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Abstract

The field of statistical natural language processing has been turning toward morpholog-

ically rich languages. These languages have vocabularies that are often orders of magnitude

larger than that of English, since words may be inflected in various different ways. This

leads to problems with data sparseness and calls for models that can deal with this abun-

dance of related words—models that can learn, analyze, reduce and generate morphologi-

cal inflections. But surprisingly, statistical approaches to morphology are still rare, which

stands in contrast to the many recent advances of sophisticated models in parsing, grammar

induction, translation and many other areas of natural language processing.

This thesis presents a novel, unified statistical approach to inflectional morphology, an

approach that can decode and encode the inflectional system of a language. At the center of

this approach stands the notion of inflectional paradigms. These paradigms cluster the large

vocabulary of a language into structured chunks; inflections of the same word, like break,

broke, breaks, breaking, . . . , all belong in the same paradigm. And moreover, each of

these inflections has an exact place within a paradigm, since each paradigm has designated

slots for each possible inflection; for verbs, there is a slot for the first person singular
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indicative present, one for the third person plural subjunctive past and slots for all other

possible forms. The main goal of this thesis is to build probability models over inflectional

paradigms, and therefore to sort the large vocabulary of a morphologically rich language

into structured clusters. These models can be learned with minimal supervision for any

language that has inflectional morphology. As training data, some sample paradigms and a

raw, unannotated text corpus can be used.

The models over morphological paradigms are developed in three main chapters that

start with smaller components and build up to larger ones.

The first of these chapters (Chapter 2) presents novel probability models over strings

and string pairs. These are applicable to lemmatization or to relate a past tense form to

its associated present tense form, or for similar morphological tasks. It turns out they

are general enough to tackle the popular task of transliteration very well, as well as other

string-to-string tasks.

The second (Chapter 3) introduces the notion of a probability model over multiple

strings, which is a novel variant of Markov Random Fields. These are used to relate the

many inflections in an inflectional paradigm to one another, and they use the probability

models from Chapter 2 as components. A novel version of belief propagation is presented,

which propagates distributions over strings through a network of connected finite-state

transducers, to perform inference in morphological paradigms (or other string fields).

Finally (Chapter 4), a non-parametric joint probability model over an unannotated text

corpus and the morphological paradigms from Chapter 3 is presented. This model is based
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on a generative story for inflectional morphology that naturally incorporates common lin-

guistic notions, such as lexemes, paradigms and inflections. Sampling algorithms are pre-

sented that perform inference over large text corpora and their implicit, hidden morpholog-

ical paradigms. We show that they are able to discover the morphological paradigms that

are implicit in the corpora. The model is based on finite-state operations and seamlessly

handles concatenative and nonconcatenative morphology.

Jason Eisner

David Yarowsky

Colin Wilson
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Chapter 1

Introduction

1.1 Problem
Statistical natural language processing can be difficult for morphologically rich lan-

guages. Morphological transformations on words increase the size of the observed vocab-
ulary, which unfortunately masks important generalizations.

In a very highly inflected language like Polish, for example, each lexical verb has lit-
erally 100 forms (Janecki, 2000). That is, a single lexeme1 may be realized in a corpus
as many different word types, which have been differently inflected for person, number,
gender, tense, mood, or others.

The existence of these morphological transformations and the resulting abundance of
different surface forms for each word make lexical features even sparser than they would
be otherwise. In machine translation or text generation, it is difficult to learn separately
how to translate, or when to generate, each of these many word types. In text analysis,
it is difficult to learn lexical features as cues to predict topic, syntax, semantics, or the
next word, because lexical features that fire on unanalyzed words fail to generalize across
multiple inflections. Even for a reasonably frequent lexeme, some of its inflections may
occur rarely or never in the training corpus, but it would be desirable to derive statistics
for these inflections from related inflections. In many text generation tasks in general,
one wishes to generate the correct morphological inflections of the words in the output
text, while at the same time being able to abstract away from such morphological spelling
variety in core parts of the model that deal with the lexical resources and lexical transfer.

The obvious solution to these problems is to morphologically analyze each word token
occurring in text. However, this is not trivial, since inflectional patterns may be unknown or
irregular. Morphological transformations can be complex and nonconcatenative processes;
they can involve stem changes, consonant doubling, prefix, infix or suffix changes and other
changes that can make two related words look almost unrelated on the surface. Therefore,

1A lexeme is the abstract notion of a word, independent of its various specific realizations in text, e.g. the
lexeme BRING can be realized in text by the inflected forms bring, brings, brought, bringing, . . .
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lemma brechen

singular 1st-person breche brach

2nd-person brichst brachst

3rd-person bricht brach

plural 1st-person brechen brachen

2nd-person brecht bracht

3rd-person brechen brachen

present past

Table 1.1: Simplified inflectional paradigm for the German lexeme BRECHEN.

manually constructing a good morphological analyzer for a language (Beesley and Kart-
tunen, 2003) is difficult and usually includes creating both rules and lists of irregular forms.

1.2 Proposed Solution
This thesis tackles the problem of morphological generalization by developing a novel

statistical approach to inflectional morphology. We take a Word-and-Paradigm approach
(Matthews, 1972; Stump, 2001), where paradigms are central linguistic objects. Paradigms
are grids of word types like the simple example shown in Table 1.1, where each cell contains
a different inflectional form. Modeling paradigms requires modeling relationships between
words as whole-word transformations, unlike previous work that assumes concatenative
approaches (Section 2.5 on page 25 and Section 4.7 on page 114).

We develop a novel probability model over inflectional paradigms—a model that is flex-
ible, robust, configurable, modular, unified and mathematically sound. We use empirical
Bayesian inference to reason about data, without the need for handcoded rules or detailed
expert knowledge about morphological properties of the language. The data used for learn-
ing can be a small set of example paradigms coupled with a raw, unannotated text corpus
in the language.2

Our model learns how to cluster the large vocabulary of a morphologically rich lan-
guage into inflectional paradigms; there is one per lexeme in the language. Once learned,
the model can be used to make morphological generalizations. It can be used to generate the
most likely spellings for a given morphological form; it can generate complete paradigms
for a given lemma; and it can complete incompletely observed paradigms.

We also devise practical computational methods to carry out inference under this model;
our inference method naturally combines serveral known approaches, such as dynamic
programming, belief propagation and Gibbs sampling, in a new way.

2The example paradigms contain information about the possible inflectional forms of the language.
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The proposed solution consists of several components, each of which is a novel contri-
bution to the field by itself. These components will be presented one by one in the following
chapters, starting from the smallest component and building up the final model, piece by
piece.

We will now briefly describe what these components are and what they do (sections
1.2.1, 1.2.2 and 1.2.3); after that, we will describe the components again with the focus on
how they work (sections 1.3.1, 1.3.2 and 1.3.3).

1.2.1 Latent-Variable Modeling of String Transductions
A probability model over inflectional paradigms must be able to assign a probability

score to any instantiation of a given paradigm. For example, the correct paradigm instan-
tiation shown in Table 1.1 should presumably receive a higher probability score than a
similar instantiation where the second person singular present is changed from the correct
form brichst to the incorrect brechst—a typical mistake that a language learner might
make and an even lower score if that form is changed to a completely nonsensical form like
sadfgzxghsfdfdwqx. How can we tell if a form at a given slot in a given paradigm is
bad and should result in an overall lower score for the paradigm?

There are generally two ways to find out: (a) We can either look at the form by itself
and judge if it is—using the example—a likely German second person singular present (e.g.
“Does the form end in -st?” Good. “Does the form end in -qx?” Bad.), which includes
judging if it is a likely German word in general and if it is a likely present-tense form in
general, etc. (b) The other way to find out is to ask if it is good in the context of the other
forms in the paradigm. If the second person form looks similar to the third person form
with just the typical 2nd-to-3rd person changes applied, then the score should probably be
high, but if a form looks nothing like its neighbor in the paradigm and there is no typical
transformation to inflect one form to get the other, then we have a low-scoring candidate.

Focusing on these questions, Chapter 2 presents a novel solution to model string pairs
by constructing highly configurable probability distributions p(x, y) or p(y | x) over two
strings x and y. Using this model, we can learn typical morphological transformations that
happen between form pairs, e.g. from the second person singular present to the third person
plural subjunctive.

As we will see later, these probability models can be used as part of our bigger model
that scores whole inflectional paradigms (Chapters 3 and 4).

But, moreover, because this model is data-independent and language-independent, it
can potentially be applied to any string-to-string problem in natural language processing
where some systematic mapping from an input string x to an output string y is needed,
including the following:

• phonology: underlying representation↔ surface representation

• orthography: pronunciation↔ spelling

3
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• morphology: inflected form↔ lemma, or differently inflected form

• fuzzy name matching (duplicate detection) and spelling correction: spelling↔ vari-
ant spelling

• lexical translation (cognates, loanwords, transliterated names): English word↔ for-
eign word

This probability model for string pairs is a log-linear model, which scores string pairs by
summing over all their alignments and evaluating flexible, potentially overlapping features
on them, which may encode linguistic knowledge. The model is encoded as a finite-state
transducer, and training and decoding can be done using efficient finite-state operations.
Model features are encoded as features firing on particular transitions of the finite-state
transducer, and their weights are trained from data. In addition to the string pair alignment,
which is latent, this dissertation will show how to encode other latent variables such as
clusters (conjugation classes) or regions. All models are evaluated on morphological tasks,
but also a transliteration task.

1.2.2 Graphical Models over Multiple Strings
Defining these generally useful and novel probability models over string pairs is an

important milestone that brings us closer to the main goal: to define probability models
over whole inflectional paradigms of a language. Chapter 3 now presents such bigger
models, using the smaller string-to-string models from Chapter 2 as ingredients. Here, a
similar approach as in Chapter 2 is followed by formulating general, mathematically clean
models, which are novel, this time over more than just one or two strings. These models
have again many potential applications, but we will focus on the main goal of modeling
inflectional paradigms. Other tasks for which the presented general multiple-string models
may be useful include the following:

• mapping an English word to its foreign transliteration may be easier when one con-
siders the orthographic and phonological forms of both words;

• similar cognates in multiple languages are naturally described together, in ortho-
graphic or phonological representations, or both;

• modern and ancestral word forms form a phylogenetic tree in historical linguistics;

• in bioinformatics and in system combination, multiple sequences need to be aligned
in order to identify regions of similarity.

The general formulation of multiple-string models presented in this thesis is a novel
formulation of Markov Random Fields (MRF), in which each variable is string-valued and
each potential function is a finite-state machine.
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Joint inference techniques can be used to predict multiple strings jointly. It is shown
how a standard inference method like the belief propagation message-passing algorithm
can be applied in this model, resulting in a novel view of belief propagation, in which
each message is a finite-state acceptor; these acceptors can be seen as being passed around
through a network of finite-state transducers (Section 3.4.1). It is shown why inference
becomes intractable and what approximations can be used. Experimental results show that
predicting strings jointly often outperforms separate predictions.

1.2.3 Discovering Morphological Paradigms from Plain
Text

The last content chapter, Chapter 4, extends the work of the previous chapters into a
model of the inflectional morphology of a language that can be learned from unannotated
text, with minimal supervision. A joint probability model over inflectional morphological
paradigms and the spellings in an unannotated text corpus is built. This is used to discover
the morphological paradigms that are implicit and hidden in the corpus.

<s> “brichst du mir das Herz, breche ich dir die Beine,” sagte ... </s>

singular 1st-person breche
brechte?

brach?

2nd-person brichst
brichtest?

brachst?

3rd-person
brecht?

bricht?

brechte?

brach?

plural 1st-person
brechen?

brichen?

brechten?

brachen?

2nd-person
brecht?

bricht?

brechtet?

bracht?

3rd-person
brechen?

brichen?

brechten?

brachen?

present past

lemma
brechen?

brichen?

Figure 1.1: Illustration of the basic idea: Words from the text corpus are placed in inflec-
tional paradigms; this reduces uncertainty in neighboring slots.

Figure 1.1 illustrates the basic idea of this approach. It shows an observed text cor-
pus,3 as well as a paradigm. Two slots in the paradigm are already filled with spellings
found in the text; the model has predicted the exact paradigm cell for the spellings from

3English translation of this German text based on an album title by Ollie Schulz: <s> “ If you break my
heart I break your legs”, said . . . Note how both the German brichst and breche (and other forms) map to
the uninflected break in English.
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their characteristic suffixes and potentially other information. The remaining cells of the
paradigm are still unfilled. But the cells that are already filled and “clamped” to particular
spellings propagate information through some channel to the other, still unfilled variables
(see Section 4.4.2), which results in hypothesized spellings for all remaining forms in the
paradigm, e.g. for the third person singular present, brecht and bricht are hypothesized,
both of which would make sense because they largely look like the forms found in the text
but have the characteristic third person suffix -t.4 Other words in the text may be placed
in this or in other paradigms (not shown in the figure). The number of paradigms is data-
dependent, and there is no upper limit. Each form in the text corpus may be placed in a
paradigm that was previously created or in one that is newly created on seeing this form. A
learned probability model decides where it fits best.

More formally, a nonparametric Dirichlet process mixture model determines for each
corpus spelling what inflection in what paradigm it has been generated from; this way a
distribution over infinitely many paradigms in the text corpus is learned. Each paradigm
is modeled using a graphical model over strings (Chapter 3). As described in the example
above, each word token is assigned a slot in a particular paradigm during inference. At any
time during inference, some cells in some paradigms will be empty; the model maintains
a posterior distribution over their possible values given the spellings of their neighboring
slots, using belief propagation (Section 3.4).

It is shown how to add a small amount of supervision by observing a few paradigms as
seed data, which facilitates learning. The model is evaluated on the tasks of learning correct
morphological paradigms, as well as correctly determining the morphological forms of the
spellings in a text corpus.

1.3 Approach
Now that we have briefly described what methods we propose to tackle the problem

of morphological clustering and inflection, we give a brief overview of how it works. The
following three subsections correspond to the three subsections above, 1.2.1, 1.2.2, and
1.2.3, respectively, but with the focus on how the proposed methods work.

1.3.1 Latent-Variable Modeling of String Transductions
How does the described log-linear model over string pairs (Chapter 2) work? Suppose

we have two strings x and y and we would like to evaluate how well they go together
for a particular task, i.e., we evaluate the goodness or (task-based) similarity between the
strings. We may, for example, be interested in how good they are as a pair of present- and
past-tense forms of a particular verb. In our solution, we look at all alignments of these

4These suffixes and other parameters are all learned from data in a semi-supervised way (see Sec-
tion 4.5.3).
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two strings; this can be done efficiently using dynamic programming. On each alignment
we systematically identify certain features or properties. For example, in the first of the

#breaking#
#bro!ke!!#
#brea!king#
#br!!oke!!#
#break!ing#
#bro!ke!!!#

...

#breaking#
#br!oke!!#

Figure 1.2: Examples of one-to-one alignments of the two strings breaking and broke,
including attached start and end symbols. An ε symbol means a non-character (empty
character).

four alignments shown in Figure 1.2, we recognize that b in the upper string (breaking)
is aligned to b in the lower one (broke), that br is aligned to br, that re is aligned to
rε,5 and so forth, for all alignment substrings (called alignment n-grams) up to a specified
length. We also make some linguistic generalizations (backoff ), by mapping all substrings
to linguistically relevant classes like vowels or consonants; in the example we find various
consonant-to-consonant and vowel-to-vowel alignments as features.6

Each such feature that we detect on an alignment of x and y has a certain weight be-
tween negative and positive infinity (the weights are configured beforehand for the partic-
ular task (see below), indicating a degree of lower or higher task-based similarity. For a
given alignment, the feature weights are summed and exponentiated, resulting in a non-
negative score for that alignment. The same is done for all possible alignments of x and y,7

and the overall sum is returned as similarity score for the string pair. We normalize to turn
it into a probability score p(y | x) or p(x, y). Of course, the probability model is typically
used to search for and predict the best output string for some input string, rather than just
scoring two known strings, x and y.

5The character ε is traditionally the empty character; aligning an input character to an ε in the output
means deleting the input character. The inverse case would be an insertion.

