

When's a grammar bilexical?

If it has rules / entries that mention 2 specific words in a dependency relation:

convene - meeting eat - blintzes ball - bounces joust - with

- So we have Bilex CFG and HAG in O(n⁴).
- HAG is quite powerful head c can require aⁿ c bⁿ:
 ... [...a₃...] [...a₁...] c [...b₁...] [...b₂...] [...b₃...] ...
 not center-embedding, [a₃ [[a₂ [[a₁] b₁]] b₂]] b₃
 - Linguistically unattested and unlikely
 - Possible only if the HA has a left-right cycle
 - Absent such cycles, can we parse faster?
 (for both HAG and equivalent Bilexical CFG)

- **n** = input length **g** = polysemy
- t = traditional nonterms or automaton states

- New: O(n⁴ g² t)
- Even better for split grammars:
 - Eisner (1997): O(n³ g³ t²)
 - New: O(n³ g² t)
 - all independent of vocabulary size!

Reality check

- Constant factor
- Pruning may do just as well
 - "visiting relatives": 2 plausible NP hypotheses
 - i.e., both heads survive to compete common??
- Amdahl's law
 - much of time spent smoothing probabilities
 - fixed cost per parse if we cache probs for reuse

