition of Prθ is properly normalized so cannot be deficient.

The redefined Iθ(e) values are conceptually infinite sums. These sums will diverge

(leading to negative solutions of the recurrence relation) if the transformation graph in-

cludes any cycles ~A of non-negative total weight, i.e., Gθ( ~A) ≥ exp(0) = 1. Values of θ

that make Iθ (hence Prθ) diverge in this way should be regarded as assigning likelihood 0

to the observed evidence.21

The above discussion considers only finite event sets. If Events is infinite, we are left

with methods for approximating Prθ(e) (e.g., relaxation). However, those methods can
21Many values of θ do allow Iθ to converge. For example, if all feature weights θi < 0, then G-values are

in (0, 1).
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still be used under the “lookahead” definition of Prθ (see §8.4.1).

7.3.4.3 Transformational Circuit Models

There is another, more elegant way to redefine transformation models so as to “allow looka-

head.” This approach is inspired by electrical circuits, which have the desired property: if

a node has only high-resistance paths to ground (cf. poor paths to Halt), then less current

will flow to that node.22

In a transformational circuit model, the transformation graph is undirected: that

is, all transformations are reversible. The weighted features on an undirected transfor-

mation arc are used to define its conductance (i.e., 1/resistance). Electricity flows from

Start (a positive battery terminal) through the transformation graph to Halt (the neg-

ative battery terminal). The probability Prθ(e) is defined to be the proportion of the

current flowing into Halt that flows there directly from e.

Formally, a transformational circuit model has exactly the same form as an ordinary

transformation model—it is a tuple 〈Events,Start,Halt,Features,Arcs〉— except that

the arcs are undirected: they have the form 〈{e, e′}, F 〉 rather than 〈e, e′, F 〉, for e ∈

Start, e′ ∈ Start ∪ {Halt}. We also replace the coaccessibility condition of §3.2.1 with

the weaker condition that there must be a path from Start to Halt.

Given a parameter vector θ that assigns weights to the features in Features, we define

Gθ : Arcs → R
+ exactly as before. Gθ(A) > 0 is now called the conductance of the arc

A. For convenience, in case the transformation graph is a multigraph, we also define the

total conductance between nodes e and e′:23

Gθ(e, e′)
def= Gθ(e′, e)

def=
∑

A=〈{e,e′},F 〉∈Arcs

Gθ(A) ≥ 0 (7.20)

Notice that if there are no arcs between e and e′, then Gθ(e, e′) = 0.
22Other kinds of network flow (liquid, traffic) behave similarly, but not identically: the edges of such

networks are usually labeled with capacity (i.e., maximum flow) rather than with resistance to flow. As-
suming that we identify the flow along an arc with its probability, it is not clear that this would be a good
model of transformational processes.

23This will let us define the total current between nodes e and e′ without having to define the current
separately on each arc from e to e′. Such a definition would be conceptually just as straightforward, but
would require slightly awkward notation to indicate the direction of current flow.
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The flow of current through the graph is defined by Ohm’s Law and Kirchoff’s Current

Law. For each e ∈ Events ∪ {Halt}, let Vθ(e) ∈ [0, 1] be a variable called the potential

at e. Also, for each pair e, e′, let Iθ(e, e′) ∈ R be a variable called the current from e to

e′. If this value is negative, it denotes current flowing in the opposite direction.

The non-negative quantity max(Iθ(e, e′), 0) is analogous to the flow from e to e′, also

denoted by Iθ, that we computed in the original definition of transformation models (equa-

tion (3.18)).

Ohm’s Law (∆V = I · R, where R is resistance) defines the currents if the potentials

are known. We rewrite it as I = ∆V ·G where G = 1/R is the conductance:

Iθ(e, e′)
def= (Vθ(e)− Vθ(e′)) ·Gθ(e, e′) (7.21)

Notice that Iθ(e, e′) = −Iθ(e′, e).24

Kirchoff’s Current Law says that for all nodes e besides the source and sink, the net

current flow from e is 0, i.e., the inflow balances the outflow:

(∀e 6∈ {Start,Halt}) 0 =
∑
e′

Iθ(e, e′) (7.22)

Combining these, we obtain the system of simultaneous linear equations

(∀e 6∈ {Start,Halt}) 0 =
∑
e′

(Vθ(e)− Vθ(e′)) ·Gθ(e, e′) (7.23)

At least in the case where Events is finite, we may use standard matrix methods to

solve this linear system (see footnote 12 on p. 261). There is one variable Vθ(e) for every

node e in the transformation graph, and one equation for every node except the source

and sink nodes. To get a single solution to the system, we add two equations that assign

arbitrary potentials to those nodes (simulating a 1-volt battery):

Vθ(Start) = 1 (7.24)

Vθ(Halt) = 0 (7.25)

It follows that Vθ(e) ∈ [0, 1] for all e.
24Moreover, the current Iθ(e, e) around a self-loop is 0. This makes self-loops irrelevant in a transforma-

tional circuit model; they may be pruned.
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Finally, having solved for the potentials Vθ, we obtain the currents Iθ by equation (7.21),

and then define

Prθ(e)
def=

Iθ(e,Halt)∑
e′ Iθ(e′,Halt)

(7.26)

=
Vθ(e) ·Gθ(e,Halt)∑
e′ Vθ(e′) ·Gθ(e′,Halt)

(7.27)

Is there a probabilistic interpretation of the transformational circuit model? Yes.25 It

corresponds to exactly the same kind of Markovian random walk as the original model

(see §3.3.1). The only difference is in the more complicated way that the probabilities are

determined from the feature weights.

• In the original model, a random walk at node e chooses its next step from among

the directed arcs leaving e. The probability of an arc A is proportionate to Gθ(A).

• In the circuit model, a random walk at node e chooses its next step from among the

undirected arcs that are incident on e. The probability of an arc A is proportionate

to max(Iθ(A), 0)—where Iθ(A) is determined by solving a system of equations.

To put this another way, suppose we orient all the arcs in the direction of positive

current flow.26 The random walk then chooses its next step from among the directed

arcs leaving e, and the probability of an arc A is proportionate to Iθ(A).

In fact, the analogy to the original model may be made sharper. Let us define the total

flow into node e (which equals the flow out of node e unless e ∈ {Start,Halt}):

Iθ(e) =
∑
e′

max(Iθ(e′, e), 0) (7.28)

Now we can define the normalized flow as in equation (7.12):

Īθ(e)
def= Iθ(e)/Iθ(Halt) (7.29)

Īθ(e, e′)
def= Iθ(e, e′)/Iθ(Halt) (7.30)

Just as in the normalized version of the original model (§7.3.4.1), these Īθ values denote

the expected number of times that the random walk passes through e or from e to e′. And
25Which suggests that there will also be an EM algorithm for maximizing its parameters, although this

is left to future work.
26Arcs with zero current may be oriented arbitrarily, or eliminated.
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just as in the original model, the random-walk transition probabilities may be computed

as

Pθ(e, e′) = Īθ(e, e′)/Īθ(e) (7.31)

Also, we may rewrite equation (7.26) analogously to equation (7.10):

Prθ(e)
def= Īθ(e,Halt) (7.32)

Of these quantities, only Pθ(e, e′) is simpler to compute under the original model: under

the circuit model it is essentially an output, not an input, of the matrix inversion that

computes Iθ.

A pleasant property of a transformational circuit model is that it has zero probability

of going around a transformational cycle (of any length). This is essentially Kirchoff’s

Cycle Law. In our formulation, it holds because Ohm’s Law (equation (7.21)) guarantees

that positive current flows in the direction of decreasing potential. So if we orient the

edges in the direction of positive current flow, there are no directed cycles for the random

walk to traverse.

7.3.4.4 Relationship Among the Lookahead Models

It is important to recognize that in all three approaches to lookahead considered above,

solving for Prθ requires the same amount of effort. In each approach, the main task is to

invert a single matrix whose size and sparsity are dictated by the transformation graph.

We have already discussed the relationship between the first and third approaches. The

second and third are also similar. In late normalization (§7.3.4.2), G-values are “unnormal-

ized probabilities” in R+, which sum in parallel and multiply in series. In transformational

circuits (§7.3.4.3), G-values are conductances in R+, which sum in parallel and add har-

monically in series.27 In either model, we use these facts to effectively collapse all paths

of the form Start, . . . e,Halt into a single composite arc Ae from Start to Halt, and
27The harmonic sum of x, y ∈ R+ is defined to be 1/(1/x + 1/y). Note that this is less than min(x, y);

so is the product of x and y if they are restricted to (0, 1), as recommended in §7.3.4.2. These properties
ensure that in either model, the G-value of a path decreases with the length of the path, which keeps
unbounded-length paths from having unbounded G-values and hence stealing all the probability.
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to determine this arc’s G-value, Gθ(Ae).28 Both models end with a normalization step in

which Prθ(e) is defined to be proportional to Gθ(Ae).

28Simply knowing how circuits combine in series or in parallel is not enough to do this collapsing, however.
There are circuits such as K4 (the complete graph on 4 vertices) that cannot be simplified just by merging
parallel or series arcs. That is why it is necessary to solve a recurrence relation for either model.
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Chapter 8

Additional Algorithms

This chapter resumes the exploration of algorithms for transformation models. It focuses

on a few key questions:

• Do transformation models admit exact algorithms to replace the approximation al-

gorithms of Chapter 4? (Yes.)

• Do they admit EM algorithms to replace the gradient computation of Chapter 4?

(Yes, both exact and approximate ones.)

• How in general might one approach renormalizing the computed distribution ~p—

either to use a variant model that requires a normalization step (§7.3.4.1), or else to

salvage probability lost during the approximation?

The chapter then treats two more topics:

• A pedagogically simpler alternative to relaxation, called propagation. Propagation

may be regarded as a parallel version of relaxation. It admits relaxation as a special

case although the presentation of relaxation in §4.2 is more direct.

• Some details of how to use the template approach beyond the rather narrow presen-

tation in §4.5.3.
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8.1 Exact Algorithms by Solution of Sparse Linear Systems

The approximate relaxation approach of §4.2 is not the only way to solve a transformation

model or compute its gradient. It is possible to compute the objective function f and its

gradient exactly. The results could be passed to any general-purpose numerical optimizer.

Below we see how to compute them as efficiently as possible.

This parameter estimation strategy is practical (on a single processor) only for models of

moderate size. A large and dense transformation graph makes it slow to solve equation (4.4)

as required, and a large feature set implies a large parameter space to search.

8.1.1 Model Solution

§4.1.3 actually already gave an exact algorithm for solving for ~p (in the service of defining

the objective function f̃). The only trouble was that it involved inversion of a matrix

(equation (4.5) on p. 117). This is quite slow. And since the inverse of a sparse matrix

need not be sparse, general inversion methods do not save time or space on an arbitrary

sparse input.

Press et al. (1992) discuss exact O(n3)-time techniques for inverting matrices and solv-

ing linear systems, such as Gaussian elimination, LU decomposition, and QR decomposi-

tion.

Fortunately, it is not actually necessary to invert the matrix. Equation (4.5) has the

form ~x = ~bA−1. This equation is equivalent to ~xA = ~b, which—for a single~b—can be solved

for ~x without computing A−1. The usual iterative solvers such as biconjugate gradient or

GMRES (Greenbaum, 1997; Press et al., 1992) are suitable:

• They multiply A or AT by O(n) different vectors for a total time of O(n|A|), giving

a proportional speedup over O(n3) to the extent that A is sparse.

