
Visual Navigation Through Large Directed Graphs and Hypergraphs∗

Jason Eisner Michael Kornbluh Gordon Woodhull Raymond Buse Samuel Huang
Constantinos Michael George Shafer†

Johns Hopkins University

ABSTRACT

We describe Dynasty, a system for browsing large (possibly infi-
nite) directed graphs and hypergraphs. Only a small subgraph is
visible at any given time. We sketch how we lay out the visible
subgraph, and how we update the layout smoothly and dynamically
in an asynchronous environment. We also sketch our user interface
for browsing and annotating such graphs—in particular, how we try
to make keyboard navigation usable.

Keywords: Dynamic graph layout, graph browsing, hypergraph
navigation, graph animation.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—interaction techniques; H.5.2 [Information Interfaces
and Presentation]: User Interfaces—graphical user interfaces;
G.2.2 [Discrete Mathematics]: Graph Theory—hypergraphs

1 INTRODUCTION

Relational data can often be expressed as a directed graph or hy-
pergraph. Unfortunately, real-world graphs are typically too large
and tangled for static drawings of them to be comprehensible. We
describe a system that allows local browsing of such structures.

Directed graphs have many natural applications. They can be
used to visualize social or physical networks, taxonomies or ontolo-
gies, finite-state automata, and various relations in software design
and development (subclass-of, calls, points-to).

Hypergraphs have received less attention. Our work applies to
them as well. Some uses of directed hypergraphs include

• digital circuits: two or more inputs combine via a logic gate
to produce one or more outputs

• theorem proving: two or more statements combine via a
proof rule to derive a new statement

• parse forests: two or more adjacent phrases of a linguistic
sentence combine to produce a larger phrase

• genealogy: two parents combine to produce zero or more
children

• chemical reactions: two or more reactants (and perhaps cat-
alysts) combine to produce several products

Each of these bullet points describes the form of a single directed
hyperedge. (A directed hyperedge is a generalization of a directed
edge: it connects a set of input vertices to a set of output vertices.) A
database of many chemical reactions would need one hyperedge per
reaction. Thus, the hyperedges connected to a given vertex (chemi-
cal substance) would show all reactions in which it participates.

Our original motivation was to build a visual debugger for Dyna
[2], a declarative programming language that is designed for dy-

∗This work has been supported in part by NSF ITR grant IIS-0313193
to the first author and by Joseph C. Pistritto Research Fellowships to the
second and fifth authors. The views expressed are the authors’ only.

†e-mails of all authors: jason@cs.jhu.edu, kornbluh@gmail.com,
gordon@woodhull.com, data@jhu.edu, srhuang@jhu.edu,
stvorph@gmail.com, playswithfire@gmail.com

namic programming. A Dyna program does not prescribe an order
of computation, but only specifies how some values are to be de-
rived from others. Thus, Dyna debugging focuses not on procedural
single-stepping but on the declarative relationships—hyperedges—
among (millions of) derived values. The same would hold when
debugging theorem provers, makefiles, or deductive databases.

Our open-source project, Dynasty, resides at http://dyna.
org/Dynasty, where the reader may find screenshots and video.

2 DIRECTED HYPERGRAPH LAYOUT

Dynasty is willing to lay out any subgraph. Its layout engine, Dy-
nagraph [5], chooses node positions and splined edge routes for the
subgraph that is currently in view. It uses Sugiyama-style layout,
closely following the dot program for static digraphs [3].

By contrast, TreePlus [4]—the only other browser we know of
that focuses on large directed graphs—displays only tree-shaped
subgraphs as the user browses. It therefore simplifies away cycles
and reentrancies, which we choose to show (at some risk of tangles
if the subgraph is made large).

We have improved Dynagraph in several ways:

Hyperedges To lay out a non-trivial hyperedge, we introduce
an intermediate vertex, the “crux.”1 The source nodes are con-
nected to the crux by ordinary directed edges, whose spline ren-
derings “flow together” into the (otherwise invisible) crux with a
common tangent vector. This tangent vector “flows apart” again as
it leaves the crux, separating into edges to the target nodes.

