

More Pairwise Rankings ...evidence from more pairs $\overline{\mathbf{g} > \mathbf{h}}$ $\overline{\mathbf{g}' > \mathbf{h}'}$ $\overline{\mathbf{g}'' > \mathbf{h}''}$ $\overline{\mathbf{Q} < \mathbf{c} C > \mathbf{c} 1}$ $\overline{\mathbf{C} 2 > \mathbf{c} 1}$ $\overline{\mathbf{C} 3 \text{ or } \mathbf{c} 5 > \mathbf{c} 2}$ $\overline{\mathbf{C} 4 \text{ or } \mathbf{c} 5 > \mathbf{c} 2}$ $\overline{\mathbf{C} 1 \text{ or } \mathbf{c} 3 \text{ or } \mathbf{c} 5 > \mathbf{c} 2}$ $\overline{\mathbf{C} 2 > \mathbf{c} 4}$ $\overline{\mathbf{C} 1 \text{ or } \mathbf{c} 3 \text{ or } \mathbf{c} 5 > \mathbf{c} 4$ We'll now use Recursive Constraint Demotion (RCD)
(Tesar & Smolensky - easy greedy algorithm)

g > <mark>h</mark>	g' > h'	g'' > h''
C4 or C5 » C1	C2 » C1	
C4 or C5 » C2		C1 or C3 or C5 » C2
	C2 » C3	
	C2 » C4	C1 or C3 or C5 » C4
		5 × 2 × 4
		_
3	_	
	1	

Recursive Constraint Demotion

g > h	g' > <mark>h</mark> '	g'' > h''		
C4 or C5 » C1	C2 » C1			
C4 or C5 » C2		C1 or C3 or C5 » C2		
	C2 » C3			
	C2 » C4	C1 or C3 or C5 » C4		

- How to find undominated constraint at each step?
- T&S simply search: O(mn) per search $\Rightarrow O(mn^2)$
- But we can do better:
 - Abstraction: Topological sort of a hypergraph
 - Ordinary topological sort is linear-time; same here!

Comparison: Constraint Demotion

- Tesar & Smolensky 1996
- Formerly same speed, but now RCD is faster
- Advantage: CD maintains a full ranking at all times
 - Can be run online (memoryless)This eventually converges; but not a conservative strategy
 - Current grammar is often inconsistent with past dataTo make it conservative:
 - On each new datum, rerank from scratch using all data (memorized)
 - Might as well use faster RCD for this
 - Modifying the previous ranking is no faster, in worst case

Outline

- The Constraint Ranking problem
- Making fast ranking faster
- Extension: Considering all competitors
- How hard is OT generation?
- Making slow ranking slower

New Problem

- Observed data: g, g', ...
- Must beat or tie *all* competitors
 - (Not enough to ensure $g > h, g' > h' \dots$)
- Just use RCD?
 - Try to divide g's competitors h into equiv. classes
 - But can get exponentially many classes
 - Hence exponentially many blue nodes ③

But Greedy Algorithm Still Works

- Preserves spirit of RCD
- Greedily extend grammar 1 constraint at a time
- No compilation into hypergraph

But Greedy Algorithm Still Works

- Preserves spirit of RCD
- Greedily extend grammar 1 constraint at a time
- No compilation into hypergraph
- But must run OT generation mn² times
 - To pick each of n constraints, check m forms under n grammars
 - · We'll see that this is hard ...
- T&S's solution also runs OT generation mn² times
 - Error-Driven Constraint Demotion
 - For n² CD passes, for m forms, find (profile of) optimal competitor
 - That requires more info from generation we'll return to this!

Continuous Algorithms

- Simulated annealing
 - Boersma 1997: Gradual Learning Algorithm
 - Constraint ranking is stochastic, with real-valued bias & variance
- Maximum likelihood
 - Johnson 2000: Generalized Iterative Scaling (maxent)
 - Constraint weights instead of strict ranking
- Deal with noise and free variation!
- How many iterations to convergence?