6See more details on features in Section 2.4 on page 24
7Note that even obviously implausible alignments are considered. These will typically have negtive

weights, resulting in contributions close to zero after exponentiating, so they contribute very little to the
overall score. (Practically, some implausible alignments may in fact be pruned away for more efficient com-
putation, see Section 2.6.2 on page 31.)
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We will see that the features just mentioned in fact predict output strings well (Sec-
tion 2.9) but that it is often desirable to add further features classes—features that look
at certain properties of x and y that are not given in the training data at all, since they
would be too costly to annotate by hand. A conjugation class in morphology is an example.
We never observe conjugation classes in training (or test) data, but our model can prefer
a vowel change for irregular verbs and avoid it for regular verbs—when predicting a past-
tense form, for example. How does this work? We just add features that are the conjunction
of features described above with a conjugation class. In other words, we add specialized
versions of the above features that are sensitive to the conjugation class of the string pair.
The fact that the conjugation class is actually not observed means that we have to treat it as
a latent variable and sum over all possibilities, just like we do for the alignment between x
and y, described above. The model is therefore semi-supervised.

We do the same for another important piece of information not given in the data: string-
pair regions. Some transductions (e.g. a vowel change) are likely only in certain regions.
For example, a vowel change might be likely in an irregular verb in general, but it is even
more likely in a certain region of an irregular verb. Consider the example (ride, rode).
The i changes to o, but the e remains unchanged. Just as in the case with the conjugation
classes, we add features that are sensitive to certain regions, e.g. a feature i aligned to o in
region 2. The information where certain regions start or end is not given and is treated as a
latent variable.

As mentioned, the score is typically configured, meaning its feature weights are trained,
based on training data consisting of correct (x, y) pairs for a given task. The score can be
regarded as a generalization of weighted edit distance (Ristad and Yianilos, 1998), with the
addition of context, backoff features (e.g., vowel/consonant features) and latent variables,
giving the model the ability to learn more characteristic and meaningful patterns from the
data. It follows that the simple, untrained (negative) Levenshtein distance (Levenshtein,
1966) is also a special case of our score; it can be obtained by setting the weights of
insertion, deletion and substitution unigrams to (negative) 1.0 and all other weights to 0.0,8

regardless of any training data that might be available.

1.3.2 Graphical Models over Multiple Strings
How does the described graphical model over strings (Chapter 3) work?
As described above, this novel variant of graphical models is designed to predict mul-

tiple output strings jointly. A typical task would be to jointly predict all possible morpho-
logical forms of a verb given the lemma, or to predict the transliterations of a given name
into many foreign alphabets.

To understand our approach, first consider graphical models in general. Graphical mod-
els decompose a big joint probability into smaller factors, each of which is relatively easy to
compute (Jordan, 1998). A simple example of a graphical model is a conditional random

8No exponentiation is needed in that case; the Levenshtein distance is a linear, not a log-linear score.
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field (CRF; Lafferty, McCallum, and Pereira, 2001b),9 which defines a joint probability
over a number of output variables given some input, where each output variable ranges
over a set of possible values, e.g., part-of-speech tags. To make inference tractable, the
joint probability is decomposed into small factors each of which considers only the output
for two directly adjacent positions in the sequence. Such factors know what two tags go
well with one another, e.g. a verb following a noun is better than an adjective following
a noun in English. But the decomposition means there is no factor that would know what
five or ten tags go well with one another in a sequence, since the cardinality would be too
large.

Such a probability model is depicted in Figure 1.3 on the next page on the left, where
some functions (drawn as black boxes) connect neighboring output variables (drawn as
circles) to one another and some connect single output variables to the input—similar to
transition and emission functions in a Hidden Markov Model (HMM; Rabiner and Juang,
1986). To find the best tag sequence in such a graph, the forward-backward algorithm is
run (Jelinek, 1997), which propagates information about the possible values of the variables
through the graph. In Figure 1.3, for example, if the first part-of-speech variable is almost
certainly a proper noun—since the first word is Obama—the second variable is likely to be
a verb since the factor in between knows that verbs tend to follow nouns and proper nouns.10

That information is propagated to the third variable, for which the factor in between then
may decide it should more likely be a noun than anything else (since nouns tend to follow
verbs), and so forth. A similar pass is run from right to left as well, hence the name of the
algorithm. In the machine-learning community, such propagation of information through a
factor graph is known as message passing.

More complicated graph structures are possible, in which even output variables that are
not sequence neighbors of each other are connected; graph structures may be tree-shaped
or loopy. In these cases, the forward-backward algorithm is replaced by a more general
message passing algorithm, loopy belief propagation (see Section 3.4)—a straightforward
generalization of the forward-backward algorithm.

In our approach, we also build factor graphs and run the (loopy) belief propagation
algorithm. A graphical model over strings might look like the one illustrated in Figure 1.3
on the following page on the right. The factor graph has similar structure as the one on
the left,11 but here each variable is string-valued. We attempt to depict this by placing
small additional circles into the variable—after all, a variable here contains much more
information than in the simple CRF case; it can be considered as being composed of several
small variables, each one representing one charcater of the string. However, we do not
know the lengths of the output strings, and so we cannot construct a factor graph that
would have one variable per output character for each output string; instead each of the
strings is represented by one string-valued variable that is not split into smaller pieces.

9To be more specific, these are undirected graphical models, which do not have the local normalization
constraints that directed graphical models, like HMMs, have.

10After being trained on English data.
11Of course, the factor graph does not have to be chain-structured here either.
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Y Y Y

ObamaObama picks chair

in

out out out

noun
verb

adject.

noun
verb

adject.

noun
verb
adject.

(POS 1) (POS 2) (POS 3)

オバマ
(Japanese)

”“ !"#$#
(Hindi)

”“ !"!#$%
(Arabic)

”“

Figure 1.3: Factor graph examples for joint prediction. In both graphs, some input is
given (shaded circle), and values for three output variables (the three lower circles) need
to be predicted. Left: Joint prediction of tags means to select correct tags from a list of
known tags in the context of other tags that are being predicted. Right: Joint prediction
of strings means to generate strings by converting neighboring strings. In the example,
the Hindi name transliteration is created by converting the English, the Japanese and the
Arabic spellings into the Hindi spelling, where the Japanese and the Arabic transliterations
themselves are being predicted by conversion of neighboring string values.

The novelty in our approach in Chapter 3 is that we generalize graphical models to
define joint probability models over string-valued variables, and we re-formulate message
passing for that scenario. Each factor between variables in a factor graph now relates strings
to one another—a nested sequence modeling problem in itself! Whereas in the CRF case
(and in other traditional graphical models), the factors are simple lookup tables that store
goodness values for pairs (or triples, etc.) of tags (e.g., determining that noun-verb is
x times better than noun-adjective), here we need a more complex mechanism to relate
variables to one another. We use finite-state machines. The very purpose of a weighted
finite-state transducer is to define a weighted relation between two strings, so they are
the natural choice for the use in our graphical models over strings. To our knowledge,
this has not been done before, and a general framework for joint probability models over
strings with associated inference procedure did not exist before we introduced this work
in (Dreyer and Eisner, 2009). We had introduced our novel finite-based string-to-string
framework just a year before (Dreyer, Smith, and Eisner, 2008); due to its generality and
configurability it is ideal for the use as factors in our multiple-string models.

In our version of belief propagation, the information sent from variable to variable—the
message between the variables—is always a finite-state machine. To be exact, a message
to or from a variable is a finite-state acceptor that contains the possible values of that vari-
able associated with the goodness scores. In the CRF case, a variable sends a vector of its
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possible (e.g., part-of-speech tag) values; here we send a whole finite-state acceptor which
compactly represents all the possible string values of the variable—a possibly infinite num-
ber of strings encoded using a finite number of states. The belief propagation equations
cleanly translate into well-known finite-state operations like intersection, composition, and
projection (Mohri, 2009). As mentioned above, inference becomes intractable; we present
methods to approximate the finite-state messages (Section 3.4.3 on page 67).

In the example in Figure 1.3 then, the Hindi spelling is influenced by the English in-
put Obama, but also by the likely string values of the Japanese and the Arabic variables,
which themselves are being predicted by looking at the likely values of the other string vari-
ables connected through the finite-state factors. That way, each variable prediction can be
made using much more information than a model that would predict every foreign spelling
separately just from the English spelling. Since this thesis is primarily concerned with
morphology, we ran all experiments in Chapter 3 and Chapter 4 on morphological data.
But the example shows that morphology is not the only scenario in which joint prediction
of multiple strings can be useful and that the multiple-string framework that we present is
general enough to handle various multiple-string problems.

1.3.3 Discovering Morphological Paradigms from Plain
Text

How does the described discovery of morphological paradigms (Chapter 4) work? It
will be easiest to understand the main ideas and intuitions by following an example: Fig-
ure 1.4 on page 15 illustrates a simplified run of the inference process we will present,
on a small example text corpus. By just following the illustration row by row, it should
become clear how we learn morphological paradigms. It will be shown how our approach
starts from plain text, reads some seed paradigms, and repeatedly analyzes the tokens in the
text, getting an increasingly clear estimate of token frequencies and type spelling proba-
bilites, thereby learning morphological rules and extracting morphological paradigms from
the text. After we present the example, we summarize the approach briefly in more gen-
eral terms. All technical details and mathematical aspects of the model and the inference
process are described in Chapter 4.

1.3.3.1 An Illustration of the Inference Process

Figure 1.4, first row.
We start by observing an unannotated text corpus, as shown in the figure. We would like
to use that text to learn inflectional verb morphology, so we assign part-of-speech tags and
select the verbs. (In Chapter 4, we will describe how all words could be processed.) We
are prepared to assign each verb a lexeme and an inflection (see Lex and Infl on the right).

11



CHAPTER 1. INTRODUCTION

Figure 1.4, second row.
(1) We are given seed paradigms.12 These paradigms are immediately analyzed, and a
morphological grammar is learned. We learn from the shown German seed paradigm, for
example, that the third person singular ends in a -t, or that particular stem vowel or suffix
changes happen when converting from singular to plural or between other forms. This
is exactly the kind of information that can be learned using the graphical models from
Chapter 3.
(2) Then we analyze the first verb token, bricht. We need to assign a lexeme and an inflec-
tion, which is equivalent to finding a paradigm cell in which that spelling is likely. We see
it cannot belong into the seed paradigm, so it must be analyzed as a new lexeme. We open
a new paradigm for it. The decision about the particular inflection of bricht is probabilistic
and takes into account at least two probabilities; let us assume third person singular is a
hypothesis:

• How likely is it that a third person singular form is spelled bricht?

• And, how likely is it to encounter a third person singular form (or a third person form
or a singular form in general, etc.) in text?

The answers to both these questions are not given to us beforehand, but we will learn them
as we go. The seed paradigms do give us an initial estimate to answer the first question
(bricht ends in a -t, just like the third person singular in the seed paradigm), but we will
sharpen all our estimates as we go through the text and analyze more verbs. By analyzing
the token bricht as third singular we increase the probability that other tokens we will
encounter later are also analyzed as third singular. And we can use that spelling as a new
example of the spelling of a third singular form, enriching our morphological grammar.13

That is an instance of Monte Carlo EM (see Section 4.5).
When we analyze the spelling bricht as third singular we are determining that the third

singular form in that paradigm be spelled bricht. We say that the verb token bricht moves
to, or “sits down” at the third singular cell in the paradigm.14

(3) It is important that we now get an estimate of what spellings we will expect in the
other cells of that paradigm. The third singular has just been clamped to bricht, and for the
other forms we get (pruned) probability distributions over possible values by running the
finite-state-based belief propagation from Chapter 3 (see Section 4.4.2).

Figure 1.4, third row.
(1) We now proceed to the second verb (brechen) in the corpus. Thanks to the belief prop-
agation run, we find that it would fit well in two places of the recently opened paradigm.

12In the actual experiments, paradigms will have many more slots, but for illustration purposes we just
show six morphological forms per paradigm.

13In practice, such updates to the morphological grammar are made only sporadically in batches, for better
efficiency and stability.

14We use a Chinese Restaurant Process (Blei, Griffiths, Jordan, and Tenenbaum, 2004); in our version, the
verb enters the lexeme restaurant and sits down at a particular inflection table.
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(2) In the example, we move it to the third plural form. It is important to note that, in terms
of token frequencies, the third plural is already slightly more likely than, say, the first plural
because we have already observed another token that was analyzed as third person. Our
token frequency estimates get sharper and sharper that way; this is an essential property of
the Chinese Restaurant Process (Blei et al., 2004), which we use (Section 4.3). Note also
that, when the word brechen moves to that third plural cell, the spelling for third plural
in that paradigm (lexeme) is (tentatively) fixed to the value brechen; in our example this
removes all incorrect hypotheses that we previously had obtained for that cell by running
belief propagation. This is an important aspect of our sampler and one of the main reasons
for enriching the methods of Chapter 3 with these token-based sampling mehods: Using the
tokens from the text corpus, we can often exclude incorrect hyptheses that were generated
by the graphical models. After assigning brechen to that third plural paradigm cell, we
have to run belief propagation again, to propagate that new information to the other cells in
the paradigm. We then move on to the third verb (springt) and open a new paradigm for it,
since its spelling is so different from the other verbs seen so far.15

(3) We run belief propagation in the new paradigm, to get estimates for the possible values
in all its cells.

Figure 1.4, fourth row.
(1) The fourth verb (brechen) has similar spelling as the second verb and likely moves into
that same paradigm, i.e. is analyzed as the same lexeme, although there is a probability that
it would open a new paradigm.16

(2) In the example, we place it in the same cell as the second verb, for two reasons: The third
paradigm row (third person forms) has become more and more likely, since other verbs have
been analyzed as third person. And the third plural in that paradigm is (currently) already
fixed to that spelling, so the probability for that form to be spelled brechen is one, whereas
it is lower in the first person cell in that paradigm.
(3) The fifth verb has the same spelling as a particular cell in the seed paradigm above
(second singular), so it is very likely to move there and be analyzed as that particular
morphological form—although there is a small probability that it opens a new paradigm
instead.
(4) We move through the corpus many times17 and reconsider earlier analyses in the light
of newly acquired knowledge. This time, for example, the first verb might move from its
previous place to the second person plural since the fact that we analyzed the fifth verb
as a second person has made second person forms slightly more likely. As noted above,
not only do we sharpen our token frequency estimates that way, by using our samples as

15In fact, due to pruning, there is a zero probability that springt sits at any of the previously opened
paradigms.

16Proportional to a hyperparameter, which is also learned during inference (Section 4.5).
17We do not necessarily process the words in the given order; certain type-based samplers are more effi-

cient, see Section 4.4.4.
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training data, but we similarly keep reestimating our knowledge of how certain forms are
spelled.

1.3.4 Summary of the Paradigm Discovery Approach
With this example, we have attempted to show how and why we can learn morphologi-

cal paradigms from text with minimal supervision. A key aspect of the approach is that, by
using sampling, we repeatedly analyze the tokens in the text, annotating them with lexeme
and inflection information. The seed paradigms give us a good initialization point from
which we can start recognizing other forms in text and assigning morphological analyses
accordingly. These analyses help estimating frequencies of certain morphological forms
in text, which in turn can help analyze further forms correctly. An analysis is always two-
way; when we analyze a particular token spelling from the corpus by assigning a particular
morphological type we are making a deterministic decision about the spelling of that mor-
phological type. Whenever we are not sure yet about the spelling of a certain morpholog-
ical type we estimate a probability distribution over the possible spellings by running our
finite-state belief propagation (Chapter 3). In that way, we naturally combine the sampling
process under a Chinese Restaurant Process with belief propagation in graphical models
over strings, which in turn uses dynamic programming to compute messages—with the
goal of discovering the morphological paradigms that are implicit in the text.

1.4 Conclusion
This dissertation presents a novel, unified and modular approach to statistical inflec-

tional morphology. The main goal is to develop probability models over an unbounded
number of inflectional paradigms, which can be learned from data. Several components of
this model are presented in different chapters, including algorithms for efficient inference
and learning. Two of these chapters are based on previous publications of the author, see
(Dreyer et al., 2008) and (Dreyer and Eisner, 2009), and have been extended here by adding
more exposition and connections to the bigger picture presented in this dissertation, and by
more experiments and error analysis.

