Efficient Parsing for -Bilexical CF Grammars -Head Automaton Grammars

Jason Eisner

U. of Pennsylvania

Giorgio Satta

U. of Padova, Italy

When's a grammar bilexical?

If it has rules / entries that mention 2 specific words in a dependency relation:

```
convene - meeting
```

eat - blintzes
ball - bounces
joust - with

Bilexical Grammars

```
= Instead of VP }->\mathrm{ V NP
= or even VP }->\mathrm{ solved NP
```

- use detailed rules that mention 2 heads:
\mathbf{S} [solved] $\rightarrow \mathrm{NP}$ [Peggy] VP[solved]
VP[solved] \rightarrow V[solved] NP[puzzle]
NP [puzzle] \rightarrow Det[a] N[puzzle]
-so we can exclude, or reduce probability of,
VP [solved] $\rightarrow \mathrm{V}$ [solved] NP [goat]
NP [puzzle] \rightarrow Det [two] $N[p u z z l e]$

Bilexicalism at Work

- Not just selectional but adjunct preferences:
- Peggy [solved a puzzle] from the library.
- Peggy solved [a puzzle from the library]. Hindle \& Rooth (1993) - PP attachment

Bilexical CF grammars

- Every rule has one of these forms:
$\mathbf{A}[\mathrm{x}] \rightarrow \mathbf{B}[\mathrm{x}] \quad \mathbf{C}[\mathrm{y}] \quad$ so head of $L H S$
$\mathbf{A}[\mathrm{x}] \rightarrow \mathbf{B}[\mathrm{y}] \quad \mathbf{C}[\mathrm{x}] \quad$ is inherited from
$\mathbf{A}[\mathbf{x}] \rightarrow \mathbf{x} \quad a$ child on RHS.
(rules could also have probabilities)
$\mathrm{B}_{[\mathrm{x}]}, \mathrm{B}_{[y]}, \mathrm{C}_{[\mathrm{x}]}, \mathrm{C}_{[y]}, \ldots$ many nonterminals
A, B, C ... are "traditional nonterminals"
$\mathbf{x}, \mathbf{y} \ldots$ are words

Bilexicalism at Work

Bilexical parsers that fit the CF formalism:
Alshawi (1996) - head automata
Charniak (1997) - Treebank grammars
Tollins (1997) - context-free grammars
Eisner (1996) - dependency grammars
Other superlexicalized parsers that don't:

Jones \& Eisner (1992) - bilexical LFG parser
Lafferty et al. (1992) - stochastic link parsing
Magerman (1995) - decision-tree parsing
Ratnaparkhi (1997) - maximum entropy parsing
Chelba \& J elinek (1998) - shift-reduce parsing

How bad is bilex CF parsing?

$$
\mathbf{A}[x] \rightarrow \mathbf{B}[x] \quad \mathbf{C}[y]
$$

- Grammar size $=0\left(\mathrm{t}^{3} \mathrm{~V}^{2}\right)$
where $t=|\{\mathbf{A}, \mathbf{B}, \ldots\}| \quad V=|\{\mathbf{x}, \mathbf{y} \ldots\}|$
- So CKY takes O(t3 $\left.\mathbf{V}^{\mathbf{2}} \mathbf{n}^{\mathbf{3}}\right)$
- Reduce to $\mathbf{O}\left(\mathbf{t}^{\mathbf{3}} \mathbf{n}^{\mathbf{5}}\right)$ since relevant $\mathrm{V}=\mathrm{n}$
- This is terrible ... can we do better?
- Recall: regular CKY is $0\left(t^{3} n^{3}\right)$

Head Automaton Grammars
 (Alshawi 1996)

[Good old Peggy] solved [the puzzle] [with her teeth] !
The head automaton for solved:
a finite-state device

- can consume words adjacent to it on either side
does so after they've consumed their dependents

$$
\begin{array}{cl}
{[\text { Peggy }] \text { solved [puzzle] [with] }} & (\text { state }=\mathrm{V}) \\
{[\text { Peggy] solved [with] }} & (\text { state }=\mathrm{VP}) \\
{[\text { Peggy }] \text { solved }} & (\text { state }=\mathrm{VP}) \\
\underline{\text { solved }} & (\text { state }=\mathrm{S} ; \text { halt })
\end{array}
$$

Formalisms too powerful?

So we have Bilex CFG and HAG in $O\left(n^{4}\right)$.
HAG is quite powerful - head c can require $\mathbf{a}^{\mathbf{n}} \underline{\underline{b}} \mathbf{b}^{\mathbf{n}}$:
$\ldots\left[\ldots a_{3} \ldots\right]\left[\ldots a_{2} \ldots\right]\left[\ldots a_{1} \ldots\right] \underline{c}\left[\ldots b_{1} \ldots\right]\left[\ldots b_{2} \ldots\right]\left[\ldots b_{3} \ldots\right] \ldots$
not center-embedding, $\left.\left[a_{3}\left[a_{2}\left[\left[a_{1}\right] b_{1}\right]\right] b_{2}\right]\right] b_{3}$

- Linguistically unattested and unlikely

Possible only if the HA has a left-right cycle

- Absent such cycles, can we parse faster?
- (for both HAG and equivalent Bilexical CFG)

Theoretical Speedup

$\mathbf{n}=$ input length $\quad \mathbf{g}=$ polysemy
$\mathbf{t}=$ traditional nonterms or automaton states
Naive: $\mathbf{O}\left(\mathbf{n}^{5} \mathbf{g}^{\mathbf{2}} \mathbf{t}\right)$
New: $\mathbf{O}\left(\mathbf{n}^{\mathbf{4}} \mathbf{g}^{\mathbf{2}} \mathbf{t}\right)$
Even better for split grammars:

- Eisner (1997): O($\left.\mathbf{n}^{\mathbf{3}} \mathbf{g}^{\mathbf{3}} \mathbf{t}^{\mathbf{2}}\right)$
- New: $\mathbf{O}\left(\mathbf{n}^{\mathbf{3}} \mathbf{g}^{\mathbf{2}} \mathbf{t}\right)$
all independent of vocabulary size!

Reality check

- Constant factor

- Pruning may do just as well
= "visiting relatives": 2 plausible NP hypotheses
- i.e., both heads survive to compete - common??
- Amdahl's law
- much of time spent smoothing probabilities
- fixed cost per parse if we cache probs for reuse

Summary

- Simple bilexical CFG notion $\mathrm{A}_{[\mathrm{x}]} \rightarrow \mathrm{B}_{[\mathrm{x}]} \mathrm{C}_{[y]}$
- Covers several existing stat NLP parsers
- Fully general $O\left(n^{4}\right)$ algorithm - not $O\left(n^{5}\right)$
- Faster $O\left(n^{3}\right)$ algorithm for the "split" case
- Demonstrated practical speedup
- Extensions: TAGs and post-transductions