S-Shaped Backedges Sugiyama-style layout already em-
phasizes the directional flow of a graph from top to bottom. It tries
to set nodes’ y coordinates (“ranks”) to avoid upward edges. When
cycles necessitate such backedges, we preserve the flow by making
each backedge “S-shaped”: it exits its source node from the bottom
(like all out-edges), but doubles back up to reach its target node,
which it enters from the top (like all in-edges). Thus, edge direc-
tion and cycles are easy to see without hunting for arrowheads.2

By insisting on top-to-bottom (or left-to-right) flow, we can sup-
port traditional intuitive layouts of trees, genealogies, proof forests,
and so on. This is not possible with graph browsers that do not em-
phasize directional flow, such as TreePlus [4] and those based on
radial or force-directed layout (but see [1]).

Ordered Edges We can constrain the ordering of a node’s (or
crux’s) out-edges as they fan out from the node (or crux).3 Some-
times this has semantic content: e.g., in an arithmetic expression’s
parse tree, the order of arguments to subtraction is significant.

Stubs As only a small subgraph is shown at any time, it is
important to advise the user about what lies beyond. Each visible
node or crux advertises its degree by showing all its incident edges.
Edges to currently invisible neighbors are displayed as short stubs.

If two visible nodes are endpoints of the same hyperedge, we
insist on showing this relation, by ensuring that the crux is visible.

1For a plain 1-to-1 edge, the crux is logically present but not laid out.
2We have also experimented with a special color for backedges.
3For some graphs, they may be forced to cross later along the length of

the edge, although the layout engine tries to avoid this.



3 TOPOLOGICAL NAVIGATION WITH THE KEYBOARD

It should be easy to locate (and visit) a node’s parents, children, and
siblings in the graph. The natural approach is keyboard navigation.
But navigation in graphs is confusing. Where should the “up” and
“down” keys go if the cursor node has multiple parents or children?
Should “left” and “right” visit one’s co-children (i.e., half-siblings)
or one’s co-parents (i.e., mates)? And which ones?

Our solution involves a visible trail that connects the cursor node
to its just-visited parent or child, called the pivot node. The left and
right keys step through the co-children of a pivot parent, or the co-
parents of a pivot child. (To change the pivot, one can navigate
while holding down the Ctrl key. We also have some heuristic se-
lection of new pivots when left and right fail.)

Like ants, the up/down keys remember the most recent upward
and downward trails from each node, and prefer to follow those.4
This makes navigation predictable, and ensures that up and down
cancel each other out.

We extend this interface cleanly to hypergraphs. If the user holds
down the Alt key, the arrow keys simply navigate the bipartite graph
consisting of nodes and cruxes. Thus the cursor and pivot can rest
on cruxes (that is, on hyperedges). Without the Alt modifier, the
arrow keys always pass through cruxes to arrive at real nodes.

4 UPDATING THE LAYOUT

If the user moves the cursor into invisible territory, by keyboard or
mouse, we reveal more of the underlying graph by adding nodes
to the visible graph. The camera primarily follows the cursor. We
control the size of the visible graph by pruning nodes far from the
cursor (by path distance). The user can also manipulate the graph
size directly, or “refocus” to show the neighborhood of the cursor.

When the visible graph changes, the layout engine computes a
new layout for it, trying to balance layout quality and stability. It is
most important to preserve stability near the cursor and pivot, and
in particular to preserve the fanning order of the pivot node during
left/right movement.5 The display engine animates smoothly to the
new layout, while fading out old nodes and fading in new ones.

The visible graph may change for reasons other than navigation.
Relayout may be triggered if the large underlying graph changes
(see section 6); if the user drags nodes or suppresses nodes (see
section 5); or—in future—if the user adjusts a threshold slider to
display only highly-weighted nodes and hyperedges.

5 SELECTION, SEARCH AND ANNOTATION

The user can select multiple nodes and hyperedges, in addition to
the one beneath the cursor. Dynasty supports selection through var-
ious keyboard, mouse, command, and search interfaces.

