Efficient Parsing for
*Bilexical CF Grammars
Head Automaton Grammars

Jason Eisner Giorgio Satta
U. of Pennsylvania U. of Padova, Italy

U. of Rochester

When’s a grammar bilexical?

If it has rules / entries that mention 2
specific words in a dependency relation:

convene - meeting
eat - blintzes

ball - bounces
joust - with

Bilexical Grammars

Instead of VP -~ V NP
or even VP 5 solved NP

use detailed rules that mention 2 heads:
S[sol ved] — NP[Peggy] VP]sol ved]
VP[sol ved] — V[solved] NP[puzzle]
NP[puzzl e] - Det[a] N puzzle]
A
U

SO-We €cahn€exc
[sol ved] — V[sol ved] NP[goat
P[puzzle] - Det[two] N puzzle]

Bilexical CF grammars

Every rule has one of these forms:
A x] - B[x] Qy] so head of LHS
A x] - B[yl COx] Is inherited from
A x] - x a child on RHS.
(rules could also have probabilities)

Bix1, Blyl, Ox1, Qyl, .. many nonterminals
A, B, C ... are “traditional nonterminals”
X, y .. are words

Bilexicalism at Work

Not just selectional but adjunct preferences:
Peggy [solved a puzzle] from the library.

Peggy solved [a puzzle from the library]. ‘>
Hindle & Rooth (1993) - PP attachment

Bilexicalism at Work

Bilexical parsers that fit the CF formalism:
Alshawi (1996) - head automata
Charniak (1997) - Treebank grammars
Collins (1997) - context-free grammars
Eisner (1996) - dependency grammars

Other superlexicalized parsers that don’t:
Jones & Eisner (1992) - bilexical LFG parser

Lafferty et al. (1992) - stochastic link parsing
Magerman (1995) - decision-tree parsing
Ratnaparkhi (1997) - maximum entropy parsing

Chelba & Jelinek (1998) - shift-reduce parsing

How bad is bilex CF parsing?

Ax] - Blx] Qy]
Grammar size = O(t3 V?)
wheret=|{A, B, ..}] V=[{x,y ..}]
So CKY takes O(t3 V2 n3)
Reduce to O(t3 n5) since relevant V = n

This is terrible ... can we do better?
Recall: regular CKY is O(t3 n3)

The CKY-style

[Mary]— loves

AA

[[the]— girl «—[outdoors]]

algorithm

—

VN

A

—

A A
r—/%

A A |

Why CKY is O(n®) not O(n3)

Idea #1

A
[h Kk
i ,

Combine B with what C?

must try different-width
C’s (vary k)

must try differently-
headed C's (vary h’)

Separate these!

. advocate visiting relatives
hug visiting relatives
B C
i h j j+1 h kK
O(n%aﬁons)
A O(n® combinations)
i h k
Idea #1
B
A
(the old CKY way) L n J
A c
. i j+1 '

Head Automaton Grammars

(Alshawi 1996)

[Good old Peggy] solved [the puzzle] [with her teeth] !

The head automaton for solved:

a finite-state device

can consume words adjacent to it on either side

does so after they've ci

onsumed their dependents

[Peggy] solved [puzzle] [with] (state = V)

[Peggy] solved [with]
[Peggy] solved
solved

(state = VP)
(state = VP)
(state = S; halt)

Formalisms too powerful?

So we have Bilex CFG and HAG in O(n%).
HAG is quite powerful - head c can require a" ¢ bn:

v [aged [oag.] [nag.] C [y] [by] [bg.]
not center-embedding, [a3 [[ay [[aq] bq]] bol]l by

Linguistically unattested and unlikely

Possible only if the HA has a left-right cycle

Absent such cycles, can we parse faster?
(for both HAG and equivalent Bilexical CFG)

Transform the grammar

Absent such cycles,
we can transform to a “split grammar”:
Each head eats all its right dependents first
e., left dependents are more oblique.

A A
This allows ‘ ‘
i h h K
A

Idea #2
x ‘C
(the old CKY way) i h 1 j+1 h
A
C
oA A A b
i h j j+1 h k i h h h k
AI A

Idea #2
Combine what B and C?
must try different-width
C's (vary k)
B i must try different
A midpoints j
i h j j+1L h k
Al Separate these!
i h" k
Idea #2
A 4
(the old CKY way) h L L
A
C
K A -C N
i h j j+1 h k h h" h k
P AL
i h k h k

The O(n3) half-tree algorithm

[Mary]— loves [[the]— girl «—[outdoors]]

4‘
A‘- h
LAL‘ -;

4l N4

Theoretical Speedup

n = input length g = polysemy
t = traditional nonterms or automaton states

Naive: O(n®>g?t)
New: O(n*g?t)
Even better for split grammars:
Eisner (1997): O(n2g3t?)
New: O(n3g?t)
all independent of vocabulary size!

Reality check

Constant factor

Pruning may do just as well

“visiting relatives”: 2 plausible NP hypotheses

i.e., both heads survive to compete - common??

Amdahl’s law

much of time spent smoothing probabilities
fixed cost per parse if we cache probs for reuse

Experimental Speedup otinpapen

Used Eisner (1996) Treebank WSJ parser
and its split bilexical grammar

Parsing with pruning:
Both old and new O(n®) methods
give 5X speedup over the O(n%) - at 30 words

Exhaustive parsing (e.g., for EM):

Old O(n3) method (Eisner 1997)
gave 3X speedup over O(n5) - at 30 words

New O(n3) method gives 19X speedup

3 parsers (pruned)

6000

5000

4000

NAVE
*WPT-97,
= ACL-99

Time

3 parsers (pruned): log-log plot

10000

1000 -

100

10

10 100

Sentence Length

NAVE
» WPT97
= ACL99

°
£ 3000
£
2000
1000 1
v S
o . sagal3’s § ¥
0 10 20 30 40 60
Sentence Length
3 parsers (exhaustive)
80000
70000
60000 1
50000 NAE
o]
o AcLes
©
£ 40000
=
30000 1
20000
10000 .
0 o A aze028802 @ 20 oo
0 10 20 30 40 60

Sentence Length

3 parsers (exhaustive): log-log plot

100000

10000

NANVE

Time

3 parsers
80000
70000
60000
50000
40000
30000
20000

10000

Sentence Length

1000 o wer]
o AcLos
°
£
E
100
10 +
1
Sentence Length
3 parsers: log-log plot
100000
10000
1000
3
£
IS

100

Sentence Length

Su mmary

= Simple bilexical CFG notion Aix] - Bix] Cy]
© Covers several existing stat NLP parsers

= Fully general O(n#) algorithm - not O(n°)
= Faster O(n®) algorithm for the “split” case

= Demonstrated practical speedup

« Extensions: TAGs and post-transductions

