Transformational Priors Over Grammars

Jason Eisner Johns Hopkins University

July 6, 2002 - EMNLP

The Big Concept

- Want to parse (or build a syntactic language model).
- Must estimate rule probabilities.
- Problem: Too many possible rules!
 - Especially with lexicalization and flattening (which help).
 - So it's hard to estimate probabilities.

The Big Concept • **Problem**: Too many rules! - Especially with lexicalization and flattening (which help). - So it's hard to estimate probabilities. Solution: Related rules tend to have related probs • POSSIBLE relationships are given a priori - LEARN which relationships are strong in this language (just like feature selection) Method has connections to: Parameterized finite-state machines (Monday's talk) Bayesian networks (inference, abduction, explaining away)

Linguistic theory (transformations, metarules, etc.)

The Rule Smoothing Task

- Input: Rule counts (from parses or putative parses)
- Output: Probability distribution over rules
- Evaluation: Perplexity of held-out rule counts
 That is, did we assign high probability to the rules needed to correctly parse test data?

The Rule Smoothing Task

- Input: Rule counts (from parses or putative parses)
- **Output**: Probability distribution over rules
- Evaluation: Perplexity of held-out rule counts

Rule probabilities: $p(s \rightarrow NP \text{ put } NP PP | s, put)$

Infinite set of possible rules; so we will estimate

 $\begin{array}{l} p(\underline{S \rightarrow NP \ Adv \ PP \ put \ PP \ PP \ NP \ AdjP \ S \ | \ S \ , \ put) \\ = a \ very \ tiny \ number > 0 \end{array}$

Training	ı Coi	ints				
i i annig	,	unto				
s → (encourage	question	fund	merge	repay	remove
To - NP	1	1	5	1	3	2
To - NP PP	1	1	2	2	1	1
To AdvP — NP						1
To AdvP — NP P	P					1
NP — NP .		2				
NP — NP PP .	1					
NP Md — NP	1					
NP Md - NP PPT	mp				1	
NP Md - PP PP						1
To — PP				1		
To — S	1					
NP — SBar .		2				
(other)						
		Count o	f (word,	frame)		

Naivo prob	octi	mata			odo	I)
Naive prob.	esti	nate	5 (11		loue	1)
s → ei	ncourage	question	fund	merge	repay	remove
To - NP	200	167	714	250	600	333
To - NP PP	200	167	286	500	200	167
To AdvP — NP	0	0	0	0	0	167
To AdvP — NP PP	0	0	0	0	0	167
NP — NP .	0	333	0	0	0	0
NP — NP PP .	200	0	0	0	0	0
NP Md — NP	200	0	0	0	0	0
NP Md - NP PPTm	p 0	0	0	0	200	0
NP Md - PP PP	0	0	0	0	0	167
To PP	0	0	0	250	0	0
To — S	200	0	0	0	0	0
NP — SBar .	0	333	0	0	0	0
(other)	0	0	0	0	0	0

TASK: co	June	5 /	proc	.5 (Sincot	ining
s → e	ncourage	question	fund	merge	repay	remove
To — NP	142	117	397	210	329	222
To — NP PP	77	64	120	181	88	80
To AdvP — NP	0.55	0.47	1.1	0.82	0.91	79
To AdvP - NP PI	0.18	0.15	0.33	0.37	0.26	50
NP — NP .	22	161	7.8	7.5	7.9	7.5
NP — NP PP .	79	8.5	2.6	2.7	2.6	2.6
NP Md — NP	90	2.1	2.4	2.0	24	2.6
NP Md — NP PPTr	np 1.8	0.16	0.17	0.16	69	0.19
NP Md — PP PP	0.1	0.027	0.027	0.038	0.078	59
То — РР	9.2	6.5	12	126	10	9.1
To — S	98	1.6	4.3	3.9	3.6	2.7
NP — SBar .	3.4	190	3.2	3.2	3.2	3.2
(other)	478	449	449	461	461	482

- POSSIBLE relationships are given a priori
 (54.04) which relationships are strong in this language
- LEARN which relationships are strong in <u>this</u> language (just like feature selection)
- Method has connections to:
 - Parameterized finite-state machines (Monday's talk)
 - Bayesian networks (inference, abduction, explaining away)
 - Linguistic theory (transformations, metarules, etc.)

