Easy and Hard Constraint Ranking in OT

J ason Eisner
U. of Rochester

August 6, 2000-SIGPHON-Luxembourg

Key Results

- A pairwise ranking $g>h \quad$ linear time in n
- An attested form g coNP-hard \} even with
- An attested set G $\quad \Sigma_{2}$-complete $\} \mathrm{m}=1$
- 1 grammatical element - learner doesn't know which!
- Captures uncertainty about the representation or underlying form of the speaker's utterance
- Today we'll assume learner does know underlying

Outline

- The Constraint Ranking problem
- Making fast ranking faster
- Extension: Considering all competitors
- How hard is OT generation?
- Making slow ranking slower

What Is Each Input Datum?

Possibilities from Tesar \& Smolensky

- A pairwise ranking $g>h$
- An attested form g
- An attested set G
- 1 grammatical element - learner doesn't know which!
- Captures uncertainty about the representation or underlying form of the speaker's utterance
- Today we'll assume learner does know underlying

Outline

- The Constraint Ranking problem
\rightarrow "Making fast ranking faster
- Extension: Considering all competitors
- How hard is OT generation?
- Making slow ranking slower

More Pairwise Rankings ...

		evidence from more pairs	
$\mathbf{g}>\mathbf{h}$	$\mathbf{g}^{\prime}>\mathbf{h}^{\prime}$	$\mathbf{g}^{\prime \prime}>\mathbf{h}^{\prime \prime}$	
C 4 or $\mathrm{C} 5 » \mathrm{C} 1$	$\mathrm{C} 2 » \mathrm{C} 1$		
C 4 or $\mathrm{C} 5 » \mathrm{C} 2$		C 1 or C 3 or $\mathrm{C} 5 » \mathrm{C} 2$	
	$\mathrm{C} 2 » \mathrm{C} 3$		
	$\mathrm{C} 2 » \mathrm{C} 4$	C 1 or C 3 or $\mathrm{C} 5 » \mathrm{C} 4$	

We'll now use Recursive Constraint Demotion (RCD)
(Tesar \& Smolensky - easy greedy algorithm)

$\mathbf{g}>\mathbf{h}$	$\mathbf{g}^{\prime}>\mathbf{h}^{\prime}$	$\mathbf{g}^{\prime \prime}>\mathbf{h}^{\prime \prime}$
C 4 or C 5 » C 1	C 2 » C 1	
C 4 or $\mathrm{C} 5 » \mathrm{C} 2$		C 1 or C 3 or $\mathrm{C} 5 » \mathrm{C} 2$
	$\mathrm{C} 2 » \mathrm{C} 3$	
	$\mathrm{C} 2 » \mathrm{C} 4$	C 1 or C 3 or $\mathrm{C} 5 » \mathrm{C} 4$

$\mathbf{g}>\mathbf{h}$	$\mathbf{g}^{\prime}>\mathbf{h}^{\prime}$	\mathbf{g} " $>\mathbf{h}^{\prime \prime}$
C 4 or C 5 » C 1	C 2 » C 1	
C 4 or $\mathrm{C} 5 » \mathrm{C} 2$		C 1 or C 3 or $\mathrm{C} 5 » \mathrm{C} 2$
	$\mathrm{C} 2 » \mathrm{C} 3$	
	C 2 » C 4	C 1 or C 3 or C 5 » C 4

(3. 2
(4)

3
(1)

$\mathbf{g}>\mathbf{h}$	$\mathbf{g}^{\prime}>\mathbf{h}^{\prime}$	$\mathbf{g}^{\prime \prime}>\mathbf{h}^{\prime \prime}$
C 4 or C 5 » C 1	C 2 » C 1	
C 4 or C 5 » 2		C 1 or C 3 or $\mathrm{C} 5 » \mathrm{C} 2$
	C 2 » C 3	
	C 2 » C 4	C 1 or C 3 or $\mathrm{C} 5 » \mathrm{C} 4$

3

$\mathbf{g}>\mathbf{h}$	$\mathbf{g}^{\prime}>\mathbf{h}^{\prime}$	$\mathbf{g} \mathbf{g}^{\prime \prime}>\mathbf{h}^{\prime \prime}$
C 4 or C 5 » C 1	C 2 » C 1	
C 4 or C 5 » C 2		C 1 or C 3 or C 5 » C 2
	C 2 » C 3	
	C 2 » C 4	C 1 or C 3 or C 5 » C 4

maintain count

 of parents
Comparison: Constraint Demotion

- Tesar \& Smolensky 1996
- Formerly same speed, but now RCD is faster
- Advantage: CD maintains a full ranking at all times
" Can be run online (memoryless)
- This eventually converges; but not a conservative strategy - Current grammar is often inconsistent with past data
- To make it conservative:
- On each new datum, rerank from scratch using all data (memorized) Might as well use faster RCD for this
Modifying the previous ranking is no faster, in worst case