(|A| denotes the number of non-zero entries in A. In our application, A = 1 − Pθ
where 1 denotes the identity matrix; so it is almost exactly as sparse as Pθ. Using

standard sparse matrix methods, one can multiply A by any vector in time O(|A|).)

• They require only O(n) space rather than O(n2) or even O(|A|). (One might think

that storing the transformation graph would require the larger amount of space
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anyway, but as §§4.1.1–4.1.2 noted, often the arcs of the transformation graph need

not be stored but rather can be created on demand according to the model structure.)

• Since they converge iteratively on the solution ~x (in the course of n iterations), they

can be stopped early when some convergence criterion is met, yielding an approximate

solution.

8.1.2 Computing the Gradient of the Exact Objective

We have now seen how to compute the exact objective function f . Its gradient ∇f is also

straightforward to find.

Fix h ∈ [1, k]. We wish to compute f ′(θ) def= df(θ)/dθh (the hth component of the

gradient). Differentiating the matrix equations from §§4.1.2–4.1.4, and rearranging each

one a bit to make use of quantities already computed, we obtain

(P ′θ)ij = (Pθ)ij · (F hij −
∑
j′

(Pθ)ij′F hij′) (8.1)

~I ′θ = (~Iθ · P ′θ) · (1− Pθ)−1 (8.2)

~p′θ = ~I ′θ � (Pθ)·0 + ~Iθ � (P ′θ)·0 (8.3)

f ′(θ) = −θh/σ2 +
n∑
i=1

si
(p′θ)i
(pθ)i

(8.4)

As in §8.1.1, equation (8.2) can be solved either by matrix inversion or with an iterative

solver. It must be solved k times, once with respect to each feature weight θh. This means

that it may be worth doing extra work to decompose, precondition, or actually invert 1−Pθ.

The extra work will be amortized over all the features (not to mention the computation of

f in equation (4.5)). This makes it worthwhile if there are many features, or if the amount

of extra work is small (e.g., for a dense matrix).

A small rearrangement is helpful by analogy to the rearrangement in §4.3.5. In equa-

tion (8.1), the summation is independent of j and so can be reused for different values of

j. This helps us avoid an explicit computation of P ′θ, which is not usually sparse1 but is

“almost sparse” in that each row contains many identical negative values. We can write
1Intuitively, why not? If th appears on any arc from i, then raising θh will affect the probabilities of all

arcs from i. So row i of the derivative matrix P ′θ is non-zero.
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(still for fixed h, and θ also fixed)

Rij
def= (Pθ)ij · F hij (still a sparse matrix) (8.5)

ri
def=

∑
j

Rij (expected occurrences of th on a random arc from i) (8.6)

P ′θ = R− diag(~r) · Pθ (8.7)

and therefore replace the subexpressions using P ′θ with sparser, more efficient subexpres-

sions using Pθ, R, and r:

~Iθ · P ′θ = ~Iθ ·R− ~Iθ · diag(~r) · Pθ (in equation (8.2)) (8.8)

= ~Iθ ·R− (~Iθ � ~r) · Pθ (8.9)

(P ′θ)·0 = R·0 − ~r � (Pθ)·0 (in equation (8.3)) (8.10)

This speeds up the computation of f ′(θ) and hence of ∇f .

8.2 An Exact Expectation-Maximization Algorithm

Since the objective function f(θ) (equation (4.8)) is (proportional to the log of) a pos-

terior probability distribution, another way to find a local maximum is the Expectation-

Maximization or EM algorithm (Dempster et al., 1977). Jamshidian and Jennrich (1993)

show that EM is approximately a gradient ascent algorithm that does not have to compute

the gradient.

For our problem, the EM setup is as follows:

parameters The weight vector θ.

observed data The observed sample of events ~s (where as before si denotes the number

of observations of event i).

hidden data For each observed event e, the random walk 〈Start, . . . , e,Halt〉 that gen-

erated it.2

2More precisely, we are interested in the path (list of arcs) traversed by the random walk. But in the
case of a graph rather than a multigraph, this can be reconstructed from the walk (list of vertices).
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Like most optimization algorithms, EM begins with a guess for θ. The expectation

step (E step) computes the posterior distribution P̃ over the hidden data. Then the max-

imization step (M step) reestimates θ based on this distribution (or a sufficient statistic)

together with the observed data and the prior. Specifically, it chooses θ to maximize the

expected log-joint-probability if the hidden data are generated from P̃ : namely,

EP̃ [ln(Pr(θ) · Pr(hidden, observed | θ))] (8.11)

The E and M steps are repeated indefinitely to continue improving the estimate of θ.3

We now develop the E and M steps for transformation models.

8.2.1 The Maximization Step

The maximization step will depend on existing methods for fitting log-linear models (also

known as maximum-entropy models or Gibbs distributions) to data. We quickly review

what such methods do, then see how they help us.

As §3.2.2 remarked, a transformation model makes use of a conditional log-linear model

of arc probabilities. The events of this subsidiary model are the arcs of the transformation

graph. For each arc ij (where i and j are event numbers as in §4.1), the parameter vector

θ and equation (4.2) give us the conditional probability of ij given i, denoted (Pθ)ij .

Suppose we have actually observed a collection of arcs (the hidden data). The Improved

Iterative Scaling (IIS) algorithm of (Pietra et al., 1997; Berger et al., 1996; Berger, 1997)

would let us fit a conditional log-linear model to the collection. The algorithm chooses θ

that globally maximizes the log-conditional-likelihood of the collection,

∑
ij

#(ij) ln(Pθ)ij (8.12)

where #(ij) is the number of observations of ij in the collection.4

3This formulation of EM serves to maximize Pr(observed | θ) · Pr(θ), which is what we want. More
commonly EM is presented as a scheme for maximizing just Pr(observed | θ), in which case the factor Pr(θ)
is left out of equation (8.11) as well.

4The term “conditional likelihood” (§3.1.5) is properly used in place of “likelihood” because (Pθ)ij is not
the probability of arc ij, but rather the probability of ij conditioned on i. While IIS famously maximizes
this value, it is usual to formulate it as the equivalent problem of maximizing the quantity

∑
ij p̃(ij) ln(Pθ)ij

where p̃ is the observed probability of ij in the collection rather than its count in the collection. This simply
divides through by the collection size. We cannot do this division (yet) because (a) the collection size is
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Even better, Chen and Rosenfeld (1999), developing an idea of John Lafferty’s, extend

IIS to incorporate our Gaussian prior on θ (§3.5). Their version of IIS maximizes the

log-posterior conditional probability of θ,

ln Prprior(θ) +
∑
ij

#(ij) ln(Pθ)ij (8.13)

= −
k∑

h=1

θ2
h/2σ

2 +
∑
ij

#(ij) ln(Pθ)ij (8.14)

We can use Chen and Rosenfeld’s method for our EM maximization step. In this case,

the collection of arcs is hidden (even its size is unknown). But the expectation step has

already provided a distribution P̃ over possible collections, and the maximization step

requires us to choose θ maximizing

EP̃ [ln Prprior(θ) +
∑
ij

#(ij) ln(Pθ)ij ] (8.15)

= ln Prprior(θ) +
∑
ij

EP̃ [#(ij)]︸ ︷︷ ︸
called Nij

ln(Pθ)ij (8.16)

Since Nij
def= EP̃ [#(ij)] is just a non-negative real number, the problem has the same form

as the one treated by Chen and Rosenfeld, and their modified IIS algorithm applies.

8.2.2 Details of the Maximization Step

Let us now spell out the details. The IIS algorithm requires us first to compute, for

each feature th, the “observed” feature count
∑

ij NijF
h
ij . (The shudder quotes around

“observed” are because we are using IIS as a step in EM, so that for us the arc and feature

counts are inferred, not observed.) This is easy once we have obtained Nij as described in

the next section.

Then as IIS iteratively improves θ, we must repeatedly compute, for each feature th,

the predicted feature count
∑

ij(Ni(Pθ)ij)F hij . This is the predicted count given both the

new value of θ, which changes from iteration to iteration, and the “observed” vertex counts

not a harmless constant in our case but is itself a hidden variable, and (b) we are about to add a prior term
that will need to be divided as well. (If we scaled the likelihood to sample size 1 before adding a prior,
large samples would have no more ability than small ones to overcome the prior!)
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Ni
def=
∑

j Nij , which stay the same.5 The predicted feature counts are straightforward to

compute, but require O(|F |) time per iteration of IIS, where |F | denotes the total size of

the model.

If different arcs can have different numbers of features, things are slightly more compli-

cated. For each th and each integer r ∈ [1,maximum number of features per arc], we must

accumulate the rth predicted feature count of th, defined by
∑

ij having r features(Ni(Pθ)ij)F hij .

All these counts can still be computed in total time O(|F |).

IIS tries to modify θ so that the predicted feature counts match the “observed” ones.

Each iteration of IIS simply computes the predicted feature counts given the current θ,

and then increases each θh by the δh that solves the equation6

(“observed” count of th) =
θh + δh
σ2

+
∑
r

(rth predicted count of th) · exp(rδh) (8.17)

Solving this equation is simple because it is equivalent to finding the root of a monotonically

increasing function of δh.7

Notice the effect of the Gaussian prior: it acts to push θh back toward zero, the Gaussian

mean. For example, suppose that IIS has converged, so that equation (8.17) holds for

δh = 0. If we now strengthen the prior by decreasing σ2, then to bring equation (8.17)

back to equality, we must make δh negative if θh is positive, or vice-versa, ensuring that

on the next update θh will be pushed toward zero.

It is evident from Chen and Rosenfeld’s derivation that their technique can actually be

applied with any convex prior, including the alternatives considered in §7.3. Simply modify

equation (8.17) by replacing (θi + δi)/σ2 with − ∂
∂δi

(ln Prprior(θi + δi)− ln Prprior(θi)).

Since equation (8.16) (with any convex prior) is a convex function in θ, there are many

other methods besides IIS that will easily maximize it. One could use hill-climbing methods
5The counts Ni are used because the conditional log-linear model of arc probabilities is conditioned on

the originating vertex i. That is, in equation (8.16), (Pθ)ij is the probability of arc ij given vertex i.
6The usual formulation divides the equation through by N

def
=
∑
ij Nij , so that the counts are replaced

by conditional probabilities. (See footnote 4.) Interestingly, Chen & Rosenfeld neglect to divide the prior
by N , so their choice of σ2 is specific to a sample size.

7Solving the equations usually takes insignificant time even with a naive method like interval bisection;
what is slow is computing the predicted counts. But since the function is locally exponential (it is a sum
of an affine function and several exponentials, one of which dominates locally), a nice choice is Ridder’s
method (Press et al., 1992), which does repeated exponential interpolation (and converges in one step
for a function of the form exponential × affine). Like Newton-Raphson, Ridder’s method has superlinear
convergence.
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such as conjugate gradient, or a combination of such methods with IIS (Lau et al., 1993).

8.2.3 The Expectation Step

Now for the expectation step. In principle, this step produces a distribution P̃ over as-

signments of paths to the observations. However, we have just seen that the maximiza-

tion step requires only a sufficient statistic from this distribution: the expected count

Nij
def= EP̃ [#(ij)] of each arc ij. So we only need to compute these expected counts.

When we run the expectation step, θ is fixed. Suppose we observe an event m. How

many times do we expect to have traversed ij in the path that generated m?

To answer this, consider the set Wm of all random walks that could have resulted in

m. These are walks of the form W = 〈1, . . . ,m, 0〉 (recall that 1 = Start and 0 = Halt).

