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distance(V) min= distance(U) + edge(U,V).Shortest path:

phrase(X,I,K) += word(W,I,K) * rewrite(X,W).
phrase(X,I,K) += phrase(Y,I,J) * phrase(Z,J,K)

* rewrite(X,Y,Z).
result = phrase("s", 0, sentence_length).

Probabilistic
Context-free
parsing

σ(X) = 1 / (1 + exp(-X)).
out(J) = σ(in(J)).
in(J) += out(I) * edge(I,J).
loss += (out(J) – target(J)) ** 2.

General Neural
Network

% Convolutional layer in the neural network
edge(input(X,Y),hidden(X+DX,Y+DY)) = convWeight(DX,DY).
convWeight(DX,DY) := random(*,-1,1) for DX:-1..1, DY:-1..1.

a = b * c.   % equation
Reactive: a keeps up to date with b and c

b += x.
b += y. equivalent to b = x + y. (almost)

c += z(1).
c += z(2).
c += z(3).
c += z("foo").

a(I) = b(I) * c(I).  % elem-wise multiplication
a += b(I) * c(I). % dot product (sparse)
a(I,K) += b(I,J) * c(J,K). % matrix mult (sparse)

c += z(N).
Shorthand

Variable

Treating Machine Learning Applications As Declaratively Specified Circuits

thread

agendaagenda

% matrix multiplication
a(I,K) += b(I,J) * c(J,K).

strategystrategy
Strategy:
for J in c(:,4):
for I in b(:,J):
a(I,4) += b(I,J) * c(J,4)

Strategy:
for J in c(:,4):
for I in b(:,J):
a(I,4) += b(I,J) * c(J,4)
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Flexible Solver Architecture

Reinforcement Learning Objective

urgency

Encourage earlier
jobs to finish first

Total cost knob setting
Average latency on workload

knob settings

Prolog-like Rules Define a Dynamic Computation Graph

Real-World Examples

Dyna
Dyna is a high-level “circuit programming” language
Declarative semantics: fixpoint of a circuit

• can be infinitely wide, infinitely deep
• allows cycles
• dynamic data-dependent structure

• Prolog-like rules … very concise!
• Innovative typing and inheritance/modularity features

PL Helping ML: The Abstraction Challenge
COMPLEXITY IN ML SYSTEMS: The complexity of modern ML systems interferes with research,
development, and education. It is a truism that an experiment that is casually suggested by a research
advisor, and seems to be straightforward, may cost six months before an efficient and (hopefully) bug-
free implementation is actually running.

ABSTRACTION IS KEY: Textbook algorithms may appear relatively simple because they can be written at an
abstract level — e.g., as update rules on a small set of nicely notated mathematical quantities. However,
applying such an algorithm to a real-world problem means instantiating those abstract quantities in
terms of problem-specific data structures that must be efficiently and correctly manipulated.

EFFICIENCY AND PORTABILITY: Worse, a typical applied ML system combines several of these techniques,
so that many types of quantities are interacting. Not only does this increase complexity, but it creates a
pressure to optimize across the abstraction boundaries in order to maintain speed. Choosing among
possible optimizations is challenging and time-consuming, involving questions such as multiple-use data
structures, time-space tradeoffs, loop orders, and use of specialized libraries and hardware.
Implementing these optimizations further increases the complexity and risks bugs, particularly as the
system evolves during research and development.

• Parallelizing independent computations
• Ordering dependent computations

• Join strategies
• Forward vs. backward chaining (update-driven vs. query-driven)
• Dynamically identify unnecessary computation

• Short-circuiting, branch-and-bound/A*, watched variables
• Consolidating related work

• Static or dynamic batching (consolidating similar tasks, including GPU)
• Inlining depth (consolidating caller-callee)

• Storage
• Memoization policy; choose low-level data structures

• Hardware
• Partitioning the problem across heterogeneous devices (GPUs, distributed)

Strategy options
Solver should systematize all the reasonable implementation tricks that programmers
might use and make them work together correctly.
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Running the Policy

• We have two protoypes of earlier versions of the language
• Dyna 1 prototype (2005) was used for 17 dynamic programming research papers
• Dyna 2 prototype (2013) was used for teaching an NLP course

to linguists with no programming background.
• Both were inefficient because they used too many one-size-fits-all strategies.

• Can we build an auto-tuning system?  Or can you?
• Fulfills the promise of declarative program specification!

ML Helping PL: The Systems Challenge

PL ML
Faster to implement

Faster execution

Train by actor-critic
with fast RLDT actor


