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The Big Concept

Want to parse (or build a syntactic language mode).
Must estimate rule probabilities.
Problem: Too many possible rules!

Especially with lexicalization and flattening (which help).
So it's hard to estimate probabilities.

The Big Concept

Problem: Too many rules!
Especially with lexicalization and flattening (which help).
So it's hard to estimate probabilities.

Solution: Related rules tend to have related probs
POSSIBLE relationships are given a priori

LEARN which relationships are strong in this language
(just like feature selection)

Method has connections to:
Parameterized finite-state machines (Monday’s talk)
Bayesian networks (inference, abduction, explaining away)
Linguistic theory (transformations, metarules, etc.)

Problem: Too Many Rules
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Too Many Rules ...
But Luckily ...
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Rules Are Related
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Rules Are Related
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discovered, like The grant funded toda
unaccusativity |... unlikely sentence, but if we do see it,

is unaccusativity plausible? (vs. other parse)

All This Is Quantitative!
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Format of the Rules
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Format of the Rules

Why use flat rules? \
Avoids silly |ndependence/ | \\
assumptions: a win NP put

Johnson 1998 -> Jim
New experiments

Our method likes them

Traditional rules aren’t

systematically related

But relationships exist S — NP put NP PP
among wide, flat rules

that express different

ways of filling same roles

p|zza in the oven
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Format of the Rules

Why use flat rules?
Avoids silly indep.
assumptions: a win

Johnson 1998 ->
New experiments

Our method likes them
Traditional rules aren’t
systematically related
But relationships exist
among wide, flat rules
that express different
ways of filling same roles

flat rules are the

locus of exceptions

(e.g., put is exceptionally likely

to take a PP, but not a second PP)

in short, flat rules are the
locus of transformations

Intuition: Listing is costly and hard to learn.
Most rules are derived.

Hey - Just Like Linguistics!

Lexicalized syntactic formalisms: CG, LFG, TAG, HPSG, LCFG ...

Grammar = set of “lexical |  flat rules are the

entries” very like flat rules L locus of exceptions
Exceptional entries OK (e.g., put is exceptionally likely
p to take a PP, but not a second PP)

listed entries

/derived entries

Explain “coincidental” patterns

of lexical entries: metarules/ in short, flat rules are the
transformations/lexical locus of transformations
redundancy rules




The Rule Smoothing Task

Input: Rule counts (from parses or putative parses)
Output: Probability distribution over rules

Evaluation: Perplexity of held-out rule counts

That is, did we assign high probability to the rules
needed to correctly parse test data?

The Rule Smoothing Task

Input: Rule counts (from parses or putative parses)
Output: Probability distribution over rules
Evaluation: Perplexity of held-out rule counts

Rule probabilities: p(S— NP put NP PP | S, put)

Infinite set of possible rules; so we will estimate

p(S— NP Adv PP put PP PP NP AdjP S| S, put)
= a very tiny number > 0

Grid of Lexicalized Rules

Training Counts

S - ... encourage question| fund |merge |repay remove
To —NP
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S - ... encourage |question| fund |merge |repay |remove
To —NP 1 1 5 1 3 2
To —NP PP 1 1 2 2 1 1
To AdvP —NP 1
To AdvP —NP PP 1
NP —NP . 2
NP —NP PP . 1
NP Mi —NP 1
NP Mi —NP PPTnp 1
NP Mi —PP PP 1
To —PP 1
To —S 1
NP — SBar . 2

(other)

Count of (word, frame)

Naive prob. estimates (MLE model)

TASK: counts - probs (“smoothing”)

S - ... encourage |question| fund |merge |repay |remove
To —NP 200 167 714 250 600 333
To —NP PP 200 167 286 500 200 167
To AdvP —NP 0 0 0 0 0 167
To AdvP —NP PP 0 0 0 0 0 167
NP —NP . 0 333 0 0 0 0
NP —NP PP . 200 0 0 0 0 0
NP M —NP 200 0 0 0 0 0
NP Mi —NP PPTnp 0 0 0 0 200 0
NP Mi —PP PP 0 0 0 0 0 167
To —PP 0 0 0 250 0 0
To —S 200 0 0 0 0 0
NP —SBar . 0 333 0 0 0 0
(other) 0 0 0 0 0 0