Their total probability
∑

W∈Wm
Pr(W ) equals (pθ)m by definition. Given that we observed

m, the posterior probability that we took each W is Pr(W )/(pθ)m, so the expected number

of times that we traversed ij is

∑
W∈Wm

Pr(W )
(pθ)m

· (occurrences in W of arc ij) (8.18)

Suppose for a moment that we have computed the inverted matrix discussed in the

previous sections,

Q
def= A−1 = (1− Pθ)−1 (8.19)

= 1 + Pθ + P 2
θ + P 3

θ + · · · , (8.20)

Then we could efficiently find the (possibly infinite) sum over paths W . The key is that

since Pθ is a matrix of transition probabilities, Qrs is the total probability of all paths from

r to s. (For example, we have already seen that the flow (Iθ)s is Q1s.) This total may

exceed 1 since the paths are not mutually exclusive: some are prefixes of others.

The total probability of all paths of the form 〈1, . . . i, j, . . . ,m, 0〉 is

Q1i · (Pθ)ij ·Qjm · (Pθ)m0 (8.21)

This total may also exceed 1. This is not because the paths are prefixes of one another:

they cannot be, since all of them end with 0 but none of them can pass through 0. Rather, it
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is because we are multiply counting a path that traverses ij multiple times and so matches

the template 〈1, . . . i, j, . . . ,m, 0〉 in multiple ways. This is what we want. It means that

the above expression computes
∑

W∈Wm
Pr(W )(occurrences in W of arc ij). Dividing by

(pθ)m obtains the expected number of traversals given m, as required by equation (8.18).

The above discussion considered a single observation of m. We now sum over all

observations of all events to obtain our desired Nij . Recall that sm denotes the number of

observations of m.

Nij
def= expected traversals of ij given that we observed ~s (8.22)

=
∑
m

sm · expected traversals of ij given that we observed m(8.23)

=
∑
m

sm ·
Q1i · (Pθ)ij ·Qjm · (Pθ)m0

Q1m · (Pθ)m0
(8.24)

= Q1i · (Pθ)ij ·
∑
m

Qjm
sm
Q1m

(8.25)

= (Iθ)i · (Pθ)ij · (Q · ~̂s)j where ŝm
def=

sm
Q1m

=
sm

(Iθ)m
(8.26)

equivalently, N = diag(~Iθ) · Pθ · diag(Q · ~̂s) (8.27)

exception: Ni0 = si (obvious) (8.28)

(The exception arises because if j = 0, then we cannot write the paths of interest in the

form 〈1, . . . i, j, . . . ,m, 0〉 as assumed: the ij arc is the same as the m0 arc.)

We now see that, once again, we can avoid the computation and storage of the inverted

matrix Q = (1−Pθ)−1. Equation (8.26) does not use all of Q, but only the column vector

Q ·~̂s. This can be found by solving the single equation (1−Pθ) ·~x = ~̂s for x, as usual using

a sparse matrix solver (see §8.1.1). This is more efficient than matrix inversion, provided

that the transformation graph (and hence Pθ) is indeed sparse.

In equation (8.24), one can regard Q1i as a “forward probability” and Qjm · (Pθ)m0

as a “backward probability.” In contrast to the forward-backward algorithm for (ε-free)

HMMs (Baum, 1972), however, the forward and backward paths through the transfor-

mation graph are constrained by very few observed data (only 1, m, and 0) and have

potentially unbounded length. This is why the probabilities require more computation.

Eisner (2001) gives a very general method of performing expectation steps for proba-

bilistic finite-state recognizers and transducers. The above EM algorithm is a special case of
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that method. However, the special case has one major advantage over the general method:

instead of solving one linear system per observed event, it combines the observed events

into the vector ŝ and solves a single linear system. This is possible because the observed

events only constrain the very ends of the available paths, so most of the computation is

independent of the observed events. In terms of §7.1.2’s interpretation of a transformation

model as a finite-state machine, the transformation graph uses only ε-transitions except

when transitioning to Halt.

8.2.4 Variations on EM

There are several possible variations on the above EM algorithm:

GEM EM is especially slow here because it involves a nested loop. The outer loop alter-

nates between E and M steps. The inner loop is the IIS algorithm that constitutes

the M step. However, it is not necessary to run IIS to completion. The Generalized

EM algorithm (Dempster et al., 1977) only requires the M step to increase equa-

tion (8.16) if possible, not necessarily to maximize it. Riezler (1998; 1999) suggests

running only a single iteration of IIS during the M step, and proves that this yields

a GEM algorithm, which he calls Iterative Maximization.8

incremental A common variation on EM is to run it incrementally. See (Neal and Hinton,

1998) for a theoretical justification, and §1.2.4 for a possible motivation from language

learning in children.

Viterbi A common way to speed up the E step is to use the so-called Viterbi or winner-

take-all approximation to P̃ , in which the most likely hidden path for an observed

event is assumed to be the one that did generate it. This is indeed faster here. A

single run of Dijkstra’s (1959) shortest-path algorithm on the transformation graph,

taking an arc’s cost to be its negative-log-probability, will find the most probable

paths from Start to all vertices. (This also provides a good first guess for ~Iθ when

iteratively solving equation (4.5).)
8One would have to adapt this proof for our slightly more complicated case, which involves a conditional

model and a prior.
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When implemented in its simplest form, with a binary heap, Dijkstra’s algorithm

takes time O(|Arcs| log |Events|) (Cormen et al., 1990)—in contrast to sparse matrix

solution, which takes time O(|Arcs| · |Events|). It can be sped up further to O(|Arcs|+

|Events| log |Events|) by using a Fibonacci heap, but at the cost of a larger constant

factor.

After running Dijkstra’s algorithm, it is necessary to follow backpointers from the

observed events back to Start in order to collect the arc counts Nij from these

paths. This does not affect the asymptotic complexity. With a suitable marking

scheme it is possible to avoid traversing any arc twice when doing this, so that the

time requirement is proportional to the size of the union of all the best paths to

the observed events (which may be few or short), and is therefore O(|Arcs|), often

better.9

The Viterbi approximation accentuates the “winner-take-all” effect in EM’s search

for a local maximum. A transformation whose probability is initially low will tend

not to appear on the best paths at all, so it is hard to find evidence to increase its

probability. Its best hope for survival is for other transformations sharing its features

to appear on best paths.

For a better approximation to P̃ , one might modify this approach to use the K > 1

best paths to each observed event, weighted in proportion to their probabilities.

These can be computed efficiently (Eppstein, 1998).

confidence-weighted Some recent successful unsupervised learning approaches resemble

EM, but do not use all the data at each iteration. Instead they use an observed

datum only if its corresponding hidden datum can be reconstructed “confidently.”10

9For example, use two passes. All vertices are initially white. The first pass follows the best path from
each observed vertex m backwards toward Start, flipping the vertex colors to black. If it encounters a
vertex that is already black, it increments that vertex’s “pending count” (initially 0) by sm and quits the
path. The second pass follows exactly the same paths in the same order, flipping vertices back to white,
and aborting a path if it encounters a vertex that is already white. While following the path from m, the
second pass keeps a running total Tm of sm plus the pending counts that it encounters (and resets to 0)
along the way; as it traverses an arc ij it increments Nij (initially 0) by the current total Tm.

10The confidence threshold should be lowered, temporarily or permanently, if the algorithm stops making
progress. When the threshold reaches zero, the passes become identical to EM and the algorithm stops at
a true local maximum, which is the primary (if weak) argument for standard EM.

Note that rather than thresholding the observed data with a strict cutoff, one might instead reweight
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This might mean that the current model assigns high probability to the observed

datum, or the distribution P̃ (· | observed datum) over the hidden datum given the

observed datum is sharply biased toward one reconstruction (Hearst, 1991; Hindle

and Rooth, 1993; Brill, 1995; Yarowsky, 1995), or that different classifiers agree

on the reconstruction (Blum and Mitchell, 1998), or that the reconstruction of this

hidden datum is expected to be accurate for some other reason (Melamed, 1997;

Osborne, 2000). The idea is to avoid drowning the signal to the M step in the noise

of many uncertain examples from the E step. The theory is that the noise moves

the estimate of θ to a rather random part of the space with poor local maxima, and

it is better to extend the base of training data conservatively from a small, accurate

seed.

The notion of child language learning in §1.2.4 has the same idea: that children

ignore adult language that they cannot make head or tail of. They learn primarily

from sentences (or parts of sentences) “at the edge of their competence,” those that

they find surprising but for which they can settle on a clearly best interpretation

in light of their current grammar and the discourse context. (1980) used a simi-

lar “failure-driven learning” approach to grow the ruleset of a deterministic parser.

Barg and Walther (1998) apply a similar technique to learning a lexicalized (HPSG)

grammar, and likewise Solomon and Wood (1994) (somewhat more statistically) for

learning a lexicalized (categorial) grammar.

8.3 An Approximate EM Algorithm via Back-Relaxation

In Chapter 4, we used back-relaxation to find the gradient of the approximate objective

function f̃ found by relaxation. An alternative use for back-relaxation is to optimize f̃ not

with a gradient-based method, but by Expectation-Maximization. In fact there is a tight

connection between the two computations.

them according to how confidently the corresponding hidden data can be reconstructed.
Things become slightly more interesting if the hidden data are complex. One may then need to salvage

confident portions of a reconstruction. For example, it may be that only part of a parse, or only the end of
a transformational path, can be reconstructed confidently.
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8.3.1 The New E Step

§8.2 already described an EM algorithm to optimize the exact objective function f(θ). For

EM to be applicable to f̃(θ) instead, the function f̃(θ) must be a posterior (log-)probability

distribution. We can indeed regard it as such (even though it was originally constructed

as a deficient approximation of another distribution). The idea is that a random walk

that has not halted anywhere, by the time relaxation has stopped, is considered to have

halted at a special event ∞. Adding ∞ to the event space in this way accounts for any

missing probability while ensuring that the M step keeps the form in §8.2.1. Of course, ∞

is never observed in training data. The EM algorithm tries to maximize the likelihood of

the events that were observed, at the expense of other events such as ∞.

Suppose ~s is an observed sample from this model (with si being the number of obser-

vations of i and s∞ = 0). Then EM can be used to maximize the posterior probability of

θ given ~s, just as described in §8.2. The only difference is in the E step (§8.2.3), which is

defined very simply using a quantity computed during back-relaxation. For given θ, the

expected number of times we traverse arc kj on time step t turns out to be just

N
(t)
kj = P

(t)
kj · g(P (t)

kj ) (8.29)

as derived in the next section. This is easy to compute during back-relaxation, since

g(P (t)
kj ) (equation (4.23)) is just the value added to (gP )(t−1)

kj during step t of ordinary

back-relaxation (equation (4.24)). It is non-zero only if k = i, the vertex being relaxed.

As discussed in §8.2.2, the maximization step only needs to know the expected number

of times each vertex i and each feature th is “observed” during traversal. So when we

compute N (t)
ij from gP

(t)
ij during back-relaxation, we do not need to store it. We merely

increment the “observed” count of each feature th by N (t)
ij F

h
ij . (This takes a loop over just

the features on arc ij; there is no need to consider the features of competing arcs ij′ as in

§4.3.5, making feature counts for EM easier to accumulate than feature weight gradients

for gradient descent.) We also increment Ni by N (t)
ij .

As a side remark, the EM-gradient connection is also useful for the more general

problem of optimizing the parameters of probabilistic finite-state machines (see §7.1.2).

