
Learning Speed-Accuracy Tradeoffs in Nondeterministic
Inference Algorithms

Jason Eisner1 Hal Daumé III2
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1 Problem Definition

Statistical learning has led to great advances in building models that achieve high accuracy. However, test-
time inference in these models can be slow, for example in structured prediction problems. This is frequently
addressed by using test-time heuristics to guide and prune the search for a good structured output. In this
high-level paper, we ask: Could we explicitly train such heuristics to trade off accuracy and efficiency? And
how does this relate to existing learning problems?

We consider problems where there is a problem-specific notion of accuracy, and the function we wish to
maximize is (accuracy− λ× runtime), where λ is a user-defined parameter specifying the desired tradeoff.

More specifically, we focus our discussion on the problem of natural language parsing under a weighted
context-free grammar. A parsing algorithm is typically nondeterministic, in that it explores many paths in
parallel: it builds many constituents (sub-parses) that will turn out not to be subtrees of the final, highest-
weighted parse tree. We assume a bottom-up architecture similar to a forward-chaining theorem prover (Kay,
1986; Eisner et al., 2005). Whenever a new constituent is built, it is inserted into a priority queue, the
“agenda.” At each step of the algorithm, a prioritization heuristic (Caraballo & Charniak, 1998) pops the
highest-priority constituent from the agenda. This is combined with previously popped constituents to yield
larger constituents that are then pushed back on the agenda. Our goal is to learn a heuristic that pursues
promising constituents early on, and thus tends to lead quickly to a high-accuracy parse. We can tolerate a
little search error, so we are not restricted to the admissible heuristics of A∗ search (Klein & Manning, 2003).

This is fundamentally a delayed reward problem: one does not know until parsing has finished how fast
or accurate the parser was. We therefore cast learning as an off-line reinforcement learning problem. The
prioritization heuristic is parameterized by θ. At training time, the reinforcement learning algorithm tries
to find a parameter vector θ that optimizes a given reward, R = (accuracy − λ × runtime), over the input
distribution from which training data are drawn.

A well-studied setting for reinforcement learning is the Markov decision process (MDP), a formalization of
a memoryless search process. An MDP consists of a (typically finite) state space S, an action space A, a
(possibly stochastic) transition function T , and a (possibly stochastic) reward function R. An agent observes
the current state s ∈ S and chooses an action a ∈ A. The environment responds by moving the agent to
another state s′ ∈ S , which is sampled from the MDP’s transition distribution T (s′ | s, a), and by giving the
agent a reward r, which is sampled from the MDP’s reward distribution R(r | s, a, s′). The agent’s goal is to
maximize its total reward over time. An agent’s policy π describes how the agent chooses an action based on
its current state.

For our parsing example, the state consists of the input sentence, the agenda, and the parse chart (the set
of previously popped constituents). So the state space is astronomically large. The agent controls which
item (constituent) to pop next from the agenda. Thus, in any state, the possible actions correspond to items
currently on the agenda. The agent’s policy π is our prioritization heuristic, parameterized by θ, which selects
an item y and pops it. The environment responds deterministically by adding y to the chart, combining y as
licensed by the grammar with various adjacent items z that are already in the chart, and placing each resulting
new item x back on the agenda (with duplicates removed in favor of the higher weight one). Parsing ends
when π chooses to pop the special action HALT. Then the highest-weight complete parse to date is returned,
and the environment rewards the agent for the accuracy and speed of that parse.

We consider deterministic policies that always pop the highest-priority available action. Thus, learning a
policy corresponds to learning a priority function. We define the priority of action a in state s as the dot
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product of a feature vector φ(s, a) with the weight vector θ. Note that features can depend not just on the
action (the item being popped) but the state (the input sentence, and the chart and agenda of constituents that
have been built so far). Static features are those that depend only on the action and the original parser input;
dynamic features are those that change along with the state. This terminology derives from the fact that even
after an item y is pushed onto the agenda, the chart may change and therefore the corresponding values for
some of its dynamic features may change. In particular, the item y might be encouraged/discouraged as the
parser discovers other constituents or configurations of constituents that are compatible/incompatible with y.

2 Relationship to Typical Reinforcement Learning Problems
There are several key ways in which this problem differs from typical reinforcement learning settings. Some
of these make the learning problem harder, but others make it potentially easier.

Note first that our learning is episodic. Each run is a separate and finite “episode,” whose initial state is
determined by an input sentence to be parsed. We assume the offline learning setting, with separate phases
for training (exploration) and testing (exploitation). We will be evaluated only on the reward earned during
testing episodes; so we are not penalized for low-reward episodes at training time.