Estimate of p(frame | word) * 1000

S - ... encourage |question| fund |merge |repay |remove
To —NP 142 117 397 210 329 222
To —NP PP 77 64 120 181 88 80
To AdvP —NP 0.55 0.47 1.1 0.82 0.91 79
To AdvP —NP PP 0.18 0.15 0.33 0.37 0.26 50
NP —NP . 22 161 7.8 7.5 7.9 7.5
NP —NP PP . 79 85 2.6 2.7 2.6 2.6
NP Md —NP 90 2.1 2.4 2.0 24 2.6
NP Mi —NP PPTnp 138 0.16 0.17 0.16 | 69 0.19
NP M —PP PP 0.1 0.027| 0.027 0.038| 0.078| 59
To —PP 9.2 6.5 12 126 10 9.1
To —S 98 1.6 4.3 3.9 3.6 2.7
NP —SBar . 3.4 190 3.2 3.2 3.2 3.2
(other) 478 449 449 461 461 482

Estimate of p(frame | word) * 1000




Smooth Matrix via LSA / SVD, or SBS?

S & ... encourage |question| fund |merge |repay |remove
To —NP 1 1 5 1 3 2
To —NP PP 1 1 2 2 1 1
To AdvP —NP 1
To AdvP —NP PP 1
NP —NP . 2
NP —NP PP . 1
NP Mi —NP 1
NP Mi —NP PPTnp 1
NP Mi —PP PP 1
To —PP 1
To —S 1
NP —SBar . 2

(other)

Count of (word, frame)

Smoothing via
a Bayesian Prior

Choose grammar to maximize
p(observed rule counts | grammar)*p(grammar)

grammar = probability distribution over rules

Our job: Define p(grammar)
Question: What makes a grammar likely,

a priori?
This paper’s answer: Systematicity.
Rules are mainly derivable from other rules.
Relatively few stipulations (“deep facts”).

Only a Few Deep Facts
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fund behaves like a
transitive verb 10% of
time ...

and noun 90% of time ...

... takes purpose clauses
5 times as often as
typical noun.
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Smoothing via
a Bayesian Prior

Previous work (several papers in past decade):
Rules should be few, short, and approx. equiprobable
These priors try to keep rules out of grammar
Bad idea for lexicalized grammars ...

This work:
Prior tries to get related rules into grammar
transitive = passive at =1/20 the probability <=7~ Ny

\

NSF spraggles the project = The project is spraggled by NSF \\
Would be weird for the passive to be missing, and prior knows it! ‘;
In fact, weird if p(passive) is too far from 1/20 * p(active) ---~

Few facts, not few rules!

See paper for various evidence

for now, stick to that these should be predictive.

Simple Edit Transformations

S— NP see
I see
S— NP see NP PP
I see you I see you with my own eyes
Np
o % S— NP see SBAR
do fancier things by I see that it’s love
a sequence of edits

S— NP see SBAR PP @ S— NP see PP SBAR
I see thatit’s love ~ SBAR,P I see with my own eyes

with my own eyes that it’s love

4

S— NP see NP

p(S— NP see SBAR PP) H

=(0.5%* * * +0.1* +/

0.1

S— NP see
I see

S— NP see NP PP
I see you with my own eyes

S— NP see SBAR Q9
| see that it’s love

Halt

- S— NP see PP SBAR
I see that it’s love 1 see with my own eyes
with my own eyes that it’s love




S— NP Adv PP see PP PP NP AdjP S S— DT JJ see
graph goes on forever ... the holy see T

& \4 noun

paradigm

START S— NP see
Isee —_,

>/ l Etransitive

verb paradigm

0.1

S— NP see NP
| see you

whole transitive
verb paradigm Could get mixture behavior
(with probs) by adjusting start probs.
But not quite right - can't
handle negative exceptions
within a paradigm.

And what of the language’s
transformation probs?

S— NP see SBAR PP
| see that it’s love
with my own eyes

Infinitely Many Arc Probabilities:
Derive From Finite Parameter Set

So NP see - S— NP see PP

!

S— NP see NP ‘ S— NP see NP PP
\ PP/ \\

more places to insert

so probability is split among more options

!

Why not just give any two PP-insertion arcs the same
probability?

Arc Probabilities:
A Conditional Log-Linear Model

To make sure outgoing
arcs sum to 1, introduce a
normalizing factor Z

(at each vertex).

S NP see NP S— NP see NP PP

7 €Xp B,+05+6;

<
Se Models p(arc | vertex)
4’0.

Arc Probabilities:
A Conditional Log-Linear Model

S— NP see nsert P S-»NP

inserted into slightly
different context

S NP see

{

S— NP see NP
LA

more places to insert

Both are PP-adjunction arcs. Same probability?
Almost but not quite ...