Eisner (2001) notes that the EM algorithm it presents for finite-state machines could be
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adapted to find the gradient, allowing one to optimize a machine’s parameters by either EM

or conjugate gradient. If one computes the approximate likelihood of the training data by

relaxation (Mohri, 2000), then one should compute the exact gradient of this approximate

likelihood by back-relaxation.

8.3.2 Conceptual Derivation of the Back-Relaxation Formula for EM

This section gives a quick intuitive justification of equation (8.29). (A more formal deriva-

tion is postponed to §8.5.6, where we will have some more notation available; that deriva-

tion exposes a connection to the Baum-Welch EM algorithm for hidden Markov models.)

Let us suppose that ~s consists of a single observation, of some event m 6= ∞. By

definition, p(T )
m is the total probability of all paths from Start that halt at m. Also by

definition, N (t)
kj denotes the fraction of that total that is derived from paths whose tth arc

is kj. Multiplying P (t)
kj by 1 + ε would multiply the computed probability of those paths

by 1 + ε, and thereby multiply the total p(T )
m by 1 + εN

(t)
kj . This implies

∂p
(T )
m

∂P
(t)
kj

=
N

(t)
kj p

(T )
m

P
(t)
kj

(8.30)

since it says (rephrasing the multiplicative increases as additive ones) that increasing P (t)
kj

by εP (t)
kj would increase p(T )

m by εN (t)
kj p

(T )
m .

Therefore

g(P (t)
kj ) = gp(T )

m · ∂p
(T )
m

∂P
(t)
kj

=
1

p
(T )
m

·
N

(t)
kj p

(T )
m

P
(t)
kj

(8.31)

and rearranging yields equation (8.29) as desired. Notice that the logarithm used in our

particular choice of objective function gave us EM’s normalizing factor of 1/p(T )
m “for free.”

While the above derivation assumes that ~s is a single observation, we can extend to

general ~s by regarding all three variables in equation (8.29) as functions of ~s. Conceptually,

Nkj and g(P (t)
kj ) are then linear functions (the latter because f̃ is linear plus a constant),

while P (t) is a constant, so we can simply add together single-observation versions of

equation (8.29) to get a multiple-observation version.
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8.4 On Renormalization of ~p

In general, our computed probability distribution over events (~p) may not sum to 1. This

may happen for any of several reasons:

1. We halt the relaxation algorithm when some vertices i 6= 0 still remain to be relaxed

(i.e., Ji 6= 0). See §4.2.2.

2. For efficiency, we ignore some arcs that do not contribute much to the objective

function. See §4.5.2.

3. We use a late normalization model (§7.3.4.2), which requires a final normalization

step.

4. We use a perturbed model (§3.9), which requires a final normalization step (§3.9.2).

Sometimes it is desirable to renormalize the distribution ~p so that it sums to 1, using

the factor Z provided for this purpose in equation (4.8). It is always necessary for items

3–4 above. For items 1–2, it is generally sensible to renormalize during testing of the

model, modulo the caveat in §8.4.4 below. But during training, it may be better not to

correct for items 1–2 above, lest one create perverse incentives when fitting the model.11

8.4.1 A Unified Approach to Renormalization

There exists a unified way of thinking about renormalization. It stems from the observation

that ~p always will sum to 1 if two conditions are met:

• Relaxation is permitted to run to completion (i.e., to empty the queue) when com-

puting ~p.
11That is, perverse incentives that depend on the particular nodes and arcs used during the run of

relaxation. For example, suppose vertex i happens not to have been relaxed by the time the relaxation
algorithm halts. Then a renormalized version of the objective function will reallocate vertex i’s probability
mass Ji by scaling up ~p uniformly; such an objective function gives the learner an incentive to propagate a
lot of probability to vertex i so that it can be usefully reallocated! By contrast, optimizing an unnormalized
objective function gives the learner an incentive to propagate to vertices that will have a direct effect on
f̃ , rather than to vertices like i.
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• Every row in the transition probability matrix P sums to 1 (other than row 0,

representing Halt). Even if P changes during the course of relaxation (§4.3.6), it

must always have this property.

The observation holds because if the row sums of P are 1 at every step of relaxation,

then the relaxation algorithm (§4.2.1) is easily seen to have the following invariants, where

J0 is defined as in footnote 7 on p. 121:

n∑
i=0

Ji = 1 (8.32)

n∑
i=1

pi = J0 (8.33)

So if also relaxation is allowed to run to completion, then the probability distribution will

be normalized:
n∑
i=1

pi = J0 = 1−
n∑
i=1

Ji = 1−
n∑
i=1

0 = 1 (8.34)

(The unnormalized distributions in conditions 2–4 of §8.4, above, arise because the row

sums of P are not 1. In 2, some elements of P have been zeroed out so that the rows no

longer sum to 1. In 3, the model is defined without normalization of the rows. Finally,

4 may be treated as a special case of 3: the perturbation parameter πi has precisely the

effect of multiplying row i by expπi.12)
12This section therefore covers two of the three kinds of “transformational lookahead” model described

in §7.3.4: late-normalization and perturbed models. For completeness, this footnote describes how to work
with the third, transformational circuit models. In principle, a transformational circuit model is just like
an ordinary transformation model, but with an unusual parameterization of Pθ, since §7.3.4.3 noted that a
circuit model can be interpreted as a random walk. A more direct way to solve a circuit model is by setting

(Hθ)ij
def
=


1ij if i ∈ {0, 1}
(Gθ)ij if i 6∈ {0, 1} and i 6= j
(Gθ)ij −

∑
j′(Gθ)ij′ if i 6∈ {0, 1} and i = j

(8.35)

where Gθ is symmetric because a transformational circuit model Fhij is defined to be symmetric with respect
to i, j. Now equations (7.23) and (7.24) become

Hθ · ~V = ~b (8.36)

and the rest of the model solution is straighforward as described in §7.3.4.3. As for the gradient, a partial of
~V (with respect to θh, say) is found similarly to equation (8.2): differentiating both sides of equation (8.36),

Hθ · ~V ′ = −H ′θ · ~V (8.37)

where H ′θ can be easily found by reducing it to G′θ, and then the linear equation can be solved for ~V ′. As
usual, one can use iterative methods for solving the sparse linear systems (§8.1.1).
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This observation leads to the following two tricks that can be used together for nor-

malization:

• Make sure to run relaxation to completion. This may require changing P toward the

end of relaxation so that the queue will empty. (Or one can use an exact method in

place of relaxation: see §8.1.1.)

• Modify P as necessary so that the row sums are 1. This can always be done locally

by normalizing the rows; or if the row sum is less than 1, by adding to column 0 (the

probability of halting).

A more interesting way to make the row sums 1 is to introduce a special new event

∞ (also mentioned in §8.3.1). Pi∞ is defined to pick up the slack so that row i sums

to 1:
(∑n

j=0 Pij

)
+ Pi∞ = 1. Unlike other entries of P , Pi∞ can be negative.

The event ∞ is used to figure a global renormalizing constant Z. Let us say that

∞ itself has an arc of probability 1 to Halt (i.e., P∞0 = 1) and no other out-arcs.

Modifying equation (8.34) to account for the existence of this extra event, we see that

(
∑n

i=1 pi) + p∞ = 1 if relaxation is run to completion. So the normalizing constant Z def=∑n
i=1 pi can be expressed as 1− p∞.13

8.4.2 Global Renormalization and the Gradient Computation

Renormalizing f̃ affects the gradient ∇f̃ . Fortunately, the presentation above requires

almost no changes to the back-relaxation computation.

Back-relaxation will automatically compute the effect on the objective function of paths

that end at ∞. It is only necessary to extend equation (4.10)’s definition of gp∞ (found

by differentiating equation (4.8)):

gpi =

 si/pi if i 6=∞
1
Z

∑n
i=1 sj if i =∞

(8.38)

As usual, back-relaxation must compute ∂P (t)
ij /∂θh. While the basic case was given in

13For uniformity, one can also use p∞ to deal with flow adders: in §4.4, just subtract from p∞ instead of
adding to Z.
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§4.3.5, redefining P inevitably requires changes. For example, if Pi∞
def= 1−

∑n
j=1 Pij , then

∂P
(t)
i∞

∂θh
= −

n∑
j=1

∂P
(t)
ij

∂θh
(8.39)

8.4.3 A Global Renormalization Example

As an example of all this, suppose we have a late normalization model. Introduce a new

event ∞ and use it to correct P so that rows sum to 1, as above. Run relaxation until

some stopping criterion is met.

Now it is necessary to relax all remaining vertices on the queue. To ensure that each

vertex will only have to be relaxed one more time, first change P so that the only arcs of

non-zero probability go to either 0 (i.e., Halt) or ∞. Then when vertex i is relaxed for

the final time, its unpropagated probability mass will either be counted toward pi (via arc

i0) or toward renormalizing all of ~p (via arc i∞). The vertices on the queue can now be

relaxed in any order, with ∞ relaxed last, completing the algorithm.

Suppose in particular that P is set for this final relaxation such that the only arcs go

to ∞ (and these have probability 1). Then this final relaxation has the simple effect of

adding all the unpropagated mass on the queue,
∑

i Ji, to p∞ and then subtracting this

total from Z.

8.4.4 A Caveat About Global Renormalization

It is important that during testing, all probabilities be determined without knowledge of

the test data. In particular, the renormalization constant Z = 1−p∞ should be so chosen.

Otherwise the test would be unfair.

For example, in the two-stage relaxation used in the experiments (§6.5.3), the second

stage of relaxation was halted just when all test vertices had been relaxed. It would not

have been fair to take any unpropagated mass left on the queue and subtract it from Z, as

in the example §8.4.3. Rather, §6.5.3’s policy was that the unrelaxed vertices left on the

queue could have been relaxed if the test data had been different. It is only when a vertex

is left unrelaxed (or an arc is ignored) for reasons independent of the test set that it is fair

to count its probability mass as lost, and redirect that mass to something else.
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It was also important in §6.5.3 that the matrix P used in the second stage of relaxation

did not have (or need) any arcs to ∞. Since the test set determined how long the second

stage ran, it would have influenced how many of the arcs to ∞ were actually used during

relaxation, thereby unfairly affecting the normalization factor again.

8.5 Propagation: A Simpler Variant of Relaxation

There is a close connection between transformation models and recurrent neural networks

(§7.1.3). As a result, Chapter 4’s back-relaxation algorithm for transformation models is

similar in spirit to the well-known back-propagation algorithm for neural networks (Wer-

bos, 1974; Le Cun, 1985; Rumelhart et al., 1986). Both compute the gradient of a computed

function by running the computation backwards, keeping track of how the parameters in-

fluence the current state and how the current state influenced the final result.

In fact, it is possible to formulate genuine propagation and back-propagation algorithms

for transformation models. These are alternatives to relaxation and back-relaxation, which

we develop here.

The main reason to mention these additional algorithms is expository. Propagation is

not as flexible or adaptive a strategy as relaxation. However, it has a simple motivation,

notation, and implementation; everything can be described in terms of operations on sparse

matrices. The simplicity of the approach may also make its empirical behavior easier to

analyze.

Propagation does have at least one substantative advantage. As a matrix algorithm,

it can be efficiently implemented on parallel processors. Indeed, propagation is inherently

a parallel algorithm. It can be regarded as a version of relaxation in which step t relaxes

all vertices 1, 2, . . . n simultaneously, rather than choosing a single vertex i(t−1) to relax.

