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Outline – The Vision Slide!

1. Finite-state machines 
as a shared modeling 
language.

2. The training gizmo
(an algorithm).

Should use out of-the-box finite-state gizmos to 
build and train most of our current models.
Easier, faster, better, & enables fancier models.

Training Probabilistic FSMs

� State of the world – surprising:
� Training for HMMs, alignment, many variants
� But no basic training algorithm for all FSAs
� Fancy toolkits for building them, but no learning

� New algorithm:
� Training for FSAs, FSTs, …    (collectively FSMs)
� Supervised, unsupervised, incompletely supervised …
� Train components separately or all at once
� Epsilon-cycles OK    
� Complicated parameterizations OK

“If you build it, it will train”

Build parts by hand
For each part, get arc 
weights somehow
Then combine parts
(much more limited)

Fancy regular 
expressions
(or sometimes TBL)

How they’re 
currently built

Noisy channel models
p(x)p(y|x)p(z|y)…

(much more limited)

Encode expert 
knowledge about 
Arabic morphology, 
etc.

How they’re 
currently used

Prob. distributions 
p(x,y) or p(y|x).

Functions on strings.  
Or nondeterministic 
functions (relations).

What they 
represent

Probabilistic FSTsVanilla FSTs

Currently Two Finite-State Camps

Current Limitation
� Big FSM must be made of separately 

trainable parts.   

Knight & Graehl
1997 - transliteration

p(English text)

p(English text �
English phonemes)

p(English phonemes �
Japanese phonemes)

p(Japanese phonemes 
� Japanese text)

o

o

o

Need explicit training data for this 
part (smaller loanword corpus). 
A pity – would like to use guesses.

Topology must be simple enough 
to train by current methods.
A pity – would like to get some of 
that expert knowledge in here!  

Topology: sensitive to syllable struct?
Parameterization: /t/ and /d/ are 
similar phonemes … parameter tying?

Example: ab is accepted along 2 paths
p(ab) =  (.5 .7 .3) + (.5 .6 .4) = .225

Probabilistic FSA

ε/.5

a/1

a/.7
b/.3

ε/.5
b/.6

.4

Regexp: (a*.7 b)  +.5 (ab*.6)
Theorem: Any probabilistic FSM has a regexp like this.
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Example: ab is accepted along 2 paths
weight(ab) = (p⊗⊗⊗⊗ q⊗⊗⊗⊗ r) ⊕⊕⊕⊕ (w⊗⊗⊗⊗ x⊗⊗⊗⊗ y⊗⊗⊗⊗ z)

Weights Need Not be Reals

ε/p

a/x

a/q
b/r

ε/w
b/y

z

If If ⊗⊗ ⊕⊕ * satisfy * satisfy ““semiringsemiring”” axioms, axioms, 
the finitethe finite--state constructions state constructions 
continue to work correctly. continue to work correctly. 

Goal: Parameterized FSMs

� Parameterized FSM:
� An FSM whose arc probabilities depend on 

parameters: they are formulas.  

ε/p

a/q*exp(t+u)

a/q

b/(1-q)r

ε/1-p

a/r 

1-s

a/exp(t+v)

Expert first: Construct 
the FSM (topology & 
parameterization).

Automatic takes over:
Given training data, find 
parameter values
that optimize arc probs.

Goal: Parameterized FSMs

� Parameterized FSM:
� An FSM whose arc probabilities depend on 

parameters: they are formulas.  

ε/.1

a/.44

a/.2

b/.8

ε/.9

a/.3 

.7

a/.56

Expert first: Construct 
the FSM (topology & 
parameterization).

Automatic takes over:
Given training data, find 
parameter values
that optimize arc probs.

Goal: Parameterized FSMs

� FSM whose arc probabilities are formulas.     

Knight & Graehl
1997 - transliteration

p(English text)

p(English text �
English phonemes)

p(English phonemes �
Japanese phonemes)

p(Japanese phonemes 
� Japanese text)

o

o

o

“Would like to get some of that 
expert knowledge in here”

Use probabilistic regexps like
(a*.7 b)  +.5 (ab*.6) …
If the probabilities are variables 
(a*x b)  +y (ab*z) …
then arc weights of the compiled 
machine are nasty formulas.

(Especially after minimization!)

Goal: Parameterized FSMs
� An FSM whose arc probabilities are 

formulas. 

