Easy and Hard
Constraint Ranking in OT

Jason Eisner
U. of Rochester

August 6, 2000 — SIGPHON - Luxembourg

Outline

— = The Constraint Ranking problem
Making fast ranking faster

Extension: Considering all competitors
How hard is OT generation?

Making slow ranking slower

The Ranking Problem

finite
positive
data

T, [Constraint| —» <Cg, Cq, Cy, Cg, Cy>

Ranker -
m items or “fail

cy / Find grammar consistent with data

CZ (or just determine whether one exists)
c Cq C3 How efficient can this be?
5 Different from Gold learnability
n constraints Proposed by Tesar & Smolensky

What Is Each Input Datum?

Possibilities from Tesar & Smolensky
A pairwise ranking g > h
An attested form g
An attested set G
1 grammatical element - learner doesn’t know which!

Captures uncertainty about the representation or
underlying form of the speaker’s utterance

Today we’'ll assume learner does know underlying

Key Results

A pairwise ranking g > h linear timeinn
An attested form g coNP-hard even with
An attested set G 5 ,-complete } m=1

1 grammatical element - learner doesn’t know which!

Captures uncertainty about the representation or
underlying form of the speaker’s utterance

Today we’'ll assume learner does know underlying

Outline

The Constraint Ranking problem

— = Making fast ranking faster

Extension: Considering all competitors
How hard is OT generation?
Making slow ranking slower

Pairwise Rankings: g>h
favor h favor g
Cl C2 C3 C4 C5
g | * **x x
h *x ok Kk %

Must eliminate h before C1 or
C4orC5»C1
C4 or C5 » C2

C2 makes it win

Satisfying these is necessary and sufficient

More Pairwise Rankings ...

evidence from more pairs

g>h g >h g’ >h"
C4orC5»C1l |C2»Cl
C4 or C5 » C2 ClorC3orC5»C2
C2»C3
C2»C4| ClorC3orC5»C4

We'll now use Recursive Constraint Demotion (RCD)
(Tesar & Smolensky - easy greedy algorithm)

g>h g>h

g >h

—>| caorcs»Cl | C2»Cl

—>| caorcs»c2 C1 or C3 or C5 » C2

— C2»C3

—> C2»C4 ClorC3orC5»C4
g>h g >h g’ >h"

C4orC5»Cl C2»Cl

C4 or C5 » C2

ClorC3orC5»C2

C2»C3

C2»C4

ClorC3orC5»C4

g>h g >h g’ >h"
C4orC5»Cl1 C2»Cl
C4 or C5 » C2 ClorC3 orC5»C2
C2 »C3
C2»C4 ClorC3orC5»C4
Needn’t be
dominated
by anyone
g>h g >h g’ >h"
C4orC5»C1 C2»Cl
C4 or C5 » C2 ClorC3orC5»C2
C2 »C3
C2»C4 ClorC3orC5»C4

e »o

g>h g >h g’ >h"
C4orC5»C1 C2»Cl
C4 or C5 » C2 ClorC3 orC5»C2
C2 » C3
C2»C4 ClorC3orC5»C4

e »° »°

Recursive Constraint Demotion

g=>h g >h g’'>h"
C4orC5»C1l C2»Cl
C4 or C5 » C2 ClorC3orC5»C2
C2 »C3
C2»C4 ClorC3orC5»C4

How to find undominated constraint at each step?
T&S simply search: O(mn) per search = O(mn?)
But we can do better:
Abstraction: Topological sort of a hypergraph
Ordinary topological sort is linear-time; same here!

g>h g >h g’ >h"
C4orC5»Cl C2»Cl
C4 or C5 » C2 ClorC3 orC5»C2
C2 »C3
C2»C4 ClorC3orC5»C4

maintain count
of parents

n=nodes
M=edges < mn

g>h g >h g’ >h"
C4orC5»Cl1 C2»Cl
C4 or C5 » C2 ClorC3 orC5»C2
C2 »C3
C2»C4 ClorC3orC5»C4

Delete that structure in time proportional to its size
Maintain list of red nodes: find next in time O(1)

maintain count Total time: O(M+n), down from O(Mn)
of parents

1 n=nodes
M=edges < mn

Comparison: Constraint Demotion

Tesar & Smolensky 1996
Formerly same speed, but now RCD is faster

Advantage: CD maintains a full ranking at all times

Can be run online (memoryless)

This eventually converges; but not a conservative strategy
Current grammar is often inconsistent with past data

To make it conservative:
On each new datum, rerank from scratch using a// data (memorized)
Might as well use faster RCD for this
Modifying the previous ranking is no faster, in worst case

Outline

The Constraint Ranking problem
Making fast ranking faster

— = Extension: Considering all competitors

How hard is OT generation?
Making slow ranking slower

New Problem

Observed data: g, g’, ...

Must beat or tie a// competitors
(Not enough to ensure g > h, g’ > h’ ..)