8.5.1 The Propagation Idea

All of the exact algorithms in §§8.1–8.2 put A def= (1 − Pθ) and make use of the inverted

matrix Q
def= A−1. They require us to evaluate products of the form ~bQ or Q~b. Even

without finding Q explicitly, such a product is in general slow to compute exactly. An
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iterative solution by biconjugate gradient (§8.1.1) requires O(n) A×vector multiplications,

for a total runtime of O(n|F |), or O(|F | + n|Pθ|) if we have space to store Pθ for reuse.

This is impractical for models of the size we consider in Chapter 6.

The propagation approach simply follows equation (8.20) and expands14

Q = 1 + Pθ + P 2
θ + · · · (8.40)

~bQ = ~b+~bPθ + (~bPθ)Pθ + · · · (8.41)

and use only the first (say) T terms of equation (8.41), where T is a small constant. This

approximation, Q̃, can be computed with a total of only T − 1 Pθ×vector multiplica-

tions, for a total runtime of O(T |F |), or O(|F | + T |Pθ|) if we have space to store Pθ for

reuse. Moreover, if ~b is sparse (as in equation (4.5)), then at least the first few of these

multiplications involve sparse vectors.

While simple, propagation shares with relaxation many of the advantages over the

linear-system-solution methods of §8.1:

• It gives appropriate answers even if 1 − Pθ is not actually invertible (for example,

because the transformation graph contains cycles of probability 1).

After all, the role of Q throughout this chapter is that Qij gives the total probability

of all paths from i to j (which are not in general disjoint). This is more directly and

generally stated by using equation (8.40), rather than a matrix inverse, to define Q.

• Unlike iterative solvers, it is guaranteed to return appropriate results. Its approx-

imation cannot lead to negative approximations of the flows Ii, probabilities pi, or

arc counts Nij , or to approximations of pi that sum to more than 1. (See §4.1.6.)

• It is easy to run even if n is intractably large or infinite. (It explores as much of the

transformation graph as it can reach from Start within T −1 steps. Other methods

could also be confined to this subgraph, but propagation automatically finds the

relevant subgraph.)
14This expansion of Q converges only if limt→∞ P

t
θ = 0. One might expect that to be false on the

grounds that Pθ is a Markovian matrix, but actually it is not Markovian: its 0th row is 0 since there are
no transitions from Halt. Indeed, the coaccessibility property of (§3.2.1) guarantees that row i of P tθ will
converge to 0 if i is accessible from Start. So the expansion converges if all vertices are accessible. Even
if not, equation (8.41) remains valid provided that the vertices {i : bi 6= 0} are accessible.
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• The gradient of the approximated objective function f̃ can be computed exactly (by

back-propagation).15

• This computation of ∇f̃ is far faster than §8.1.2’s component-by-component compu-

tation of ∇f (although the latter could be restructured).

8.5.2 Understanding Propagation

Propagation has a simple interpretation in the transformation graph. As noted at equa-

tion (8.20), Qij is the total probability of all paths from i to j. We have expanded it as

P 0
θ + P 1

θ + P 2
θ + · · ·P T−1

θ , where (P tθ)ij is the total probability of just the length-t paths

from i to j.

Assuming that the start vector J0 = ~b = 〈0, 1, 0, 0, . . .〉 (equation (4.3)), the approxima-

tion to ~I = ~bQ therefore sums the probabilities of just the length < T paths from Start.

This yields a probability distribution ~p = ~I � (Pθ)·0 that considers only length ≤ T paths

from Start to Halt. The distribution is deficient unless the transformation graph is such

that every random walk reaches Halt within T steps.

For a more general start vector such as J0 = ~b+ ~δ (§4.4), propagation considers paths

from all the vertices having non-zero coefficients in J0.

As noted above, propagation may be regarded as a version of relaxation in which step

t = 1, 2, . . . T relaxes not just a single vertex i(t−1), but rather relaxes all the vertices in

parallel. In the metaphor of §4.2.1, all the anthills are kicked at once, and the ants all

swarm to their next destinations.

Conversely, relaxation may be regarded as a more flexible version of propagation, since

it allows pieces of probability to be propagated through the graph in any convenient order

rather than in lockstep. This gives relaxation two advantages:

• Probability propagated to vertex i at different times can be accumulated there, and

can then be propagated further from i all at once. This “batching” is more efficient
15On the other hand, it might be possible to apply a form of back-propagation equally accurately and

quickly to the kind of iterative solver used in §8.1. Suppose we are solving an equation ~xA = ~b in order to
compute the objective function (equation (4.5)). Let ~x(t) be the approximation to ~x produced at iteration
t of the biconjugate gradient method. It might be possible to “back-propagate” the partial derivatives of
f with respect to ~x(t) back through the computation of ~x(t), obtaining the partials of f with respect to
~x(t−1), and meanwhile updating the partials of f with respect to θ. This possibility is left to future work.
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than propagating probability mass received at step t immediately on step t+ 1.

• High-probability paths can be explored further than low-probability paths, whereas

in propagation, all paths are explored to the same length T regardless of how promis-

ing they are or how much effect they have on the objective function f̃ .

However, our presentation of propagation will actually be general enough to include relax-

ation as a special case (see §8.5.4).

8.5.3 Implementing Propagation

Equation (8.41) translates into a simple algorithm for evaluating the objective function.

As usual put ~b = 〈0, 1, 0, 0, . . .〉. With θ fixed, adopt the following notation for each

t = 0, 1, . . . T :16

P
def= Pθ (8.42)

~J (t) def= ~b · P t (where t denotes matrix power, not transpose) (8.43)

~p(t) def= ~I(t−1) � P·0 (t-step approximation to ~pθ; cf. (4.7)) (8.44)

p
(T )
i then gives the total probability of all length≤ T paths of the form 〈Start,. . ., i,Halt〉.

The pointwise product operator � was defined in §4.1.3.

The algorithm sets ~p(0) = 0 and ~J (0) = ~b, and then carries out the following update

rules for each “time step” t = 1, 2, . . . T :

~p(t) = ~p(t−1) + ~J (t−1) � P·0 (8.45)

~J (t) = ~J (t−1) · P (8.46)

It returns ~p(T ). Note that ~J (T ) is never used and need not be computed.

Following §4.3.4, as a notation that will be helpful below when computing partial

derivatives, let us replace P with P (t) in equations (8.45) and (8.46). So in principle, we
16One could also conceptually define the following quantity, which is not used in the computation:

~I(t) def
= ~b(1 + P + · · ·+ P t) (t-step approximation to ~Iθ; cf. (4.5))

= J(0) + J(1) + . . . J(t)
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might use different transition probability matrices P (1), P (2), . . . P (T ) on steps 1, 2, . . . T of

the random walk. In the usual case these matrices are all equal to P .

Just as in §4.2, we use the return value ~p(T ) to define an approximation f̃ to the

objective function.

8.5.4 Computing the Gradient by Back-Propagation

To recap, we have A = 1 − P with inverse Q
def= A−1 and approximate inverse Q̃

def=

1 + P + · · · + P T−1. We saw above how to find ~bQ̃ by propagation. We now consider its

gradient.17

We now construct a back-propagation algorithm that computes this entire gradi-

ent in only about as much time as propagation itself. As promised above, it is morally

equivalent to back-propagation in artificial neural networks (Werbos, 1974; Le Cun, 1985;

Rumelhart et al., 1986)—whose resemblance to transformation models was detailed in

§7.1.3. In particular, it resembles the “back-propagation through time” variant described

by Rumelhart et al. (1986), which can handle recurrent (cyclic) networks by unrolling their

loops up to some length T , just as we do in propagation.18 Our version is simplified slightly

by the fact that the vertices in a transformation model lack the thresholding or squashing

functions common in neural networks. On the other hand, it is complicated by the fact

that the arc probabilities are not free parameters as in neural networks, but are derived

from lower-level parameters θ. We are also more concerned with optimizations that exploit

the sparse and possibly redundant topology of the network (see §8.5.7).
17As noted in §4.3, we need the exact gradient of the approximation to pass to numerical optimization

methods. It is perhaps tempting to observe that Q′ = −QA′Q (see equation (8.2)) and to approximate it
by −Q̃A′Q̃, but while this is an approximation of Q′ it is not exactly (Q̃)′. (The equality Q′ = −QA′Q
is obtained by differentiating the identity AQ = 1, and the inequality Q̃′ 6= −Q̃A′Q̃ is equivalent to∑
i+j+1<T P

iP ′θP
j 6=

∑
i<T,j<T P

iP ′θP
j .) The difficulty is more than just theoretical, since even very

small changes to the approximation of Q can have a large impact on our objective function and its gradient
(see §4.1.6).

18Another well-known algorithm for training recurrent neural networks propagates gradient information
forward together with the activation (i.e., flow), so that it can learn online (Williams and Zipser, 1989).
However, this strategy is targeted at cases where T is potentially unbounded, or is at least large compared
to the size of the network. It must propagate many more gradients, computing and storing the partial
derivative of each component of ~I(t) with respect to every edge weight (or, for us, every feature weight)
that might have affected it. While it would help to store and propagate only the non-zero partial derivatives,
the Williams & Zipser method remains more expensive in time and storage unless T is much larger than the
number of features. See (Williams and Zipser, 1995) for a review and comparison of several recurrent-net
training methods.
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One can obtain the relaxation algorithm as a special case of propagation. Step t of

propagation can be made to relax just a single vertex i: just set P (t) to equal a modified

identity matrix in which row i is equal to row i of Pθ. Back-relaxation then reduces to a

special case of back-propagation.

8.5.5 Details of the Back-Propagation Algorithm

The idea is to propagate gradients backwards along the paths that were already used for

propagation. If we already know how infinitesimal changes to ~J (t) would have affected the

objective function f̃ , we can figure out how changes at the previous time step (to ~J (t−1))

would have affected f̃ , via their effect on ~J (t). We will use the same notation gx as in

§4.3.1.

Since at the end of the day we only care about partials of the objective function (notably

∇f̃ = ~gθ), we will avoid propagating the partials of other, intermediate quantities (cf.

footnote 18). As a result, we will build up the gradient “top-down,” and the computations

will look a bit different than in the “bottom-up” approach that §8.1.2 used for closed-form

solutions.

We use back-propagation to compute gJ
(t)
i

def= ∂f
∂J

(t)
i

for all t and i. Since ~J (T ) is never

used, we have ~gJ
(T )

= 0. Then for t = T, T − 1, . . . 1 we can use the following update

rule:19

~gJ
(t−1)

= P
(t)
·0 � ~gp(T ) + P (t) · ~gJ (t)

(8.47)

where gp
(T )
i is defined as in equation (4.10) or (8.38) and p(T )

i comes from the return value

of forward propagation (§8.5.3).

Of course, what we really want is the gradient of f̃ with respect to the feature weights.
19For a simple derivation of this update rule, eliminate the intermediate vectors ~p(1), . . . ~p(t−1), collapsing

the updates (8.45) into

~p(T ) =

T∑
t=1

~J(t−1) � P (t)
·0

Now for each i, the above equation together with equation (8.46) gives

gJ
(t−1)
i = gp

(T )
i · ∂p

(T )
i

∂J
(t−1)
i

+
∑
j

gJ
(t)
j ·

∂J
(t)
j

∂J
(t−1)
i

= gp
(T )
i · P (t)

i0 +
∑
j

gJ
(t)
j · P

(t)
ij
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As we back-propagate gJ
(t)
j along the arc ij (i.e., when we multiply it by P

(t)
ij during

the update (8.47)), we can also use it to compute the gradient with respect to that arc’s

probability (cf. equation (4.23), where i was the single vertex being relaxed):20

gP
(t)
ij = J

(t−1)
i ·

 gp
(T )
i if j = 0

gJ
(t)
j if j 6= 0

 (8.48)

§4.3.5 explains how each such arc probability gradient, as we compute it, in turn contributes

a summand to the gradient of the weight θh, for every feature th that affects the arc

probability.

