Transformational Priors Over Grammars

J ason Eisner
Johns Hopkins University
July 6, 2002 - EMNLP

The Big Concept

Problem: Too many rules!

- Especially with lexicalization and flattening (which help).
- So it's hard to estimate probabilities.

Solution: Related rules tend to have related probs

- POSSIBLE relationships are given a priori
- LEARN which relationships are strong in this language (just like feature selection)

Method has connections to:

- Parameterized finite-state machines (Monday's talk)
- Bayesian networks (inference, abduction, explaining away)

Linguistic theory (transformations, metarules, etc.)

The Big Concept

- Want to parse (or build a syntactic language model)
- Must estimate rule probabilities.
- Problem: Too many possible rules!

Especially with lexicalization and flattening (which help).

- So it's hard to estimate probabilities.

Too Many Rules ... But Luckily ...

Rules Are Related

one fact!
though PCFG represents it as many apparently unrelated rules.

Rules Are Related

All This Is Quantitative!

Rules Are Related

Format of the Rules

Why use flat rules?

- Avoids silly independence assumptions: a win - Johnson $1998 \rightarrow$
- New experiments

- Our method likes them
- Traditional rules aren't systematically related
- But relationships exist $\mathrm{S} \rightarrow$ NP put NP PP among wide, flat rules that express different ways of filling same roles

Format of the Rules

Why use flat rules?

- Avoids silly independence assumptions: a win - Johnson $1998 \rightarrow$ New experiments

- Our method likes them
- Traditional rules aren't systematically related
- But relationships exist $S \rightarrow N P$, NP put PP among wide, flat rules that express different ways of filling same roles

Format of the Rules

Why use flat rules?

- Avoids silly independence assumptions: a win - Johnson $1998 \rightarrow$
- New experiments
- Our method likes them
- Traditional rules aren't systematically related
- But relationships exist
 that express different ways of filling same roles

Format of the Rules

Why use flat rules?

- Avoids silly independence
assumptions: a win - Johnson $1998 \rightarrow$ - New experiments

- Our method likes them
- Traditional rules aren't systematically related
- But relationships exist among wide, flat rules that express different ways of filling same roles
in short, flat rules are the locus of transformations

Format of the Rules

Why use flat rules?

- Avoids silly indep. assumptions: a win
- Johnson $1998 \rightarrow$
- New experiments
- Our method likes them
- Traditional rules aren't systematically related
- But relationships exist among wide, flat rules
in short, flat rules are the that express different ways of filling same roles
flat rules are the locus of exceptions (e.g., put is exceptionally likely to take a PP, but not a second PP)

Intuition: Listing is costly and hard to learn.
Most rules are derived. Hey - J ust Like Linguistics!

Lexicalized syntactic formalisms: CG, LFG, TAG, HPSG, LCFG ...

The Rule Smoothing Task

- Input: Rule counts (from parses or putative parses)
- Output: Probability distribution over rules
- Evaluation: Perplexity of held-out rule counts
- That is, did we assign high probability to the rules needed to correctly parse test data?

TASK: counts \rightarrow probs ("smoothing")