Knight & Graehl
1997 - transliteration

p(English text)

p(English text �
English phonemes)

p(English phonemes �
Japanese phonemes)

p(Japanese phonemes 
� Japanese text)

o

o

o

“/t/ and /d/ are similar …”

Tied probs for doubling them:

/t/:/tt/

/d/:/dd/

p

p

Goal: Parameterized FSMs
� An FSM whose arc probabilities are 

formulas. 

Knight & Graehl
1997 - transliteration

p(English text)

p(English text �
English phonemes)

p(English phonemes �
Japanese phonemes)

p(Japanese phonemes 
� Japanese text)

o

o

o

“/t/ and /d/ are similar …”

Loosely coupled probabilities:

/t/:/tt/

/d/:/dd/

exp p+q+r  (coronal, stop,
unvoiced)

exp p+q+s (coronal, stop,
voiced)

(with normalization)
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Outline of this talk

1. What can you build with 
parameterized FSMs?

2. How do you train them? p(x)= 

Finite-State Operations

� Projection GIVES YOU marginal distribution

domain( p(x,y) )

p(y)= range( p(x,y) )

a : b / 0.3 a : b / 0.3

0.3 p(x) + 0.7 q(x)= 

Finite-State Operations

� Probabilistic union GIVES YOU mixture model

p(x) +0.3 q(x)

p(x)

q(x)

0.3

0.7

α p(x) + (1- α)q(x)= 

Finite-State Operations

� Probabilistic union GIVES YOU mixture model

p(x) +α q(x)

p(x)

q(x)

α

1-α

Learn the mixture parameter α!

p(x|z)= 

Finite-State Operations

� Composition GIVES YOU chain rule

p(x|y) o p(y|z)

p(x,z)=o zp(x|y) o p(y|z)

� The most popular statistical FSM operation
� Cross-product construction

Finite-State Operations

� Concatenation, probabilistic closure
HANDLE unsegmented text

p(x) q(x)

p(x)p(x) q(x) *0.3

0.3

0.7

p(x)

� Just glue together machines for the different 
segments, and let them figure out how to align 
with the text
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Finite-State Operations

� Directed replacement MODELS noise or 
postprocessing

p(x, noisy y)= p(x,y) o

� Resulting machine compensates for noise 
or postprocessing

D

noise model defined
by dir. replacement

p(x)*q(x)= 

Finite-State Operations

� Intersection GIVES YOU product models
� e.g., exponential / maxent, perceptron, Naïve Bayes, …

p(x) & q(x)

pNB(y | x)∝& p(y)p(A(x)|y) & p(B(x)|y) &

� Cross-product construction (like composition)

� Need a normalization op too – computes ∑x f(x)
“pathsum” or “partition function”

Finite-State Operations

� Conditionalization (new operation)

p(y | x)= condit( p(x,y) )

p(x,y) 
� Construction:

reciprocal(determinize(domain(        ))) o p(x,y) 

not possible for all weighted FSAs

� Resulting machine can be composed with 
other distributions:  p(y | x) * q(x)

Other Useful Finite-State 
Constructions
� Complete graphs YIELD n-gram models
� Other graphs YIELD fancy language models (skips, 

caching, etc.)

� Compilation from other formalism � FSM:
� Wordlist (cf. trie), pronunciation dictionary ...
� Speech hypothesis lattice
� Decision tree (Sproat & Riley)

� Weighted rewrite rules (Mohri & Sproat)

� TBL or probabilistic TBL (Roche & Schabes)

� PCFG (approximation!)  (e.g., Mohri & Nederhof)

� Optimality theory grammars (e.g., Eisner)

� Logical description of set  (Vaillette; Klarlund)

Regular Expression Calculus 
as a Modelling Language

Function Function on strings,
or probability distrib. 

  
Source code Regular expression 

(can be probabilistic) 
Object code Finite state machine 
  
Compiler Regexp compiler 
Optimization of  
object code 

Determinization, 
minimization, pruning 

 

 

Programming Languages The Finite-State Case

Regular Expression Calculus 
as a Modelling Language

Function composition Machine composition

Nondeterminism Nondeterminism 

Parallelism Compose FSA with FST 

Function inversion  
(cf. Prolog) 

Function inversion 

Higher-order functions Transform object code 
(apply operators to it) 

 

 

Many features you wish other languages had! 

