
1

Easy and Hard
Constraint Ranking in OT

Jason Eisner
U. of Rochester

August 6, 2000 – SIGPHON - Luxembourg

Outline

� The Constraint Ranking problem
� Making fast ranking faster
� Extension: Considering all competitors
� How hard is OT generation?
� Making slow ranking slower

The Ranking Problem

Constraint
Ranker

finite
positive

data <C3, C1, C2, C5, C4>

or “fail”

� Find grammar consistent with data
(or just determine whether one exists)

� How efficient can this be?
� Different from Gold learnability
� Proposed by Tesar & Smolensky

C2C1

C3C4C5

n constraints

m items

What Is Each Input Datum?

� A pairwise ranking g > h
� An attested form g
� An attested set G

� 1 grammatical element - learner doesn’t know which!
� Captures uncertainty about the representation or

underlying form of the speaker’s utterance
� Today we’ll assume learner does know underlying

gazebo { ga(zé.bo),
(ga.zé)bo }

Possibilities from Tesar & Smolensky

Key Results

� A pairwise ranking g > h
� An attested form g
� An attested set G

� 1 grammatical element - learner doesn’t know which!
� Captures uncertainty about the representation or

underlying form of the speaker’s utterance
� Today we’ll assume learner does know underlying

gazebo { ga(zé.bo),
(ga.zé)bo }

linear time in n
coNP-hard
Σ2-complete

even with
m=1

Outline

� The Constraint Ranking problem
� Making fast ranking faster
� Extension: Considering all competitors
� How hard is OT generation?
� Making slow ranking slower

2

Pairwise Rankings: g > g > g > g > hhhh

Must eliminate h before C1 or C2 makes it win
C4 or C5 » C1
C4 or C5 » C2

Satisfying these is necessary and sufficient

�

C1

����h

���g
C5C4C3C2

favor h favor g

constraints not
ranked yet

More Pairwise Rankings …

C1 or C3 or C5 » C4

C1 or C3 or C5 » C2

g’’ > h’’

C4 or C5 » C2
C4 or C5 » C1

g > h

C2 » C4
C2 » C3

C2 » C1
g’ > h’

We’ll now use Recursive Constraint Demotion (RCD)
(Tesar & Smolensky - easy greedy algorithm)

evidence from more pairs

1

2 4

5

3

C1 or C3 or C5 » C4

C1 or C3 or C5 » C2

g’’ > h’’

C4 or C5 » C2

C4 or C5 » C1

g > h

C2 » C4

C2 » C3

C2 » C1

g’ > h’

1

2 4

5

3

C1 or C3 or C5 » C4

C1 or C3 or C5 » C2

g’’ > h’’

C4 or C5 » C2

C4 or C5 » C1

g > h

C2 » C4

C2 » C3

C2 » C1

g’ > h’

Needn’t be
dominated
by anyone

1

4

3

C1 or C3 or C5 » C4

C1 or C3 or C5 » C2

g’’ > h’’

C4 or C5 » C2

C4 or C5 » C1

g > h

C2 » C4

C2 » C3

C2 » C1

g’ > h’

2

5

1

4

3

C1 or C3 or C5 » C4

C1 or C3 or C5 » C2

g’’ > h’’

C4 or C5 » C2

C4 or C5 » C1

g > h

C2 » C4

C2 » C3

C2 » C1

g’ > h’

25 »

3

1

3

C1 or C3 or C5 » C4

C1 or C3 or C5 » C2

g’’ > h’’

C4 or C5 » C2

C4 or C5 » C1

g > h

C2 » C4

C2 » C3

C2 » C1

g’ > h’

25 » » 4

Recursive Constraint Demotion

C1 or C3 or C5 » C4

C1 or C3 or C5 » C2

g’’ > h’’

C4 or C5 » C2

C4 or C5 » C1
g > h

C2 » C4

C2 » C3

C2 » C1
g’ > h’

� How to find undominated constraint at each step?
� T&S simply search: O(mn) per search ⇒ O(mn2)
� But we can do better:

� Abstraction: Topological sort of a hypergraph
� Ordinary topological sort is linear-time; same here!