| $\mathrm{S} \rightarrow \ldots$ | encourage | question | fund | merge | repay | remove |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| To — NP | $\mathbf{1 4 2}$ | $\mathbf{1 1 7}$ | $\mathbf{3 9 7}$ | $\mathbf{2 1 0}$ | $\mathbf{3 2 9}$ | $\mathbf{2 2 2}$ |
| To — NP PP | $\mathbf{7 7}$ | $\mathbf{6 4}$ | $\mathbf{1 2 0}$ | $\mathbf{1 8 1}$ | $\mathbf{8 8}$ | $\mathbf{8 0}$ |
| To AdvP — NP | 0.55 | 0.47 | 1.1 | 0.82 | 0.91 | $\mathbf{7 9}$ |
| To AdvP — NP PP | 0.18 | 0.15 | 0.33 | 0.37 | 0.26 | $\mathbf{5 0}$ |
| NP — NP . | 22 | $\mathbf{1 6 1}$ | 7.8 | 7.5 | 7.9 | 7.5 |
| NP — NP PP | $\mathbf{7 9}$ | 8.5 | 2.6 | 2.7 | 2.6 | 2.6 |
| NP Md — NP | $\mathbf{9 0}$ | 2.1 | 2.4 | 2.0 | 24 | 2.6 |
| NP Md — NP PPTmp | 1.8 | 0.16 | 0.17 | 0.16 | $\mathbf{6 9}$ | 0.19 |
| NP Md — PP PP | 0.1 | 0.027 | 0.027 | 0.038 | 0.078 | $\mathbf{5 9}$ |
| To — PP | 9.2 | 6.5 | 12 | $\mathbf{1 2 6}$ | $\mathbf{1 0}$ | 9.1 |
| To — S | $\mathbf{9 8}$ | 1.6 | 4.3 | 3.9 | 3.6 | 2.7 |
| NP — SBar . | 3.4 | $\mathbf{1 9 0}$ | 3.2 | 3.2 | 3.2 | 3.2 |
| (other) | | | | | | |

Only a Few Deep Facts

- $\frac{\text { fund behaves like a }}{\text { transitive verb } 10 \% \text { of }}$
time ...
" and noun 90% of time ...
".. takes purpose clauses
5 times as often as
typical noun.

$$
\begin{aligned}
& 26 \text { NP } \rightarrow \text { DT fund } \\
& 24 \text { NN } \rightarrow \text { fund } \\
& \text { NP } \rightarrow \text { DT NN fund } \\
& \text { NNP } \rightarrow \text { fund } \\
& \mathrm{S} \rightarrow \text { TO fund } \mathrm{NP} \\
& \quad \text { NP } \rightarrow \text { NNP fund } \\
& 2 \mathrm{NP} \rightarrow \text { DT NPR NN fund } \\
& 2 \underset{\mathrm{NP}}{\mathrm{~S}} \rightarrow \underset{\mathrm{TO}}{\mathrm{SO}} \text { fund } \mathrm{NP} \text { PP }
\end{aligned}
$$

Smoothing via a Bayesian Prior

- Choose grammar to maximize p(observed rule counts | grammar)*p(grammar)
- grammar = probability distribution over rules

Our job: Define p(grammar)
Question: What makes a grammar likely, a priori?
This paper's answer: Systematicity.
Rules are mainly derivable from other rules. Relatively few stipulations ("deep facts").

Smoothing via a Bayesian Prior

- Previous work (several papers in past decade):
- Rules should be few, short, and approx. equiprobable
- These priors try to keep rules out of grammar
- Bad idea for lexicalized grammars ...
- This work:
- Prior tries to get related rules into grammar
- transitive \rightarrow passive at $\approx 1 / 20$ the probability
- NSF spraggles the project \rightarrow The project is spraggled by NSF
- Would be weird for the passive to be missing, and prior knows it!
- In fact, weird if p (passive) is too far from $1 / 20$ * p(active) .--
- Few facts, not few rules!

Why not just give any two PP-insertion arcs the same probability?

Arc Probabilities:
 A Conditional Log-Linear Model

To make sure outgoing arcs sum to 1 , introduce a normalizing factor Z (at each vertex).
$S \rightarrow N P$ see $N P$ Insert $\widehat{P P} S \rightarrow N P$ see $N P$ PP $\frac{1}{Z} \exp \theta_{3}+\theta_{5}+\theta_{6}$

Models p (arc | vertex)

Arc Probabilities:

A Conditional Log-Linear Model
Not enough just to say "Insert PP."
Each arc bears several features, whose weights determine its probability.

$$
\begin{gathered}
\mathrm{S} \rightarrow \mathrm{NP} \text { see } \mathrm{NP} \text { Insert } \mathrm{PP} \mathrm{~S} \rightarrow \mathrm{NP} \text { see } \mathrm{NP} \mathrm{PP} \\
\frac{1}{\mathrm{Z}} \exp \theta_{3}+\theta_{6}+\theta_{7} \\
\text { feature weights } \\
\text { a feature of weight } 0 \text { has no effect } \\
\text { raising a feature's weight strengthens all arcs with that feature }
\end{gathered}
$$

Arc Probabilities:
A Conditional Log-Linear Model

more places to insert

Both are PP-adjunction arcs. Same probability? Almost but not quite ...

