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Syntax-Based Machine Translation
.
* Previous work assumes essentially isomorphic trees
— Wu 1995, Alshawi et al. 2000, Yamada & Knight 2000
* But trees are not isomorphic!
Discrepancies between the languages

— Free translation in the training data
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Grammar = Set of Elementary Trees
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Form of model of big tree pairs

Joint model Py(T1,T2).

Wise to use noisy-channel form: *
But any joint model will do./' /
train on paired trees could be trained on zillions

(hard to get) of target-language trees

In synchronous TSG, aligned big tree pair is generated
by choosing a sequence of little tree pairs:

P(T1, T2, A) = /] p(tl,t2,a|n)

Inside Probabilities
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Probability model similar to PCFG

e )
Probability of generating training
trees T1, T2 with alignment A

P(T1, T2, A) =[] p(tlt2,a|n)

probabilities of the “little”
trees that are used

e

is given by a maxir-ﬁum'entropy model

Maxent model of little tree pairs
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P(T1,T2,A) =[] p(tl,t2,a | n)

Alignment: find A to max Pg(T1,T2,A)
Decoding: find T2, A to max Pg(T1,T2,A)
Training: find 6 to max >, Po(T1,T2,A)

Do everything on little trees instead!
Only need to train & decode a model of py(t1,t2,a)

But not sure how to break up big tree correctly

— So try all possible little trees
& all ways of combining them, by dynamic prog.

An MT Architecture

dynamic programming engine

Trainer Decoder
scores all alignments scores all alignments

of two big trees T1,T2 between a big tree T1
cach & a forest of big trees T2
jnside—outside possible each for each
estimated counts (tL12,3) proposed possible t1,
(t1,12,3) various (t1,t2,a)
update score propose
parameters 6 little tree pair translations t2

of little tree t1
Probability Model pq(t1,t2,a) of Little Trees

What Is New Here?

)
Learning full elementary tree pairs, not rule pairs or subcat pairs
statistical formalisms have basically assumed isomorphic

Maximum-entropy modeling of elementary tree pairs

Concrete enough for implementatio
TSG is more powerful than CFG for modeling tre
Observation that dynamic programming is surprisingl

— Find all p ble dec into aligned elementary tre: rs

O(n?) if both input trees are fully known and elem. tree size is bounded

Alignment Pseudocode

for each node c1 1 (bottom-up)
for each possible little tree t1 rooted at c1
for each node c2 of T2 (bottom-up)
for each possible little tree t2 rooted at c2
for each matching a between frontier nodes of t1 and t2

p = p(t1,t2,a)

for each pair (d1,d2) of frontier nodes matche

p =p * B(d1,d2) inside probability of kids

B(c1,c2) = B(cl,c2) +p // ourinside probability

Nonterminal states are used in practice but not shown here

For EM training, also find outside probabilities

Related Work

.
hieber & abes 1990)
s allowed only 1:1 (isomorphic trees)
i iction grammars (Wu 1995)
s (Alshawi et al. 2000)

t 2000)

trains on (string, tr ee) pair

* But again, allows only 1:1, plus 1:0 at leaves
ation (Poutsma 2000)
DOP model trained on already aligned trees
gene on

milar to our decoding: construct f priate trees, pick by highest prob
Dynamic prog. search in packed st (Langkilde 2000)
Stack decoder (Ratnaparkhi 2000)
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Most MT systems work on strings
We want to translate trees — want to respect syntactic structure

But don’t assume that translated trees are structurally

= TSG formalism: Tr: io cally aces tree structure and conter
=> Parameters: Probabilities of local sul i (use maxent model)

= Algorithms: Dynamic programming (local substitutions can’t overlap)

EM training on <English tree, Czech tree> pairs can be fas
Align O(n) tree nodes with O(n) tree nodes, respecting subconstituency
Dynamic programming — find all alignments and retrain using EM
Faster than aligning O(n) words with O(n) words

If correct training tree is unknown, a well-pruned parse forest still has O(n) nod