shrink
representation
of hypergraph

1

2 4

5

3

C1 or C3 or C5 » C4

C1 or C3 or C5 » C2

g’’ > h’’

C4 or C5 » C2

C4 or C5 » C1

g > h

C2 » C4

C2 » C3

C2 » C1

g’ > h’

n=nodes
M=edges ≤ mn

0

2

2

2

1

maintain count
of parents 5

1

2 4

3

C1 or C3 or C5 » C4

C1 or C3 or C5 » C2

g’’ > h’’

C4 or C5 » C2

C4 or C5 » C1

g > h

C2 » C4

C2 » C3

C2 » C1

g’ > h’

1

1

0

1

maintain count
of parents

n=nodes
M=edges ≤ mn

Delete that structure in time proportional to its size
Maintain list of red nodes: find next in time O(1)
Total time: O(M+n), down from O(Mn)

Comparison: Constraint Demotion

� Tesar & Smolensky 1996
� Formerly same speed, but now RCD is faster

� Advantage: CD maintains a full ranking at all times
� Can be run online (memoryless)
� This eventually converges; but not a conservative strategy

� Current grammar is often inconsistent with past data
� To make it conservative:

� On each new datum, rerank from scratch using all data (memorized)
� Might as well use faster RCD for this
� Modifying the previous ranking is no faster, in worst case

Outline

� The Constraint Ranking problem
� Making fast ranking faster
� Extension: Considering all competitors
� How hard is OT generation?
� Making slow ranking slower

4

New Problem

� Observed data: g, g’, …
� Must beat or tie all competitors

� (Not enough to ensure g > h, g’ > h’ …)

� Just use RCD?
� Try to divide g’s competitors h into equiv. classes
� But can get exponentially many classes
� Hence exponentially many blue nodes �

But Greedy Algorithm Still Works

� Preserves spirit of RCD
� Greedily extend grammar 1 constraint at a time
� No compilation into hypergraph

1
4 3

25 »

chosen so far remaining

25 » 1»

25 » 3»

25 » 4»

check these partial grammars:
pick one making g, g’, … optimal
(maybe with ties to be broken later)

But Greedy Algorithm Still Works

� Preserves spirit of RCD
� Greedily extend grammar 1 constraint at a time
� No compilation into hypergraph
� But must run OT generation mn2 times

� To pick each of n constraints, check m forms under n grammars

� We’ll see that this is hard …

� T&S’s solution also runs OT generation mn2 times
� Error-Driven Constraint Demotion

� For n2 CD passes, for m forms, find (profile of) optimal competitor

� That requires more info from generation - we’ll return to this!

Continuous Algorithms

� Simulated annealing
� Boersma 1997: Gradual Learning Algorithm

� Constraint ranking is stochastic, with real-valued bias & variance

� Maximum likelihood
� Johnson 2000: Generalized Iterative Scaling (maxent)

� Constraint weights instead of strict ranking

� Deal with noise and free variation!

� How many iterations to convergence?

Outline

� The Constraint Ranking problem
� Making fast ranking faster
� Extension: Considering all competitors
� How hard is OT generation?
� Making slow ranking slower

Complexity Classes: Boolean

P
Ψ

NP
∃ xΨ(x)

coNP
∀ xΨ(x)

Dp

ΣΣΣΣ2 =NPNP

∃ x∀ yΨ(x,y)

…

∆∆∆∆2 =PNP

polytime w/
oracle: NP
subroutines
run in unit

time

X-hard ≥ X-complete = hardest in X

5

Complexity Classes: Integer

� Integer-valued functions have classes too
� FP (like P) Turing-machine polytime

� OptP (like NP ∃ xΨ(x)) min f(x)

� FPNP (like PNP = ∆∆∆∆2)

� Note: OptP-complete ⇒ FPNP-complete

� Can ask Boolean questions about output of an OptP-
complete function; often yields complete decision problems

OptP-complete Functions

� Traveling Salesperson
� Minimum cost for touring a graph?