Just use RCD?
Try to divide g's competitors h into equiv. classes
But can get exponentially many classes
Hence exponentially many blue nodes ®

But Greedy Algorithm Still Works

Preserves spirit of RCD
Greedily extend grammar 1 constraint at a time
No compilation into hypergraph

e»e ° e

chosen so far remaining

N e N e check these partial grammars:
pick one making g, @’, ... optimal
» ° » ° (maybe with ties to be broken later)

3

But Greedy Algorithm Still Works

Preserves spirit of RCD

Greedily extend grammar 1 constraint at a time

No compilation into hypergraph

But must run OT generation mn2 times
To pick each of n constraints, check m forms under n grammars
We'll see that this is hard ...

T&S's solution also runs OT generation mn?2 times
Error-Driven Constraint Demotion
For n2 CD passes, for m forms, find (profile of) optimal competitor
That requires more info from generation - we'll return to this!

Continuous Algorithms

Simulated annealing
Boersma 1997: Gradual Learning Algorithm
Constraint ranking is stochastic, with real-valued bias & variance
Maximum likelihood
Johnson 2000: Generalized Iterative Scaling (maxent)
Constraint weights instead of strict ranking

Deal with noise and free variation!
How many iterations to convergence?

Outline

The Constraint Ranking problem
Making fast ranking faster

Extension: Considering all competitors
How hard is OT generation?

Making slow ranking slower

Complexity Classes: Boolean

polytime w/
oracle: NP
subroutines
run in unit
time

X-hard = X-complete = hardest in X

Complexity Classes: Integer

Integer-valued functions have classes too
FP (like P) Turing-machine polytime
OptP (like NP rxw(x)) min f(x)

FPNP (like PNP = A;)

Note: OptP-complete = FPNP-complete

Can ask Boolean questions about output of an OptP-
complete function; often yields complete decision problems

OptP-complete Functions

Traveling Salesperson
Minimum cost for touring a graph?

Minimum Satisfying Assignment
Minimum bitstring b, b, ... b, satisfying
@by, by, ... b,), a Boolean formula?

Optimal violation profile in OT!
Given underlying form
Given grammar of bounded finite-state constraints
Clearly in OptP: min f(x) where f computes violation profile
As hard as Minimum Satisfying Assignment

Hardness Proof

Given formula @(b,, b,, ... b,)
Need minimum satisfier byb, ... b, (or 11...1 if unsat)
Reduce to finding minimum violation profile

Let OT candidates be bitstrings b,b, ... b,
Let constraint C(¢) be satisfied if @(b,, b,, ... b,)

C@

000 only

001 | satisfiers

010 | survive 0 ‘ 1 ‘
past here

Subtlety in the Proof

Turning ¢ into a DFA for C(¢) might blow it up
exponentially - so not poly reduction!

Luckily, we're allowed to assume @is in CNF:
@=D"D,"~..D

m

cdy) |..lcdp] c=by) | c=b,) | c(=by)
000 | equivalent to

001 C(®); 0 0 1
010 | only satisfiers 0 1
— survive past here

Another Subtlety

Must ensure that if there is no satisfying
assignment, 11...1 wins

Modify each C(D;) so that 11...1 satisfies it
At worst, this doubles the size of the DFA

cdy) |..lcdp] c=by) | c=b,) | c(=by)
000 | equivalent to

001 C(o); 0 0 1

010 | only satisfiers 0 1 0
— survive past here

Associated Decision Problems

OptVal | FPNP-complete EDCD

OptVal < k?|NP-complete
OptVal = k? | DP-complete

Last bit of OptVal?|A, -complete
Is g optimal? | coNP-complete | RCD (mult.

Is some g O G|A, -complete competitors)
optimal?

Is some g O G optimal?
Problem is in A, =PNP:

. { ga(zé.bo),
=) (ga.zé)bo }
OptVal < k? is in NP 3

So binary search for OptVal via NP oracle

Then ask oracle: [y O G with profile OptVal?
Completeness:

Given @, we built grammar making the MSA optimal

A,-complete problem: Is final bit of MSA zero?

Reduction: Is some g in {0,1}10 optimal?

Notice that {0,1}"10 is a natural attested set

Ranking With Attested Forms

Complexity of ranking?
If restricted to 1 form: coNP-complete

no worse than checking correctness of ranking!
General lower bound: coNP-hard

General upper bound: A, =PNP
because RCD solves with O(mn?) many checks

Conclusions

Easy ranking easier than known
Hard ranking harder than known

Adding bits of realism quickly drives complexity
of ranking through the roof

Optimization adds a quantifier:

generation ranking w/ uncertainty

derivational FP NP-complete | NP-complete

orT OptP- coNP-hard, Z,-complete
complete in A,

Outline

The Constraint Ranking problem
Making fast ranking faster

Extension: Considering all competitors
How hard is OT generation?

— = Making slow ranking slower

Ranking With Attested Sets

Problem is in &, [xCyw(x,y)
ranking, g0 G) Oh:g>h
In fact Z,-complete!
Proof by reduction from QSAT,
Oby,...b, O cy,...cs @by,...b,, Cq,...C)
Few natural problems in this category
Some learning problems that get positive and
negative evidence
OT only has implicit negative evidence: no other
form can do better than the attested form

Open Questions

Rescue OT by restricting something?
Effect of relaxing restrictions?

Unbounded violations

Non-finite-state constraints

Non-poly-bounded candidates

Uncertainty about underlying form
Parameterized analysis (Wareham 1998)
Should exploit structure of Con

huge (linear time is too long!) but universal

