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AI Algorithms in Conventional Languages

Package Files SLOC Language Application area
SRILM 285 48967 C++ Language modeling
Charniak parser 266 42464 C++ Parsing
Stanford parser 417 134824 Java Parsing
cdec 178 21265 C++ Machine translation
Joshua 486 68160 Java Machine translation
MOSES 351 37703 C++ Machine translation
GIZA++ 122 15958 C++ Bilingual alignment
OpenFST 157 20135 C++ Weighted FSAs & FSTs
NLTK 200 46256 Python NLP education
HTK 111 81596 C Speech recognition
MALLET 620 77155 Java Conditional Random Fields
GRMM 90 12926 Java Graphical model add-on
Factorie 164 12139 Scala Graphical models

A selection of popular NLP and machine learning systems (top) and toolkits
(bottom). Statistics were generated from the most recent stable release as of this
writing using SLOCCount [8].
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Relax Datalog’s restrictions—driven by use cases

Drop flatness: allow terms to encode lists, categorial nonterminals,
attribute-value trees, etc.

Drop range restriction: allow default and non-monotonic reasoning,
and general function definitions; simplifies certain source-to-source
program transformations [4].

Drop stratification: allow non-stratified design patterns

dynamic programming (shortest paths, pathsum)
recurrent neural networks
message passing
iterative optimization

As a result,

execution might not terminate (Turing-complete)

must reason over non-ground terms (needs mode analysis)

one program may have multiple models
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A General Feed-Forward Neural Network

sigmoid(X) = 1 / (1 + exp(-X)).

output(Node) = sigmoid(input(Node)).

input(Node) += output(Child) * weight(Child,Node).

error += (output(Node) - target(Node))**2.

Line 1 defines the sigmoid function over all real numbers X.
Line 2 applies that function to the value of input(Node) (evaluated in place).
Line 3 sums over all incoming edges to Node. Those edges are simply the
(Child,Node) pairs for which weight(Child,Node) is defined. Additional
summands to some of the input(Node) items may be supplied at runtime.
Line 4 evaluates error by summing over just those nodes for which target(Node)

has been defined (i.e., is non-null), presumably the output nodes.
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Neural Network Topology for Vision

weight(pixel(X+I,Y+J), hidden(X,Y)) = shared_weight(I,J).

One layer of a neural network topology for vision, to be used with the previous
example. Each hidden node hidden(X,Y) is connected to a 5× 5 rectangle of
input nodes pixel(X+I,Y+J) for I, J ∈ {−2,−1, 0, 1, 2}, using a collection of 25
weights that are reused across spatial positions (X,Y). The shared_weight(I,J)

items should be defined (non-null) only for I, J ∈ {−2,−1, 0, 1, 2}. This rule then
connects nodes with related names, such as such as hidden(75,95) and
pixel(74,97).

This rule exploits the fact that the node names are structured objects. By using
structured names, we have managed to specify an infinite network in a single line
(plus 25 weight definitions). Only a finite portion of this network will actually be
used by the network above, assuming that the image (the collection of pixel
items) is finite.
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Non-Monotonic Reasoning

fly(X) := false.

fly(X) := true if bird(X).

fly(X) := false if penguin(X).

fly(bigbird) := false.

An example of non-monotonic reasoning: all birds fly, other than Sesame Street’s
Big Bird, until such time as they are proved or asserted to be penguins. The :=

aggregator is sensitive to rule ordering, so that where the later rules apply at all,
they override the earlier rules. The first rule is a “default rule” that is not
range-restricted: it proves infinitely many items that unify with a pattern (here
the very simple pattern X).
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Non-Monotonic Reasoning: Default Arcs in FSAs

arc(q,Letter) := r. % single default: ρ arc from state q to state r

arc(q,"x") := s. % override default: on input letter "x", go to s instead

arc(q,Letter) := arc(r,Letter). % inherited defaults: φ arc from q to r

arc(q,"x") := s. % override default: on input letter "x", go to s instead

At a given state of the automaton, one can concisely specify some default
transitions, but then override these defaults in selected cases. The above mimics
the special ρ and φ arcs supported by the OpenFST toolkit [1].

This concise intensional structure can be exploited directly within an algorithm
such as the forward-backward algorithm, the Viterbi algorithm, or automaton
intersection.