Challenges. The primary difficulties relate to the scale of the problem. The astronomical size of the state
space makes it hard to do value estimation or planning.1 The choice among hundreds of actions at each state
makes it hard to identify good actions. And a typical episode consists of thousands of actions, making it
difficult to say which of these actions deserve credit for the eventual reward.

In addition, we will eventually wish to search through a high-dimensional policy space, particularly when
we use dynamic features. This is because the usefulness of a parse action may be sensitive to detailed con-
figurations of the parse chart and input, which motivates generating large sets of potentially useful features.
Unfortunately, the expected reward as a function of the policy parameters can be highly non-convex. For
example, there exist parsing strategies, such as coarse-to-fine strategies, in which extra items are built solely
to trigger dynamic features that affect the priority of the traditional items (Felzenszwalb & McAllester, 2007).
But discovering such coordinated strategies by exploration is difficult, because producing the extra items is a
waste of time until one has also learned to consume them.

Opportunities. Fortunately, our setting also has attractive properties that enable some novel approaches
to learning. (These properties are not unique to parsing, but are shared with many other AI computations,
including machine translation, image parsing, and constraint propagation.)

First, our goal is to learn how to act within a simple idealized model of computation. The environment
responds deterministically to our actions (even if we decide to explore the search space by choosing some
actions randomly). Thus, we can run controlled experiments where we change part of the policy, or specific
actions within an episode, to see what happens.

Even better, we have perfect knowledge of the environment. Thus, as discussed below, we may be able to
reason analytically about the results of certain such changes. This may be much faster than testing the changes
by running new episodes, particularly if we wish to reason about large batches of episodes (e.g., the average
reward of a stochastic policy). Because we know the causal structure of the environment, we may also be
able to reason backward to identify changes that could bring about a desired improvement. Even where exact
answers would require simulation of new episodes, we may still be able to do effective approximate reasoning
using a simplified model. This is analogous to using variational inference in place of MCMC simulation.

Second, our environment is mainly an arena for monotonic reasoning. A parser is a kind of theorem prover
that gradually discovers all facts that are provable from the input—e.g., the fact that a certain substring of the
input could be analyzed as a Noun Phrase constituent. As the parser runs, the set of discovered facts (i.e.,
popped items) only becomes larger. This setting has three striking properties:

• Facts are renewable resources. Once an item z has been built and added to the chart, it remains
available forever, for use as a subconstituent in any number of larger constituents.

• Once an item y has been pushed onto the agenda, the action of popping it remains available to the
agent indefinitely, until that action is taken.

• If y and z are provable and the set of provable items is finite, then the parser will eventually prove
both y and z, if it runs for long enough.2

1Indeed, there are very many reasonable plans for achieving a high reward, since there are many routes to the same
parse. However, it is not known which plans can be achieved within our policy space. The fastest plans pop only correct
constituents, with no wasted work, but presumably no policy exists that is so clarivoyant.

2This situation no longer holds if we allow actions that permanently prune parts of the search space, rather than simply
postponing exploration of these parts through the prioritization heuristic. Heuristic pruning is commonly used in parsers.
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Together, these properties mean that the environment is quite forgiving about the ordering of actions (which
is what our policy really controls). If the agent does not choose to pop y now and combine it with z to
obtain x, it will still be able to do so later. Moreover, the resulting delay in producing x will not reduce the
opportunities eventually available to x. Hence small changes to the policy, which reorder items slightly on the
agenda, tend to have small and predictable effects on the trajectory through state space. This is different from
many reinforcement learning settings, where a single action may radically change the state, the available next
actions, and the eventual reward.

This situation is somewhat complicated by dynamic features. Although an item, once proved, remains around
forever as an immutable fact on the agenda or chart, its priority on the agenda is not immutable but may
fluctuate as the item’s dynamic features change. For example, it may be important for the agent to discover
evidence that the item should have low priority before it unnecessarily pops the item and triggers a cascade
of useless work. Still, the agent can largely recover from such poor decisions.

Third, we can sometimes exploit the nature of our reward function (accuracy − λ × runtime). For a given
input, it is often tractable to find a high-accuracy trajectory through state space, for example by running the
agenda-based computation for long enough with a simple initial policy.3 Policy learning can then focus on
increasing the priority of the items that already appear in a desirable trajectory or a set of desirable trajectories,
so that they—and the HALT action—are popped earlier. Here the accuracy problem (λ = 0) has already been
solved by previous work; we are merely trying to increase speed (λ > 0).

