

- 1 More detailed parses
 - » Labeled edges
 - » Tags (part of speech, word sense, ...)
 - » Nonterminals
- 1 How to encode probability models

Jason Eisner (U. Penn)

Conclusions

- Bilexical grammar formalism
 How much do 2 words want to relate?
 Flexible: encode your favorite representation
 Flexible: encode your favorite prob. model
- Fast parsing algorithm
 Assemble spans, not constituents
 O(n³), not O(n⁵). Precisely, O(n³t²g³m).
 t=max DFA size, g=max senses/word, m=# label types
 These grammar factors are typically small

25

Jason Eisner (U. Penn)