However, nontrivial rearrangements of the standard algorithm can be needed to
avoid materializing all transitions from state q. An efficient implementation of
Dyna would have to discover these optimizations.
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Probabilistic Context-Free Parsing

% A single word is a phrase (given an appropriate grammar rule).
phrase(X,I,J) += rewrite(X,W) * word(W,I,J).

% Two adjacent phrases make a wider phrase (given an appropriate rule).
phrase(X,I,J) += rewrite(X,Y,Z) * phrase(Y,I,Mid)

* phrase(Z,Mid,J).

% An phrase of the appropriate type covering the whole sentence is a parse.
goal += phrase(start_nonterminal,0,length).

Probabilistic context-free parsing in Dyna (the “inside algorithm”) . . .
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Probabilistic Context-Free Parsing

Probabilistic context-free parsing in Dyna (the “inside algorithm”).
phrase(X,I,J) is provable if there might be a constituent of type X from
position I to position J of the input sentence. More specifically, the value
of phrase(X,I,J) is the probability that nonterminal symbol X would
expand into the substring that stretches from I to J. It is defined using +=

to sum over all ways of generating that substring (considering choices of Y,
Z, Mid). Thus, goal is the probability of generating the input sentence,
summing over all parses.

The extensional input consists of a sentence and a grammar.
word("spring",5,6)=1 means that "spring" is the sixth word of the
sentence; while length=30 specifies the number of words.
rewrite("S","NP","VP")=0.9 means that any copy of nonterminal S
has a priori probability 0.9 of expanding via the binary grammar
production S → NP VP; while start_nonterminal="S" specifies the start
symbol of the grammar.
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Modularity: Parsing (a)

phrase(X,I,J) += grammar.rewrite(X,W) * input.word(W,I,J).

phrase(X,I,J) += grammar.rewrite(X,Y,Z) * phrase(Y,I,Mid)

* phrase(Z,Mid,J).

goal += phrase(grammar.start_nonterminal,

0,input.length).

A parser as earlier, except that its input items are two dynabases (denoted
by grammar and input) rather than many separate numbers (denoted by
rewrite(. . .), word(. . .), etc.).
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Modularity: Parsing (b)

% Specialize (a) into an English-specific parser.
english_parser = new $load("parser"). % parser.dyna is given in (a)
english_parser.grammar = $load("english_grammar"). % given in (c)

% Parse a collection of English sentences by providing different inputs.
doc = $load("document").
parse(K) = new english_parser. % extend the abstract parser . . .
parse(K).input = doc.sentence(K). % . . . with some actual input

% The total log-probability of the document, ignoring sentences for which
% no parse was found.
logprob += log(parse(K).goal).

An illustration of how to use the above parser . . .
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Modularity: Parsing (b)

An illustration of how to use the above parser. This declarative “script”
does not specify the serial or parallel order in which to parse the sentences,
whether to retain or discard the parses, etc. All dynabases parse(K) share
the same grammar, so the rule probabilities do not have to be recomputed
for each sentence. A good grammar will obtain a comparatively high
logprob; thus, the logprob measure can be used for evaluation or
training. (Alternative measures that consider the correct parses, if known,
are almost as easy to compute.)
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Modularity: Parsing (c)

% Define the unnormalized probability of the grammar production X → Y Z

% as a product of feature weights.
urewrite(X,Y,Z) *= left_child_weight(X,Y).

urewrite(X,Y,Z) *= right_child_weight(X,Z).

urewrite(X,Y,Z) *= sibling_weight(Y,Z).

urewrite(X,Y,Y) *= twin_weight. % when the two siblings are identical
urewrite(X,Y,Z) *= 1. % default in case no features are defined

% Normalize into probabilities that can be used in PCFG parsing:
% many productions can rewrite X but their probabilities should sum to 1.
urewrite(X) += urewrite(X,Y,Z)

whenever nonterminal(Y), nonterminal(Z).

rewrite(X,Y,Z) = urewrite(X,Y,Z) / urewrite(X).

