
Jason Eisner, Nathaniel Wesley Filardo,
Matthew Francis-Landau, Tim Vieira

distance(V) min= distance(U) + edge(U,V).Shortest path:

phrase(X,I,K) += word(W,I,K) * rewrite(X,W).
phrase(X,I,K) += phrase(Y,I,J) * phrase(Z,J,K)

* rewrite(X,Y,Z).
result = phrase("s", 0, sentence_length).

Probabilistic
Context-free
parsing

σ(X) = 1 / (1 + exp(-X)).
out(J) = σ(in(J)).
in(J) += out(I) * edge(I,J).
loss += (out(J) – target(J)) ** 2.

General Neural
Network

% Convolutional layer in the neural network
edge(input(X,Y),hidden(X+DX,Y+DY)) = convWeight(DX,DY).
convWeight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

a = b * c. % equation
Reactive: a keeps up to date with b and c

b += x.
b += y. equivalent to b = x + y. (almost)

c += z(1).
c += z(2).
c += z(3).
c += z("foo").

a(I) = b(I) * c(I). % elem-wise multiplication
a += b(I) * c(I). % dot product (sparse)
a(I,K) += b(I,J) * c(J,K). % matrix mult (sparse)

c += z(N).
Shorthand

Variable

Treating Machine Learning Applications As Declaratively Specified Circuits

thread

agendaagenda

% matrix multiplication
a(I,K) += b(I,J) * c(J,K).

strategystrategy
Strategy:
for J in c(:,4):
for I in b(:,J):
a(I,4) += b(I,J) * c(J,4)

Strategy:
for J in c(:,4):
for I in b(:,J):
a(I,4) += b(I,J) * c(J,4)

Tasks on agenda can be executed
in any order!

Interpolates between eager and lazy
strategies

Tasks on agenda can be executed
in any order!

Interpolates between eager and lazy
strategies

Tons of admissible strategies.
Each attempts to make progress towards

an answer to open queries

Tons of admissible strategies.
Each attempts to make progress towards

an answer to open queries

run

pop

new
tasks
new
tasks

computed
values

computed
values

choose!

choose!
memoize

cachecache

lookup

Memos are optional.
Solver can create or flush memos

anytime.
(memos save recomputation, but

require maintenance)

Memos are optional.
Solver can create or flush memos

anytime.
(memos save recomputation, but

require maintenance)

tasktask

Task:
Compute a(I,4)for all I
Task:
Compute a(I,4)for all I

responseresponse

queries &
updates

queries &
updates

References and Further Reading
• Tim Vieira, Matthew Francis-Landau, Nathaniel Wesley Filardo, Farzad Khorasani, and Jason Eisner.

2017. Dyna: Toward a Self-Optimizing Declarative Language for Machine Learning Applications.
MAPL Workshop.

• Jason Eisner and Nathaniel W. Filardo. 2011. Dyna: Extending Datalog For Modern AI. In Datalog
Reloaded.

• Jason Eisner, Eric Goldlust, and Noah A Smith. 2005. Compiling Comp Ling: Practical weighted
dynamic programming and the Dyna language. In Proc. of EMNLP.

• Nathaniel Wesley Filardo and Jason Eisner. 2012. A Flexible Solver for Finite Arithmetic Circuits. In
International Conference on Logic Programming LIPICS.

• Nathaniel Wesley Filardo. 2017. Dyna 2: Towards a General Weighted Logic Language. PhD Thesis.

Flexible Solver Architecture

Reinforcement Learning Objective

urgency

Encourage earlier
jobs to finish first

Total cost knob setting
Average latency on workload

knob settings

Prolog-like Rules Define a Dynamic Computation Graph

Real-World Examples

Dyna
Dyna is a high-level “circuit programming” language
Declarative semantics: fixpoint of a circuit

• can be infinitely wide, infinitely deep
• allows cycles
• dynamic data-dependent structure

• Prolog-like rules … very concise!
• Innovative typing and inheritance/modularity features

PL Helping ML: The Abstraction Challenge
COMPLEXITY IN ML SYSTEMS: The complexity of modern ML systems interferes with research,
development, and education. It is a truism that an experiment that is casually suggested by a research
advisor, and seems to be straightforward, may cost six months before an efficient and (hopefully) bug-
free implementation is actually running.

ABSTRACTION IS KEY: Textbook algorithms may appear relatively simple because they can be written at an
abstract level — e.g., as update rules on a small set of nicely notated mathematical quantities. However,
applying such an algorithm to a real-world problem means instantiating those abstract quantities in
terms of problem-specific data structures that must be efficiently and correctly manipulated.

EFFICIENCY AND PORTABILITY: Worse, a typical applied ML system combines several of these techniques,
so that many types of quantities are interacting. Not only does this increase complexity, but it creates a
pressure to optimize across the abstraction boundaries in order to maintain speed. Choosing among
possible optimizations is challenging and time-consuming, involving questions such as multiple-use data
structures, time-space tradeoffs, loop orders, and use of specialized libraries and hardware.
Implementing these optimizations further increases the complexity and risks bugs, particularly as the
system evolves during research and development.

• Parallelizing independent computations
• Ordering dependent computations

• Join strategies
• Forward vs. backward chaining (update-driven vs. query-driven)
• Dynamically identify unnecessary computation

• Short-circuiting, branch-and-bound/A*, watched variables
• Consolidating related work

• Static or dynamic batching (consolidating similar tasks, including GPU)
• Inlining depth (consolidating caller-callee)

• Storage
• Memoization policy; choose low-level data structures

• Hardware
• Partitioning the problem across heterogeneous devices (GPUs, distributed)

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.

z

edge(…)
query

edge(x,Y)
for some x answer will be

an iterator over
outgoing edges
(adjacency list)

hash(x)/H
≤ 0.2 look up answer in dense array A4 indexed by x

(where x is an integer or is represented as one)

`

look for
answer

in sparse
hash

table H5
answer from
edge rules
using join
strategy 1

join strategy 2

cached return
answer

query edge(X,Y)
and filter to X=x

return
answer

memoize
& return

……

…

…

Policy probabilities that are tuned over
time (typically approaching 0 or 1)

Running the Policy

• We have two protoypes of earlier versions of the language
• Dyna 1 prototype (2005) was used for 17 dynamic programming research papers
• Dyna 2 prototype (2013) was used for teaching an NLP course

to linguists with no programming background.
• Both were inefficient because they used too many one-size-fits-all strategies.

• Can we build an auto-tuning system? Or can you?
• Fulfills the promise of declarative program specification!

ML Helping PL: The Systems Challenge

PL ML
Faster to implement

Faster execution

Train by actor-critic
with fast RLDT actor