3 New Reinforcement Learning Strategies
For several reasons, we find it unlikely that classic reinforcement learning algorithms like policy gradient
(Williams, 1992; Sutton et al., 2000) or conservative policy iteration (Kakade & Langford, 2002) will find
reasonable policies in a tolerable amount of time. The estimates of the policy gradient have high variance.
Even the true policy gradient is not all that useful: it tends to be quite flat, because small changes to the policy
will at best reorder actions locally in a way that does not affect overall reward. Indeed, when we ran a small
policy gradient experiment with just 20 features, the policies it found were significantly worse than a simple
hand-coded policy that used only 2 features.

We would instead like to determine how to adjust the policy by reasoning about causality in our environment.
We may reason that popping item y much earlier would enable or encourage another desirable item to be
popped early. Similarly, we may reason that greatly lowering the priority of a apparently unhelpful item,
to below the priority of STOP, would prevent that item from popping before STOP and triggering additional
useless work.

Intuitively, for a given input sentencew, such reasoning should allow us to adjust our policy in a direction that
would tend to eventually improve the speed and accuracy of parsing w. Such “what if” analysis is imaginable
because of the special properties of our setting, as discussed in section 2.

Our outer loop is typical of policy search:4 At time t, our policy is determined by parameters θt. We consider
the trajectory τ̄ = τ(wt, θt) that this current policy would take on some randomly chosen input sentence wt,
and choose θt+1 so that higher-reward trajectories for wt are actually chosen or come closer to being chosen.

One version of this searches for a few specific, complete trajectories that are “near τ̄” but have higher reward.
The parameters θ can then be updated toward these trajectories. E.g., in our setting, we can efficiently identify
individual actions whose priority it would be profitable to change (keeping the rest of the policy the same).5

An alternative type of adjustment is a kind of “surrogate policy gradient.” How would our reward on wt

change with θ? Consider the function Rt(θ) that gives the reward of trajectory τ(wt, θ). Unfortunately, this
function is piecewise constant.6 So based on the current trajectory τ̄ = τ(wt, θt), we construct some highly
smoothed, differentiable surrogate function R̃t(θ) that approximates Rt(θ), at least for θ in the vicinity of
the current parameters θt. We then choose θt+1 by following the gradient of R̃t(θ). We propose to find this
gradient analytically, not by sampling as in ordinary policy gradient. Below are two versions of this idea.

3Agenda-based parsing will eventually find the highest-weighted parse. For basic approaches to parsing (e.g.,
weighted context-free grammars of natural language), the runtime of doing this is a manageable polynomial in the length
of the sentence, and state-of-the-art models (grammars) are good enough that the highest-weighted parse is fairly accurate
with respect to the gold standard. All this is somewhat less true for the formally similar problem of machine translation.

4Loss-sensitive learners for structured prediction also have this flavor (Crammer et al., 2006; McAllester et al., 2010).
5Candidate actions can be identified as in section 3.2 below. We use change propagation to determine how moving

a candidate action’s time within τ would affect the reward: a few intervening actions would also move in time because
they would be pushed earlier/later or would pop with a different priority. While these changes may cascade somewhat,
computing them should still be faster than recomputing the trajectory from scratch.

6Small changes to θ preserve the trajectory, except when they make a new action become the highest-priority action.
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3.1 Variational Surrogate

Rt(θ) gives the reward of the single trajectory τ(wt, θ). To smooth this, we would like R̃t(θ) to measure the
expected reward of a bundle of trajectories in a neighborhood around τ(wt, θ). Such a bundle can be defined
by adding noise to the policy defined by θ. We can then take our gradient step θt+1 = θt + ε∇R̃t(θt).

So far, this is just policy gradient. However, policy gradient would usually sample trajectories from the “cur-
rent” bundle (around τ̄ = τ(wt, θt)) to estimate their expected reward R̃t(θt) and its gradient. Sampling has
0 bias, but very high variance in our setting. We wish to improve the bias-variance tradeoff. Our setting lends
itself well to variational approximation, for reasons discussed in section 2: within a bundle of trajectories,
actions at different timesteps are fairly independent of one another, as are the various features of the state.

Thus, we compute a variational approximation to the joint distribution over the current bundle’s trajectories
and their rewards. Using this approximation, it is possible to estimate the current bundle’s expected reward
R̃t(θt). As for its gradient, variational approximation is not a closed-form computation, but we can still use
algorithmic differentiation to determine how our estimated reward would have been affected by changes to θ.

The use of a distribution over trajectories—the “bundle”—is what makes R̃t differentiable. To define it,
we recommend adding a unique feature for each item y. A trajectory is sampled by running the policy
deterministically after sampling these features’ weights θy ∼ N (0, σ2). When θy < 0, y tends to pop later.
This scheme finds a more diverse trajectory bundle than Boltzmann exploration.7 We decrease σ2 over time.