Programming Languages The Finite-State Case
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Regular Expression Calculus 
as a Modelling Language

� Statistical FSMs still done in assembly language
� Build machines by manipulating arcs and states
� For training,

� get the weights by some exogenous procedure and patch 
them onto arcs

� you may need extra training data for this
� you may need to devise and implement a new variant of EM 

� Would rather build models declaratively

�((a*.7 b)  +.5 (ab*.6)) ° repl.9((a:(b +.3 ε))*,L,R)

Outline

1. What can you build with 
parameterized FSMs?

2. How do you train them?
Hint: Make the finite-state 
machinery do the work.

How Many Parameters?
Final machine p(x,z) But really I built it as 

p(x,y) o p(z|y)

17 weights 
– 4 sum-to-one constraints

= 13 apparently free parameters

5 free parameters

1 free parameter

How Many Parameters?
But really I built it as 

p(x,y) o p(z|y)

5 free parameters

1 free parameter

Even these 6 numbers
could be tied ...

or derived by formula from 
a smaller parameter set.

How Many Parameters?
But really I built it as 

p(x,y) o p(z|y)

5 free parameters

1 free parameter

Really I built this as

(a:p)*.7 (b: (p +.2 q))*.5
3 free parameters

Training a Parameterized FST

Given: an expression (or code) to build the FST 
from a parameter vector θ

1. Pick an initial value of θ
2. Build the FST – implements fast prob. model
3. Run FST on some training examples 

to compute an objective function F(θ)
4. Collect E-counts or gradient ∇ F(θ)
5. Update θ to increase F(θ)
6. Unless we converged, return to step 2
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x1

y1y2 y1

x2 x1x3 x2 x1

y3 y2 y1

Training a Parameterized FST

(our current FST, reflecting our
current guess of the parameter vector)

…

…

At each training pair (xi, yi), collect E counts or gradients that 
indicate how to increase p(xi, yi).

T =

What are xi and yi?

xi

yi

T = (our current FST, reflecting our
current guess of the parameter vector)

What are xi and yi?  

xi = banana

yi = bandaid

T = (our current FST, reflecting our
current guess of the parameter vector)

What are xi and yi?  

xi =

yi =

b a n a n a

b a n d a i d

T = (our current FST, reflecting our
current guess of the parameter vector)

fully supervised

What are xi and yi?  

xi =

yi =

b a n a

b a n d a i d

εεεε

loosely
supervised

T = (our current FST, reflecting our
current guess of the parameter vector)

What are xi and yi?  

yi =
b a n d a i

unsupervised, e.g., Baum-Welch.
Transition seq xi is hidden
Emission seq yi is observed

d

xi = ΣΣΣΣ* =
ΣΣΣΣ

T = (our current FST, reflecting our
current guess of the parameter vector)
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Building the Trellis

xi =

yi =

T =

Extracts paths from T that
are compatible with (xi, yi).

Tends to unroll loops of T,
as in HMMs, but not always.

xi o T o yi = 

COMPOSE to get trellis:

Summing the Trellis

Extracts paths from T that are compatible with (xi, yi).
Tends to unroll loops of T,  as in HMMs, but not always.

xi o T o yi = 

Let ti = total probability of all paths in trellis
= p(xi, yi)

This is what we want to increase!

How to compute ti? 
If acyclic (exponentially many paths): dynamic programming.
If cyclic (infinitely many paths): solve sparse linear system.

xi, yi are regexps (denoting strings or sets of strings)

epsilonify ( xi o T o yi ) 

Remark: In principle, FSM minimization algorithm already 
knows how to compute ti, although not the best method.

Summing the Trellis

xi o T o yi = 

Let ti = total probability of all paths in trellis
= p(xi, yi).

This is what we want to increase!