It will be shown that our model can successfully predict morphological inflections,
lemmas, transliterations, and whole inflectional paradigms. Of course, there are also limi-
tations. All our models or components are general-purpose and can be applied to different
tasks; hand-tailored features or extensions might be better suited for some particular mor-
phological phenomena, such as infixation or reduplication (see Section 2.10 on page 51).
Our final model, which discovers inflectional paradigms from plain text, is a solid starting
point for further explorations of this topic. In the future, one might want to add context or
extend it to model agglutinative morphology (see Section 4.8 on page 118).
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Figure 1.4: Illustration of the inference process: Corpus tokens are analyzed, and such
analyses determine the spelling of morphological types.
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Chapter 2

Latent-Variable Modeling of String
Transductions with Finite-State Methods

2.1 Introduction
The most fundamental building block in our model for inflectional morphology is a

novel approach to modeling strings and string pairs. The approach is described in this
chapter; later chapters will refer to and make extensive use of it.

This new approach to modeling strings and string pairs is very general. It is not only ap-
plicable to morphology—although we will mainly focus on morphological applications—
but is generally applicable to all tasks in computational linguistics and language processing
that require some systematic mapping from an input string x to an output string y. Appli-
cations include:
• phonology: underlying representation↔ surface representation

• orthography: pronunciation↔ spelling

• morphology: inflected form↔ lemma, or differently inflected form

• fuzzy name matching (duplicate detection) and spelling correction: spelling↔ vari-
ant spelling

• lexical translation (cognates, loanwords, transliterated names): English word↔ for-
eign word

We present here a configurable and robust framework for solving such string or word
transduction problems. This approach uses finite-state transducers that are trained as condi-
tional log-linear probability models. Such an approach makes it possible to handle flexible
and linguistically motivated features. Such features are often not available in supervised
training data; we employ a semi-supervised strategy by introducing various classes of latent
variables to discover the unannotated information. The presented results in morphology
generation improve upon the state of the art.
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CHAPTER 2. LATENT-VARIABLE MODELING OF STRING TRANSDUCTIONS

Figure 2.1: One of many possible alignment stringsA for the observed pair breaking/broke,
enriched with latent strings `1 and `2. Observed letters are shown in bold. The box marks
a trigram to be scored. See Figure 2.2 on page 22 for features that fire on this trigram.

2.2 Model
The presented model is a probability model over string pairs, which can also be used as

a model over single strings, using a trivial reduction.
The model is inspired by the weighted edit distance model (Ristad and Yianilos, 1998).

However, edit distance considers each character in isolation. To consider more context,
we pursue a very natural generalization. Given an input x, we evaluate a candidate output
y by moving a sliding window over the aligned (x, y) pair. More precisely, since many
alignments are possible, we sum over all these possibilities, evaluating each alignment
separately.

At each window position, we accumulate log-probability based on the material that
appears within the current window. The window is a few characters wide, and successive
window positions overlap. In other words, our basic approach is a log-linear n-gram model
over (x, y) pairs.

This stands in contrast to a competing approach (Sherif and Kondrak, 2007; Zhao,
Bach, Lane, and Vogel, 2007) that is inspired by phrase-based machine translation (Koehn,
Hoang, Birch, Callison-Burch, Federico, Bertoldi, Cowan, Shen, Moran, Zens, Dyer, Bo-
jar, Constantin, and Herbst, 2007), which segments the input string into substrings that are
transduced independently, ignoring context. Section 2.5 will discuss related approaches
further.

Our basic approach is further advanced by adding new latent dimensions to the (input,
output) tuples (see Figure 2.1). This enables us to use certain linguistically inspired features
and discover unannotated information. Our features consider less or more than a literal n-
gram. On the one hand, we generalize with features that abstract away from the n-gram
window contents; on the other, we specialize the n-gram with features that make use of the
added latent linguistic structure (see Section 2.4 on page 24).

Our framework uses familiar log-linear techniques for stochastic modeling, and
weighted finite-state methods both for implementation and for specifying features. It ap-
pears general enough to cover most prior work on word transduction. One can easily add
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CHAPTER 2. LATENT-VARIABLE MODELING OF STRING TRANSDUCTIONS

new, linguistically interesting classes of features, each class defined by a regular expres-
sion.

2.2.1 Basic Notation and Definitions
2.2.1.1 Alphabets

We use an input alphabet Σx and output alphabet Σy. We conventionally use x ∈ Σ∗x
to denote the input string and y ∈ Σ∗y to denote the output string.

There are many possible alignments between x and y. We represent each as an align-
ment string A ∈ Σ∗

xy
, over an alignment alphabet of ordered pairs, Σxy

def
= ((Σx ∪ {ε}) ×

(Σy ∪ {ε}))− {(ε, ε)}.
For example, one alignment of x = breaking with y = broke is the 9-character

string A = (b : b)(r : r)(e : o)(a : ε)(k : k)(ε : e)(i : ε)(n : ε)(g : ε). It is pictured in
the first two lines of Figure 2.1 on the preceding page.

The remainder of Figure 2.1 shows how we introduce latent variables, by enriching the
alignment characters to be tuples rather than pairs. Let Σ

def
= (Σxy ×Σ`1 ×Σ`2 ×· · ·×Σ`K ),

where Σ`i are alphabets used for the latent variables `i.

2.2.1.2 Finite-state Automata
In this chapter and throughout this dissertation, we will use finite-state automata to

efficiently represent and compute with sets of strings or string pairs. In particular, we will
use weighted automata, in which each string or string pair is assigned a weight, which is
an element from a semiring (see page 19), which may, for example, be some unnormalized
model score or a probability.

Finite-state automata in their weighted and unweighted forms are popular tools in nat-
ural language processing and computational linguistics and have been applied to problems
in morphology and phonology (Kaplan and Kay, 1994; Karttunen, Kaplan, and Zaenen,
1992), language modeling (Roark, Saraclar, Collins, and Johnson, 2004a), speech recog-
nition (Pereira, Riley, and Mohri, 2002) and machine translation (Knight and Al-Onaizan,
1998). However, a generic formulation of log-linear string transduction models with latent
variables using finite-state machines is a new contribution.

Finite-state acceptors (FSAs) are automata that operate on single strings. Finite-state
transducers (FSTs) generalize this to the string-pair case; they can be thought of as accept-
ing string pairs or rewriting an input string into an output string.

We give the formal definition of a weighted finite-state transducer, following Mohri
(2009):

Definition A weighted finite-state transducer (WFST) T over a semiring (W,⊕,⊗, 0̄, 1̄)
(see below) is an 8-tuple T = (Σx,Σy, Q, I, F, E, λ, ρ). The symbols have the following
meanings:
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Name W ⊕ ⊗ 0̄ 1̄

Boolean {0,1} ∨ ∧ 0 1
Real R + × 0 1
Log R ∪ −∞ logplus + −∞ 0
Tropical R ∪ −∞ max + −∞ 0

Table 2.1: Semiring examples (logplus(v, w) is defined as log(exp v + expw)).

• Σx: finite input alphabet (also known as upper alphabet)

• Σy: finite output alphabet (also known as lower alphabet)

• Q: finite set of states

• I ⊂ Q: set of initial states1

• F ⊂ Q: set of initial states

• E: a finite multiset of transitions, which are elements of Q× (Σx ∪ ε)× (Σy ∪ ε)×
W ×Q

• λ : I → W : initial weight function

• ρ : F → W : final weight function

As can be seen in the WFST definition above, the transitions as well as the initial and
final weight functions make use of a weight from a semiring (W,⊕,⊗, 0̄, 1̄). The semiring
associates the weight with definitions of how to add (⊕) or multiply (⊗) two weights.
Formally, in a semiring, we have the following properties:

• (W,⊕, 0̄) is a commutative monoid with identity element 0̄

• (W,⊗, 1̄) is a monoid with identity element 1̄,

• ⊗ distributes over ⊕

• 0̄ is an annihilator for ⊗, i.e. w ⊗ 0̄ = 0̄⊗ w = 0̄, ∀w ∈ W

Table 2.1 shows examples of frequently used semirings. In addition, we make use of
the expectation semiring in this work (Eisner, 2001, 2002b; Li and Eisner, 2009b).

Given a weighted finite-state transducer T , the weight of a string pair (x, y) is the sum
of the weights of all paths leading from an initial to a final state that accept (x, y). A
path π is an element of E∗ with consecutive transitions. The weights of different paths are

1Typically, this set contains just one distinguished initial state.
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summed using the semiring element ⊕, while the weight of a single path is the product
(computed using ⊗) of its individual transition weights.

Weighted finite-state automata can be manipulated and combined using various algo-
rithm, which Mohri (2009) describes in detail. In this and the following chapters, we make
use of the following algorithms on weighted finite-state automata:

• intersection

• composition (denoted by the ◦ symbol)

• projection

• determinization

• minimization

• epsilon removal

Let T be a relation and w a string. We write T [w] to denote the image of w under T
(i.e., range(w ◦ T )), a set of 0 or more strings. Similarly, if W is a weighted language
(typically encoded by a WFSA), we write W [w] to denote the weight of w in L.

Let πx ⊆ Σ∗ × Σ∗x denote the deterministic regular relation that projects an alignment
string to its corresponding input string, so that πx[A] = x. Similarly, define πy ⊆ Σ∗ × Σ∗y
so that πy[A] = y. Let Axy be the set of alignment strings A compatible with x and y;
formally, Axy

def
= {A ∈ Σ∗ : πx[A] = x ∧ πy[A] = y}. This set will range over all possible

alignments between x and y, and also all possible configurations of the latent variables.

2.2.2 Log-linear Modeling
We use a standard log-linear model whose features are defined on alignment strings

A ∈ Axy, allowing them to be sensitive to the alignment of x and y. The model is globally
normalized over the range of complete possible output strings given an input string.

We define a collection of features fi : Σ∗ → R with associated weights θi ∈ R; the
conditional likelihood of the training data is

pθ(y | x) =

∑
A∈Axy exp

∑
i θifi(A)∑

y′
∑

A∈Axy′
exp

∑
i θifi(A)

(2.1)

Given a parameter vector θ, we compute Equation 2.1 using a finite-state machine.
We define a WFSA, Uθ, such that Uθ[A] yields the unnormalized probability uθ(A)

def
=

exp
∑

i θifi(A) for any A ∈ Σ∗. (See Section 2.6.3 on page 32 for methods of constructing
such a machine.) To obtain the numerator of Equation 2.1, with its

∑
A∈Axy , we sum

over all paths in Uθ that are compatible with x and y. That is, we build the transducer
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x ◦ π−1
x ◦ Uθ ◦ πy ◦ y and sum over all paths. For the denominator we build a transducer

x◦π−1
x ◦Uθ, which is larger since it is not constrained to any particular y, and again compute

the pathsum. We use standard algorithms (Eisner, 2002b) to compute the pathsums as well
as their gradients with respect to θ for optimization (Section 2.7).

The sums over alignment strings A in Equations 2.1 and 2.2 are restricted to only in-
clude valid alignment strings in Σ∗. Only monotone alignments, without reordering, are
valid. The restriction is done by constructing the finite-state machines such that invalid
alignments are not accepted.

Typically, fi(A) counts the number of n-gram window positions in A with property i.
The properties of a single window position are illustrated in Figure 2.2.

For optimization, we can compute the gradient of log pθ(y | x) with respect to its
features θi according to

∂ log pθ(y | x)

∂θi
=
∑

A∈Axy

pθ(A | x, y)fi(A)−
∑
y′

∑
A∈Axy′

pθ(y
′, A | x)fi(A), (2.2)

which is the difference of the feature expectations given x and y and the feature expec-
tations given just x. The alignment between the two strings is always unobserved, so we
take expectations.

Note that, on the surface, our model is similar to a conditional random field (CRF, see
Lafferty, McCallum, and Pereira (2001a)), with the alignment added as a latent variable,
similar to hidden conditional random fields (Gunawardana, Mahajan, Acero, and Platt,
2005; Quattoni, Wang, Morency, Collins, and Darrell, 2007). However, a key difference
is that in our model, x and y are not simply fixed-length vectors of simple multinomials,
as in typical random fields that, for example, model sequences of part-of-speech tags. In
contrast, x and y in our model are structured objects of potentially unbounded lengths.
The length of the output string y is unknown and could, due to insertions and deletions,
be longer or shorter than the input string x. In that respect, our model is similar to Finkel,
Kleeman, and Manning (2008b), which defines a globally normalized model over parse
trees given an input string; however, in that model, no latent variables are used (all trees
are observed). Petrov and Klein (2008) define a log-linear model over trees with latent
variables, with the difference that it is locally normalized per rewrite rule.

Since we model more complex variables than does a traditional sequence (hidden) con-
ditional random field, we need more involved inference algorithms and representations of
the data. Fortunately, these are well-known for weighted finite-state machines; they just
have never been used to model strings in a CRF-like probability model. Choosing the
finite-state framework is a crucial aspect of our modeling approach that makes it easily
configurable and allows to seamlessly extend this model into bigger models (Chapters 3
and 4).
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Figure 2.2: The boxes (a)-(h) represent some of the features that fire on the trigram shown
in Figure 2.1. These features are explained in detail in Section 2.4.

Note that the conditional model (2.1) can be easily changed to a joint model pθ(x, y)
by summing over all y′ and x′ in the denominator:

pθ(x, y) =

∑
A∈Axy exp

∑
i θifi(A)∑

x′,y′
∑

A′∈Ax′y′
exp

∑
i θifi(A

′)
(2.3)

This sum can still be efficiently computed, if the vocabulary of possible characters is
not too large.

If a model pθ(x) over just one string is needed, the same equation (2.3) can be used,
where y is set to equal the string x; the strings A just enrich x with any latent variables that
we wish to include (Section 2.3), but there is no ambiguous alignment. In this case, the
number of variables is fixed and no variable-length variables are involved, which makes it
similar to conventional hidden-variable models (Quattoni et al., 2007).2

2.3 Latent Variables
The alignment between x and y is a latent explanatory variable that helps model the

distribution p(y | x) but is not observed in training. Other latent variables can also be
useful. Morphophonological changes are often sensitive to:

• phonemes (whereas x and y may consist of graphemes)

2Practically, we still use our finite-state-based implementation for such cases; the set of allowed alignment
characters is then reduced to the identity characters (a:a), (b:b) etc.
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• syllable boundaries

• conjugation class

• morpheme boundaries

• the position of the change within the form.

Thus, as mentioned in Section 2.2.1, we enrich the alignment stringA so that it specifies
additional latent variables to which features may refer. In Figure 2.1, two latent strings
are added, enabling the features in Figure 2.2(a)–(h). The first character is not just an
input/output pair, but the 4-tuple (b : b : 2 : 1).

Latent Word Classes. Here, `1 indicates that this form pair (breaking / broke) as a
whole is in a particular cluster, or word class, labeled with the arbitrary number 2. Notice
in Figure 2.1 that the class 2 is visible in all local windows throughout the string. It allows
us to model how certain phenomena, e.g., the vowel change from ea to o, are more likely
in one class than in another. Form pairs in the same class as the breaking / broke example
might include the following Germanic verbs: speak, break, steal, tear, and bear.

Of course, word classes are latent (not labeled in our training data). Given x and y,
Axy will include alignment strings that specify class 1, and others that are identical except
that they specify class 2; Equation 2.1 sums over both possibilities.3 In a valid alignment
string A, `1 must be a constant string such as 111... or 222..., as in Figure 2.1, so
that it specifies a single class for the entire form pair. See sections 2.9.1.2 and 2.9.2.2 for
examples of what classes were learned in our experiments.

Latent Change Regions. The latent string `2 splits the string pair into numbered re-
gions. In a valid alignment string, the region numbers must increase throughout `2, al-
though numbers may be skipped to permit omitted regions. To guide the model to make a
useful division into regions, we also require that identity characters such as (b : b) fall in
even regions while change characters such as (e : o) (substitutions, deletions, or insertions)
fall in odd regions.4 Region numbers must not increase within a sequence of consecutive
changes or consecutive identities.5 In Figure 2.1, the start of region 1 is triggered by e:o,
the start of region 2 by the identity k:k, region 3 by ε:e.

Allowing region numbers to be skipped makes it possible to consistently assign similar
labels to similar regions across different training examples. Table 2.3, for example, shows
pairs that contain a vowel change in the middle, some of which contain an additional inser-
tion of ge in the beginning (verbinden / verbunden, reibt / gerieben). We expect the model

3The latent class is comparable to the latent variable on the tree root symbol S in Matsuzaki, Miyao, and
Tsujii (2005), see also Dreyer and Eisner (2006) and Petrov, Barrett, Thibaux, and Klein (2006).

4This strict requirement means, perhaps unfortunately, that a single region cannot accommodate the
change ayc:xyz unless the two y’s are not aligned to each other. It could be relaxed, however, to a prior or
an initialization or learning bias.