8.5.6 Using Propagation to Justify the EM Formula

We now have the notation to wrap up some unfinished business. Recall the claim from

§8.3 that

N
(t)
ij = P

(t)
ij · g(P (t)

ij ) (8.49)

defines the E counts necessary to use EM for optimizing f̃ , for all i and j. We can

now justify that claim using the simpler notation provided by back-propagation.21 In

particular, we will use the fact that matrix products describe path probabilities. The

(back-)relaxation version then holds as a corollary since relaxation can be treated as a

special case of propagation (see §8.5.4).

Because it mentions g(P (t)
kj ), equation (8.49) divides into cases j 6= 0 and j = 0 accord-

ing to equation (8.48). If j 6= 0, then the claim can be rewritten as follows:

N
(t)
ij (8.50)

= P
(t)
ij · gP

(t)
ij by (8.49) (8.51)

20The derivation is similar to the one in footnote 19 and draws on the same propagation equations. For
all ij,

gP
(t)
ij = gp

(T )
i · ∂p

(T )
i

∂P
(t)
ij

+ gJ
(t)
j ·

∂J
(t)
j

∂P
(t)
ij

= gp
(T )
i · δj0 · J(t−1)

i + gJ
(t)
j · J

(t−1)
i

To obtain equation (8.48), note that the first term above falls away if j 6= 0, while the second term falls

away if j = 0, since gJ
(t)
0 = 0 by the absence of transitions from Halt.

21In §8.3, g(P
(t)
kj ) and f̃ were defined by (back-)relaxation. Here we will take them to be defined by

(back-)propagation, which is formally more general.
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= J
(t−1)
i︸ ︷︷ ︸

forward probability

P
(t)
ij gJ

(t)
j︸ ︷︷ ︸

backward probability
total probability

by (8.48); cf. (8.26) (8.52)

= J
(t−1)
i · P (t)

ij ·

(
T∑

t′=t+1

P (t+1) · · ·P (t′−1)(P (t′)
·0 � ~gp(T ))

)
j

by (8.47) (8.53)

= J
(t−1)
i · P (t)

ij ·
T∑

t′=t+1

∑
m

(
P (t+1) · · ·P (t′−1)

)
jm

(P (t′)
·0 � ~gp(T ))m (8.54)

= J
(t−1)
i · P (t)

ij ·
T∑

t′=t+1

∑
m

(
P (t+1) · · ·P (t′−1)

)
jm
P

(t′)
m0 · sm/p

(T )
m by (4.10) (8.55)

=
∑
m

sm

J
(t−1)
i · P (t)

ij ·
∑T

t′=t+1

(
P (t+1) · · ·P (t′−1)

)
jm
P

(t′)
m0

p
(T )
m

(8.56)

=
∑
m

sm

(
P (1) · · ·P (t−1)

)
1i
· P (t)

ij ·
∑T

t′=t+1

(
P (t+1) · · ·P (t′−1)

)
jm
P

(t′)
m0

p
(T )
m

(8.57)

This is simply a version of equation (8.24)—which defined Nij for the exact EM algorithm

(§8.2.3)—that has been restricted to paths of length T or less in which ij appears at step

t, as desired.

If on the other hand j = 0, then

N
(t)
i0 = P

(t)
i0 · gP

(t)
i0 by (8.29) (8.58)

= J
(t−1)
i · P (t)

i0 · gp
(T )
i by (8.48) (8.59)

=

(
P (1) · · ·P (t−1)

)
1i
· P (t)

i0 · si
p

(T )
i

by (4.10) (8.60)

which is justified similarly; as a check, summing equation (8.59) over t gives

Ni0 =
T∑
t=1

N
(t)
i0 =

T∑
t=1

J
(t−1)
i · P (t)

i0 · si/p
(T )
i = p

(T )
i si/p

(T )
i = si (8.61)

just as in the exact method (equation (8.28)).

The formulation of N (t)
ij as a forward-backward probability in equation (8.52) connects

this algorithm to the closely related formulation of EM for hidden Markov models (Baum,

1972). The analogy is complicated by facts that have no analogue in HMMs: a logarith-

mic objective function, a log-linear parameterization of the transition probabilities, and

variable-length paths. (If we considered only the paths of length exactly T , as in HMMs,
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then an observation of event m would correspond to the finite-length observed sequence

εε · · · ε︸ ︷︷ ︸
T−1

m.22) But at least the hidden paths for a given input have bounded length in the

propagation model, which is true in HMMs but not the exact model (§8.2.3), leading to

the latter’s need to solve a linear system.

8.5.7 Making (Back-)Propagation Efficient

Again, relaxation is generally preferable to propagation, for reasons described in §8.5.2.

Propagation does appear to be easier to implement, but this is deceptive.

The matrix presentation of propagation is attractive and can be made efficient by using

sparse matrices. Implementing P as a sparse matrix means only iterating over the arcs in

the graph, and not wasting time on nonexistent zero-probability racs. Implementing ~J (t)

as a sparse vector means not bothering to propagate zeroes.

However, the matrix presentation of back-propagation is not efficient even if sparse

matrices are used. That is because the vector ~gJ
(t)

rapidly becomes non-sparse as t

decreases. Sparse matrices ensure that we only bother to back-propagate along actual

paths to the observed vertices, but they do not confine us to paths that originated in ~b,

that is, the paths that were actually used in propagation.

To make propagation efficient, it would therefore be necessary to use the relaxation

optimizations in §4.5, such as the double stack that remembers the paths already used,

and path pruning. The best approach is simply to implement propagation as a parallel

version of relaxation, in which several vertices may be simultaneously relaxed (or back-

relaxed) and put on the stack jointly during a given pass.

8.6 A General Presentation of Templates

§4.5.3 sketched a technique for taking advantage of redundancy in a transformation graph.

The idea was that if the graph contained many isomorphic subgraphs, then one should

find a way to combine work across those subgraphs.
22The transition probabilities are P . As for emissions, an arc from i to Halt emits i with probability 1,

and and all other arcs emit the special symbol ε with probability 1, as suggested in §7.1.2.
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What §4.5.3 sketched was a modified relaxation algorithm for the special case of per-

turbed models without per-event features. Here we will see that the technique applies to

other models and algorithms as well. First, we formally describe the special kind of model

structure where the technique applies, using matrix notation, and show that exact matrix

techniques can take advantage of such model structure. Then we give an approximation

algorithm that generalizes §4.5.3.

The approximation algorithm is usually more important in practical terms, and we

begin with the exact algorithm (which may be skipped) merely to introduce the problem

and notation.

8.6.1 Using Templates in an Exact Algorithm

§4.5.3 really hinged on two separate properties of the transformation model of the lexicon:

(1) the transformation graph consisted of many separate subgraphs, one per headword,

and (2) these subgraphs were isomorphic with similar or identical transition probabilities.

Applications such as collaborative filtering (§7.2.2) also satisfy (1) and (2).

It is possible to exploit these properties in an exact algorithm as well, where the key

operation is the solution of a linear system of equations (§8.1.1):

(1) means that the transition matrix P has a particularly tractable pattern of sparsity,

called Schur complement form, for which faster solutions are possible. (2) means that a

matrix technique called preconditioning can also be used to speed the solution.

8.6.1.1 Solving Schur Complement Systems

In general, specialized serial or parallel or approximate methods for solving ~xA = ~b may

apply if the transformation graph has some “nice” pattern of sparsity. This is the subject of

considerable research in the numerical algorithms community, of which the present section

provides only a taste.

We are particularly interested in block matrices of the following much-studied Schur
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complement form:

Pθ =



C S1 S2 S3 . . .

H1 B1

H2 B2

H3 B3

...
. . .


(implying that A = 1− Pθ also has this form) (8.62)

In the numerical algorithms community, this form arises frequently when doing domain

decomposition in finite element methods.23 In a transformation model, it arises when the

transformation graph can be partitioned into several dense subgraphs that are connected

only through a small set V of vertices (Start, Halt, and perhaps others). The first

row of blocks represents the transitions from V (including from Start), the first column

represents the transitions to V (including to Halt), and the diagonal element B` represents

the `th dense subgraph.

For example, in the lexicon smoothing application (Fig. 1.2 and §3.7.2), a dense sub-

graph B` is induced by the lexical entries that share a given headword `. The subgraphs

for different headwords are not connected directly because there are no headword-changing

transformations.24

A Schur complement matrix such as A in equation (8.62) does not in general have

a sparse inverse. However, it admits efficient specialized techniques for solving ~xA = ~b

via Cholesky decomposition. These techniques require only inversion of the matrix blocks

B1, B2, . . . and E, where E is an intermediate matrix the same size as C. It is also possible

to exploit sparsity in those blocks: instead of inverting B1, B2, . . . E, one can iteratively

solve solutions of sparse linear systems involving them, just as in §8.1.1. The methods for

solving Schur complement systems are called the Element-by-Element (EBE) method

or iterative substructuring.
23Another potentially useful form has overlapping domains (overlapping dense subgraphs); these are

handled by so-called Schwarz methods.
24If there are no category-changing transformations either, the subgraphs can be further partitioned by

LHS category. This leads to a Schur complement form with even smaller blocks, allowing the method of
this section to run faster, although these smaller blocks will generally be too dissimilar to one another for
the techniques in §8.6.1.4 and §8.6.2 to apply.
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8.6.1.2 Special Case of the Schur Complement

In the special case that H1 = H2 = · · · = 0, a Schur complement matrix actually does

have a sparse closed-form inverse, namely

C−1 −C−1S1B
−1
1 −C−1S2B

−1
2 −C−1S3B

−1
3 . . .

B−1
1

B−1
2

B−1
3

. . .


(8.63)

The matrices that arise in practice are sufficiently close to this case for equation (8.63)

to be indirectly quite useful. First, an intuition as to why. The Hi blocks in equation (8.62)

usually only represent transitions to Halt. Remember that the inverse A−1 = (1−Pθ)−1 =

1 +Pθ +P 2
θ + · · · stores at position ij the total probability of all paths from i to j (§8.2.3,

equation (8.20)). None of these paths can pass through Halt since it is a sink state; at

best they can reach Halt (if j = 0). So the Hi blocks of Pθ—the transition probabilities

to Halt—can affect only column 0 of A−1. Since the computations in which we use A−1

generally ignore column 0,25 we may as well pretend the H` blocks are zero and just use

equation (8.63) directly.

Let us formalize a more general version of this argument. The idea is that transforma-

tion graphs of the Schur complement form (8.62) often have a more specific form that is

close to the special case H1 = H2 = · · · = 0:

Pθ =



C00 0
C10 C11

0
S11

0
S12

0
S13

. . .

H10 0 B1

H20 0 B2

H30 0 B3

...
. . .



(8.64)

25(A−1)i0 represents the total probability of all paths from i to Halt. This is not used directly because
what the transformation model cares about is the event that the path reaches immediately before Halt.
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To put this qualitatively, the connecting set V consists of two disjoint subsets, a “source”

V1 and a “sink” V0, such that V1 receives no arcs from outside V1 and V0 sends no arcs

to outside V0.26 Note that V1 contains Start and V0 contains Halt; in the intuitive

argument above, V0 contained only Halt.