minimize (                                  ) = ti

replace all arc labels with ε

Mama/.05Mama/.005
Mama Iwant/.0005

Mama Iwant Iwant/.00005

Example: Baby Think & Baby Talk

ε:m/.05 Mama:m IWant:ε /.1

IWant:u/.8

.1

.1

IWant:ε /.1

m mobserveobserve
talktalk

recoverrecover
think, bythink, by
compositioncomposition

ε:m/.05 Mama:m

X:m/.4

X:m/.4

.2
XX/.032

Total = .0375555555

X:b/.2

X:m/.4

.2

Joint Prob. by Double Composition

ε:m/.05 Mama:m

X:b/.2

X:m/.4

.2

IWant:ε /.1

IWant:u/.8

.1

m m
talktalk

composecompose .1

IWant:ε /.1ε:m/.05 Mama:m

X:m/.4X:m/.4
.2

thinkthink ΣΣΣΣ

p(ΣΣΣΣ* : mm) = .0375555 = sum of paths

Joint Prob. by Double Composition

ε:m/.05 Mama:m

X:b/.2

X:m/.4

.2

IWant:ε /.1

IWant:u/.8

.1

m m
talktalk

composecompose .1

ε:m/.05 Mama:m

thinkthink

p(ΣΣΣΣ* : mm) = .0005 = sum of paths

Mama IWant

IWant:ε /.1
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Joint Prob. by Double Composition

ε:m/.05 Mama:m

X:b/.2

X:m/.4

.2

IWant:ε /.1

IWant:u/.8

.1

m m
talktalk

composecompose .1

IWant:ε /.1ε:m/.05 Mama:m

X:m/.4X:m/.4
.2

thinkthink ΣΣΣΣ

p(ΣΣΣΣ* : mm) = .0375555 = sum of paths

Summing Over All Paths

ε:m/.05 Mama:m

X:b/.2

X:m/.4

.2

IWant:ε /.1

IWant:u/.8

.1

m:ε m:ε
talktalk

composecompose .1

ε:ε/.1ε:ε/.05 ε:ε

ε:ε/.4ε:ε/.4
.2

thinkthink ε:ΣΣΣΣ

p(ΣΣΣΣ* : mm) = .0375555 = sum of paths

Summing Over All Paths

ε:m/.05 Mama:m

X:b/.2

X:m/.4

.2

IWant:ε /.1

IWant:u/.8

.1

m:ε m:ε
talktalk

composecompose
+ minimize+ minimize

thinkthink ε:ΣΣΣΣ

p(ΣΣΣΣ* : mm) = .0375555 = sum of paths

0.0375555

Where We Are Now

“minimize (epsilonify ( xi o T o yi ) )” =
tiεεεε/

obtains ti = sum of trellis paths = p(xi, yi).

Want to change parameters to make ti increase. 

Solution: Annotate every probability with bookkeeping info.
So probabilities know how they depend on parameters.

Then the probability ti will know, too!
It will emerge annotated with info about how to increase it.

The machine T is built with annotations from the ground up. 

a vector

Example: ab is accepted along 2 paths
p(ab) =  (.5 .7 .3) + (.5 .6 .4) = .225

Probabilistic FSA

ε/.5

a/1

a/.7
b/.3

ε/.5
b/.6

.4

Regexp: (a*.7 b)  +.5 (ab*.6)
Theorem: Any probabilistic FSM has a regexp like this.

Example: ab is accepted along 2 paths
weight(ab) = (p⊗⊗⊗⊗ q⊗⊗⊗⊗ r) ⊕⊕⊕⊕ (w⊗⊗⊗⊗ x⊗⊗⊗⊗ y⊗⊗⊗⊗ z)

Weights Need Not be Reals

ε/p

a/x

a/q
b/r

ε/w
b/y

z

If If ⊗⊗ ⊕⊕ * satisfy * satisfy ““semiringsemiring”” axioms, axioms, 
the finitethe finite--state constructions state constructions 
continue to work correctly. continue to work correctly. 
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p ⊗⊗⊗⊗ qIntersect,
Compose: ⊗

p*Closure: *

p ⊗⊗⊗⊗ qConcat: ⊗

p ⊕⊕⊕⊕ qUnion: ⊕

Weight of a string is total weight of its accepting paths.

Semiring Definitions

p q

p

q

p

p

q

p ⊗⊗⊗⊗ q = pqIntersect,
Compose: ⊗

p* = 1+p+p2 + …
= (1-p)-1

Closure: *

p ⊗⊗⊗⊗ q = pqConcat: ⊗

p ⊕⊕⊕⊕ q = p+qUnion: ⊕

Weight of a string is total weight of its accepting paths.

The Probability Semiring

p q

p

q

p

p

q

(p,x) ⊗⊗⊗⊗ (q,y) 
= (pq, py + qx)

Intersect,
Compose: ⊗

(p,x)*
= ((1-p)-1, (1-p)-2x)

Closure: *

(p,x) ⊗⊗⊗⊗ (q,y) 
= (pq, py + qx)

Concat: ⊗

(p,x) ⊕⊕⊕⊕ (q,y)
= (p+q, x+y)

Union: ⊕

The (Probability, Gradient) 
Semiring

p,x q,y

p,x

q,y

p,x

p,x

q,y

where   p is gradientBase case p,   p

We Did It!