5The two boundary characters #, numbered 0 and max (max=6 in our experiments), are neither changes
nor identities.
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to learn to label the ge insertion with a 1 and vowel change with a 3, skipping region 1 in
the examples where the ge insertion is not present (see section 2.9.1.2, Analysis).

In the next section we describe features over these enriched alignment strings.

2.4 Features
One of the simplest ways of scoring a string is an n-gram model. In our log-linear

model (2.1), we include n-gram features fi(A), each of which counts the occurrences in
A of a particular n-gram of alignment characters. An example for such an n-gram feature
is shown under ngram in Figure 2.2, box (a), on Page 22; it fires on the alignment char-
acter trigram (a:ε)(k:k)(ε:e). The log-linear framework lets us include n-gram features of
different lengths, a form of backoff smoothing (Wu and Khudanpur, 2000).6

In addition to features that fire on specific n-grams, we include backoff features; such
features can be used to capture phonological, morphological, and orthographic generaliza-
tions. In particular, we describe several classes of backoff features:

1. vc-ngram (see Figure 2.2, box b): Suppose the model is choosing whether to add s
or es to pluralize a Spanish noun. It is linguistically significant whether the origi-
nal noun ends in a consonant. While we could learn weights for individual bigram
features which fire on words ending in specific consonants, this would overfit the
training data, missing the generalization captured by a single backoff feature that
fires on any final consonant.7 The vc-ngram features match vowel and consonant
character classes in the input and output dimensions.

2. id/subst ngram (see Figure 2.2, box d): In the id/subst ngram features, we have
a similar abstraction. Character classes are here defined over input/output pairs, to
match insertions, deletions, identities (matches), and substitutions (see ins, del, id,
and subst in the figure). These features are useful in tasks where the input and output
alphabets, Σx and Σy, are the same, like in morphological inflection and lemmatiza-
tions tasks (Sections 2.9.1 and 2.9.2), or in spelling correction, name matching or
other tasks.8 In such tasks, identities between input and output are observed very
frequently; consider an English lemmatization example like walked/walk.

3. target LM (see Figure 2.2, box c): In string transduction tasks, it is helpful to include
a language model of the target. While this can be done by mixing the transduction

6In effect, the higher-order weights serve as corrections to the lower-order weights. Since regularized
training (see Equation (2.4) on page 34) exerts pressure to keep all weights small, these higher-order additive
corrections will be close to 0 except where really necessary to explain the data. In particular, they will be
close to 0 for rare n-grams, giving a backoff effect.

7The regularization in Equation 2.4 prefers economical explanations, which have fewer features. There-
fore, it will prefer making the generalization if the model includes the appropriate backoff feature.

8But not in transliteration (Section 2.9.3 on page 49).
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model with a separate language model, it is desirable to include a target language
model directly within the transduction model. We accomplish this by adding features
that ignore the input dimension.

We also include features which mirror features (a)-(d), see the corresponding boxes
in Figure 2.2, but ignore the latent classes and/or regions (e.g., features (e)–(h)). For all
features, versions of different lengths are included. While features that ignore latent classes
and/or regions (or the output dimension) can be described as ignoring certain rows in the
depiction of Figure 2.2, shorter features can be described as ignoring certain columns—a
shorter feature ignores the leftmost columns of a long feature.

Notice that our choice of Σ only permits monotonic, 1-to-1 alignments, following Chen
(2003). We may nonetheless favor the 2-to-1 alignment (ea:o) with bigram features such
as (e:o)(a:ε). A “collapsed” version of a feature will back off from the specific alignment
of the characters within a window: thus, (ea:o) is itself a feature. Collapsed versions of
target language model features ignore epsilons introduced by deletions in the alignment, so
that collapsed ok fires in a window that contains oεk.

We have now described the central components that characterize our finite-state-based
log-linear string pair model. Before we move on to more peripheral aspects like feature
selection and pruning (Section 2.6), particular ways of training (Section 2.7) and avoiding
divergence (Section 2.8), we relate our model to previous work in computational sequence
(pair) modeling.

2.5 Related Work

2.5.1 Computational Sequence Modeling
Our model is different from conventional CRFs and hidden-state CRFs due to the use

of unbounded structure, as discussed above (Section 2.2.2 on page 21).
In Section 2.2 on page 17 we also mentioned that our model is different from other

string pair models (Sherif and Kondrak, 2007; Zhao et al., 2007; Hong, Kim, Lee, and
Rim, 2009) that are inspired by phrase-based machine translation (Koehn et al., 2007),
segmenting the input string into substrings (called chunks or phrases) that are transduced
independently, ignoring context. We feel that such independence is inappropriate. By
analogy, it would be a poor idea for a language model to score a string highly if it could be
segmented into independently frequent n-grams. Rather, language models use overlapping
n-grams, and indeed, it is the language model that rescues phrase-based machine translation
(MT) from producing disjointed translations. We believe phrase-based machine translation
avoids overlapping phrases in the channel model only because these would complicate the
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modeling of reordering. But in the problems of Section 2.1, letter reordering is rare and we
may assume it is local to a window.9

There are other string-based models, which use overlapping n-gram models over align-
ments. The simplest such model is string edit distance, famously introduced by Levenshtein
(1966) as a distance measure based on deletions, substitutions, and insertions. Later such
models have successfully been trained in generative frameworks (e.g., Ristad and Yianilos
(1998), Bilenko and Mooney (2003)). However, string edit distance does not make use of
contextual information; it is a unigram model.

Deligne, Yvon, and Bimbot (1995), Galescu and Allen (2001), Demberg, Schmid, and
Möhler (2007), Bisani and Ney (2002), Bisani and Ney (2008) and others use higher-order
generative joint n-gram models. Galescu and Allen (2001) first train an alignment model
using Expectation Maximization (EM; Dempster, Laird, and Rubin, 1977) and proceed
by obtaining the Viterbi alignment of the training data and training a conventional n-gram
model on the alignment. Jansche and Sproat (2009) follow a similar approach. Chen
(2003) uses a local log-linear grapheme-to-phoneme model, which is trained on aligned
training string pairs; this alignment is repeatedly reestimated during training. Clark (2001)
uses a mixture of pair HMMs for morphology. Freitag and Khadivi (2007) perform se-
quence alignment based on the averaged perceptron (Collins, 2002), but the features look
separately at input or output of an alignment. Jiampojamarn, Kondrak, and Sherif (2007)
present a many-to-many alignment algorithm and learn a discriminative linear model using
overlapping features. These differ from our model in that they do not consider the align-
ment a hidden variable in the objective function, they use less flexible features, and do not
add other latent variables.

The alignment is a hidden variable in the hidden CRF-based models (Quattoni et al.,
2007) of Do, Gross, and Batzoglou (2006) and McCallum, Bellare, and Pereira (2005).
In their Contralign model, Do et al. (2006) use discriminatively trained CRFs for protein
sequence alignment. These models are related to ours in that they model string pairs and
their hidden alignments in a globally normalized log-linear framework. Differences from
our model are that they do not use any other latent variables, their finite-state topology
typically consists of less than ten states and they do not have to sum over output strings,
since input and output are always given.

McCallum et al. (2005) also define a globally normalized log-linear model over (hid-
den) alignments. Their model has a structure similar to ours, including the use of a binary
class, like our conjugation classes. A major difference in our work is that we use hidden
classes, which we marginalize over in decoding, whereas classes in McCallum et al. (2005)
are observed and their assignment is part of the task.

The fact that in both these models the input and output strings are always given makes
them fundamentally different from ours, since the output string (and therefore the align-
ment) in our model is unbounded, as described above in Section 2.2.2 on page 21.

9In the context of machine translation, Mariño, Banchs, Crego, de Gispert, Lambert, Fonollosa, and Ruiz
(2005) use a sequence model over phrase pairs, similar to related string transduction work described below,
where all reordering is local within the phrase pairs; see also Casacuberta (2000).
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Our latent conjugation classes and latent regions are novel. Demberg et al. (2007) also
add some extra dimensions to the input–output string pair in a (generative) joint n-gram
model, but their added dimensions are supervised, not latent.

Rumelhart and McClelland (1986) used a neural network trained with the perceptron
algorithm (Rosenblatt, 1962) to learn to predict English past-tense forms from observed
present-tense forms. They used trigram features to describe input and output forms, like
most other methods that we have described so far (including ours). In their case, the tri-
grams are built over phonemes, not the orthographic forms; this is an approach that we are
interested in as well, see our remarks on future work in Section 2.10 on page 51. From the
standpoint of feature design and statistical modeling, our approach is quite different from
Rumelhart & McClelland’s model: All our features are based on an (implicitly learned)
one-to-one alignment of the two strings; we can make more effective generalizations by
backing off to identities versus substitutions, vowels and consonants and the target lan-
guage model; we model conjugation classes, and features may refer to the latent regions,
which makes them position-dependent. Rumelhart and McClelland (1986) have been crit-
icized for rejecting linguistic rules in favor of network units and agnostic features (Pinker
and Prince, 1988). We take a middle ground and argue that linguistic knowledge and any
linguistic representation may be added to our model and be picked up by the learning al-
gorithms; the conjugations classes, vowels and consonants and others are a good start, and
other linguistically inspired features may turn out to be useful as well (see our discussion
in Section 2.10 on page 51). From the standpoint of statistical modeling, our model is
different from Rumelhart and McClelland (1986) in that it defines a proper probability dis-
tribution, which makes it suitable as a model component in other, larger joint probability
models. A further difference is that we do not make any claims about being able to model
human brain functionality and human language learning using n-gram features, which is a
claim that Pinker and Prince (1988) vehemently criticized.

2.5.2 Morphological Theory
Our work is also anchored in part of the literature on inflectional morphology, where

much work has been done on finding morpheme boundaries. Harris (e.g., Harris (1955)),
ahead of his time, seeks to identify boundaries at positions where the predictability of
the following letter is low. De Marcken (1996) segments boundaryless text into lexemes,
using a Minimum Description Length (MDL) framework. Goldsmith (1997, 2001a) de-
scribes an algorithm for the unsupervised learning of stem/suffix boundaries. He identifies
sets of suffix paradigms that he calls signatures. Examples for such sets in English are
{NULL,ed,ing}, {e,ed,ing}, or {e,ed,es,ing}. Wicentowski (2002) defines prefix, stem,
and suffix regions, together with their points of transition, into which word pairs of vari-
ous languages can be aligned.10 (See also Section 4.7 on page 114 for more discussion of
related work in computational morphology.) The work in this chapter extends this line of

10We refer to his work again in Section 2.9 on page 38.
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previous research by modeling word regions and their boundaries as hidden information in
a unified log-linear framework.

Our work is in many aspects close to the work of Wilson and Hayes (2008), who present
a computational model for phonotactics, learning to describe the permissible combinations
of phonemes from data. Their model determines the well-formedness of any phonetic
string by the use of log-linear, or maximum-entropy, constraints, much like the way strings
are scored in our model. In their case, the different sounds of a language are described
using overlapping sets of weighted features. In addition, non-local phenomena, such as
vowel harmony, are modeled using a projection that transforms the phonetic string into its
vowels and consonants. This is comparable to our vowel/consonant features, or could also
be modeled by a string-valued variable in our graphical models over strings, described in
the next chapter (Chapter 3). Wilson and Hayes (2008) also introduce a projection that
functions like a metrical grid, to evaluate stress patterns.

While Wilson and Hayes (2008) is a log-linear model over single strings, we score an
input and an output form by applying a log-linear finite-state transducer. This transducer is
an intersection of several smaller transducers, each of which encodes a subset of the overall
constraints. Each of these constraints can examine either form (input or output) in isolation
or both forms at once, on any alignment between the two. It is important to note that all
constraints are applied in parallel; they are soft constraints.

This string-pair setup is related to other approaches in morphology that apply con-
straints in parallel, as opposed to applying a series of ordered rewrite rules. The following
paragraphs briefly contrast these two approaches11 in relation to our work.

Ordered rewrite rules have been applied in early approaches to computational morphol-
ogy (Kay and Kaplan, 1981). In this sequential approach to morphology, an input form is
modified by a series of ordered rewrite rules, each of which rewrites the input string into an
intermediate representation, with the last rule application resulting in the output form. Each
rule operates on the output of the previous rule. In this way, one rule can create the context
to which another rule then applies (feeding). Each single rewrite rule can be expressed as
a finite-state transducer; all transducers are applied one after another in the given order.
But it is also possible to compose all of the transducers to obtain a single transducer that
applies the whole sequence of changes in one step (Schützenberger, 1961). Note that the
composition result still applies an ordered sequence of changes; the transducers need to be
composed in the order in which they apply.

In contrast, two-level morphology (Koskenniemi, 1984) operates directly on the input
and output forms (given an alignment of the two), without making use of intermediate rep-
resentations. Similar to our model, it is not a sequential approach; constraints are unordered
and directly applied in parallel. Like in the cascaded rewrite-rule approach, the various con-
straints can be compiled into separate finite-state transducers, but here all of these are then
intersected, not composed, to build one big finite-state transducer that represents and can
simultaneously apply all constraints to the input/output alignment. Kay (1987) stresses that

11See also Karttunen and Beesley (2005) for an overview.
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two-level, finite-state approaches are ideal for modeling non-concatenative morphology.
The approaches described so far use hard constraints, i.e. the transducers are unweighted
and constraints may not be violated.

Optimality Theory (OT; Prince and Smolensky, 1993) removes this restriction: Here,
not all constraints are equal, but there is a ranking among them; lower-ranked constraints
may be violated by higher-ranked ones. For example, if a lower-order constraint postulates
that the input should be similar to the output (faithfulness), it may be violated by a higher-
ranked one that, for example, prefers the output to have a certain suffix that the input does
not have. In our model, this would correspond to the identity features versus the target
language features (Section 2.4), which have been trained on data to have different weights.
OT does not use weights, but operates based on rankings alone. Higher-order constraints
may violate lower-order ones, but not vice versa: No number of matching lower-ranked
constraints can outweigh the violation of a single higher-ranked constraint.

In a log-linear model like the one we use, where each constraint (feature) is assigned a
numerical weight (Equation 2.1), the OT ranking scheme could be expressed using the fol-
lowing weights: Given n constraints fi...n sorted from lower to higher ranking, the weight
wi of each constraint fi is 2i. This ensures that ∀i < j, (

∑j
k=iwk) < wj+1. However, this

works only if each constraint is binary over the whole sequence, so it cannot be counted
multiple times, like in log-linear models like ours. Ranking versus weighting schemes are
further discussed in (Hayes and Wilson, 2008).

An important connection to our work is that the set of constraints is not applied in
any particular order, but in parallel. In OT and in the other approaches described, many
constraints can be expressed as finite-state transducers (Eisner, 2002a). OT models are
often trained discriminatively, using an online learning approach that repeatedly modifies
the constraint ranking based on the performance of constraints on training data examples
(Tesar and Smolensky, 2000). OT has no intermediate representations to work on, but see
sympathy theory (McCarthy, 2002).

This concludes the comparison of our work to previous work in computational mor-
phology. To summarize, we chose an approach that is based on two-level morphology and
optimality theory (OT) in that transducers are intersected to form a single scoring machine
Uθ, which applies constraints in parallel, not sequentially. We note that it would also be
possible to learn rule-based sequential morphology in a log-linear finite-state setting like
ours. One possibility would be to use transformation-based learning (TBL; Brill, 1992): At
each iteration of training, a set of rewrite rule candidates is evaluated and the best one is ap-
plied. Evaluation in TBL is done in an error-driven way; the rule is chosen that minimizes
the error of the current forms compared to the desired output forms.12 Another possibil-
ity would be to define a generic transducer that, given a particular weight vector, can be
specified to perform a certain rewrite rule. At the beginning of training, one specifies the
number n of serial rewrites and composes n copies of the generic transducer. The weights

12Jongejan and Dalianis (2009) describe a related approach, which extracts rewrite rules from the training
pairs and applies them in certain order to an inflected word form. Each rewrite rule may be interpreted as a
small finite-state transducer.
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in these composed transducers are then optimized jointly, to maximize the probability of
observed inputs and outputs. Our approach to model inflectional paradigms in Chapter 3
(Page 58) resembles such an approach: Several transducers are learned jointly, although
we do not work with completely hidden forms, and we do not restrict our models to be a
linear chain leading from an input string to an output string; instead we are interested in
predicting more than two strings.