Arc Probabilities:												
A Conditional Log-Linear Model												
$\rightarrow \mathrm{NP} \text { see } \underset{\frac{1}{\mathrm{Z}^{\prime}} \exp \theta_{3}+\theta_{5}+\theta_{7}}{\text { Insert } P P \text { see } \mathrm{PP}} \mathrm{~S} \rightarrow \mathrm{NP}$												
$\mathrm{S} \rightarrow \mathrm{NP}$ see $\underset{\mathrm{NP} \text { Insert } P \text { P }}{\frac{1}{Z} \exp \theta_{3}+\theta_{6}+\theta_{7}} \mathrm{~S} \rightarrow \mathrm{NP}$ see NP PP												
θ_{3} : appears on arcs that insert PP into S θ_{5} : appears on arcs that insert PP just after head θ_{6} : appears on arcs that insert PP just after NP θ_{7} : appears on arcs that insert PP just before edge												

Arc Probabilities:

Conditional Log-Linear Model
$S \rightarrow N P$ see $N P \quad$ Insert $P P \quad S \rightarrow N P$ see $N P P P$
$\frac{1}{Z} \exp \theta_{3}+\theta_{6}+\theta_{7}$
θ_{3} : appears on arcs that insert PP into s
θ_{5} : appears on arcs that insert PP just after head
θ_{6} : appears on arcs that insert PP just after NP
θ_{7} : appears on arcs that insert PP just before edge
Arc Probabilities:
A Conditional Log-Linear Model

\($$
\begin{array}{ccc}S \rightarrow N P \\
\text { see } N P \text { Insert } P P & \begin{array}{lll}S \rightarrow N P\end{array}
$$

\frac{1}{Z} \exp \& \theta_{3} \&\)	$N P$	$P P$
θ_{6}	$+\theta_{7}$	\end{array}

θ_{3} : appears on arcs that insert $P P$ into s
θ_{5} : appears on arcs that insert PP just after head
θ_{6} : appears on arcs that insert PP just after NP
θ_{7} : appears on arcs that insert PP just before edge

Arc Probabilities: A Conditional Log-Linear Model

$S \rightarrow N P$ see $N P$ Insert $P P$	$S \rightarrow N P$	
$\frac{1}{Z} \exp$	θ_{3}	$+\theta_{6}+\theta_{7}$

These arcs share most features.
So their probabilities tend to rise and fall together.
To fit data, could manipulate them independently (via θ_{5}, θ_{6}).

Prior Distribution

= PCFG grammar is determined by $\theta_{0}, \theta_{1}, \theta_{2}, \ldots$

Prior Distribution

- Grammar is determined by $\theta_{0}, \theta_{1}, \theta_{2}, \ldots$
- Our prior: $\quad \theta_{i} \sim N\left(0, \sigma^{2}\right)$, IID
- Thus: - $\log \mathrm{p}$ (grammar) $=c+\left(\theta_{0}{ }^{2}+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\ldots\right) / \sigma^{2}$
- So good grammars have few large weights.
- Prior prefers one generalization to many exceptions.

Arc Probabilities:
A Conditional Log-Linear Model

To raise both rules' probs, cheaper to use θ_{3} than both $\theta_{5} \& \theta_{6}$. This generalizes - also raises other cases of PP-insertion!