Now define P1 as identical to Pθ except that it zeroes out transitions to all sink vertices

V0 (in particular, the H blocks), and set P2 = Pθ − P1. The crucial fact is that P2P1 = 0

because there are no paths that enter V0 and leave it again. This fact lets us reduce the

expansion A−1 = (1−Pθ)−1 = 1+(P1 +P2)+(P1 +P2)2 + . . . to (1+P1 +P 2
1 + . . .)(1+P2),

and hence to (1− P1)−1(1 + P2).

This product A−1 = (1 − P1)−1(1 + P2) can be efficiently computed by using equa-

tion (8.63) to figure the inverse (1−P1)−1. It is sparse, and indeed has the Schur comple-

ment form. In fact it can be written as the sum of (1−P1)−1 and (1−P1)−1P2, which are

easily seen to have the same sparsity patterns as P1 and P2 respectively.27

8.6.1.3 Decomposition Into Strongly Connected Components

The previous section can be simplified and generalized. Ultimately, the reason that §8.6.1.2

admitted efficient solutions was that, granted the special property of V , the graph had a

natural decomposition into strongly connected components (V0, V1, B1, B2, B3, . . .).

In fact any transformation graph that decomposes into strongly connected components

admits a modular exact solution, by means analogous to §4.2.2’s approximate solution.

This is a much more general strategy.

Let B1, B2, B3, . . . denote the strongly connected components, in topologically sorted

order (see §4.2.2). Then by choosing a vertex order that respects this order of the compo-

nents, Pθ can be expressed as an upper triangular block matrix where B1, B2, B3, . . . are

the blocks along the diagonal. Such matrices are well-studied. It is particularly easy to
26So once a random walk on the transformation graph returns to V , it must stay in V until it halts.

Any such walk in this kind of graph consists of a subwalk on the source vertices, followed by a subwalk on
the B` vertices for some `, followed by a subwalk on the sink vertices (usually just Halt). Any of these
subwalks can be empty.

27This general solution for any V0 makes use of P2. The intuition at the start of this section came from
the more restricted case V0 = {Halt}. In that case we can ignore P2, as claimed then, because P2 and
hence (1 − P1)−1P2 consists of just a 0th column. If we do not care about adding that column into A−1,
we can pretend P2 is 0.
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solve for ~b(1 − Pθ)−1 by solving a sequence of subproblems of the form ~J`(1 − B`)−1 for

` = 1, 2, 3, . . .. Iterative methods as in §8.1.1 may be used for each subproblem, to exploit

the sparsity of B`.

The idea is that ~J` represents the flow to vertices in subgraph ` from subgraphs preced-

ing `: that is, its ith element is the total probability of all paths that terminate at the ith

vertex of subgraph ` but do not otherwise pass through subgraph `. Now ~I`
def= ~J`(1−B`)−1

gives the total flow to vertices in subgraph `, by extending those paths through subgraph

` in all possible ways; remember that by assumption, no path to subgraph ` can pass

through any subgraph beyond `.

Having computed ~I`, we can proceed with subgraph ` + 1, first obtaining ~J`+1 by

multiplying the simple row vector(
~I1

~I2 · · · ~I` 0 0 · · ·
)

(8.65)

by the block column of Pθ that contains B`+1 (this column represents arcs to B`+1), and

adding the appropriate subvector of ~b (representing the starting flow at the vertices of

B`+1). This technique is also used to find the base case ~J1, when ` = 0.

8.6.1.4 Preconditioning

A standard trick called preconditioning helps the iterative solvers of §8.1.1 converge more

quickly and with less numerical error. The trick is to replace ~xA = ~b with an equivalent

equation of the same form, ~x(AÃ−1) = ~bÃ−1. Ã is a preconditioner matrix that is close

to A but more easily inverted. The system AÃ−1 is therefore close to an identity matrix,

which makes iterative solvers more stable. Moreover, ~bÃ−1 is close to the desired ~x = ~bA−1

and so provides a fairly accurate starting guess for ~x, allowing faster convergence.

There is a literature on appropriate preconditioners for sparse matrices, including

matrices that exhibit (or nearly exhibit) particular patterns such as Schur complement

(§8.6.1.1). As a naive example, if A has the Schur complement form, then we can con-

struct Ã by setting its H` blocks to zero. The result is invertible as in equation (8.63).

The preconditioner is one place to take advantage of further structure in the trans-

formation model. Equation (8.63) and the other techniques of the previous section still
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requires us to invert all the square blocks B1, B2, . . . separately. But in practice most of

the B` may have the same dimensions and be very similar to one another. If in our con-

struction of Ã we replace some of them with a common block B, then we will have fewer

distinct blocks to invert. (Replacing some of the S` with a common S is also beneficial,

but less so.)

For example, when equation (8.62) arises in the lexicon smoothing task, B` represents

the transitional probabilities among lexical entries for a given word `. These do not differ

so much from word to word. If we ignored word-specific features when computing the tran-

sitional probabilities B`, we would obtain a reasonable word-independent approximation

B. We can speed up our inversion of the preconditioner Ã by substituting B for any or all

of the B` in Ã. B is a particularly good substitute for B` if word ` has small word-specific

feature weights. Happily, this is so for most words, thanks to the Zipfian fact that most

words are not observed frequently enough to overcome the prior.

At least in principle, one might wish to use different preconditioning blocks B for

different B`, based on properties of the B` blocks or the words they describe. For example,

one might use different preconditioners for suspected nouns than for suspected verbs, based

on solutions for a few typical nouns or verbs.

8.6.2 Using Templates with Propagation or Relaxation

We now turn to the use of approximate algorithms with models of this special form. To be

explicit, we are concerned with transformation models that have all of the three properties

discussed in the previous three sections:

• The model has the Schur complement form discussed in §8.6.1.1.

• The model also has the source-sink property discussed in §8.6.1.2, with a set V1 of

source vertices that contains Start and a set V0 of sink vertices.

• The model contains similar subgraphs as in §8.6.1.4:

– Square blocks B` in the Schur form (8.62) have the same dimension and tend

to be similar (for all θ) to a template B, as discussed in §8.6.1.4. The sense of
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“similar” is stronger here: it means many entries that are not merely close but

actually equal.

– Moreover, if possible, all the blocks H` tend to be similar to a template H.

– Finally, each block S` is similar to β`S where β` is a scalar and S is a template.

By scaling S we can arrange that
∑

` β` = 1. (The use of β` allows the model to

have different probabilities of entering different subgraphs from V1. For example,

different words have different probabilities.)

Again, the intuition is that the subgraphs of the transformation graph that correspond

to different words (see Fig. 1.3) are variations on a common template (Fig. 4.1). They are

naturally isomorphic to the template, which represents the “typical” word; but some of

their probabilities are different.

If we run the propagation algorithm on the template, we obtain a starting point for

propagation through the various subgraphs of the actual transformation graph. We copy

the template to each subgraph and re-propagate along just those subgraph paths whose

probabilities differ from their analogues in the template. A similar approach works for

back-propagation.

Notice that, unlike §4.5.3, we will not assume that the transformation probabilities are

necessarily identical in each block: thus per-event features are possible.

As in §4.5.3, the notations s`x and tx will refer to the values of a variable x in the

computation on subgraph ` and the template, respectively. The computation of s`x makes

use of the previously computed tx. Also, ∆`x denotes s`x − tx. Finally, dim x denotes

the length of a vector x, or the length of the side of a square matrix x.
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8.6.2.1 Propagation With a Template

The subgraph propagation or relaxation problems are defined as follows:28

tP
def=

(
C S
H B

)
(8.66)

s`P
def=

(
C β−1

` S`

H` B`

)
(8.67)

t~b = s`~b
def= 〈0, 1, 0, 0, . . .〉 of length dim C + dimB (8.68)

We can separately apply the propagation or relaxation algorithm to the template and

to each subgraph `. In the case of a subgraph, let us write the result in block form:

s`~p
(T ) =

(
s`~pC s`~pB

)
(8.69)

where dim s`~pC = dim C and dim s`~pB = dimB = dimB`.

Thanks to the source-sink property, we can combine the subgraphs’ results across

different ` to get the result of propagating through the entire transformation graph:29

~p(T ) =
(
~pC ~pB1 ~pB2 · · ·

)
(8.70)

=

(∑
`

β`s`~pC β1s1~pB β2s2~pB · · ·
)

(8.71)

28The propagation and relaxation algorithms do not require matrix rows to sum to 1, and indeed the
top rows of these matrices may sum to something else. If for some reason we do want all the rows (except
row 0) to sum to 1, then it suffices to ensure that each S` has the same row sums as β`S, which can
always be arranged. (If Start is the only vertex in V1, so that S and S` each consist of only one row, then
satisfying the requirement is trivial by an appropriate choice of β`. If there are other vertices in V1, they
can be eliminated first by splitting each into ` copies and considering these to be part of the ` respective
subgraphs.)

29Proof sketch: for reasons mentioned in footnote 26 on p. 276, the source-sink form of the graph
guarantees that in the exact case (as T →∞),

s`~p
(T ) = (s`~b(1 + s`P + s`P

2 + · · ·))� s`P·0

s`~pB = ~b(1− C)−1β−1
` S`(1−B`)−1 � (H`)·0

s`~pC = ~b(1− C)−1(1 + β−1
` S`(1−B`)−1H`(1− C)−1)� C·0

~p(T ) = (~b(1 + P + P 2 + · · ·))� P·0
~pB` =

∑
`

~b(1− C)−1S`(1−B`)−1 � (H`)·0

~pC = ~b(1− C)−1(1 +
∑
`

S`(1−B`)−1H`(1− C)−1)� C·0

and since
∑
` β` = 1, the claim follows immediately. The proof for finite T is similar.
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So far we have not saved any work or used the template. The payoff comes when

working on a subgraph. In the case of propagation, this computation can take advantage of

the work already done on the template by the template-specific versions of equations (8.45)

and (8.46), namely

t~p(t) = t~p(t−1) + t ~J (t−1) � tP·0 (8.72)

t ~J (t) = t ~J (t−1) · tP (8.73)

Instead of propagating a subgraph’s s`~p
(t) and s` ~J

(t) directly by update rules just like

the above, we can propagate only their differences from the template. Still phrasing this

in terms of propagation, this means using sparser matrix multiplications, which are more

efficient:

∆`
~J (t) = s` ~J

(t) − t ~J (t) (8.74)

= s` ~J
(t−1) · s`P (t) − t ~J (t−1) · tP (t) (by subgraph version of (8.46))(8.75)

= (t ~J (t−1) + ∆`
~J (t−1)) · (tP (t) + ∆`P

(t))− t ~J (t−1) · tP (t) (8.76)

= (t ~J (t−1) ·∆`P
(t)︸ ︷︷ ︸

sparse

) + ( ∆`
~J (t−1)︸ ︷︷ ︸

hopefully sparse

· s`P (t)) (8.77)

∆`~p
(t) = ∆`~p

(t−1) + (t ~J (t−1) �∆`P
(t)
·0︸ ︷︷ ︸

sparse

) + ( ∆`
~J (t−1)︸ ︷︷ ︸

hopefully sparse

� s`P
(t)
·0 ) (similarly)(8.78)

At the end we can compute the return value for subgraph `,

s`~p
(T ) = t~p(T ) + ∆`~p

(T ) (8.79)

Note that the stored variables are of the form tx (for the template) and ∆`x (for the

subgraph, and sparser), with s`x
def= tx+ ∆`x not stored.