Constructing a dense grammar for use by the above programs, with
probabilities given by a conditional log-linear model . . .
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Modularity: Parsing (c)

Constructing a dense grammar for use by the above programs, with
probabilities given by a conditional log-linear model. With k grammar
nonterminals, this scheme specifies k3 rule probabilities with only O(k2)
feature weights to be learned from limited data [2]. Just as for neural nets,
these weights may be trained on observed data. For example, maximum
likelihood estimation would try to maximize the resulting logprob.
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Schematic Example of Multiple Dynabases

three = 3.

e = { pigs += 100. % we have 100 adult pigs
pigs += piglets. % and any piglets we have are also pigs

}.

f = new e. % f is a new pigpen ϕ that inherits all rules of ε
f.pigs += 20. % but has 20 extra adult pigs
f.piglets := three. % and exactly three piglets

g = new e. % g is another new pigpen γ
offspring = g.pigs / three. % all pigs have babies
g.piglets := offspring. % who are piglets

transpose(Matrix) = { element(I,J) = Matrix.element(J,I). }.
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Monte Carlo Methods: Simple Random Walk

point(T) = new point(T-1). % copy old point
point(T).x += r.dx(T) if r.flip(T) < 0.5. % adjust x
point(T).y += r.dy(T) if r.flip(T) >= 0.5. % or y (but never both)

A simple random walk in two dimensions, where r is a random dynabase. Exactly
one of x or y changes at each time step. Other derived members may change
accordingly.
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Arc Consistency

% For Var:Val to be possible, Val must be in-domain, and
% also supported by each Var2 that is co-constrained with Var.
% The conjunctive aggregator &= is like universal quantification over Var2.
possible(Var:Val) &= in_domain(Var:Val).

possible(Var:Val) &= supported(Var:Val, Var2).

% Var:Val is supported by Var2 only if it is still possible
% for Var2 to take some value that is compatible with Val.
% The disjunctive aggregator |= is like existential quantification over Val2.
supported(Var:Val, Var2)

|= compatible(Var:Val, Var2:Val2) & possible(Var2:Val2).

% If consistent ever becomes false, we have detected unsatisfiability:
% some variable has no possible value.
non_empty(Var) |= false. % default (if there are no possible values)
non_empty(Var) |= possible(Var:Val). % Var has a possible value
consistent &= non_empty(Var) whenever is_var(Var).

% each Var in the system has a possible value
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Arc Consistency

Arc consistency for constraint programming [3]. The goal is to rule out some
impossible values for some variables, using a collection of unary constraints
(in_domain) and binary constraints (compatible) that are given by the problem
and/or tested during backtracking search. The “natural” forward-chaining
execution strategy for this Dyna program corresponds to the classical,
asymptotically optimal AC-4 algorithm [5].

Variables and constraints can be named by arbitrary terms. Var:Val is syntactic
sugar for an ordered pair, similar to pair(Var,Val) (the : has been declared as
an infix functor). The program determines whether possible(Var:Val). The
user should define is_var(Var) as true for each variable, and
in_domain(Var:Val) as true for each value Val that Var should consider. To
express a binary constraint between the variables Var and Var2, the user should
define compatible(Var:Val, Var2:Val2) to be true or false for each value
pair Val and Val2, according to whether the constraint lets these variables
simultaneously take these values. This ensures that supported(Var:Val,Var2)
will be true or false (not null) and so will contribute a conjunct to line 2.
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Loopy Belief Propagation

% Belief at each variable based on the messages it receives from constraints.
belief(Var:Val) *= message(Con, Var:Val).

% Belief at each constraint based on the messages it receives from variables
% and the preferences of the constraint itself.
belief(Con:Asst) = messages_to(Con:Asst) * constraint(Con:Asst).

% To evaluate a possible assignment Asst to several variables, look at messages
% to see how well each variable Var likes its assigned value Asst.Var.
messages_to(Con:Asst) *= message(Var:(Asst.Var), Con).

% Message from a variable Var to a constraint Con. Var says that it plausibly
% has value Val if Var independently believes in that value (thanks to other
% constraints, with Con’s own influence removed via division).
message(Var:Val, Con) := 1. % initial value, will be overridden
message(Var:Val, Con) := belief(Var:Val) / message(Con, Var:Val).