� Minimum Satisfying Assignment
� Minimum bitstring b1 b2 … bn satisfying

φ(b1, b2, … bn), a Boolean formula?

� Optimal violation profile in OT!
� Given underlying form
� Given grammar of bounded finite-state constraints
� Clearly in OptP: min f(x) where f computes violation profile

� As hard as Minimum Satisfying Assignment

Hardness Proof
� Given formula φ(b1, b2, … bn)
� Need minimum satisfier b1b2 … bn (or 11…1 if unsat)
� Reduce to finding minimum violation profile

� Let OT candidates be bitstrings b1b2 … bn

� Let constraint C(φ) be satisfied if φ(b1, b2, … bn)

……
010010
100001
000only

satisfiers
survive

past here

000
C(¬b3)C(¬b2)C(¬b1)C(φ)

Subtlety in the Proof

� Turning φ into a DFA for C(φ) might blow it up
exponentially - so not poly reduction!

� Luckily, we’re allowed to assume φ is in CNF:
φ = D1^ D2 ^ … Dm

… C(Dm)
equivalent to

C(φ);
only satisfiers

survive past here

C(D1)

……
010010
100001
000000

C(¬b3)C(¬b2)C(¬b1)

Another Subtlety

� Must ensure that if there is no satisfying
assignment, 11…1 wins

� Modify each C(Di) so that 11…1 satisfies it
� At worst, this doubles the size of the DFA

… C(Dm)
equivalent to

C(φ);
only satisfiers

survive past here

C(D1)

……
010010
100001
000000

C(¬b3)C(¬b2)C(¬b1)

Associated Decision Problems

∆∆∆∆2 -completeLast bit of OptVal?

FPNP-completeOptVal

∆∆∆∆2 -completeIs some g ∈ G
optimal?

coNP-completeIs g optimal?

Dp-completeOptVal = k?
NP-completeOptVal < k?

EDCD

RCD (mult.
competitors)

6

Is some g ∈ G optimal?

� Problem is in ∆∆∆∆2 =PNP:
� OptVal < k? is in NP
� So binary search for OptVal via NP oracle
� Then ask oracle: ∃ g ∈ G with profile OptVal?

� Completeness:
� Given φ, we built grammar making the MSA optimal
� ∆∆∆∆2-complete problem: Is final bit of MSA zero?
� Reduction: Is some g in {0,1}n-10 optimal?
� Notice that {0,1}n-10 is a natural attested set

gazebo { ga(zé.bo),
(ga.zé)bo }

Outline

� The Constraint Ranking problem
� Making fast ranking faster
� Extension: Considering all competitors
� How hard is OT generation?
� Making slow ranking slower

Ranking With Attested Forms

� Complexity of ranking?
� If restricted to 1 form: coNP-complete

� no worse than checking correctness of ranking!

� General lower bound: coNP-hard
� General upper bound: ∆∆∆∆2 =PNP

� because RCD solves with O(mn2) many checks

Ranking With Attested Sets

� Problem is in ΣΣΣΣ2 ∃ x∀ yΨ(x,y)
� ∃ (ranking, g ∈ G) ∀ h : g > h

� In fact ΣΣΣΣ2-complete!
� Proof by reduction from QSAT2

� ∃ b1,…br ∀ c1,…cs φ(b1,…br, c1,…cs)

� Few natural problems in this category
� Some learning problems that get positive and

negative evidence
� OT only has implicit negative evidence: no other

form can do better than the attested form

Conclusions

� Easy ranking easier than known
� Hard ranking harder than known
� Adding bits of realism quickly drives complexity

of ranking through the roof
� Optimization adds a quantifier:

coNP-hard,
in ∆∆∆∆2

NP-complete

ranking w/ uncertaintygeneration

ΣΣΣΣ2-completeOptP-
complete

OT

NP-completeFPderivational

Open Questions

� Rescue OT by restricting something?
� Effect of relaxing restrictions?

� Unbounded violations
� Non-finite-state constraints
� Non-poly-bounded candidates
� Uncertainty about underlying form

� Parameterized analysis (Wareham 1998)
� Should exploit structure of Con

� huge (linear time is too long!) but universal