� We now have a clean algorithm for 
computing the gradient.

xi o T o yi = 

How to compute ti? 
Just like before, when ti = p(xi, yi).  But in new semiring.

If acyclic (exponentially many paths): dynamic programming.
If cyclic (infinitely many paths): solve sparse linear system.
Or can always just use minimize ( epsilonify (xi o T o yi ) ).

Let ti = total annotated probability of all paths in trellis
= (p(xi, yi),   p(xi, yi)).  Aggregate over i (training examples).

An Alternative: EM

Would be easy to train probabilities 
if we’d seen the paths the machine followed

1. E-step: Which paths probably generated the 
observed data?  (according to current probabilities)

2. M-step: Reestimate probabilities (or θ) as if those 
guesses were right

3. Repeat

Guaranteed to converge to local optimum.

Mama/.005
Mama Iwant/.0005

Mama Iwant Iwant/.00005

.1

IWant:ε /.1

paths
consistent
with (xi,yi)

ε:m/.05 Mama:m

X:m/.4

X:m/.4

.2
XX/.032

Total = .0375555555

ε:m/.05 Mama:m

X:b/.2

X:m/.4

.2

IWant:ε /.1

IWant:u/.8

.1

m m
talk

think ΣΣΣΣxxii

TT

yyii

Baby Says mm
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Which Arcs Did We Follow?

p(mm) = p(ΣΣΣΣ* : mm) = .0375555 = sum of all paths

p(Mama : mm) = .005
p(Mama Iwant : mm) = .0005

p(Mama Iwant Iwant : mm) = .00005   etc.
p(XX : mm) = .032

p(Mama | mm) = .005/.037555 = 0.13314
p(Mama Iwant | mm) = .0005/.037555 = 0.01331

p(Mama Iwant Iwant | mm) = .00005/.037555 = 0.00133
p(XX | mm) = .032/.037555 = 0.85207

relative

probs.

.1

IWant:ε /.1ε:m/.05 Mama:m

X:m/.4X:m/.4
.2

paths
consistent
with (ΣΣΣΣ*, mm)

Count Uses of Original Arcs

p(Mama | mm) = .005/.037555 = 0.13314
p(Mama Iwant | mm) = .0005/.037555 = 0.01331

p(Mama Iwant Iwant | mm) = .00005/.037555 = 0.00133
p(XX | mm) = .032/.037555 = 0.85207

relative

probs.

.1

IWant:ε /.1ε:m/.05 Mama:m

X:m/.4X:m/.4
.2

paths
consistent
with (ΣΣΣΣ*, mm)

ε:m/.05 Mama:m

X:b/.2

X:m/.4

.2

IWant:ε /.1

IWant:u/.8

.1

paths
consistent
with (ΣΣΣΣ*, mm)

ε:m/.05 Mama:m

X:b/.2

X:m/.4

.2

IWant:ε /.1

IWant:u/.8

.1

Count Uses of Original Arcs

p(Mama | mm) = .005/.037555 = 0.13314
p(Mama Iwant | mm) = .0005/.037555 = 0.01331

p(Mama Iwant Iwant | mm) = .00005/.037555 = 0.00133
p(XX | mm) = .032/.037555 = 0.85207

relative

probs.

ε:m/.05 Mama:m

X:b/.2

X:m/.4

.2

IWant:ε /.1

IWant:u/.8

.1

Expect
0.85207 × 2
traversals of
original arc
(on example ΣΣΣΣ*, mm)

.1

IWant:ε /.1ε:m/.05 Mama:m

X:m/.4X:m/.4
.2

.1/b3

.8/b5

b1 = (1,0,0,0,0,0,0) b4 = (0,0,0,1,0,0,0) b7 = (0,0,0,0,0,0,1)
b2 = (0,1,0,0,0,0,0) b5 = (0,0,0,0,1,0,0)
b3 = (0,0,1,0,0,0,0) b6 = (0,0,0,0,0,1,0)