3.2 Priority-Based Surrogate

We consider another design for the approximate reward model R̃t(θ). Intuitively, it is easy to see where the
current trajectory τ̄ would benefit from popping certain constituents much sooner or later. To make x pop
sooner, we must raise its priority and/or the priorities of the subconstituents from which it was built. We will
raise them slightly taking a step along the gradient of R̃t. The idea is that the true Rt is locally flat, but the
gradient of R̃t should point toward faraway points that would actually displace x enough to affect the reward.

We can formalize the idea as follows. We do not estimate the reward of each possible θ 6= θt by actually
revising the trajectory τ̄ (or bundle of trajectories around τ̄ ). Instead, from θ we construct a revised estimate
ux of each item x’s “effective priority” (defined below), such that items with larger ux tend to pop sooner.
Our reward estimate R̃t is defined to be a smooth function of the ux values. Thus, following the gradient
means changing θ in a way that changes the ux values so as to increase this smooth R̃t fastest.

The basic insight is that reward = accuracy−λ×runtime is determined by which items x pop before the HALT
action, i.e., ux > uHALT. Popping x before HALT hurts runtime (since the parser then tries to build new items
from x). But occasionally it also helps accuracy by changing the parser output (= the top-scoring complete
parse that is popped before HALT). Given the current trajectory τ̄ (obtained by running the policy well past
HALT, with parameters θt), we can easily compute these direct effects: the change ∆x to the current reward
R̄ if x by itself moved to the other side of HALT. We now define R̃t = R̄+

∑
x

∆x

2 −
∆x

2 ·
tanh((ux−uHALT)/T )
tanh((ūx−ūHALT)/T )

where ūx and ūHALT are the effective priorities of x and HALT in the current trajectory τ̄ . This estimates that
the reward of the current trajectory would increase by ∆x if x were to move all the way to the other side of
HALT (preserving the distance between ux and uHALT but reversing its sign). It interpolates by supposing that
as x moved in that direction, R̃ would rise gradually along a sigmoidal curve, changing fastest as ux crossed
uHALT. The steepness of the sigmoid is controlled by temperature T . A high temperature gives a nearly linear
function, so that ∂R̃

∂ux
≈ ∆x

2(ūHALT−ūx) . A low temperature gives a locally flat function that better approximates
the true reward function; in this case, we do not try as hard to move ux toward or away from uHALT if it is
currently far away from it. We can reduce temperature as learning proceeds.

We use “effective priorities” ux rather than actual priorities vx to deal with the fact that items do not always
pop in priority order. Even a high-priority item may pop late if it is built from low-priority items. To pop x
early, we certainly need its actual priority vx to be high, but we also need to have pushed x early. Suppose
the grammar says that x gets pushed whenever we pop and combine either (y and z) or (y′ and z′). Thus, we
define ux = min(vx,max(min(uy, uz),min(uy′ , uz′))). Here min corresponds to and and max corresponds
to or. If R̃t(θ) increases with ux, this definition shows that to increase it, one may have to increase not only
x’s own priority vx, but also the priorities of a sufficient set of ancestors of x that must pop before HALT in
order for x to do so. We smooth the ux function by using softmin and softmax in place of min and max.

7Suppose that y is the highest-priority action at time t. Boltzmann exploration may sometimes pop a lower-scoring
acton y′ at time t instead. However, under Boltzmann exploration, y′ will retain a high priority and a high probability of
popping at time t+ 1 or t+ 2, so it is unlikely that y′ will be delayed long enough to change the reward.
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The u values depend on v values. We define vx in turn via the usual linear function θ · φ(s, x), where φ(s, x)
extracts features of x in state s. But the state s varies with θ. For example, a certain dynamic feature φk(s, x)

may fire only if s reflects that y has previously popped into the chart. Our approximation R̃ is based on u
values rather than states, so we say that y pops (and the feature fires) in time to affect vx iff uy > ux. Again
we interpolate sigmoidally, gradually sliding the feature value from 0 to 1 or from 1 to 0 as uy passes ux.

All this means that the u and v values are defined by a recurrent system of equations. In practice, we estimate
them at θ = θt by a few rounds of iterative update, and use these u values to compute R̃t(θt) = R̄. By
applying algorithmic differentiation as before, we can compute the gradient of this result with respect to θ.

4 Conclusions

We have described a new setting for learning, namely the speed/accuracy tradeoff in non-deterministic in-
ference algorithms like agenda-based parsing. Because of the enormous search space in these problems,
off-the-shelf reinforcement learning algorithms fail miserably. We have identified three unique characteris-
tics of our problem, and suggest mechanisms to exploit these to obtain more feasible learning algorithms.
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