% Messages from a constraint Con to a variable Var.
% Con says that Var plausibly has value Val if Con independently
% believes in one or more assignments Asst in which this is the case.
message(Con, Var:Val) += belief(Con:Asst) / message(Var:Val, Con)

whenever Asst.Var == Val.
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Loopy Belief Propagation

Loopy belief propagation on a factor graph [7, 9]. The constraints
together define a Markov Random Field joint probability distribution over
the variables. We seek to approximate the marginals of that distribution:
at each variable Var we will deduce a belief about its value, in the form of
relative probabilities of the possible values Val. Similarly, at each
constraint Con over a set of variables, we will deduce a belief about the
correct joint assignment of values to just those variables, in the form of
relative probabilities of the possible assignments Asst.

Assignments are slightly complicated because we allow a single constraint
to refer to arbitrarily many variables (in contrast to arc consistency, which
assumed binary constraints). A specific assignment is a map from variable
names (terms such as color, size) to their values (e.g., red, 3). It is
convenient to represent this map as a small sub-dynabase, Asst, whose
elements are accessed by the . operator: for example,
Asst.color == red and Asst.size == 3.
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Loopy Belief Propagation

As input, the user must define constraint so that each constraint
(“factor” or “potential function”) gives a non-negative value to each
assignment, giving larger values to its preferred assignments. Each variable
should be subject to at least one constraint, to specify its domain
(analogous to in_domain in arc consistency).

A message to or from a variable specifies a relative probability for each
value of that variable. Since messages are proved circularly from one
another, we need to initialize some messages to 1 in order to start
propagation; but these initial values are overridden thanks to the :=

aggregator, which selects its “latest” aggregand and hence prefers the
aggregand from line 5 (once defined) to the initial aggregand from line 4.
Note: For simplicity, this version of the program glosses over minor issues
of message normalization and division by 0.
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Backtracking Search with Constraint Propagation

% Freely choose an unassigned variable nextvar, if any exists.
% For each of its values Val that is still possible after arc consistency,
% create a clone of the current dynabase, called child(Val).
nextvar ?= Var whenever unassigned(Var). % free choice of nextvar
child(Val) = new $self if possible(nextvar:Val). % create several extensions

% Further constrain each child(Val) via additional extensional input,
% so that it will only permit value Val for nextvar,
% and so that it will choose a new unassigned variable to assign next.
child(Val).possible(nextvar:Val2) &= (Val==Val2)

whenever possible(nextvar:Val).

child(Val).unassigned(nextvar) &= false. % nextvar has been assigned

% We are satisfiable if arc consistency has not already proved consistent to be false,
% and also at least one of our children (if we have any) is satisfiable.
consistent &= some_child_consistent.

some_child_consistent |= child(Val).consistent.

% usually is true or false, but is null at a leaf (since nextvar is null)
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Backtracking Search with Constraint Propagation

Determining the satisfiability of a set of constraints, using backtracking
search interleaved with arc consistency. These rules extend the program of
arc consistency—which rules out some impossible values for some
variables, and which sometimes detects unsatisfiability by proving that
consistent is false. Here, we strengthen consistent with additional
conjuncts so that it fully checks for satisfiability. Lines 1–2 choose a single
variable nextvar (using the “free-choice” aggregator ?=) and guess
different values for it in child dynabases. We place constraints into the
child at lines 3–4 and read back the result (whether that child is
satisfiable) at line 6.
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Backtracking Search with Constraint Propagation

Branch and bound: Find a maximum-scoring joint assignment to the variables,
subject to the constraints. The score of a given assignment is found by summing
the subscore values (as specified by the user) of the several Var:Val pairs in
the assignment.

Above, replace consistent (a boolean item aggregated by &=) by score (a
real-valued item aggregated by min=). Just as consistent computes a boolean
upper bound on satisfiability, score computes a numeric upper bound on the
best achievable score:

subscore(Var) max= −∞.

subscore(Var) max= subscore(Var:Val) whenever possible(Var:Val).

upper_bound += subscore(Var) whenever is_var(Var).

score min= upper_bound.

Then above, score is reduced to the best score actually achieved by any child:

score min= best_child_score.

best_child_score max= child(nextvar:Val).score.
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Markov Decision Processes

% The optimal value function V .
value(State) max= value(State,Action).

% The optimal action-value function Q. Note: The value of p(s, a, s ′)
% is a conditional transition probability, P(s ′ | s, a).
value(State,Action) += reward(State,Action).

value(State,Action) += γ * p(State,Action,NewState)

* value(NewState).