8.6.2.2 Relaxation and Back-Relaxation with a Template

It is not difficult to see how to adapt the simple template relaxation and back-relaxation

algorithms in §4.5.3 to the equations above. The new wrinkle is that ∆`P may now be

nonzero. That is, some transition probabilities in subgraph ` may differ from those in the

template, for instance because of per-event features in subgraph `. Let us briefly sketch

the consequences without giving pseudocode.
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For relaxation on subgraph `, the possibility that ∆`P 6= 0 means that equations (8.77)

and (8.78) now require access to ~tJ as well as ~s`J values. Fortunately, these values were

already available in §4.5.3.2 (and see footnote 23 on p. 141). Notice that it is now necessary

to relax i while processing subgraph ` if either ∆`Ji 6= 0 as before, or else tJi ·∆`Pij 6= 0

for some j.

Back-relaxation on subgraph ` also needs access to both ~tJ and ~s`J . Back-relaxing

vertex i at time step t computes g∆`J
(t−1)
i and adds to gP

(t)
i· (specifically, to gs`P

(t)
i· ) just

as in §4.5.3.4. But now back-relaxing i must also add to gtJ
(t−1)
i and add some more to

g∆`Pi·
(t) = gs`Pi·

(t), since the new rules for relaxing vertex i (equations (8.77) and (8.78))

are sensitive to tJ
(t−1)
i .

It follows that back-relaxation on the template will start with non-zero values for

gtJi
(t−1) that were accumulated during back-relaxation on the subgraphs. Such a value

is stored with i(t−1) on tStack1. When step t of template back-relaxation pops (i(t−1),

tJ
(t−1)
i ) from tStack1, it will also pop gtJi

(t−1). The step then accumulates terms into

gtJi
(t−1) starting at this popped value rather than at 0. (The additional terms arise from

the mentions of tJi(t−1) in template relaxation, in the sense of §4.3.2, while the starting

value arose from the mentions during subgraph relaxation.) Finally, the template back-

relaxation of i adds to gtP
(t)
i· rather than any gs`P

(t)
i· .

8.6.2.3 Templates for Per-Event Features vs. Perturbations

Recall from §3.9 that s`pi can be made tunable in either of two ways. Vertex i in subgraph

` can be given a per-event feature or a perturbation parameter πi.

Equation (8.78) tends to be appropriately sparse in the latter case. A perturbation πi

affects only the arcs from i, so it requires differences ∆` to be propagated to the descendants

of i. (See §4.5.3 for the details.)

By contrast, a per-event feature for i affects the arcs to i and their competitors. In a

particularly bad and common case, i is a child of Start`.30 So all arcs from Start` have

different probabilities in subgraph ` than in the template, and it is necessary to propagate
30For example, the model used for the experiments of Chapter 6 gives special status to the events in

subgraph ` (i.e., lexical entries headed by word `) that were observed in training data. They serve both as
the “tunable” events with per-event features and also as (some of) the children of Start`.
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differences from Start` to all descendants. This more than wipes out the advantage of the

template: it would have been faster to solve the subgraph-` problem by doing an ordinary

propagation from Start` to its descendants in the first place, without using the template.

There is, however, a fix that makes it unnecessary to repropagate fully from Start` in

this particular case. We can leave the probabilities on the arcs from Start` unnormalized,

so that most arcs have the same “probability” in subgraph ` as in the template. Provided

that every path from Start to Halt in the subgraph-` problem passes exactly once

through Start`, as in Fig. 1.3, we can correctly compensate for this change by normalizing

~s`p after propagating through the subgraph.31

31The global renormalization constant is computed as usual (§8.4.1): set P1∞ ∈ R so that
∑
i P1i = 1.
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Chapter 9

Conclusions

This thesis has developed a stochastic approach to lexicalized syntax—including the lex-

ical redundancy rules that derive lexical entries from one another. Chapter 1 gave a

self-contained overview of the work, its motivation, and its empirical performance on an

example.

As explained in Chapter 1, the work attempts to appeal simultaneously to the interests

of several communities. Like any ménage à trois, this marriage of linguistics, statistics,

and engineering is not without its tensions—particularly the competing desires for fidelity

and tractability in the model—but has its own existence and internal logic.

For linguists, the thesis has shown it possible to integrate statistics throughout a

modern syntactic theory using a single mechanism, without either eviscerating the theory

or making it ugly. Abney (1996) has argued that linguists should broaden their notion of

human linguistic competence to include sensitivity to frequency. Transformation models

of the lexicon extend this idea into the underlying fabric of the grammar, by modeling

not only the frequency of different constructions, but also the strength of the grammar’s

transformational generalizations and their exceptions.

Indeed, the frequencies of constructions are here entirely derived from the fabric of

generalizations and exceptions. All that the statistical grammar ultimately specifies are

the properties of a lexical entry or transformation that make it more or less likely to be

used while generating a sentence.
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In statistics, the new idea of transformational modeling may have broader use. Trans-

formation models address a general problem: estimating a probability distribution over a

set of interrelated events, where the relationships are known in advance but their effects

on the distribution are not. A simple prior encourages the model to use a small number of

relationships to approximate a large number of probabilities. Such approximation results

in smoothing the probabilities.

To facilitate future statistical work with transformation models—both of the lexicon

and of other phenomena—the thesis has presented them in a general form. The presenta-

tion abstracts away from the details of the linguistic application, and includes a number

of variations that may be useful for other problems. The algorithms for solving and es-

timating transformation models were also given in a general form and with variations.

Indeed, they can be used to estimate the parameters of probabilistic finite-state machines

(see §7.1.2).

For NLP, the experiments in Chapter 6 demonstrated transformational smoothing’s

ability to accurately predict lexical entries given sparse training data. This problem has

been significant in the statistical parsing community, which has turned to lexicalized statis-

tics over the past decade. The method achieved a healthy perplexity reduction over all

competing methods from the literature. Indeed, it performed comparably to the next-

best method using only half as much training data, and its advantage increased when the

amount of training data was reduced. Its improvement applied not merely to the test

set as a whole, but also to the individual test items, which were almost uniformly better

predicted by using transformations. The reasons appeared to lie in the transformation

model’s ability to model exceptions, its Bayesian approach to smoothing, and its ability

to model transformational relationships that were genuinely present in the data.

This empirical work is best regarded only as a starting point. In an effort to be fair to

the competing methods, the evaluation used a bare-bones transformation model that was

as much like the competing models as possible. In particular, the model did not consider

any “linguistically interesting” transformations, such as gapping (in particular subject-

extraction, which is very common). Nor did it parameterize the transformations in terms of

linguistically substantive features. Yet in principle, one of the advantages of transformation
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models over past work is their greater capacity to model linguistic substance, as discussed

elsewhere in the thesis. This is an obvious source of possible future improvements.

More immediately, there are many possible ways to improve the parameter estimation.

One is speed, via EM (Chapter 8) or conjugate gradient. As for accuracy, the thesis

has described various possible under-the-hood changes to the objective function and its

approximation (notably in normalization and the prior). Most important would be ways

to avoid local maxima—currently the Achilles’ heel of transformation models.

In general, one could also try to make the approach simpler and more robust for

engineering purposes:

• Greater use of held-out data (rather than the prior) in estimating θ; for example,

leave-one-out training.

• Techniques for avoiding local maxima: annealing and incremental feature selection.

• Use of weighted, nondeterministic finite-state transducers to model the transforma-

tional process. A simple string-to-string transducer can model one step of the ran-

dom walk, transforming an input frame such as S→ NP NP stochastically into

an output frame. More significantly, a simple transducer can just as easily model an

unbounded sequence of transformations (including insertions) that examine and mod-

ify non-overlapping substrings of the input frame.1 The transformational process can

be approximately modeled by composing a fixed number of such transducers, whose

parameters can then be estimated (see (Eisner, 2001)).

Ultimately, the value of transformational smoothing to NLP will be measured not by the

perplexity it assigns to a test set of lexical entries, but by its ability to improve performance

on a “real” problem such as parsing, generation, or grammar induction. Chapter 5 outlined

how the technique could be used in parsing for predicting both appropriate headwords

and appropriate syntactic frames for them. It could also be used to rerank the output
1See (Ristad and Yianilos, 1996) for an edit-distance transducer, which could be modified to compute

contextual edit distance. The requirement that the edits in the sequence be chosen locally rules out the
use of per-event features during such a sequence, since such features would condition transducer actions on
the entire frame. A reasonable option is to allow per-event features only on arcs from Start. Then words
can differ as to the initial frames they like to project, but the subsequent transformational process does
not vary from word to word in its probabilities.
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of a parsing or generation system. Finally, §1.2.4 discussed the application to grammar

induction.

Let us close by returning to the context of the work. The statistical paradigm addresses

the need for robustness and trainability in the face of uncertainty. In computational

linguistics, it has been rapidly filtering upward from the speech-level tasks where it made its

debut. The community has struggled, at length but often successfully, to apply statistical

methods to ever-fuller descriptions of linguistic competence. The challenge, as for other

formalization, is to find an appropriate angle from which to rethink the available linguistic

theories and the data that underlie them.

This thesis sits squarely in that tradition. It is the first attempt to statistically rethink

the “deep structure” of lexicalized syntax, which is crucial to linguistic competence and

language learning, but whose details are often given short shrift even among pure linguists.

Like other attempts to model linguistic complexity (e.g., PCFGs and their successors), the

work has had to introduce new statistical techniques, new parameters, and new hidden

variables.2 Part of its contribution, however, is simply to place the problem on the table

for further study. Other researchers who wish to join in are welcome to ask for the training

and test data.

2Namely, a hidden web of transformations underlying a lexicon of parse fragments that are themselves
at best partly observed.
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Montréal, August.

Eugene Charniak. 1997. Statistical parsing with a context-free grammar and word statis-
tics. In Proceedings of the Fourteenth National Conference on Artificial Intelligence,
pages 598–603, Menlo Park. AAAI Press/MIT Press.

Eugene Charniak. 2000. A maximum-entropy inspired parser. In Proceedings of NAACL-
2000.

Stanley Chen and Joshua Goodman. 1996. An empirical study of smoothing techniques.
In Proceedings of the 34th Meeting of the Association for Computational Linguistics
(ACL ’96).

Stanley F. Chen and Ronald Rosenfeld. 1999. A Gaussian prior for smoothing maxi-
mum entropy models. Technical Report CMU-CS-99-108, Carnegie Mellon University,
February.

Stanley Chen. 1995. Bayesian grammar induction for language modeling. In Proceedings
of ACL.

Stanley Chen. 1996. Building Probabilistic Models for Natural Language. Ph.D. thesis,
Harvard University.

Zhiyi Chi. 1999. Statistical properties of probabilistic context-free grammars. Computa-
tional Linguistics, 25(1):131–160.

Noam Chomsky. 1959. On certain formal properties of grammars. Information and
Control, 2:137–167.

291



N. Chomsky. 1965. Aspects of the Theory of Syntax. MIT Press, Cambridge, MA.

Noam Chomsky. 1981. Lectures on Government and Binding. Foris, Dordrecht.

Noam Chomsky. 1995. The Minimalist Program. MIT Press, Cambridge, MA.

M. Collins and J. Brooks. 1995. Prepositional phrase attachment through a backed-off
model. In Proceedings of the Third Workshop on Very Large Corpora, Cambridge, MA.
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