Recursive Constraint Demotion

$\mathbf{g}>\mathbf{h}$	$\mathbf{g}^{\prime}>\mathbf{h}^{\prime}$	$\mathbf{g}^{\prime \prime}>\mathbf{h}^{\prime \prime}$
C 4 or C 5 » 1 1	$\mathrm{C} 2 » \mathrm{C} 1$	
C 4 or $\mathrm{C} 5 » \mathrm{C} 2$		C 1 or C 3 or $\mathrm{C} 5 » \mathrm{C} 2$
	$\mathrm{C} 2 » \mathrm{C} 3$	
	C 2 » 4	C 1 or C 3 or $\mathrm{C} 5 » \mathrm{C} 4$

- How to find undominated constraint at each step?
- T\&S simply search: $O(m n)$ per search $\Rightarrow O\left(\mathrm{mn}^{2}\right)$
- But we can do better:
- Abstraction: Topological sort of a hypergraph
- Ordinary topological sort is linear-time; same here!

Outline

- The Constraint Ranking problem
- Making fast ranking faster
\rightarrow " Extension: Considering all competitors
- How hard is OT generation?
- Making slow ranking slower

New Problem

- Observed data: g, \mathbf{g}^{\prime}, ...
- Must beat or tie all competitors
- (Not enough to ensure $\mathbf{g}>\mathbf{h}, \mathbf{g}^{\prime}>\mathbf{h}^{\mathbf{\prime}} .$.)
- Just use RCD?
- Try to divide \mathbf{g} 's competitors \mathbf{h} into equiv. classes
- But can get exponentially many classes
- Hence exponentially many blue nodes ©

But Greedy Algorithm Still Works

- Preserves spirit of RCD
- Greedily extend grammar 1 constraint at a time
- No compilation into hypergraph
(5 »
chosen so far
4
remaining

check these partial grammars:
pick one making $\mathbf{g}, \mathbf{g}^{\prime}, \ldots$ optimal
(maybe with ties to be broken later)

But Greedy Algorithm Still Works

- Preserves spirit of RCD
- Greedily extend grammar 1 constraint at a time
- No compilation into hypergraph
- But must run OT generation mn^{2} times
- To pick each of n constraints, check m forms under n grammars
- We'll see that this is hard ...
- T\&S's solution also runs OT generation mn^{2} times
- Error-Driven Constraint Demotion
" For n^{2} CD passes, for m forms, find (profile of) optimal competitor
- That requires more info from generation - we'll return to this!

Outline

- The Constraint Ranking problem
- Making fast ranking faster
- Extension: Considering all competitors
\rightarrow " How hard is OT generation?
- Making slow ranking slower

Continuous Algorithms

- Simulated annealing
- Boersma 1997: Gradual Learning Algorithm
- Constraint ranking is stochastic, with real-valued bias \& variance
- Maximum likelihood
" Johnson 2000: Generalized Iterative Scaling (maxent)
- Constraint weights instead of strict ranking
- Deal with noise and free variation!

How many iterations to convergence?

Complexity Classes: Integer

Integer-valued functions have classes too

```
= FP (like P)
Turing-machine polytime
    = OptP (like NP }\existsx\Psi(x))\quad\operatorname{min}f(x
    = FPNP(like PNP = 坆)
```

Note: OptP-complete $\Rightarrow \mathbf{F P N P}^{\mathbf{N P}}$-complete
Can ask Boolean questions about output of an OptPcomplete function; often yields complete decision problems

OptP-complete Functions

- Traveling Salesperson
- Minimum cost for touring a graph?
- Minimum Satisfying Assignment
- Minimum bitstring $b_{1} b_{2} \ldots b_{n}$ satisfying $\phi\left(b_{1}, b_{2}, \ldots b_{n}\right)$, a Boolean formula?
- Optimal violation profile in OT!
- Given underlying form
- Given grammar of bounded finite-state constraints
- Clearly in OptP: min $f(x)$ where f computes violation profile
- As hard as Minimum Satisfying Assignment

Hardness Proof

= Given formula $\phi\left(b_{1}, b_{2}, \ldots b_{n}\right)$

- Need minimum satisfier $b_{1} b_{2} \ldots b_{n}$ (or $11 \ldots 1$ if unsat)
- Reduce to finding minimum violation profile
- Let OT candidates be bitstrings $b_{1} b_{2} \ldots b_{n}$
= Let constraint $C(\phi)$ be satisfied if $\phi\left(b_{1}, b_{2}, \ldots b_{n}\right)$