Expected-Value Formulation

.05/b4 1/0

.3/b1

.4/b2

.1/b6

.1/b7

T =

Associate a value with each arc we wish to track

.1/b3

.8/b5

b1 = (1,0,0,0,0,0,0) b4 = (0,0,0,1,0,0,0) b7 = (0,0,0,0,0,0,1)
b2 = (0,1,0,0,0,0,0) b5 = (0,0,0,0,1,0,0)
b3 = (0,0,1,0,0,0,0) b6 = (0,0,0,0,0,1,0)

Expected-Value Formulation

.05/b4 1/0

.3/b1

.4/b2

.1/b6

.1/b7

T =

Associate a value with each arc we wish to track

xi o T o yi =
.4/b2 .4/b2 .1/b3

has total value b2 + b2 + b3 = (0,2,1,0,0,0,0)

Tells us the observed counts of arcs in T.

Expected-Value Formulation
Associate a value with each arc we wish to track

xi o T o yi =
.4/b2 .4/b2 .2/b3

has total value b2 + b2 + b3 = (0,2,1,0,0,0,0)
Tells us the observed counts of arcs in T.

But what if xi o T o yi had multiple paths?
We want the expected path value for the E step of EM.
Some paths more likely than others.

expected value = Σ value(path) p(path | xi, yi)
= Σ value(path) p(path) / Σ p(path)

We’ll arrange for ti = (Σ p(path), Σ value(path) p(path))
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where v is arc valueBase case

(p,x) ⊗⊗⊗⊗ (q,y) 
= (pq, py + qx)

Intersect,
Compose: ⊗

(p,x)*
= ((1-p)-1, (1-p)-2x)

Closure: *

(p,x) ⊗⊗⊗⊗ (q,y) 
= (pq, py + qx)

Concat: ⊗

(p,x) ⊕⊕⊕⊕ (q,y)
= (p+q, x+y)

Union: ⊕

The Expectation Semiring

p,x q,y

p,x

q,y

p,x

p,x

q,y

p, pv

ti = (Σ p(path), Σ value(path) p(path))

same as before!

That’s the algorithm!

� Existing mechanisms do all the work

� Keeps count of original arcs despite composition, 
loop unrolling, etc.

� Cyclic sums handled internally by the minimization 
step, which heavily uses semiring closure operation

� Flexible: can define arc values as we like
� Example: Log-linear (maxent) parameterization
� M-step: Must reestimate θ from feature counts (e.g., Iterative Scaling)
� If arc’s weight is exp(θ2+θ5), let its value be (0,1,0,0,1, ...)
� Then total value of correct path for (xi,yi) – counts observed features
� E-step: Needs to find expected value of path for (xi,yi)

Log-Linear Parameterization

Some Optimizations

Exploit (partial) acyclicity
Avoid expensive vector operations
Exploit sparsity
Rebuild quickly after parameter update

xi o T o yi = 

Let ti = total annotated probability of all paths in trellis
= (p(xi, yi), bookkeeping information).

Need Faster Minimization

� Hard step is the minimization:
� Want total semiring weight of all paths
� Weighted ε-closure must invert a semiring matrix

� Want to beat this! (takes O(n3) time)

� Optimizations exploit features of problem

.1

ε:ε/.1ε:ε/.05 ε:ε

ε:ε/.4ε:ε/.4
.2

All-Pairs vs. Single-Source

� For each q, r, 
ε-closure finds total weight of all  q r paths

� But we only need total weight of init final
paths

� Solve linear system instead of inverting matrix:
� Let α(r) = total weight of init r paths
� α(r) = ∑q α(q) * weight(q → r)
� α(init) = 1 + ∑q α(q) * weight(q → init)

� But still O(n3) in worst case
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Cycles Are Usually Local 
� In HMM case, Ti = (ε × xi) o T o (yi × ε) is an 

acyclic lattice:

� Acyclicity allows linear-time dynamic 
programming to find our sum over paths

� If not acyclic, first decompose into minimal 
cyclic components (Tarjan 1972, 1981; Mohri 1998)
� Now full O(n3) algorithm must be run for several small 

n instead of one big n – and reassemble results
� More powerful decompositions available (Tarjan 1981);

block-structured matrices

Avoid Semiring Operations 
� Our semiring operations aren’t O(1)

� They manipulate vector values
� To see how this slows us down, consider HMMs:

� Our algorithm computes sum over paths in lattice.
� If acyclic, requires a forward pass only.  