In this chapter, so far we have described the central parts of our string transduction
method and put them in relation to other work in this area. We will now describe several
more practical aspects before turning to the experiments in Section 2.9 on page 38.

2.6 Feature Selection and Pruning

2.6.1 Motivation
This section describes a simple feature selection method. In theory, all features up to

a certain length could be used in the model, but that would typically be too expensive.
To understand why, consider the topology of the finite-state machine Uθ, which relates
input to output strings and assigns scores according to the features that fire on possible
alignments between them. All our features have n-gram structure, as just described in
Section 2.4, so Uθ has the well-known n-gram topology (Allauzen, Mohri, and Roark,
2003; Roark, Saraclar, Collins, and Johnson, 2004b), where each state represents an n-
gram history h = ci−n+1, ..., ci−1 and has one outgoing arc per symbol ci, representing the
n-gram hc. In our case, each c is an alignment character (in the literature, n-grams are
typically over words instead of alignment characters). The size of Uθ is determined by n,
the size of the input and output alphabets, the number of latent regions and the number of
latent conjugation classes. Assume, for simplicity, that the input and the output alphabets,
Σx and Σy, have the same size V . We need V 2+n−1 states to represent all histories for an n-
gram model, if there are no latent annotations. With r latent regions, we need O((V 2r)n−1)
states, times a constant factor for any latent conjugation classes. Typically, V is about 30
(the number of letters in a language), so for a trigram model using 6 latent regions the
number of states would be in the order of 10 million and the number of arcs in the order of
100 billion.

We will now present a simple feature selection and pruning method that will result in
smaller finite-state machines to represent our model. The method relies on count cutoffs
on an initial alignment of the training input and output sequences. We are also interested in
other feature selection methods, including the use of L1 regularization (Tsuruoka, Tsujii,
and Ananiadou, 2009) or grafting (Perkins, Lacker, and Theiler, 2003), which we regard as
opportunity for future work (see Section 2.10).
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2.6.2 Pruning of Alignment Characters and Backing off
Histories

The simple solution adopted in (Dreyer et al., 2008) and in this thesis reduces the num-
ber of states and arcs in the finite-state machine Uθ and the number of features in the
model.13 It is motivated by the fact that

1. many character-to-character alignments can reasonably be ruled out and pruned away
(e.g., aligning a ’k’ in the input with an ’e’ in the output or many other alignments
in an English lemmatization task), and

2. many longer n-gram features may be left out in favor of shorter ones, e.g., the trigram
feature abc may not add much information compared to just using ab and bc.

These two steps are now described.
First, we select a set of plausible alignment characters, based on an initial alignment

of the training data without latent annotations. This selection is done after the first stage of
training, see more details in the section about our staged training process (Section 2.7 on
page 34). N -grams that contain alignment characters not in that set are excluded (pruned)
from the model, i.e., their weights are effectively fixed to−∞. In an English lemmatization
task, for example, we selected about 50 plausible alignment characters, which excluded
implausible ones like (k:e) or (y:f), and others. This pruning step greatly reduces the
number of states and arcs in Uθ.

Second, we select a set N = N0 ∪ N1 of ngram features to include in our model. N0

contains all n-grams up to a certain length14 that we find by aligning the training data in
all possible ways—under the constraint of the pruned alignment alphabet.15 Many of these
ngram features are expected to be important and receive high weights during training.16

N1 contains other n-grams that can be included relatively cheaply; these are all n-grams
that share the same history as the n-grams in N0. Recall that Uθ contains one state per
n-gram history, where the history h of an n-gram is the sequence of elements leading up
to the last element in the n-gram. Once an n-gram with history h is already included, all
other possible n-grams with the same history can be included as well without adding any
additional state, by adding arcs to the state that represents h. Note that N1 by definition
also contains all alignment character unigrams from the set of pruned alignment characters,
since they all share the empty history.

The previously described, second, step is not a pruning step. All n-grams that are not
in the set N will still be matched—using shorter n-grams (unless they contain one of the

13Discussion of feature selection was omitted in (Dreyer et al., 2008).
14This length is set to 3, unless otherwise noted.
15In addition, the alignments of the training data can be pruned using standard posterior pruning, according

to the scores that the initial, first-stage model assigns to the alignments. This was done to speed up the translit-
eration experiments, see Section 2.9.3 on page 49. Such a pruning step is also described in Section 2.6.4.

16Not all of these features turn out to receive high weights because typically, a small number of alignments
between an input x and output y will outweigh all others.
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alignment characters already ruled out in the first step). For example, if a bigram ab is not
in N , then the sequence ab will be matched using the unigrams a and b.

For each ngram feature, we also include all backoff features from the vc-ngram, tar-
get LM and other feature classes. Note that adding backoff features will typically add more
states and arcs to Uθ. To see why, suppose the specific alignment character bigram (a:x)
(b:y) is included, on which we fire the bigram target LM feature xy. If, however, the
alignment character bigram (c:x) (d:y), for example, is not included, then the sequence
(c:x) (d:y) would be matched using unigram transitions—but on unigram transitions there
cannot be a bigram target LM feature xy, which, once it is included in the model, would
need to fire on that sequence too. Therefore, an additional state needs to be added that
remembers the history necessary to assign the xy feature to (c:x) (d:y) and all other align-
ment character sequences whose output dimension is xy. Such states can be added using
intersection of different finite-state machines, each of which assigns features for different
backoff feature classes. This is described in Section 2.6.3.

2.6.3 Finite-state Implementation
The procedure to create Uθ closely follows Allauzen, Mohri, and Roark (2005): First

we use a count transducer to create a count lattice containing all n-grams from all align-
ments of all training examples (without latent annotations). We then convert this count
lattice to an n-gram model using the algorithm MakeModel (Allauzen et al., 2005), which
adds φ arcs17 and bends n-gram-final arcs back to lead to the next history.18 We then per-
form phi removal, which, at each state, replaces all φ arcs with the arcs that φ stands for,
given the state and its other outgoing arcs, so that we will be able to include different fea-
tures for these n-grams, and remove the weights (i.e., the counts). We also insert all latent
annotations, if any. We call this acceptor U0.

For each class of backoff features vc-ngram, target LM, etc., we create a copy of U0

and map the alignment characters to their backoff versions. This maps, for example, (a:x)
to (?:x) for target LM or to (V:C) for vc-ngrams. If latent annotations are present they are
unchanged, e.g., mapping (a:x:1:2) to (V:C:1:2). We then insert features into this copy
and map the characters back to specific characters—for example, (V:C:1:2) to (a:c:1:2),
(a:d:1:2), ..., (u:z:1:2). Then, after inserting the ngram features into U0 as well, we
intersect all FSAs to create Uθ. Each of the finite-state acceptors stores its features on its
arcs, using the expectation semiring (Eisner, 2001, 2002b; Li and Eisner, 2009b), so the
arcs in the intersection contain the combined feature vectors of the matching arcs of the
single acceptors.

17A φ arc matches any symbol that cannot be matched by other arcs leading out of the same state. When it
is traversed, no symbol is consumed (in that sense, it behaves like ε). In n-gram machines, φ arcs are used to
back off to states that represent a smaller history if there is no match at the current state, see Allauzen et al.
(2005).

18For example, if the count lattice contains n-grams up to length 3, then the z arc of a trigram xyz is
directed back to the state that represents the history yz.
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We used the OpenFst library (Allauzen, Riley, Schalkwyk, Skut, and Mohri, 2007) to
implement all finite-state operations.

2.6.4 Variation
In addition to the method described above, we experimented with a slight variation that

turned out to produce smaller models while retaining similar accuracies.
In this variation, we also use n-grams that we observe on initial alignments of the

training data (N0) and additional n-grams that can be added without increasing the state
space of Uθ (N1), and we also prune the space of permitted alignment characters. But
there are some modifications: (1) When we select n-grams for N0, we do not yet use any
pruning of alignment characters. Instead, we just use posterior pruning on the alignments of
the training input/output pairs under the initial, first-stage model. The n-grams in N1 then
are, as before, added under the constraint that implausible alignment characters are not
permitted. (2) To obtain plausible alignment characters we use a stricter criterion than the
one described in Section 2.6.2: We again obtain unigram counts of all alignment characters
in the initial alignment of the training data (i.e., after stage 1 in Section 2.7 on the next
page). But now we do not just accept every alignment character with non-zero count.
Instead we compute the conditional probabilities of each alignment character (a : x) given
its input symbol a, and for each a ∈ Σx we only keep enough alignment characters to
cover 99% of the conditional probability mass.19 For example, if we observe the alignment
characters (i:x), (i:y) and (i:z) with respective counts of 90, 10, and 1 on the initial
alignment of training data, we prune the alignment character (i:z) from the model because
its probability is less than 1 percent. In other words, more than 99% of the time, i is aligned
to x or y.

We used this variation in all experiments in Section 2.9.2 on page 41 (lemmatization),
since we found that otherwise (i.e., using the method in Section 2.6.2), training was too
time-consuming on some of the lemmatization datasets. Especially on noisy datasets, that
method results in big models since there will be many very infrequently used alignment
characters due to misalignments.20 The variation described in this subsection alleviates this
problem by being more selective when deciding about permissible alignment characters.

19This method is asymmetric and, therefore, makes sense only for conditional models. One could sym-
metrize it by adding frequent alignment characters per output symbol as well.

20An example for a noisy training example would be (hereinkam, kommen) instead if (kam, kommen),
where the verb prefix herein was left out in the second form. This results in many deletion characters that
appear nowhere else on training data and may reasonably be ruled out as implausible alignment characters.
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2.7 Training and decoding
We train θ to maximize the regularized21 conditional log-likelihood22∑

(x,y∗)∈C

log pθ(y
∗ | x)− ||θ||2/2σ2, (2.4)

where C is a supervised training corpus consisting of string pairs. To maximize (2.4) during
training, we apply the gradient-based optimization method L-BFGS (Liu and Nocedal,
1989b). In Section 2.8 on the next page we note that our training objective may diverge,
which makes it difficult to train. We explain in Section 2.8.2 on page 37 how L-BFGS can
be used to train such potentially divergent objective functions.

To decode a test example x, we wish to find ŷ = argmaxy∈Σ∗y
pθ(y | x). Constructively,

ŷ is the highest-probability string in the WFSA T [x], where T = π−1
x ◦Uθ ◦πy is the trained

transducer that maps x nondeterministically to y. Alas, it is NP-hard to find the highest-
probability string in a WFSA, even an acyclic one (Casacuberta and Higuera, 2000). The
problem is that the probability of each string y is a sum over many paths in T [x] that reflect
different alignments of y to x. Although it is straightforward to use a determinization
construction (Mohri, 1997)23 to collapse these down to a single path per y (so that ŷ is easily
read off the single best path), determinization can increase the WFSA’s size exponentially.
We approximate by pruning T [x] back to its 1000-best paths before we determinize.24

Since the alignments, classes and regions are not observed in C, we do not enjoy the
convex objective function of fully-supervised log-linear models. Training Equation 2.4,
therefore, converges only to some local maximum that depends on the starting point in
parameter space. To find a good starting point we employ staged training, a technique in
which several models of ascending complexity are trained consecutively. The parameters
of each more complex model are initialized with the trained parameters of the previous
simpler model.

Our training is done in four stages. All weights are initialized to zero.

1. We first train only features that fire on unigrams of alignment characters, ignoring
features that examine the latent strings or backed-off versions of the alignment char-
acters (such as vowel/consonant or target language model features). The resulting
model is equivalent to weighted edit distance (Ristad and Yianilos, 1998).

21The variance σ2 of the L2 prior is chosen by optimizing on development data.
22Alternatives would include faster error-driven methods, such as perceptron (Rosenblatt, 1962) or MIRA

(Margin Infused Relaxed Algorithm; Crammer and Singer, 2003), and the slower Maximum margin Markov
(M3) networks (Taskar, Guestrin, and Koller, 2004).

23Weighted determinization is not always possible, but it is in our case because our limit to k consecutive
insertions guarantees that T [x] is acyclic.

24This value is high enough; we see no degradations in performance if we use only 100 or even 10 best
paths. Below that, performance starts to drop slightly.
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2. Next,25 we add higher-order n-grams of alignment characters, but no backed-off fea-
tures or features that refer to latent strings.

3. Next, we add backed-off versions (vowel/consonant, target LM, etc.) of the features
from stage 2 as well as all collapsed features.

4. Finally, we add all features that look at the latent classes or regions. In our experi-
ments, we permitted latent classes 1–2 and regions 0–6.

Staged training helps finding better maxima in training, which is illustrated in Fig-
ure 2.3. The grey line shows the objective function during training with all features imme-
diately active after stage 1; the black line shows the objective function during our 4-stage
training process. It converges to a better maximum.

For some experiments (namely all lemmatization experiments in Section 2.9.2), we
reverse the order of stages 3 and 4. We observed that this sped up training. Latent variables
take many iterations to train (we typically cut off after 100 iterations), and each iteration is
faster if backoff features are not present yet (see Section 2.6.2). The last stage then, which
adds the backoff features and is most expensive to run, can be run for fewer iterations (we
cut off after 50 iterations) because they are supervised and less numerous.

2.8 Avoiding Divergence of the Probability
Model

We noted in Sections 2.2.2 and 2.5 that an important difference of our model from the
models of (Lafferty et al., 2001b) and others is that it handles sequences of arbitrary lengths
and not just fixed-size vectors of input/output variables. This section deals with a crucial
implication of this modeling domain.

Since the possible output strings y′ in the denominator in Equation 2.1 may have arbi-
trary length, the summation over alignment strings may be infinite. Thus, for some values
of θ, the sum in the denominator diverges and the probability distribution is undefined.
This is the case when θ does not penalize or even rewards forming an output string y by
inserting more and more characters into the input x, i.e. the WFSA Uθ(x, y) contains one
or more divergent cycles. To model pθ(y | x), we have to introduce a mechanism to avoid
and disallow any θ that would give rise to such undefined probability distributions.

This problem can occur in all prediction tasks in natural language processing that in-
volve generating structured output, such as sequences or trees, whose length or depth are
not known in advance. In machine translation, we wish to find the best translation, in
pronunciation modeling the best phoneme sequence, in parsing the best tree structure. In
all these cases, we often wish to to allow insertion of structure, since the desired outputs

25When unclamping a feature at the start of stages (2)–(4), we initialize it to a random value from
[−0.01, 0.01].
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may be longer or more complex than the input. But structure insertion can be problematic;
if structure is allowed to be inserted repeatedly, infinite loops may occur. In finite-state
machines, these may be path cycles; in parsing, these might be unary rule cycles.

Two subsections follow; the first (Section 2.8.1) describes a solution that forces the
objective function to converge by imposing a constraint on certain insertions. When a hard
constraint is not used, the divergence problem may occur during training: Some of the
various θ that are explored may cause the objective function to diverge on training inputs;
such cases need to be detected safely (without following the infinite loops that these θ
favor).

In addition, we describe in Appendix A (Page 128) a problem where divergent param-
eters may be detected only at decoding time. An objective function like Equation 2.1 that
was optimized on training data may still diverge for previously unseen x. We will define a
modified objective function that, once optimized, is guaranteed to converge on any x. This
is not a practical concern for the experiments in this thesis because the chosen topology of
the scoring finite-state machine Uθ guarantees that the output will be finite on any decoding
input x.26

2.8.1 Insertion Limits
Authors often deal with divergence by disallowing repeated structure insertion alto-

gether or bounding it. Finkel, Kleeman, and Manning (2008a) restrict their parsing model
by adding a hard constraint that disallows multiple unary rule applications over the same
span of the input sentence. In machine translation, typically an insertion that is not an-
chored at any input substring is disallowed as well, which may result in loss of generaliza-
tion.

Similar to Finkel et al. (2008a), in Dreyer et al. (2008) we imposed a maximum on
consecutive inserted letters in our finite-state machines to prevent any infinite denominator
sum. This results in slightly bigger finite-state machines, depending on the actual limit
imposed,27 since the machines have to keep track of consecutive insertions. It also makes
it impossible to delete an input string completely and insert a new output string, e.g., in
modeling pairs like go and went.

In addition, we will see in later chapters that a simple limit on consecutive insertions
will not work for some crucial cases: Sometimes the input string x is not given directly, but
is rather defined as a possibly infinite distribution p(x) over inputs—a character language
model, which, just like regular language models, is naturally not length-bounded itself;
in such a case, limits on consecutive insertions will still result in possibly infinite output
strings, and the probability distribution diverges for some values of the parameter vector θ.