Outline

- The Constraint Ranking problem
- Making fast ranking faster
- Extension: Considering all competitors
- How hard is OT generation?
 - Making slow ranking slower

min f(x)

- OptP (like NP ∃xΨ(x))
- **FP**^{NP} (like **P**^{NP} = Δ_2)

Note: OptP-complete ⇒ FP^{NP}-complete

 Can ask Boolean questions about output of an OptPcomplete function; often yields complete decision problems

OptP-complete Functions

- Traveling Salesperson
 - Minimum cost for touring a graph?
- Minimum Satisfying Assignment
 - Minimum bitstring $b_1 b_2 \dots b_n$ satisfying $\phi(b_1, b_2, \dots b_n)$, a Boolean formula?
- Optimal violation profile in OT!
 - Given underlying form
 - Given grammar of bounded finite-state constraints
 - Clearly in OptP: min f(x) where f computes violation profile
 - As hard as Minimum Satisfying Assignment

Hardness Proof Given formula $\phi(b_1, b_2, ..., b_n)$ Need minimum satisfier $b_1b_2..., b_n$ (or 11...1 if unsat) Reduce to finding minimum violation profile Let OT candidates be bitstrings $b_1b_2..., b_n$ Let constraint C(ϕ) be satisfied if $\phi(b_1, b_2, ..., b_n)$ C(ϕ) C(\neg b_1) C(\neg b_2) C(\neg b_3)

000	only	0	0	0	
001	satisfiers	0	0	1	
010	survive	0	1	0	
	past nere				

Subtlety in the Proof • Turning ϕ into a DFA for C(ϕ) might blow it up exponentially - so not poly reduction! Luckily, we're allowed to assume φ is in CNF: $\phi = D_1 \wedge D_2 \wedge \dots D_m$ $C(D_1) | ... | C(D_m) | C(\neg b_1) | C(\neg b_2) | C(\neg b_3)$ 000 equivalent to 0 0 0 C(ø); 001 0 0 1 only satisfiers 010 0 1 0

survive past here

Another Subtlety Must ensure that if there is no satisfying assignment, 11...1 wins Modify each C(D_i) so that 11...1 satisfies it At worst, this doubles the size of the DFA $C(D_1) \mid \dots \mid C(D_m) \mid C(\neg b_1) \mid C(\neg b_2) \mid C(\neg b_3)$ 000 equivalent to 0 0 0 C(ø); 001 0 0 1 only satisfiers 010 0 1 0 survive past here

Is some $g \in G$ optimal? • Problem is in $\Delta_2 = P^{NP}$:

- OptVal < k? is in NP
 So binary search for OptVal via NP oracle
- Then ask oracle: $\exists g \in G$ with profile OptVal?
- Completeness:
 - Given ϕ , we built grammar making the MSA optimal
 - Δ₂-complete problem: Is final bit of MSA zero?
 - Reduction: Is some g in {0,1}ⁿ⁻¹0 optimal?
 - Notice that {0,1}ⁿ⁻¹0 is a natural attested set

Outline

- The Constraint Ranking problem
- Making fast ranking faster
- Extension: Considering all competitors
- How hard is OT generation?
- Making slow ranking slower

Ranking With Attested Forms

- Complexity of ranking?
- If restricted to 1 form: coNP-completeno worse than checking correctness of ranking!
- General lower bound: coNP-hard
- General upper bound: $\Delta_2 = \mathbf{P}^{\mathbf{NP}}$
 - because RCD solves with O(mn²) many checks

Problem is in Σ₂ ∃x∀yΨ(x,y) ∃(ranking, g ∈ G) ∀h : g > h In fact Σ₂-complete! Proof by reduction from QSAT₂

- Proof by reduction from QSA12
 ∃ b₁,...b_r ∀ c₁,...c_s φ(b₁,...b_r, c₁,...c_s)
- Few natural problems in this category
 - Some learning problems that get positive and negative evidence
 - OT only has implicit negative evidence: no other form can do better than the attested form

Conclusions

- Easy ranking easier than known
- Hard ranking harder than known
- Adding bits of realism quickly drives complexity of ranking through the roof
- Optimization adds a quantifier:

	generation	ranking	w/ uncertainty
derivational	FP	NP-complete	NP-complete
ОТ	OptP- complete	coNP-hard, in Δ 2	Σ_2 -complete

Open Questions

- Rescue OT by restricting something?
- Effect of relaxing restrictions?
 - Unbounded violations
 - Non-finite-state constraints
 - Non-poly-bounded candidates
 - Uncertainty about underlying form
- Parameterized analysis (Wareham 1998)
- Should exploit structure of Con
 - huge (linear time is too long!) but universal