% The optimal policy function π. The free-choice aggregator ?= is used
% merely to break ties.
best_action(State) ?= Action whenever

value(State) == value(State,Action).
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Markov Decision Processes

Finding the optimal policy in an infinite-horizon Markov decision process, using
value iteration. The reward and transition probability functions can be sensitive
to properties of the states, or to their structured names as earlier. The optimal
value of a State is the expected total reward that an agent will earn if it follows
the optimal policy from that State (where the reward at t steps in the future is
discounted by a factor of γt). The optimal value of a (State,Action) pair is
the expected total reward that the agent will earn by first taking the given
Action—thereby earning a specified reward and stochastically transitioning to a
new state—and thereafter following the optimal policy to earn further reward.

The mutual recurrence between V and Q interleaves two different aggregators:
max= treats optimization by the agent, while += computes an expectation to treat
randomness in the environment. This “expectimax” strategy is appropriate for
acting in a random environment, in contrast to the “minimax” strategy using
max= and min= that is appropriate when acting against an adversarial opponent.
The final line with ?= merely extracts the optimal policy once its value is known.
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Weighted Edit Distance

% Base case: distance between two empty strings.
dist([],[]) = 0.

% Recursive cases.
dist([X|Xs], Ys ) min= delete_cost(X) + dist(Xs,Ys).

dist( Xs, [Y|Ys]) min= insert_cost(Y) + dist(Xs,Ys).

dist([X|Xs],[Y|Ys]) min= subst_cost(X,Y) + dist(Xs,Ys).

% Part of the cost function.
substcost(L,L) = 0. % cost of 0 to align any letter to itself
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Weighted Edit Distance

Weighted edit distance between two strings. This example illustrates items
whose names are arbitrarily deep terms: each dist name encodes two
strings, each being an list of letters. As in Prolog, the syntactic sugar
[X|Xs] denotes a list of length > 0 that is composed of a first element X
and a remainder list Xs.

We pay some cost for aligning the first 0 or 1 letters from one string with
the first 0 or 1 letters from the other string, and then recurse to find the
total cost of aligning what is left of the two strings. The choice of how
many initial letters to align is at lines 2–4: the program tries all three
choices and picks the one with the minimum cost. Reuse of recursive
subproblems keeps the runtime quadratic. For example, if all costs not
shown are 1, then dist([a,b,c,d], [s,b,c,t,d]) has value 2. This is
obtained by optimally choosing the line with subst_cost(a,s) at the
first recursive step, then subst_cost(b,b), subst_cost(c,c),
insert_cost(t), subst_cost(d,d), for a total cost of 1+0+0+1+0.
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Conditional Probability Estimation

count(X,Y) += 0 whenever is_event(X), is_event(Y). % default
count(X) += count(X,Y).

count += count(X).

% Maximum likelihood estimates
mle_prob(X) = count(X) / count.

mle_prob(X,Y) = count(X,Y) / count(Y).

% Good-Turing smoothed estimates [6]
gt_prob(X) = total_mle_prob(count(X)+1) / n(count(X)).

gt_prob(X,Y) = total_mle_prob(count(X)+1,Y) / n(count(X),Y).

% Used by Good-Turing: How many events X occurred R times, or
% cooccurred R times with Y, and what is their total probability?
n(R) += 0. n(R) += 1 whenever R==count(X).

n(R,Y) += 0. n(R,Y) += 1 whenever R==count(X,Y).

total_mle_prob(R) += mle_prob(X) whenever R==count(X).

total_mle_prob(R,Y) += mle_prob(X,Y) whenever R==count(X,Y).
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Conditional Probability Estimation

Estimating conditional probabilities p(x) and p(x | y), based on counts of
x with y . The user can simply increment count(x,y) whenever x is
observed together with y , and the probability estimates will update.

The user should also set is_event(x) to true for each possible event x ,
to ensure that even never-observed events will have a defined count (of 0)
and will be allocated some probability; n(0) counts the number of
never-observed events. The final four lines could be written more
concisely; e.g., the first of them as n(count(X)) += 1. The final two
lines should be optimized [4], e.g., the first of them is equivalent to
total_mle_prob(R) = (R/count)*n(R).
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