26In brief, due to the n-gram structure of Uθ, any arc labeled with ε on the input side is reachable from the
start state and will be traversed during training. The problem occurs if arcs with ε on the input side are not
explicitly traversed during training and may end up as negative- or zero-weight arcs due to their features. For
details, see Appendix A.

27Dreyer et al. (2008) experimented with limits of 1–3, depending on the training data of the task at hand.
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2.8.2 Detecting Divergence
We wish to compute Lθ(x, y) for any θ; this includes cases where Lθ(x, y) diverges.

Recognizing these cases can be a challenge. Some standard pathsum algorithms (Mohri,
2002) do not converge in this case when we try to compute Zθ; they simply loop around
cycles until (after a very long time) the computation numerically overflows. Algorithms
like Bellman-Ford, which can detect negative-cost cycles, are not the solution: When we
compute the pathsum, even zero-cost cycles are harmful and will be traversed infinitely
many times. And, more important, consider a finite-state machine with a single state and
two self-loops each with probability 1

2
. The individual cycles would give convergent geo-

metric series sums if they did not interact. But in fact so many new paths are formed by
their interaction that the pathsum diverges.

To detect divergence, we propose a spectral solution, which is based on eigenvalues: We
compute the largest eigenvalue of the transition matrix of the finite-state machine and report
divergence iff the largest eigenvalue is 1 or greater. To compute the largest eigenvalue
we use the power iteration method (Golub and Loan, 1996; Page, Brin, Motwani, and
Winograd, 1999). Reporting divergence means returning Lθ(x, y) = −∞ since in that
case the probability of the training data is zero.

After detecting the divergent normalization pathsum the question is what the maximizer
should do in such a case. Here we explore the case of the popular second-order method
L-BFGS (Liu and Nocedal, 1989a). It requires a finite objective function. We ensure this
by using a modified objective function,

L′ =
L

L+ 1
, (2.5)

which is always between −1 and 0, instead of −∞ and 0.
Fortunately, no other changes are required for running L-BFGS with divergent objective

functions: Whenever this maximization algorithm encounters the minimum value of the
objective function (i.e., the divergent case) during line search it will avoid this bad region
of the parameter space in the future.

Practically, we do impose an insertion limit in Stages 1 and 2 of training (see Section 2.7
on page 34), for better stability, and lift it in the following stages. Typically, fewer iterations
of L-BFGS training are needed when an insertion limit is in place.

With online methods, such as stochastic gradient descent or MIRA, a potentially di-
vergent objective function is harder to optimize than with L-BFGS. With these methods,
a small change is made to the parameter vector after processing each training example (or
small batch of training examples). Each of these small updates may cause the overall train-
ing objective to diverge, but this may not immediately be obvious. An expensive test on
all training data needs to be run after each update to find out if the objective function still
converges on all training examples. This would defeat the very purpose of doing online
optimization. A solution can be to just recognize whenever the objective function does not
converge on a given example, which might have been caused by some update several exam-
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ples earlier. Then, manually adjust some parameter(s)28 to force the objective function to
converge on this example and continue. However, we have found that this method is very
unstable, and once the objective function has been divergent, it will often become diver-
gent again; the learner does not learn to stay away from such bad regions of the parameter
space. More research is needed to find methods to reliably apply online optimization to a
potentially divergent objective function.

2.9 Experiments
We evaluate our model on two tasks of morphology generation and a transliteration

task. Predicting morphological forms has been shown to be useful for machine translation
and other tasks.29 Here we describe two sets of morphological experiments: an inflectional
morphology task in which models are trained to transduce verbs from one form into another
(Section 2.9.1), and a lemmatization task (Section 2.9.2), in which any inflected verb is to
be reduced to its root form. The transliteration task is from the Named Entities Workshop
(NEWS) 2009 shared task (see Section 2.9.3 on page 49).

2.9.1 Inflectional Morphology
We conducted several experiments on the CELEX morphological database (Baayen,

Piepenbrock, and Gulikers, 1995). We arbitrarily considered mapping the following Ger-
man verb forms:30 13SIA→ 13SKE, 2PIE→ 13PKE, 2PKE→ z, and rP→ pA.31 We
refer to these tasks as 13SIA, 2PIE, 2PKE and rP. Table 2.3 on page 40 shows some exam-
ples of regular and irregular forms. Common phenomena include stem changes (ei:ie),
prefixes inserted after other morphemes (abzubrechen) and circumfixes (gerieben).

We compile lists of form pairs from CELEX. For each task, we sample 2500 data pairs
without replacement, of which 500 are used for training, 1000 as development and the
remaining 1000 as test data. We train and evaluate models on this data. The whole process
consisting of sampling new data, splitting, training and evaluating is repeated 5 times. All
results are averaged over these 5 runs.

28For example, increase a length penalty on each arc of the finite-state machine.
29E.g., Toutanova, Suzuki, and Ruopp (2008) improve MT performance by selecting correct morphological

forms from a knowledge source. We instead focus on generalizing from observed forms and generating new
forms (but see with rootlist in Table 2.5).

30From the available languages in CELEX (German, Dutch, and English), we selected German as the
language with the most interesting morphological phenomena, leaving the multilingual comparison for the
lemmatization task (Section 2.9.2), where there were previous results to compare with. The 4 German datasets
were picked arbitrarily.

31A key to these names: 13SIA=1st/3rd sg. ind. past; 13SKE=1st/3rd sg. subjunct. pres.; 2PIE=2nd pl.
ind. pres.; 13PKE=1st/3rd pl. subjunct. pres.; 2PKE=2nd pl. subjunct. pres.; z=infinitive; rP=imperative pl.;
pA=past part.
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Features Task
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13SIA 2PIE 2PKE rP
ngrams x 82.3 (.23) 88.6 (.11) 74.1 (.52) 70.1 (.66)

ngrams+x

x x 82.8 (.21) 88.9 (.11) 74.3 (.52) 70.0 (.68)
x x 82.0 (.23) 88.7 (.11) 74.8 (.50) 69.8 (.67)
x x x 82.5 (.22) 88.6 (.11) 74.9 (.50) 70.0 (.67)
x x x 81.2 (.24) 88.7 (.11) 74.5 (.50) 68.6 (.69)
x x x x 82.5 (.22) 88.8 (.11) 74.5 (.50) 69.2 (.69)
x x 82.4 (.22) 88.9 (.11) 74.8 (.51) 69.9 (.68)
x x x 83.0 (.21) 88.9 (.11) 74.9 (.50) 70.3 (.67)
x x x 82.2 (.22) 88.8 (.11) 74.8 (.50) 70.0 (.67)
x x x x 82.9 (.21) 88.6 (.11) 75.2 (.50) 69.7 (.68)
x x x x 81.9 (.23) 88.6 (.11) 74.4 (.51) 69.1 (.68)
x x x x x 82.8 (.21) 88.7 (.11) 74.7 (.50) 69.9 (.67)

ngrams+x
+latent

x x x x x x 84.8 (.19) 93.6 (.06) 75.7 (.48) 81.8 (.43)
x x x x x x 87.4 (.16) 93.8 (.06) 88.0 (.28) 83.7 (.42)
x x x x x x x 87.5 (.16) 93.4 (.07) 87.4 (.28) 84.9 (.39)

Moses3 73.9 (.40) 92.0 (.09) 67.1 (.70) 67.6 (.77)
Moses9 85.0 (.21) 94.0 (.06) 82.3 (.31) 70.8 (.67)
Moses15 85.3 (.21) 94.0 (.06) 82.8 (.30) 70.8 (.67)

Table 2.2: Exact-match accuracy (average edit distance) versus the correct answer on the
German inflection task, using different feature sets. See page 39 for more explanations.

Table 2.2 and Figure 2.4 on page 57 report results after stages , ®, and ¯ of train-
ing, which include successively larger feature sets. These are respectively labeled ngrams,
ngrams+x, and ngrams+x+latent. In Table 2.2, the last row in each section shows the full
feature set at that stage (cf. Figure 2.4), while earlier rows test feature subsets. The high-
est n-gram order used is 3, except for Moses9 and Moses15 which examine windows of
up to 9 and 15 characters, respectively, see below. We mark in the table in bold the best
result for each dataset, along with all results that are statistically indistinguishable (paired
permutation test, p < 0.05).

Our baseline is Moses (Koehn et al., 2007), the popular toolkit for statistical machine
translation (SMT), run over letter strings rather than word strings. It is trained (on the
same data splits) to find substring-to-substring phrase pairs and translate from one form
into another (with phrase reordering turned off). Results reported as moses3 are obtained
from Moses runs that are constrained to the same context windows that our models use, so
the maximum phrase length and the order of the target language model were set to 3. We
also report results using much larger windows, labeled moses9 and moses15.
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13SIA liebte, pickte, redete, rieb, trieb, zuzog
13SKE liebe, picke, rede, reibe, treibe, zuziehe
2PIE liebt, pickt, redet, reibt, treibt, zuzieht
13PKE lieben, picken, reden, reiben, treiben, zuziehen
2PKE abbrechet, entgegentretet, zuziehet
z abzubrechen, entgegenzutreten, zuzuziehen
rP redet, reibt, treibt, verbindet, überfischt
pA geredet, gerieben, getrieben, verbunden, überfischt

Table 2.3: CELEX forms used in our experiments. Changes from one form to the other are
in bold (information not given in training). The changes from rP to pA are very complex.
Note also the differing positions of zu in z. See also the complete table of forms on
page 141.

2.9.1.1 Results
The results in Table 2.2 on the preceding page show that including latent classes and/or

regions improves the results dramatically. Comparing the last line in ngrams+x to the last
line in ngrams+x+latent, the accuracy numbers improve from 82.8 to 87.5 (13SIA), from
88.7 to 93.4 (2PIE), from 74.7 to 87.4 (2PKE), and from 69.9 to 84.9 (rP).32 This shows
that error reductions between 27% and 50% were reached.

On 3 of 4 tasks, even our simplest ngrams method beats the moses3 method that looks
at the same amount of context.33 With our full model, in particular using latent features, we
always outperform moses3—and even outperform moses15 on 3 of the 4 datasets, reducing
the error rate by up to 48.3% (rP). On the fourth task (2PIE), our method and moses15
are statistically tied. Moses15 has access to context windows of five times the size than we
allowed our methods in our experiments.

While the gains from backoff features in Table 2.2 were modest (significant gains only
on 13SIA), the learning curve in Figure 2.4 suggests that they were helpful for smaller
training sets on 2PKE (see ngrams vs ngrams+x on 50 and 100) and helped consistently
over different amounts of training data for 13SIA.

2.9.1.2 Analysis
The types of errors that our system (and the moses baseline) make differ from task to

task. We will describe the errors on the complex rP task, as this is the most interesting and
diverse one. Here, most errors come from wrongly copying the input to the output, with-
out making a change (40-50% of the errors in all models, except for our model with latent
classes and no regions, where it accounts for only 30% of the errors). This is so common

32All claims in the text are statistically significant under a paired permutation test (p < .05).
33This bears out our contention in Section 2.5 that a “segmenting” channel model is damaging. Moses

cannot fully recover by using overlapping windows in the language model.
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because about half of the training examples contain identical inputs and outputs (as in the
imperative berechnet and the participle (ihr habt) berechnet). Another common error is to
wrongly assume a regular conjugation (just insert the prefix ge- at the beginning). Interest-
ingly, this error by simplification is more common in the Moses models (44% of moses3
errors, down to 40% for moses15) than in our models, where it accounts for 37% of the
errors of our ngrams model and only 19% if latent classes or latent regions are used; how-
ever, it goes up to 27% if both latent classes and regions are used.34 All models for rP con-
tain errors where wrong analogies to observed words are made (verschweisst/verschwissen
in analogy to the observed durchweicht/durchwichen, or bebt/geboben in analogy to hebt/
gehoben). In the 2PKE task, most errors result from inserting the zu morpheme at a wrong
place or inserting two of them, which is always wrong. This error type was greatly reduced
by latent regions, which can discover different parameters for different positions, making
it easier to identify where to insert the zu.

Analysis of the 2 latent classes (when used) shows that a split into regular and irregular
conjugations has been learned. For the rP task we compute, for each data pair in devel-
opment data, the posterior probabilities of membership in one or the other class. 98% of
the regular forms, in which the past participle is built with ge- . . . -t, fall into one class,
which in turn consists nearly exclusively (96%) of these forms. Different irregular forms
are lumped into the other class.

The learned regions are consistent across different pairs. On development data for the
rP task, 94.3% of all regions that are labeled 1 are the insertion sequence (ε:ge), region
3 consists of vowel changes 93.7% of the time; region 5 represents the typical suffixes
(t : en), (et : en), (t : n) (92.7%). In the 2PKE task, region 0 contains different
prefixes (e.g., entgegen in entgegenzutreten), regions 1 and 2 are empty, region 3 contains
the zu affix, region 4 the stem, and region 5 contains the suffix.

The pruned alignment alphabet excluded a few gold standard outputs so that the model
contains paths for 98.9%–99.9% of the test examples.

Note that the results and analysis in this section (2.9.1) are taken from (Dreyer et al.,
2008), where a limit on consecutive insertions was used.35 We reran the experiments with-
out such a limit and obtained better final results in 3 of the inflection tasks (accuracy 94.7%
versus 93.4% for 2PIE, 88.8% versus 87.4% for 2PKE, 87.0% versus 84.9% for rP) and a
worse result on one task (86.0% versus 87.5% for 13SIA).

2.9.2 Lemmatization
Next, we apply our models to the task of lemmatization, where the goal is to generate

the lemma given an inflected word form as input. We compare our model to a state-of-
the-art supervised approach, Wicentowski (2002, chapter 3). Wicentowski’s Base model

34We suspect that training of the models that use classes and regions together was hurt by the increased
non-convexity; annealing or better initialization might help.

35The limit was set to 3.
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simply learns how to replace an arbitrarily long suffix string of an input word, choosing
some previously observed suffix → suffix replacement based on the input word’s final n
characters (interpolating across different values of n). His Affix model essentially applies
the Base model after stripping canonical prefixes and suffixes (given by a user-supplied list)
from the input and output. Finally, his WFAffix uses similar methods to also learn substring
replacements for a stem vowel cluster and other linguistically significant regions in the form
(identified by a deterministic alignment and segmentation of training pairs). This approach
could be characterized as supervised change regions combined with region-independent
phrase pairs similar to Moses’ approach (Koehn et al., 2007).

We compare against all three models. Note that Affix and WFAffix have an advantage
that our models do not, namely, user-supplied lists of canonical affixes for each language. It
is interesting to see how our models with their more non-committal trigram structure com-
pare to this. We obtained the datasets for 15 languages used in (Wicentowski, 2002) and
report results in Table 2.5 on page 45.36 Following Wicentowski, 10-fold cross-validation
was used. The columns n+l and n+l+x mean ngram and latent variables and ngram and
latent variables and backoff features, respectively.37 As latent variables, we include 2 word
classes and 6 change regions.38

For completeness, we also evaluate our models on a selection (rather than a generation)
task and compare to Wicentowski (2002), see Table 2.6. Here, at test time, the lemma is
not generated, but selected from a list of allowed lemmas for the given language. This
suppresses nonsensical forms that may otherwise be proposed by the model, improving
the performance of the model. The list of allowed lemmas simply consists of the lemmas
observed during training. Note that this selection trick is possible for lemmatization (but
not for most other string transduction tasks) since many inflected forms map to the same
lemma. So for a given lemma, most inflected forms have typically been seen in training
and the remaining ones occur as test inputs, so that their lemma indeed occurs in training
data, if with other inflected input forms.

2.9.2.1 Results
On the supervised generation task without root list, our models outperform Wicen-

towski (2002) on 14 of the 15 languages, often by a very large margin (Table 2.5). On 10
of the 15 languages, our full model (column n+l+x), which uses backoff features, latent
classes and regions, reduces the number of errors (number of output forms that contain one
or more incorrect characters) by more than 50%, compared to Wicentowski’s best model.
The biggest single improvement is on Irish, where we reduce the error by 92.1%. Our
full model has an accuracy of 90% or greater on 11 languages, whereas for Wicentowski’s
models, this is the case only for 3 of the 15 languages.

36(Wicentowski, 2002) contains results on more languages. Since our models are expensive to train we
chose to train and decode on a representative subset of 15 languages only.