� Where’s backward pass?
� What we’re pushing forward is (p,v)

� Arcs v go forward to be downweighted by later probs, instead of 
probs going backward to downweight arcs.

� The vector v rapidly loses sparsity, so this is slow!

� We’re already computing forward probabilities α(q)
� Also compute backward probabilities β(r)

Avoid Semiring Operations 

p

� Total probability of paths through this arc = α(q) * p * β(r)
� E[path value] = ∑q,r (α(q) * p(q → r) * β(r)) * value(q → r)
� Exploits structure of semiring
� Now α, β are probabilities, not vector values 

qα(q) r β(r)

Avoid Semiring Operations
� Now our linear systems are over the reals:

� Let α(r) = total weight of init r paths
� α(r) = ∑q α(q) * weight(q → r)
� α(init) = 1 + ∑q α(q) * weight(q → init)

� Well studied! Still O(n3) in worst case, but:
� Proportionately faster for sparser graph

� O(|states| |arcs|) by iterative methods like conj. gradient
� Usually |arcs| << |states|2

� Approximate solutions possible
� Relaxation (Mohri 1998) and back-relaxation (Eisner 2001); or 

stop iterative method earlier
� Lower space requirement: O(|states|) vs. O(|states|2)

Fast Updating

1. Pick an initial value of θ
2. Build the FST – implements fast prob. model

...
6. Unless we converged, return to step 2

� But step 2 might be slow!
� Recompiles the FST from its parameterized regexp, 

using the new parameters θ.
� This involves a lot of structure-building, not just arithmetic

� Matching arc labels in intersection and composition
� Memory allocation/deallocation
� Heuristic decisions about time-space tradeoffs

Fast Updating

� Solution: Weights remember underlying formulas
� A weight is a pointer into a formula DAG

exp

+

θ50.3 1

-2

*

θ2θ1

0.135

0.04

-3

+

*

0.7 θ8

0.21

0.345

may or may not be
used in obj. function;

update on demand

Each node caches its 
current value

When (some) parameters 
are updated,
invalidate (some) caches

Similar to a heap
Allows approximate updates
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� Easy to experiment with interesting models.
� Change a model = edit declarative specification
� Combine models = give a simple regexp 
� Train the model   = push a button
� Share your model = upload to archive
� Speed up training = download latest version 

(conj gradient, pruning …)
� Avoid local maxima = download latest version 

(deterministic annealing …)  
� p.s. Expectation semirings extend naturally to context-free 

case, e.g., Inside-Outside algorithm.

The Sunny Future Marrying Two Finite-State Traditions

Classic stat models & Classic stat models & 
variantsvariants ⇒⇒ simple simple FSMsFSMs

HMMs, edit distance, 
sequence alignment, 
n-grams, segmentation

Expert knowledge Expert knowledge ⇒⇒
handhand--crafted crafted FSMsFSMs

Extended regexps, 
phonology/morphology, 
info extraction, syntax …

DesignDesign complex finitecomplex finite--state model for taskstate model for task
Any extended regexp
Any machine topology; epsilon-cycles ok

ParameterizeParameterize as desired to make it probabilisticas desired to make it probabilistic
Combine models freely, tying parameters at will

Then find best Then find best paramparam values from data (by EM or CG)values from data (by EM or CG)

Trainable from data Tailored to task

Tailor model, then train end-to-end

Ways to Improve Toolkit

� Experiment with other learning algs …
� Conjugate gradient is a trivial variation; should be faster
� Annealing etc. to avoid local optima

� Experiment with other objective functions …
� Trivial to incorporate a Bayesian prior
� Discriminative training: maximize p(y | x), not p(x,y)

� Experiment with other parameterizations …
� Mixture models
� Maximum entropy (log-linear): 

track expected feature counts, not arc counts

� Generalize more: Incorporate graphical modelling

Some Applications
� Prediction, classification, generation; more generally, 

“filling in of blanks”
� Speech recognition
� Machine translation, OCR, other noisy-channel models
� Sequence alignment / Edit distance / Computational biology
� Text normalization, segmentation, categorization
� Information extraction
� Stochastic phonology/morphology, including lexicon
� Tagging, chunking, finite-state parsing
� Syntactic transformations (smoothing PCFG rulesets)

� Quickly specify & combine models
� Tie parameters & train end-to-end
� Unsupervised, partly supervised, erroneously supervised

FIN
that’s all folks

(for now)

wish lists to eisner@cs.jhu.edu


