

Soft Selection	
doff a cap	
hat	
sombrero	
shirt	
sink	
colnee	
about	
\cdots	\square

From lexical to bilexical

1 Lafferty et al. 92, Charniak 95, Alshawi 96, Collins 96, Eisner 96, Goodman 97
1 Also see Magerman 94, Ratnaparkhi 97, etc.
1 Rules mention two words
E.g., each verb can have its own distribution of arguments

1 Goal: No parsing performance penalty Alas, with standard chart parser:
nonlexical $O\left(\mathrm{n}^{3}\right)$
lexical $O\left(n^{5}\right) \longleftarrow$ other methods give $O\left(n^{4}\right)$ or $O\left(n^{3}\right)$
bilexical $\mathrm{O}\left(\mathrm{n}^{5}\right)$

Simplified Formalism (1)
The cat in the hat wore a striped stovepipe to our house today.
(save these gewgaws for later)

Why CKY is slow

1. visiting relatives is boring 2. visiting relatives wear funny hats 3. visiting relatives, we got bored and stole their funny hats	
visiting relatives: NP(visiting), NP(relatives), AdvP, ... CFG says that all NPs are interchangeable So we only have to use generic or best NP. But bilexical grammar disagrees: e.g., NP(visiting) is a poor subject for wear We must try combining each analysis w/ context	
Jason Eisner (U. Penn)	

Generic Chart Parsing (2)

for each of the $O\left(\underline{\mathbf{n}}^{2}\right)$ substrings, for each of $O(\underline{n})$ ways of splitting it, for each of $\leq \underline{\mathbf{S}}$ analyses of first half for each of $\leq \underline{\mathbf{S}}$ analyses of second half, for each of $\leq \underline{\mathbf{c}}$ ways of combining them: combine, \& add result to chart if bes	
	11

Generic Chart Parsing (1)

1 interchangeable analyses have same signature 1 "analysis" = tree or dotted tree or ...

if $\leq S$ signatures, keep $\leq S$ analyses per substring
Jason Eisner (U. Penn)

Headed constituents ...

... have too many signatures.
How bad is $\Theta\left(n^{3} S^{2} c\right)$?

For unheaded constituents, S is constant: NP, VP .. (similarly for dotted trees). So $\Theta\left(\mathrm{n}^{3}\right)$.

But when different heads \Rightarrow different signatures, the average substring has $\Theta(\mathrm{n})$ possible heads and $\mathrm{S}=\Theta(\mathrm{n})$ possible signatures. So $\Theta\left(\mathrm{n}^{5}\right)$.

Analysis

Algorithm is $\mathrm{O}\left(\mathrm{n}^{3} \mathrm{~S}^{2}\right)$ time, $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~S}\right)$ space. What is S ?
$a \ldots b+b \ldots c=a \ldots b \ldots c$
Where: "b gets a parent from exactly one side "Neither a nor c previously had a parent "a's right DFA accepts c; b's DFAs can halt

Signature of $a \ldots b$ has to specify
parental status \& DFA state of a and b
$\therefore \mathrm{S}=\mathrm{O}\left(\mathrm{t}^{2}\right)$ where t is the maximum \# states of any DFA
S independent of n because all of a substring's analyses are headed in the same place - at the ends!

Spans vs. constituents

Two kinds of substring.
" Constituent of the tree: links to the rest only through its head.

"Span of the tree: links to the rest only through its endwords.

Jason Eisner (U. Penn)

M aintaining weights

Seed chart w/ word pairs $x y, \widehat{x y}, \overparen{x y}$
Step of the algorithm:

$$
\mathrm{a} \mathrm{\ldots b}+\mathrm{b} \mathrm{\ldots c}= \begin{cases}\mathrm{a} \ldots \mathrm{~b} \ldots \mathrm{c} \\
\mathrm{a} \ldots \mathrm{~b} \ldots \mathrm{c} & \begin{array}{l}
\text { We can add } \\
\text { an arc only if }
\end{array} \\
\begin{array}{ll}
\mathrm{a} \ldots \mathrm{~b} \ldots \mathrm{c} & \begin{array}{l}
\text { a.c are both } \\
\text { parentess. }
\end{array}
\end{array}\end{cases}
$$

weight $(\sqrt{a} \ldots \mathrm{~b} \ldots \mathrm{c})=$ weight $(\sqrt{a \ldots b})+$ weight $(\mathrm{b} \ldots \mathrm{c})$

+ weight of c arc from a's right DFA state
+ weights of stopping in b's left and right states
Jason Eisner (U. Penn)

Embellishments

1 More detailed parses
" Labeled edges
" Tags (part of speech, word sense, ...)
" Nonterminals

How to encode probability models

More detailed parses (2)

Using the weights

doff:

1 Deterministic grammar: All weights 0 or $-\infty$
1 Generative model:
$\log \operatorname{Pr}($ next kid $=$ nicely \mid doff in state 2$)$
1 Comprehension model:
$\log \operatorname{Pr}($ next kid $=$ nicely \mid doff in state 2 , nicely present)
Eisner 1996 compared several models, found significant differences

String-local constraints

Seed chart with word pairs like x y
We can choose to exclude some such pairs.

Example: k-gram tagging. (here $\mathrm{k}=3$)

$\begin{aligned} & \text { N P Det } \\ & \text { one cat in the hat } \end{aligned}$	tag with part-of-speech trigrams weight $=\log \operatorname{Pr}($ the $\mid \operatorname{Det}) \operatorname{Pr}($ Det $\mid N, P)$
	excluded bigram: the 2 words disagree on tag for "cat"

Conclusions

1 Bilexical grammar formalism

How much do 2 words want to relate?
Flexible: encode your favorite representation
Flexible: encode your favorite prob. model
1 Fast parsing algorithm
Assemble spans, not constituents
$O\left(n^{3}\right)$, not $O\left(n^{5}\right)$. Precisely, $O\left(n^{3} t^{2} g^{3} m\right)$. $t=m a x$ DFA size, $g=$ max senses/word, $m=\#$ label types These grammar factors are typically small
Jason Eisner (U. Penn)