37The order of training stages for these experiments was explained on page 35.
38The insertion limit k in the early stages of training was set to 3 for German and 2 for the other languages.
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Language Size
Arabic 3296
Basque 5843
Czech 23818
Dutch 5768
English 79909
French 63559
German 14120
Greek 201
Irish 2160
Latin 26818
Norwegian 2489
Polish 23731
Russian 3076
Spanish 57224
Tagalog 10099

Table 2.4: Numbers of available inflection-root pairs for the various languages.

Our performance on Greek is an outlier. Here, Wicentowski’s best model has an accu-
racy of 85.9%, whereas the performances of our models is just below 60%. This may be
due to the very small data size (only 200 Greek forms overall, see Table 2.4). Presumably
the user-supplied affix lists that Wicentowski’s WFAffix model uses adds valuable infor-
mation that is not easily or reliably extractable from the small training data. This would
also explain why Wicentowski’s Base model here has unusually low accuracy (14%).

Language Model All Regular Semi-Regular Irregular Obsolete/Other
Dutch n 88.9 93.7 88.1 67.6 -

n+l 91.4 95.6 91.4 71.7 -
n+l+x 91.4 95.7 90.4 73.4 -

English n 91.5 94.5 81.8 18.6 100.0
n+l 95.0 96.9 92.3 23.3 100.0
n+l+x 95.8 97.7 93.9 20.9 100.0

German n 84.9 85.9 92.9 75.7 77.8
n+l 94.0 95.4 97.3 85.0 81.5
n+l+x 96.7 97.9 96.9 89.7 96.3

Irish n 94.4 97.1 94.7 69.7 -
n+l 97.4 99.2 98.3 72.7 -
n+l+x 97.7 99.2 98.6 75.8 -

Latin n 83.7 89.7 80.7 86.7 7.1
(continued on the next page)
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Table 2.7: (continued)

n+l 93.6 94.8 78.5 89.4 93.4
n+l+x 94.4 95.4 86.6 90.0 93.6

Spanish n 91.3 92.5 90.3 75.2 89.4
n+l 94.0 95.1 92.4 79.9 92.3
n+l+x 94.3 95.3 92.3 82.3 93.7

Table 2.7: Lemmatization (generation task, no root list). Re-
sults are listed in whole-word accuracy, for the languages
where information about regular and irregular verbs was
available. Comparative results are not available in (Wicen-
towski, 2002), except for the All column; the numbers in All
are similar to the results in Table 2.5. For the corresponding
selection task results, see Table 2.8.

Comparing our own models, it is noteworthy that the model that uses latent classes and
regions (n+l) often gives much higher accuracy than our basic model (n) that just uses n-
gram features. Our basic model has a performance greater than 90% on 5 of 15 languages,
whereas the models with latent variables perform that high on 11 languages, as noted above.
Often, the accuracy increases by more than 5 absolute percentage points. This is the case
on Arabic, Basque, French, German, Latin, Russian and Tagalog. On some languages, on
the other hand, the latent variables did not help much (Czech, Norwegian) or even hurt
accuracy (but only on Greek, discussed above). The backoff features (target LM, id/subst
ngram) always improved the performance; in 8 of the 15 languages this improvement was
significant. Overall, the average edit distance numbers (in Table 2.5 as well) show the same
trends as the accuracy numbers.

We also measure how well our models perform on regular versus irregular words (Ta-
ble 2.7). The classification of (inflection, root) pairs into regular, irregular, semi-regular
and other is taken from (Wicentowski, 2002).39 We expected and observe here that, as we
add latent variables as well as backoff features, the accuracy on irregular verbs improves,
sometimes quite dramatically, while the performance on regular verbs often increases only
slightly. For German and Latin, however, the performance increases dramatically even for
regular verbs. This is due to the fact that in these languages, even regular conjugation is
hard and benefits from the additional features. In German, for example, some affixes are in
general confusable with stem parts so that the model sometimes incorrectly removes stem

39Of the 15 languages we picked for this thesis, 6 were annotated with regularity information; these are
shown in the table. There is no comparison with Wicentowski’s numbers in this table since they are not
available, except for the All column, which corresponds to information in Table 2.5.
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Wicentowski (2002) This work
Language Base Af. WFA. n n+l n+l+x % err. red.
Arabic - - - 65.9 (0.45) 79.4 (0.30) 79.7 (0.30) -
Basque 85.3 81.2 80.1 88.3 (0.26) 94.8 (0.12) 95.8 (0.10) 71.4
Czech 72.3 85.1 85.2 95.4 (0.07) 95.4 (0.09) 95.4 (0.09) 68.9
Dutch 79.7 74.2 58.2 88.9 (0.20) 91.4 (0.17) 91.4 (0.17) 57.6
English 91.0 94.7 93.1 91.5 (0.10) 95.0 (0.07) 95.8 (0.06) 20.8
French 85.8 91.9 90.4 87.0 (0.20) 95.9 (0.07) 97.7 (0.04) 71.6
German 87.7 - 84.6 84.9 (0.19) 94.0 (0.09) 96.7 (0.06) 73.2
Greek 14.1 - 85.9 59.2 (0.65) 57.1 (0.83) 58.2 (0.81) -196.5
Irish 43.3 - 70.8 94.4 (0.09) 97.4 (0.06) 97.7 (0.04) 92.1
Latin 78.0 - 69.4 83.7 (0.29) 93.6 (0.08) 94.4 (0.08) 74.5
Norwegian 82.5 - 80.4 84.5 (0.22) 85.9 (0.20) 85.8 (0.21) 18.9
Polish 93.3 - 92.3 93.9 (0.08) 96.7 (0.05) 97.2 (0.04) 58.2
Russian 77.9 - 67.3 83.8 (0.23) 89.5 (0.18) 89.8 (0.18) 53.8
Spanish 89.9 89.3 86.5 91.3 (0.12) 94.0 (0.09) 94.3 (0.08) 43.6
Tagalog 0.3 80.3 81.7 82.1 (0.31) 94.7 (0.09) 95.5 (0.07) 75.4

Table 2.5: Lemmatization (generation task, no rootlist): Exact-match accuracy and average
edit distance (the latter in parentheses) on 15 languages. The numbers from Wicentowski
(2002) are for his Base, Affix and WFAffix models. The numbers for our models are for
ngram features (n), ngram features with latent annotations (n+l) and added backoff fea-
tures (n+l+x). The best result per language is in bold (as are statistically indistinguishable
results when we can do the comparison, i.e., for our own models). Last column: relative
error reduction of our n+l+x versus Wicentowski’s best model.
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Wicentowski (2002) This work
Language Base Af. WFA. n n+l n+l+x % err. red.
Arabic - - - 72.3 (1.29) 72.4 (1.36) 72.3 (1.37) -
Basque 94.5 94.0 95.0 90.7 (0.31) 90.8 (0.35) 90.8 (0.35) -84.0
Czech 78.7 98.2 98.2 88.5 (0.27) 88.0 (0.39) 88.0 (0.39) -566.7
Dutch 86.4 93.8 79.2 97.8 (0.08) 97.5 (0.10) 97.3 (0.10) 56.5
English 98.3 98.7 98.5 98.8 (0.03) 98.3 (0.07) 98.3 (0.07) -30.8
French 99.0 99.3 98.7 99.7 (0.01) 99.8 (0.01) 99.9 (0.00) 85.7
German 92.0 92.1 94.7 99.0 (0.03) 99.4 (0.03) 99.5 (0.03) 90.6
Greek 15.6 99.5 91.2 93.9 (0.31) 92.9 (0.36) 92.9 (0.36) -1320.0
Irish 43.9 - 89.1 99.7 (0.02) 99.9 (0.01) 99.9 (0.01) 99.1
Latin 88.5 88.5 83.9 99.7 (0.01) 99.6 (0.01) 99.7 (0.01) 97.4
Norwegian 93.7 - 95.5 97.9 (0.09) 98.2 (0.08) 98.2 (0.08) 60.0
Polish 97.2 97.2 97.1 99.5 (0.01) 99.6 (0.01) 99.6 (0.01) 85.7
Russian 85.8 - 85.2 94.8 (0.12) 96.5 (0.08) 95.9 (0.10) 71.1
Spanish 94.6 96.5 95.3 99.8 (0.00) 99.8 (0.01) 99.8 (0.01) 94.3
Tagalog 0.8 91.8 96.0 97.0 (0.07) 98.0 (0.05) 98.1 (0.05) 52.5

Table 2.6: Lemmatization (selection task, with root list) on 15 languages. The only differ-
ence to Table 2.5 on the previous page is the use of a root list.

parts in order to generate a lemma. A prediction error on the input geben ’(we) give’ il-
lustrates this; it was transduced to ben ’to give’ instead of the identity transduction geben
’to give’ because typically ge- at the beginning of a word would be a past participle prefix.
In Latin, it is also surprising that the performance on verbs classified as Obsolete/Other
is abysmal with our basic model, but very high when we add latent variables. This is the
case because most verbs in this class build their lemma using the passive form (e.g., exse-
quor) but the basic model just assigns the usual active form. These errors are fixed when
conjugation classes are used.

Language Model All Regular Semi-Regular Irregular Obsolete/Other
Dutch Base 86.4 85.2 95.2 69.7 -

Affix 93.8 92.9 98.8 85.7 -
n 97.8 98.5 99.1 91.0 -
n+l 97.5 98.6 98.4 90.3 -
n+l+x 97.3 98.5 97.9 90.7 -

English Base 98.3 99.0 98.7 28.1 100.0
Affix 98.7 99.3 99.2 32.3 100.0
n 98.8 99.5 98.4 69.8 100.0
n+l 98.3 99.5 98.1 44.2 100.0

(continued on the next page)
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Table 2.8: (continued)

n+l+x 98.3 99.5 98.1 44.2 100.0
German Base 92.0 93.4 97.5 81.9 90.4

Affix 92.1 N/A N/A N/A N/A
n 99.0 99.4 99.3 96.6 100.0
n+l 99.4 99.8 99.1 97.4 100.0
n+l+x 99.5 99.8 99.1 98.0 100.0

Irish Base 43.9 95.4 20.5 0.0 -
Affix N/A N/A N/A N/A -
n 99.7 100.0 100.0 93.9 -
n+l 99.9 100.0 100.0 97.0 -
n+l+x 99.9 100.0 100.0 97.0 -

Latin Base 88.5 94.9 60.3 62.8 69.5
Affix 88.5 N/A N/A N/A N/A
n 99.7 99.9 99.4 99.0 98.4
n+l 99.6 99.8 100.0 98.9 98.4
n+l+x 99.7 99.9 100.0 98.8 98.5

Spanish Base 94.6 96.0 89.3 78.8 93.8
Affix 96.5 96.9 95.0 91.0 100.0
n 99.8 99.9 99.4 98.6 100.0
n+l 99.8 99.9 99.3 98.3 100.0
n+l+x 99.8 99.9 99.2 98.2 100.0

Table 2.8: Lemmatization (selection task, with root list). The
only difference from Table 2.7 is that here, a root list is used.
Base and Affix show results from (Wicentowski, 2002) for
the same data sets.

While tables 2.5 and 2.7 show results for the generation task, tables 2.6 and 2.8 show
results for the selection task on the same data, where the task is to pick the correct lemma
from a specified list of known lemmas. Compared to Wicentowski (2002), our model
also improves the results for most languages on this task, here on 12 out of 15 languages,
comparing, for each language, our best model to Wicentowski’s best model. If we always
pick our full model as our final result then we improve over Wicentowski’s results on 11
languages (see error reduction column, Table 2.6). On the languages for which we improve
upon Wicentowski, the relative error reduction (compared to Wicentowski’s models) is
between 50% and 99%.

For all models, the performance on the selection task is higher than on the generation
task, since many candidates with small spelling errors are eliminated; they are not contained
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in the list of known lemmas. Our basic models (column n) have accuracy of 90% or greater
on 13 of the 15 languages. The latent variables and backoff features did not help that much
on this task due to this already-high accuracy of the basic models. The latent variable and
backoff models are especially good at fixing small errors—a job that the provided list of
known lemmas already does on this selection task. Interestingly, Arabic has a relatively
bad edit distance result on this task, compared to the generation task in Table 2.5, even
where the accuracy is actually improved. This can happen when the provided root list often
does not contain the correct lemma, so the model is forced to pick a completely different
lemma instead, which has a high edit distance to the truth.

For the selection task (as opposed to the generation task), Wicentowski (2002) reports
separate results for regular and irregular verbs, so we can compare our models on the same
data (see Table 2.8).40 An interesting pattern arises: While our model outperforms Wicen-
towski’s models on regular as well as on irregular verbs, the performance differences are
much greater on the irregular verbs. Here, our models reach 90% or higher on 5 out of the
6 listed languages (97% or higher on 4 languages), while Wicentowski’s models reach 91%
only on one language (Spanish).

2.9.2.2 Error Analysis and Learned Classes
We have seen that conjugation classes helped. This is natural since the input forms for

the lemmatization task can be any inflected form, so training examples by definition fall
into different classes that are unannotated. Analysis of the trained model in English shows
that the learner was able to recover such latent classes. We computed class membership
probabilities for development data examples, like in Section 2.9.1.2. Class 2 contains 99%
of all pairs whose input word ends in ing, such as zipping - zip. Class 1, on the other hand,
contains most of the pairs (77.2%) whose input is equal to its output (wish - wish), as well
as most of those whose input ends in s (78%), such as yields/yield. Other forms do not
clearly belong into one or the other class. Regular past tense examples (arm/armed) are
equally likely under each class. This analysis shows that meaningful classes can be learned
and suggests that more classes might be useful.

We examined the classes learned on English lemmatization by our ngrams+x+latent
model. For each of the input/output pairs in development data, we found the most probable
latent class. For the most part, the 2 classes are separated based on whether or not the cor-
rect output ends in e. This use of latent classes helped address many errors like wronging
/ wronge or owed / ow). Such missing or surplus final e’s account for about 70% of the
errors for the basic model n but only about 30% of the errors for the full model n+l+x.

40As with Table 2.7, we have regularity information for 6 of the 15 languages.
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2.9.2.3 Analysis: What Does the Model Learn?
We now investigate what features and rules our model learns from data. It will be inter-

esting to see if the knowledge that our model extracts from lemmatization data is similar to
how a linguist would describe the lemmatization process.

To show this, we list the highest-ranked features learned in the training process for
several languages, see the tables in Appendix B on Page 135.

In each table, the first feature column lists the alignment n-gram (possibly backed-
off)41, the second column lists the same feature in more readable format by removing the
specific alignment (see Table B.1 on page 136, for example). For each feature, we also list
a few examples from training data; these are the training pairs on which that feature has
the highest expected feature count under the model, summed over all alignments of that
training pair. Therefore, they are the most representative examples for a given feature.

Many of these learned, high-ranked features look like natural rewrite rules that linguists
would jot down as well. In English, for example, the rules ied→ y, ies→ y, ing→ ε, ed#→
ε#, es#→ e# and others are among the highest-ranked features (see Table B.3 on page 138).
There are also some high-ranked features that cover irregular cases, such as ew→ ow. That
specific rule helps generate the correct lemmas for grew, knew, threw and similar verbs.
One reason why it is ranked so high is that it is in conflict with the second-best rule overall,
which determines that an e in the input needs to remain an e in the output. Together with
other rules, the ew → ow rule can overwrite such default behavior, so that threw ends up
being correctly rewritten as throw and not as threw.

In English, note also Features 5 and 19; they are conjugation class features. The
examples listed for Feature 19 indicate that conjugation class 2 prefers certain irregular
verbs, like would and been. For a discussion of learned conjugation classes see also Sec-
tion 2.9.1.2 on page 41 and Section 2.9.2.2 on the preceding page above.

Our model also stores some of the irregular pairs in almost complete form as features.
Feature 18, for example, states that wer should be rewritten as b, which applies only to the
training pair were→be. If we had allowed features longer than trigrams then the complete
training pair could have been stored as a feature. This would be useful and closer to what
a linguist would do in such extremely exceptional cases; we list longer-span features as
future work (see Section 2.10 on page 51).

2.9.3 Transliteration
To show that our string-to-string model is sufficiently general and is useful beyond

morphological tasks, we also report results on a transliteration task. We train and evaluate
on the English-Russian data from the NEWS 2009 shared task (Li, Kumaran, Zhang, and
Pervouchine, 2009a).

