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When’s a grammar bilexical?

If it has rules / entries that mention 2 
specific words in a dependency relation:

convene - meeting
eat - blintzes   
ball - bounces
joust - with

Bilexical Grammars 
� Instead of VP →→→→ V NP

� or even VP →→→→ solved NP

� use detailed rules that mention 2 heads:
S[solved] →→→→ NP[Peggy] VP[solved]
VP[solved] →→→→ V[solved] NP[puzzle]

NP[puzzle] →→→→ Det[a] N[puzzle]

� so we can exclude, or reduce probability of,
VP[solved] →→→→ V[solved] NP[goat]
NP[puzzle] →→→→ Det[two] N[puzzle]

Bilexical CF grammars

� Every rule has one of these forms:
A[x] →→→→ B[x] C[y] so head of LHS
A[x] →→→→ B[y] C[x] is inherited from 
A[x] →→→→ x a child on RHS.

(rules could also have probabilities)

B[x], B[y], C[x], C[y], ... many nonterminals
A, B, C ... are “traditional nonterminals”
x, y ... are words

Bilexicalism at Work

� Not just selectional but adjunct preferences:
� Peggy [solved a puzzle] from the library.
� Peggy solved [a puzzle from the library].

Hindle & Rooth (1993) - PP attachment

Bilexicalism at Work

Bilexical parsers that fit the CF formalism:
Alshawi (1996) - head automata
Charniak (1997) - Treebank grammars
Collins (1997) - context-free grammars
Eisner (1996) - dependency grammars

Other superlexicalized parsers that don’t:
Jones & Eisner (1992) - bilexical LFG parser
Lafferty et al. (1992) - stochastic link parsing
Magerman (1995) - decision-tree parsing
Ratnaparkhi (1997) - maximum entropy parsing
Chelba & Jelinek (1998) - shift-reduce parsing
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How bad is bilex CF parsing?

A[x] →→→→ B[x] C[y]

� Grammar size = O(t3 V2)
where t = |{A, B, ...}|    V = |{x, y ...}|

� So CKY takes O(t3 V2 n3)
� Reduce to O(t3 n5) since relevant V = n

� This is terrible ... can we do better?
� Recall: regular CKY is O(t3 n3)

The CKY-style algorithm

lovesMary the girl outdoors][ [ ][ ] ][

Why CKY is O(n5) not O(n3)
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� Combine B with what C?

� must try different-width 
C’s (vary k)

� must try differently-
headed C’s  (vary h’)

� Separate these!

Idea #1
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(the old CKY way)

Head Automaton Grammars
(Alshawi 1996)

[Good old Peggy] solved [the puzzle] [with her teeth] !

The head automaton for solved: 
� a finite-state device
� can consume words adjacent to it on either side
� does so after they’ve consumed their dependents

[Peggy] solved [puzzle] [with] (state = V)
[Peggy] solved [with]  (state = VP)
[Peggy] solved (state = VP)

solved (state = S; halt)
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Formalisms too powerful?

� So we have Bilex CFG and HAG in O(n4).
� HAG is quite powerful - head c can require an c bn:

... [...a3...] [...a2...] [...a1...] c [...b1...] [...b2...] [...b3...] ...
not center-embedding,  [a3 [[a2 [[a1] b1]] b2]] b3

� Linguistically unattested and unlikely
� Possible only if the HA has a left-right cycle
� Absent such cycles, can we parse faster?

� (for both HAG and equivalent Bilexical CFG)

Transform the grammar

� Absent such cycles, 
we can transform to a “split grammar”:
� Each head eats all its right dependents first
� I.e., left dependents are more oblique.

� This allows 
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� Combine what B and C?

� must try different-width 
C’s (vary k)

� must try different 
midpoints j

� Separate these!

Idea #2

h

A

i k

B

i j

C

j+1 kh h’

h

A

i k

i jh

B C

j+1 h’

C

h’i

A

h kh’

C

(the old CKY way)

Idea #2
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The O(n3) half-tree algorithm

lovesMary the girl outdoors] [[ ][ ]] [



4

Theoretical Speedup

� n = input length g = polysemy
� t = traditional nonterms or automaton states

� Naive: O(n5 g2 t) 
� New: O(n4 g2 t)
� Even better for split grammars:

� Eisner (1997): O(n3 g3 t2)
� New: O(n3 g2 t)

all independent of vocabulary size!

Reality check 

� Constant factor

� Pruning may do just as well
� “visiting relatives”: 2 plausible NP hypotheses
� i.e., both heads survive to compete - common??

� Amdahl’s law
� much of time spent smoothing probabilities
� fixed cost per parse if we cache probs for reuse

Experimental Speedup (not in paper)

Used Eisner (1996) Treebank WSJ parser
and its split bilexical grammar

� Parsing with pruning:
� Both old and new O(n3) methods 

give 5x speedup over the O(n5) - at 30 words

� Exhaustive parsing (e.g., for EM):
� Old O(n3) method (Eisner 1997)

gave 3x speedup over O(n5) - at 30 words
� New O(n3) method gives 19x speedup

3 parsers (pruned)

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60
Sentence Length

Ti
m

e

NAIVE
IWPT-97
ACL-99

3 parsers (pruned): log-log plot
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3 parsers (exhaustive)
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3 parsers (exhaustive): log-log plot

y = cx5.2

y = cx4.2

y = cx3.3
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3 parsers
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3 parsers: log-log plot
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Summary

� Simple bilexical CFG notion A[x] →→→→ B[x] C[y]

� Covers several existing stat NLP parsers

� Fully general O(n4) algorithm - not O(n5) 
� Faster O(n3) algorithm for the “split” case
� Demonstrated practical speedup

� Extensions: TAGs and post-transductions