Arc Probabilities:
A Conditional Log-Linear Model

Not enough just to say “Insert PP.”
Each arc bears several features, whose weights
determine its probability.

S NP see NP S— NP see NP PP

7 eXp B,+65+6;

\/

feature weights

a feature of weight 0 has no effect
raising a feature’'s weight strengthens all arcs with that feature

Arc Probabilities:
A Conditional Log-Linear Model

S— NP see S— NP see PP
1
2 €Xp 65+6,+6,

S— NP see NP S—» NP see NP PP

7 eXp 8,+0,+6;

{

0, : appears on arcs that insert PP into S

0; : appears on arcs that insert PP just after head
6; : appears on arcs that insert PP just after NP

0, : appears on arcs that insert PP just before edge




Arc Probabilities:
A Conditional Log-Linear Model

S— NP see So NP
1 +e5 +Ei7

7 €Xp 0,

{

{

So NP see NP S NP see
1 +e6 +e7

7 exp 6,

6, : appears on arcs that insert PP into S

05 : appears on arcs that insert PP just after head
6; : appears on arcs that insert PP just after NP

0, : appears on arcs that insert PP just before edge

Arc Probabilities:
A Conditional Log-Linear Model

S— NP see So NP
1 +e5 +Ei7

7 €Xp 0,

{

{

So NP see NP S NP see
1 +e6 +e7

7 exp 6,

These arcs share most features.
So their probabilities tend to rise and fall together.
To fit data, could manipulate them independently (via 65,6;).

Prior Distribution

PCFG grammar is determined by 6, 6,,6,, ...

Universal Grammar
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Prior Distribution

Grammar is determined by 6y, 6,,0,, ...
Our prior: 6, ~ N(0, 02), 11D
Thus: -log p(grammar) = c+ (8,8,240,%+...)/0?

So good grammars have few large weights.

Prior prefers one generalization to many
exceptions.




Arc Probabilities:
A Conditional Log-Linear Model

S NP see So NP
1
7 €Xp 0, +0; +06,
S NP see NP So NP see
Zexp 0, +6, +6,

To raise both rules’ probs, cheaper to use 6, than both 85 & 6.

This generalizes — also raises other cases of PP-insertion!

Arc Probabilities:
A Conditional Log-Linear Model

S— NP fund NP S— NP fund
: Iﬁ_l

77 €Xp 95 +0;, +6,  +0

|

{

S— NP see NP

] S— NP see

7 €Xp 8;  +6,,+6;, +0

To raise both probs, cheaper to use 8, than both 65, & 65,.
This generalizes — also raises other cases of PP-insertion!

Reparameterization

Grammar is determined by 6y, 6,,6,, ...
A priori, the 6; are normally distributed

We've reparameterized!

The parameters are feature weights 6,, not rule

probabilities

Important tendencies captured in big weights
Similarly: Fourier transform — find the formants
Similarly: SVD - find the principal components

It's on this deep level that we want to compare events,
impose priors, etc.
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Simple Bigram Model (Eisner 1996)

A parser assumes tree is probable if its component rules are:

EN

Try assuming rule is probable if its component bigrams are:

P(A | start) x p(B | A)
xp(C[B)xp(——1C)
xp(D | —) x p(stop | D)

Markov process, 1 symbol of memory; conditioned on L, w, side of —
One-count backoff to handle sparse data (Chen & Goodman 1996)
p(L - ABC—DJ| W = p(L| Wep(ABC—D] Lw
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Perplexity: Predicting test frames

Perplexity: Predicting test frames
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i {test rules with 2 training observations

E
p(rule | head, S)
¥
best E
model with
transformations d
' &
B
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best model without transformations

Forced matching task

Test model’s ability to extrapolate novel frames for a word

Randomly select two (word, frame) pairs from test data
... ensuring that neither frame was ever seen in training

Ask model to choose a matching:

word 1

frame A word 1 frame A
word 2 >

frame B word 2 frame B

i.e., does frame A look more like word 1's known frames or word 2's?

20% fewer errors than bigram model

Graceful degradation
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Summary: Reparameterize PCFG in
terms of deep transformation weights,
to be learned under a simple prior.

Problem: Too many rules!
Especially with lexicalization and flattening (which help).
So it's hard to estimate probabilities.

Solution: Related rules tend to have related probs
POSSIBLE relationships are given a priori

LEARN which relationships are strong in this language
(just like feature selection)

Method has connections to:
Parameterized finite-state machines (Monday’s talk)
Bayesian networks (inference, abduction, explaining away)
Linguistic theory (transformations, metarules, etc.)
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