Reparameterization

- Grammar is determined by $\theta_{0}, \theta_{1}, \boldsymbol{\theta}_{2}, \ldots$
- A priori, the θ_{i} are normally distributed
- We've reparameterized!
- The parameters are feature weights θ_{i}, not rule probabilities
- Important tendencies captured in big weights
- Similarly: Fourier transform - find the formants
- Similarly: SVD - find the principal components
- It's on this deep level that we want to compare events, impose priors, etc.

```
C(3
    (NP [J\ hig) indecer (909 (S9P Bichers) (YOP Truat) Co.) ]
    [AOVP alse]
    vets
    (ITP fatures)
    (DF-LOC Iz
            (sp
            CNF CTM
                    strategy
                    CBRNS that
                            [3
                            \P% on (IFP averaga) )
                            (VIz has)
                            auded
                            \MP {CD Oan] {TS peroentage) point)
                        SPP क0
                            CSP
```



```
                    ratuaral )])j)}
    4. .] 3)
```


Arc Probabilities:

 A Conditional Log-Linear Model

To raise both probs, cheaper to use θ_{3} than both $\theta_{82} \& \theta_{84}$ This generalizes - also raises other cases of PP-insertion!

```
C I%
```



```
    (a20) [00 nlas) ]
    (17) Crat uen)
        (%F (008 fatares) )
        <PR-4nc {3s ia)
            ce
            E0N3
            (MESF-1 (15 that) )
            {8
                    (am)
                    (SP [D[ average] ))
            ($7-5y] [-9T5E-*T*-1) )
            1% (V)s has)
                    (%) (V%y addm0]
```



```
                    (70-cta (%0) to)
                        IP
                        (rnos itn) (03 enhmasedl (53 fmall (TN5 'ml )
    4. -% 1]
                                    TTT retvers) (1113j))
```

 n-gram
 Collins arg/adj
 hybrids

Simple Bigram Model (Eisner 1996)

\author{

- A parser assumes tree is probable if its component rules are
}

" Try assuming rule is probable if its component bigrams are:

- Markov process, 1 symbol of memory; conditioned on L, w, side of -
- One-count backoff to handle sparse data (Chen \& Goodman 1996) $p(L \rightarrow A B C-D \mid w)=p(L \mid w) \cdot p(A B C-D \mid L, w)$

Perplexity: Predicting test frames	
	basic ${ }_{\text {flat }}$ non-flat ${ }^{\text {b }}$
Treetank	∞ -
1-gram	1774.9 N6435.1
2-gram	(135.2 199.3
3-gram Collins ${ }^{\text {s }}$	136.5 363.0 $\binom{177.4}{494.5}$
transformation	(118.6)
$\begin{aligned} & \begin{array}{c} 20 \% \text { further } \\ \text { reduction } \end{array} \\ & \text { fan get big perplevious lit. } \\ & \text { just by flattening. } \end{aligned}$	

Perplexity: Predicting test frames					
	basic		Trectuak Marlov		
Treebonk	${ }_{1774}$	a			
1-gram	1774.9	N6435.1	340.9	160.0	193.2
2 -gram	135.2	199.3	127.2	116.2	174.7
3 -gram	136.5	177.4	132.7	123.3	174.8
Collins ${ }^{\text {c }}$	363.0	(494.5)	197.9	best m	
Mansformatios	11®.6			hout trans	ormations
ancragor ${ }^{\text {a }}$	102.3			,	

Forced matching task

- Test model's ability to extrapolate novel frames for a word
- Randomly select two (word, frame) pairs from test data - ... ensuring that neither frame was ever seen in training
- Ask model to choose a matching:

word $1 —$ frame A	word 1		
word $2 —$ frame B	word 2	$>$	frame A
:---			
frame B			

i.e., does frame A look more like word 1's known frames or word 2's?

- 20\% fewer errors than bigram model

> Summary: Reparameterize PCFG in terms of deep transformation weights, to be learned under a simple prior.

Problem: Too many rules!

- Especially with lexicalization and flattening (which help).
- So it's hard to estimate probabilities.

Solution: Related rules tend to have related probs

- POSSIBLE relationships are given a priori
- LEARN which relationships are strong in this language
(just like feature selection)
Method has connections to:
- Parameterized finite-state machines (Monday's talk)
- Bayesian networks (inference, abduction, explaining away)
- Linguistic theory (transformations, metarules, etc.)

FIN

