
Time-and-Space-Efficient
Weighted Deduction

Jason Eisner, JHU

serve red onion sauce over pasta with capers

Space 𝑂 𝑉
Time: 𝑂(|𝑉| + |𝐸|)

(assuming fast iterators
and small weights)

Linear, hooray!
• 𝑉 = vertices found
• 𝐸 = hyperedges found

Toposorting nodes
only works on an
acyclic graph …

Tarjan (1972) is like
backward chaining

(Alg 3) but discovers
cycles. It returns

SCCs in toposorted
order (Alg 7).

To avoid expensive
in-hyperedges, we

can run it on
reversed graph
(same SCCs).

Can still be done
in 𝑂(|𝑉|) space.

1 3 2

6
5

4

8

7

9

Meta-Theorem

Regular Earley’s

O(𝑛 |𝒢||ℛ|)

Fast Earley’s

O(𝑛 |𝒢|)

Opedal et al. (ACL 2023)

But faster for some grammars and sentences, thanks to sparsity.
Not obvious how to extend this to probabilistic or weighted parsing,
achieving same runtime and space bounds for all classes of inputs.

Example: Parsing

Parsing as deduction
Parse

forest is
really a
proof
forest

Deduce facts
about which
constituents
exist (nodes)

Axioms are facts about input words and grammar rules

What’s a deduction system?
• Set of rules that deduce new facts from old

• They’re translated into iterators that can give any
node’s in-hyperedges and out-hyperedges

• Rules are usually written in a pattern-matching
language like Datalog or Dyna

How about weights?

• Turn the proof forest into a
computation graph!

• Each hyperedge is labeled
with a function that will be
applied to the hyperedge’s
inputs

• Each node’s weight pools the
function values from all its in-
hyperedges, using that node’s
aggregation operator, such as
+ or min (must be associative
& commutative)

Useful weight
types

• Embeddings
• Counts
• Probabilities
• Beliefs
• Entropies
• Derivations
• Translations

…

Applications (see Eisner & Filardo, 2011)

• Nearly all algorithms in formal language
theory (parsing, automata, grammar
transforms, weighted edit distance, …)

• Systematic search (backtracking with
constraint propagation and branch & bound)

• Neural networks (rules specify architecture)
• Iterative methods (loopy belief propagation)
• Reinforcement learning (MDP)
• …

CKY parsing written with Dyna rules

How can we prove facts?
• Forward chaining, starting at axioms (Alg 1)
• Chart C is set of nodes found so far

• Reached by following hyperedges that
combine other nodes from C

• Agenda A is a queue of nodes in C that still
have unfollowed out-hyperedges

• At each step, pop a node from A, combine
with previously popped nodes (they are in C)
• Add any resulting new nodes to C and A

How about weights?

• C now maps each node v that has been found
to its weight so far (the pooled value of its in-
hyperedges found so far)

• This pooled value at v is updated …
1. Each time a new in-hyperedge to v is found
2. But also, each time an existing hyperedge changes

its value because its input weights have been
updated!
• We hope this never happens,

as it increases our runtime
to process the same node multiple times

• If the hypergraph is acyclic, we can prevent it
by popping nodes from A in topologically
sorted order. (But how do we do that???)

serve red sauce over pasta with capers

repropagation!

onion

rederivation

Ideas that don’t quite work

• Hopeful forward chaining (Alg 2)
• No guarantee of topological order
• So may throw an exception

• Prioritized forward chaining (Goodman 1999)
• Not generic – must devise a topologically sorting

priority function for each deduction system
• Bucket priority queue: visits every priority level,

may do unnecessary work and break runtime
• Heap priority queue: visits only occupied levels,

but log-factor overhead, which breaks runtime
• Dynamic programming tabulation

• Visits underived nodes, which breaks runtime
• Unweighted forward chaining followed by

weighted backward chaining (Algs 1+3)
• Goodman 1999
• But backward pass must find in-edges

• Store them on forward pass (more space)
• Or recompute them (breaks runtime in

pathological cases where in-edges are harder
to compute than out-edges)

serve red onion sauce over pasta with capers

CKY tabulation
can’t get 𝑂(𝑛)
for easy cases
since it always
visits 𝑂(𝑛)
nodes

Wait to
propagate until

value
has converged
(received all

inputs)

11 61 6 10

serve red onion sauce over pasta with capers

1 1

1

1

1

1

1

1 11 1 1 1 1 1

2

2

4

11 2

2 4

4 6

11 2

22 4

2

4 6 10

Unweighted deduction
Prolog (Colmerauer & Roussel 1972), Datalog (Ceri

et al. 1990)
Parsing as Deduction (Pereira & Warren 1983; Sikkel

1993; Shieber, Schabes, & Pereira 1995)
Transformations of deduction systems (e.g., Beeri &

Ramakrishnan 1991)
Static analysis of deduction systems (McAllester,

2002; Vieira et al. 2021, 2022)
Weighted deduction

Min-weighted deduction (Nederhof 2003)
Probability-weighted deduction (Sato 1995)
Semiring-weighted deduction (Goodman 1999;

Eisner et al. 2005)
Generalized weighted deduction (Filardo & Eisner

2011)
Transformations of deduction systems (Eisner &

Blatz 2007)
Graph algorithms

Topological sorting (Kahn 1962)
Discovery & toposorting of strongly connected

components (Tarjan 1972)
Solving strongly connected components (e.g.,

Lehmann 1977)

Key references

Multiple low-space forward passes

• Unweighted forward chaining followed
by weighted forward chaining
• First pass discovers graph, finding all nodes
• For space efficiency, don’t store the

hyperedges, but each node does store its
count of in-hyperedges (Alg 4)

• Second pass decrements this counter as it
finds the same hyperedges again (Alg 5)

• Node is pushed onto the agenda only when
its counter reaches 0 (weight converged)

• Kahn 1962 but on an unmaterialized graph
• Unweighted forward chaining followed

by toposorted SCC decomposition
• Needed for cyclic case
• First pass as above (without the counting)
• On second pass, use Tarjan’s (1972)

algorithm to enumerate all SCCs in (reverse)
topologically sorted order (Alg 8)

• Derive each SCC only from SCCs that have
already converged (Alg 6)

See algorithm
animations and

dialogue in the talk
video!