	$\mathrm{C}(\phi)$	$\mathrm{C}\left(\neg \mathrm{b}_{1}\right)$	$C\left(\neg b_{2}\right)$	$C\left(\neg b_{3}\right)$
000	only satisfiers survive past here	0	0	0
001		0	0	1
010		0	1	0

Another Subtlety

- Must ensure that if there is no satisfying assignment, 11... 1 wins
- Modify each $C\left(D_{i}\right)$ so that $11 . . .1$ satisfies it
- At worst, this doubles the size of the DFA

	$C\left(D_{1}\right)\|\ldots\| C\left(D_{m}\right)$	$C\left(\neg b_{1}\right)$	$\mathrm{C}\left(\neg \mathrm{b}_{2}\right)$	$C\left(\neg b_{3}\right)$
000	equivalent to C(ϕ); only satisfiers survive past here	0	0	0
001		0	0	1
010		0	1	0
\cdots				

Subtlety in the Proof

- Turning ϕ into a DFA for $C(\phi)$ might blow it up exponentially - so not poly reduction!
- Luckily, we're allowed to assume ϕ is in CNF:

$$
\phi=D_{1} \wedge D_{2} \wedge \ldots D_{m}
$$

	$C\left(D_{1}\right)$	$C\left(D_{m}\right)$	$\mathrm{C}\left(\neg \mathrm{b}_{1}\right)$	$C\left(\neg b_{2}\right)$	$C\left(\neg b_{3}\right)$
000	equivalent to $C(\phi)$; only satisfiers survive past here		0	0	0
001			0	0	1
010			0	1	0

Associated Decision Problems

OptVal	FP $^{\text {NP }}$-complete
OptVal $<\mathrm{k} ?$	NP-complete
OptVal = $\mathrm{k} ?$	$\mathbf{D}^{\mathbf{P}}$-complete
Last bit of OptVal?	$\boldsymbol{\Delta}_{\mathbf{2}}$-complete
Is g optimal?	coNP-complete
Is some $\mathrm{g} \in \mathrm{G}$ optimal?	$\mathbf{\Delta}_{\mathbf{2}}$-complete

EDCD

RCD (mult. competitors)

Is some $g \in G$ optimal?

- OptVal < k ? is in NP
- So binary search for OptVal via NP oracle
- Then ask oracle: $\exists \mathrm{g} \in \mathrm{G}$ with profile OptVal?
- Completeness:
- Given ϕ, we built grammar making the MSA optimal
- $\boldsymbol{\Delta}_{\mathbf{2}}$-complete problem: Is final bit of MSA zero?
- Reduction: Is some g in $\{0,1\}^{n-1} 0$ optimal?
- Notice that $\{0,1\}^{n-10}$ is a natural attested set

Ranking With Attested Forms
 Ranking With Attested Forms

Ranking With Attested Sets

= Problem is in $\boldsymbol{\Sigma}_{\mathbf{2}} \quad \exists x \forall y \Psi(x, y)$

- \exists (ranking, $g \in G) \forall h: g>h$
- In fact Σ_{2}-complete!
= Proof by reduction from QSAT ${ }_{2}$
$=\exists b_{1}, \ldots b_{r} \forall c_{1}, \ldots c_{s} \phi\left(b_{1}, \ldots, b_{r}, c_{1}, \ldots c_{s}\right)$
- Few natural problems in this category
- Some learning problems that get positive and negative evidence
- OT only has implicit negative evidence: no other form can do better than the attested form

Outline

- The Constraint Ranking problem
- Making fast ranking faster
- Extension: Considering all competitors
- How hard is OT generation?
\rightarrow " Making slow ranking slower
- Complexity of ranking?
- If restricted to 1 form: coNP-complete
- no worse than checking correctness of ranking!
- General lower bound: coNP-hard
- General upper bound: $\boldsymbol{\Delta}_{\mathbf{2}}=\mathbf{P N P}^{\mathbf{N P}}$
- because RCD solves with O(mn²) many checks

Conclusions

- Easy ranking easier than known
- Hard ranking harder than known
- Adding bits of realism quickly drives complexity of ranking through the roof
- Optimization adds a quantifier:

	generation	ranking	w/ uncertainty
derivational	FP	NP-complete	NP-complete
OT	OptP- complete	coNP-hard, in $\mathbf{\Delta}_{\mathbf{2}}$	$\boldsymbol{\Sigma}_{\mathbf{2}}$-complete

$$
-1
$$

Open Questions

- Rescue OT by restricting something?
- Effect of relaxing restrictions?
- Unbounded violations
- Non-finite-state constraints
- Non-poly-bounded candidates
- Uncertainty about underlying form
- Parameterized analysis (Wareham 1998)
- Should exploit structure of Con
- huge (linear time is too long!) but universal