Selected objects are highlighted if they are in the currently vis-
ible subgraph. However, some of them may be outside that sub-
graph (just as a selection in a word processor may extend outside
the visible window). This is particularly powerful when selecting a
potentially infinite set of nodes with a search query.

Once nodes and/or hyperedges are selected, it is easy to cycle
through visiting them with the cursor, or to apply an action to them:

• refocus the visible graph on the selection
• change color, shape, or font properties
• delete the selection
• contract the graph across the selection

4Where there is no remembered trail, they use geometric heuristics.
5For this reason, we take some care choosing the fanning order of stubs

with respect to full edges. Placing a stub randomly would tend to create con-
flicts between layout quality and stability when the stub was later expanded.
Thus, we “plan ahead” as to where the invisible neighbor might go.

This makes it possible to colorize important nodes or suppress
nodes that represent unimportant intermediate steps. Such annota-
tions affect the entire selection, beyond the visible subgraph. Ordi-
narily, they do not modify the underlying graph but rather reside in
an “annotated graph” layer that wraps around the underlying graph.

In future, we would like to support more forms of graph analysis.
A simple example is to highlight the paths or hyperpaths that relate
selected nodes. Another example is cluster discovery.

6 ASYNCHRONOUS CHANGES

Dynasty is designed to operate correctly in a dynamic environment
where, simultaneously,

A. An agent is updating the underlying graph to reflect new info.
B. User navigation is changing the visible subgraph.
C. The layout engine (a concurrent process that assigns posi-

tions) is catching up with changes to the visible subgraph.
D. The display engine is animating to the latest target layout.

underlying graph→ visible subgraph→ layout→ animated display

While we do not have space to describe the details of our
message-passing layered architecture, we note the main issues:

A. The visible subgraph periodically polls the relevant part of the
underlying graph to detect any changes. This is much faster
than informing the visible subgraph about all changes every-
where in the large (or infinite) underlying graph.

B. Changes to the visible subgraph are propagated to the layout
engine, which may still be working on the old layout. We
have reorganized the layout engine, Dynagraph [5], so that it
can be interrupted by such new requests. It tries to salvage
any relevant work it has done on the old layout.

C. The layout engine may take some time to choose new posi-
tions and spline routes and send them to the display engine.
Our architecture can handle arbitrary layout delays. However,
for responsiveness, we have also improved the layout engine
to send quick-and-dirty positions at first and later revise them,
as it works to untangle edge crossings.

D. The layout engine tells the display engine only how to update
the target layout. The display engine must compensate if it
was still animating toward the old target layout. Ongoing tra-
jectories must swerve toward their revised target positions and
possibly change speed. New nodes should not appear at their
layout targets if their neighbors have not yet reached their
own targets; they should fade in along similar trajectories.
Conversely, deleted nodes that are still fading out should be
dragged along if their neighbors move or swerve, even though
the layout engine is no longer responsible for them.

REFERENCES

[1] L. Carmel, D. Harel, and Y. Koren. Drawing directed graphs using
one-dimensional optimization. In Proceedings of the 10th International
Symposium on Graph Drawing (GD’02), volume 2528 of Lecture Notes
in Computer Science, 2002.

[2] J. Eisner, E. Goldlust, and N. A. Smith. Compiling comp ling:
Weighted dynamic programming and the Dyna language. In Proc. of the
Conf. on Empirical Methods in Natural Language Processing, 2005.

[3] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique
for drawing directed graphs. Software Engineering, 19(3), 1993.

[4] B. Lee, C. S. Parr, C. Plaisant, B. B. Bederson, V. Veksler, W. Gray,
and C. Kotfila. TreePlus: Interactive exploration of networks with en-
hanced tree layouts. IEEE Transactions on Visualization and Computer
Graphics, to appear 2006.

[5] S. C. North and G. Woodhull. Online hierarchical graph drawing. In Re-
vised Papers from the 9th International Symposium on Graph Drawing
(GD’01), volume 2265 of Lecture Notes in Computer Science, 2001.