41The backoff features tend not to be among the highest-ranked features in these training runs; the reason
for this is likely that we added the backoff features in the last stage, for better training efficiency on the
lemmatization datasets (see Section 2.7 on page 35).
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2.9.3.1 Setup
No changes to the model structure are necessary. We use the pruning and backoff

strategies described in Section 2.6.2 on page 31, including the described optional posterior
pruning step, where an alignment path is pruned if its probability is less than 0.1 times the
probability of the best alignment path, before n-grams N0 are extracted.

In staged training, we add bi- and trigrams in stage 2. We then run a stage (2b), where
we reestimate the pruned Σ and add n-grams up to order 5. Then we run a stage (2c) similar
to (2b), but with n-grams up to order 6. These settings are determined by experimentation
on the provided development set. For efficiency, we do not add any backoff features or
latent variables.

2.9.3.2 Results
We obtain final results on the provided test set, shown in Table 2.9 on the next page.

The highest accuracy result among all submissions reached an accuracy of 61.3%, while
the median result was 54.8%. With an accuracy of 60.0%, our result is among the few
highest-scoring ones and ranks 4th out of 15 submissions. We believe that even higher
accuracy results can be achieved when backoff or latent features are added.

We add a list of our result in terms of all scores that the NEWS shared task uses for
evaluation, compared to the workshop submissions, for details see Li et al. (2009a):

• ACC: 0.600 (4th rank)

• F-score: 0.921 (5th rank)

• MRR: 0.694 (4th rank)

• MAPref: 0.600 (4th rank)

• MAP10: 0.295 (1st rank)

• MAPsys: 0.295 (2nd rank)

It is interesting that our system ranks first in terms of MAP10; this means that the 10-best
lists produced by our system are of high quality; when there are multiple references they can
more often be found in our system’s 10-best lists than in other systems’ 10-best lists. This
property of producing good distributions where different most plausible candidates rank
high, as opposed to optimizing for the one-best solution, makes our approach especially
suitable to be part of a larger graphical model (Chapter 3) because there, inference is based
on combining and negotiating agreement between the distributions from several different
string-to-string models (see Section 3.4 on page 64).
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Team ID ACC Organization
7 0.613 University of Alberta
22 0.609 SRI International (post-evaluation)
6 0.605 NICT
- 0.600 Our results
17 0.597 N/A
24 0.566 SRA
8 0.564 N/A
31 0.548 IIIT
23 0.545 IBM Cairo TDC
3 0.531 University of Tokyo
10 0.506 Johns Hopkins University
4 0.504 University of Illinois, Urbana-Champaign
9 0.500 N/A
22 0.364 SRI International
27 0.354 N/A

Table 2.9: Standard runs for the English to Russian transliteration results, compared to the
NEWS 2009 shared task submission results.

2.10 Remaining Challenges and Future Work
This work opens up interesting venues for future research. One might want to identify

additional features, latent variables, and training methods that port well across languages
and string-transduction tasks.

Accuracy could be improved by using features that look at wide context on the input
side (Jiampojamarn et al., 2007), which is inexpensive. Latent variables one might consider
are an increased number of word classes; more flexible regions (see Petrov, Pauls, and Klein
(2007) on learning a state transition diagram for acoustic regions in phone recognition); and
phonological features and syllable boundaries. Indeed, our local log-linear features over
several aligned latent strings closely resemble the soft constraints used by phonologists
(Eisner, 1997), as described in Section 2.5.

All features should in future work be evaluated on more tasks than the inflection task,
the lemmatization task and the transliteration task that we have presented. For most tasks in
general (including the ones we have presented), it would be interesting to work on linguis-
tic word representations other than the orthographic forms. One might want to consider
various phonological forms as well, either as an alternative to the orthographic forms or in
conjunction with them, as additional layers or tiers, see our multiple-tier discussion below.

In contrast to more language- and task-independent features, it would also be useful to
develop features that cover specific morphological phenomena that we find in some lan-
guages and devise language-specific features. Although many non-concatenative phenom-
ena can be captured by the features we present in this chapter—we can model any gen-
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eral change at any position in the words and are not restricted to just handling prefixes or
suffixes—there are some specific phenomena that could better be handled by specifically
designed features. For the following phenomena, it would be interesting to add specific
features and other mechanisms (e.g., more latent variables) that may work better than the
more general methods we have presented so far:
• Infixation

Example: palit-pumalit (Tagalog)42

We have not presented any features that specifically describe infixes or points of
infixation. However, we present good prediction results on languages that use infix-
ation (e.g., Irish and Tagalog). This is possible because infixes can in many cases
also be handled by general n-gram features. In the example above (palit-pumalit),
a regular n-gram feature can certainly describe and reward an insertion of -um-, by
itself or in certain contexts. We analyze a learned Tagalog lemmatization model and
find that indeed among the highest-scoring features are features like (h:h)(u:ε)(m:ε)
or (p:p)(u:ε)(m:ε), which means separate features are learned that reward the dele-
tion of the um affix after an h, p, or other specific consonants.43 Similarly, there
are high-scoring features that reward the deletion of um before certain vowels, e.g.,
(u:ε)(m:ε)(o:o). Two simple changes to our feature set would enable our model to
capture infixation better: (1) an n-gram window of size 4 would have captured this
affix as an infix, since in that case context on the left and on the right of the short
infix could be part of the feature, as in a feature (h:h)(u:ε)(m:ε)(o:o).44 (2) Features
that mix different character classes would have provided better generalization. For
example, if we had features that combine both letters and vowel/consonant classes,
we could capture the deletion of um after a consonant in general: (C:C)(u:ε)(m:ε).
Note that these features would be useful in capturing short infixes even though they
are general features not designed for infixes specifically. Long infixes would still
pose a problem. Here, the latent change regions (Section 2.3) in our model help. A
specific change region number can be learned that is dedicated to inserting an in-
fix. In our error analysis for German (page 41), which shows phenomena similar to
infixation (entgegentreten-entgegenzutreten), we observed that an infix region was
learned. German and Tagalog both belong to the languages where the gains from the
latent variables in general were exceptionally high (see Table 2.5 on page 45 and text
on page 44).

42As a curiosity, note that Tagalog has borrowed the English word to graduate and builds the form I grad-
uated as grumaduate (Zuraw, 2007).

43Similar features are also shown in Table B.5 on page 140.
44We used window size 3 for all large batches of experiments since larger windows would currently pose

efficiency problems for many datasets. (Runtime improvements are listed below as another opportunity for
future work.)
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• Vowel harmony

Example: el→elin, but kız→kızın (Turkish)

We are currently not handling vowel harmony in general. Only if vowel harmony
occurs within a short window can it be captured by our standard n-gram-based fea-
tures, e.g., ız→ızı and el→eli. However, often vowels are assimilated over a longer
distance. Our latent conjugation classes can help in this case; classes can be learned
that prefer certain similar vowels throughout the whole strings. One would need to
allow more conjugation classes than we did in this chapter, to be able to learn dif-
ferent classes for different vowels. One could also manually design different classes,
one for each vowel. Vowel harmony is related to templatic morphology because in
both cases, vowels must agree over long distances, so the following considerations
about templatic morphology are relevant to modeling vowel harmony as well.

• Templatic morphology

Example: ktb→kateb, ktb→kattab, ktb→kuttib (Arabic)

In templatic morphology, verb roots are consonant patterns, which do not change
during inflection; what changes are vowels in between the fixed (shape-invariant)
consonants. This is related to vowel harmony in that vowels in a verb need to agree
over a potentially long distance. The feature set we present in this thesis does not
cover this phenomenon specifically. Our noncommittal n-gram features can capture
vowel changes only if they happen within small local windows. The examples above
suggest that much of the phenomenon could be captured by windows of size 4 or
wider, which could certainly be done. In that case, a feature like atta→utti may
receive a high weight during training. In addition, one would want to abstract away
from the consonants in such windows, firing a more general feature like aCCa→uCCi
(see our discussion of infixation above), where CC describes any two consonants in
the middle.

McCarthy (1981) proposes to model Arabic templatic morphology using separate
tiers: One tier contains just the consonantal root, another tier contains the vowel-
consonant pattern, and a third one contains the vowels, similar to approaches de-
scribed by Wilson and Hayes (2008).45 These tiers are modeled using a multi-tape
finite-state machine. A problem with multi-tape finite-state machines is that they can
become very large, since multiple tapes and their alignments are represented. Mc-
Carthy works around this problem by using the vowel-consonant patterns to restrict
the alignments. But when multiple strings need to be modeled (for example, one
input and one output string, with three tapes each), a single multi-tape finite-state
machine can become unmanageably big. In this thesis, we offer an alternative: We
present graphical models over strings in the next chapter (Chapter 3), which can be
described as a decomposition of multi-tape finite-state machines (see Section 3.6.1).

45See also our discussion on page 28.
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These would be very appropriate to model phenomena like vowel harmony and tem-
platic morphology; this is left for future work.

• Reduplication

Example: currit-cucurrit (Latin)

In reduplication, word material gets read and copied. Such phenomena are notori-
ously hard to handle as a productive process in a finite-state approach (Roark and
Sproat, 2007). Specific rules can be learned using alignment n-gram features (e.g.,
cu→cucu), but it is harder to learn general rules (e.g., read a vowel and a consonant
and output them twice). If we added a postprocessing step to our model, we could
in a first step insert a simple duplication marker, which then gets interpreted by a
postprocessor.

• General vowel change

Example: lesen→las (German)

We model different vowel changes by using different alignment n-gram features, e.g.,
e→a or les→las. It would be desirable (and easy) to add a more general feature that
fires whenever some vowel V changes into another, V ′, where V 6= V ′. This would
be only a small change from a feature that we do have, i.e. one that fires whenever a
vowel is aligned to a vowel in general.

• Agglutinative morphology

Example: epäjärjestelmällisyys ’unsystematicalness’ (Finnish)

Currently, we do not handle agglutinative morphology in a productive way; but see
the discussion in Section 4.8 on page 118.

In addition to feature design and efforts to capture specific morphological phenomena,
there are also engineering aspects that could advance our work and improve inference speed
and usability of our method. In particular, our implementation used for the experiments in
this chapter builds up a complete finite-state scoring machine Uθ that encodes all features
in advance, which can then be composed with observations at training or test time. This
generic implementation is very general and allows for composition with whole distributions
over strings as input or output, making this approach work well as a component in other
models and suitable for the re-use in Chapters 3 and 4. However, this is very memory-
intensive; such a machine can use several gigabytes of memory. We experimented with
an alternative approach, where the complete scoring machine is not built in advance, but
several smaller machines, each one encoding a subset of the features (e.g., all consonant/
vowel features), are kept separate and are lazily intersected when presented with some input
and/or output. These frequent lazy intersection operations, however, turned out to be too
slow. One could devise a more efficient implementation where given inputs and outputs
are scored using hand-tailored code rather than general finite-state code. The challenge
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would be to make this generic enough to be pluggable into a graphical model like the ones
in Chapter 3. We also experimented with using the special ρ and σ arcs, which have the
semantics of other, summarizing set of other arcs at a state that do not explicitly have to be
enumerated. However, we did not identify a satisfying solution for their use in transducers
or alignment-string acceptors that practically saves memory and runtime.

Finally, it would be useful to further investigate language-specific backoff patterns and
adaptively sized n-gram windows, which we successfully used in Section 2.9.3 on page 49.
One could use the related method of (Lavergne, Cappé, and Yvon, 2010), where L1 regu-
larization is employed to focus on the most helpful n-grams, which are then extended to
longer n-grams in subsequent training stages. Or one could consider the similar method of
grafting (Perkins et al., 2003), where at the end of each training stage the gradients of new
candidate features are computed, and the feature with the highest absolute gradient value
is added to the model, which is then repeatedly retrained in this fashion.

2.11 Summary
The modeling framework we have presented here is, we believe, an attractive solution

to most string transduction problems in natural language processing. Rather than learn
the topology of an arbitrary WFST, one specifies the topology using a small set of feature
templates, and simply trains the weights.

We evaluated on two morphology generation tasks and a transliteration task. When in-
flecting German verbs, even with the simplest features we outperform the moses3 baseline
on 3 out of 4 tasks, which uses the same amount of context as our models. Introducing
more sophisticated features that have access to latent classes and regions improves our re-
sults dramatically, even on small training data sizes. Using these we outperform moses9
and moses15, which use long context windows, reducing error rates by up to 48%. On the
lemmatization task we were able to improve the results reported in Wicentowski (2002) on
14 out of 15 tested languages and reduce the error rates by up to 92%. The model’s errors
are often reasonable misgeneralizations (e.g., assume regular conjugation where irregular
would have been correct), and it is able to use even a small number of latent variables
(including the latent alignment) to capture useful linguistic properties. When applied to a
NEWS transliteration task, our system ranks among the highest-scoring ones and proves
to have higher-quality 10-best lists than all other systems (MAP10 score). This makes it
especially useful for tasks where distributions over strings are important, which leads us to
an extension of our work described in the next chapter.
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Figure 2.3: The training objective Equation 2.5 during the four stages of training (black).
This is one of the 5 training runs for the rP-pA inflection task. Stages 2 (addition of
2- and 3-gram features over alignment characters) and 4 (addition of latent annotations,
see Section 2.3) dramatically increase the objective function. The gray line shows what
happens if all features are immediately active after stage 1; the objective function converges
to a lower optimum.
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Figure 2.4: Learning curves for German reinflection tasks, 13SIA (left) and 2PKE (right),
as a function of the number of training pairs. ngrams+x means all backoff features were
used; ngrams+x+latent means all latent features were used in addition. Moses15 examines
windows of up to 15 characters.
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Chapter 3

Graphical Models over Multiple Strings

3.1 Overview
In this chapter, we extend the string-based models we have presented so far. While the

approach of the previous chapter handles one or two strings, we will here develop more
complex joint models over multiple strings. These can be used to learn and predict whole
inflectional paradigms.

We will see that this is not a trivial extension of the models presented so far, but requires
factorizing the joint probability into several parts that need to negotiate with each other
during inference. Such string-based factored models, or graphical models over strings, and
the associated inference method are part of the novel contributions made in this thesis.

Graphical models have become popular in machine learning as a principled way to work
with collections of interrelated random variables. The models over multiple strings that we
present in this chapter are graphical models in which the variables range over strings of
unbounded length, rather than over the typical finite domains such as booleans, words, or
tags. Variables that are connected in the graphical model are related by some weighted
finite-state transduction, as presented in the previous chapter.

Graphical models are most often used as follows:

1. Build: Manually specify the n variables of interest; their domains; and the possible
direct interactions among them.

2. Train: Train this model’s parameters θ to obtain a specific joint probability distribu-
tion p(V1, . . . , Vn) over the n variables.

3. Infer: Use this joint distribution to predict the values of various unobserved variables
from observed ones.

Note that 1. requires intuitions about the domain; 2. requires some choice of training pro-
cedure; and 3. requires a choice of exact or approximate inference algorithm.
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Our graphical models over strings are natural objects to investigate. We motivate
them with some additional applications in computational linguistics and other fields (Sec-
tion 3.2). We then give our formalism: a Markov Random Field whose potential func-
tions are rational weighted languages and relations (Section 3.3). Next, we point out that
inference is in general undecidable, and explain how to do approximate inference using
message-passing algorithms such as belief propagation (Section 3.4). The messages are
represented as weighted finite-state machines.

Finally, we report on some initial experiments using these methods (Section 3.7). We
use incomplete data to train a joint model of morphological paradigms, then use the trained
model to complete the data by predicting unseen forms.

3.2 Motivation
As laid out in the introduction (Chapter 1), we are interested in learning the inflectional

morphology of a language, by learning a model of its inflectional paradigms. The inflected
forms of a (possibly irregular) verb are placed in the cells of such inflectional paradigms and
can influence and reinforce one another (see Page 2). The Markov Random Field approach
presented in this chapter models such behavior of multiple morphologically related words.

Although our model is developed with morphology in mind, it is generally applicable
to any problem of mapping between multiple different forms and representations of strings:

• mapping an English word to its foreign transliteration may be easier when one con-
siders the orthographic and phonological forms of both words (see Figure 3.1 on the
next page);

• in spelling correction, one might want to consider how the misspelling is pronounced
in order to find the correct spelling; consider the example in Figure 3.2 on page 61;

• similar cognates in multiple languages are naturally described together, in ortho-
graphic or phonological representations, or both;

• modern and ancestral word forms form a phylogenetic tree in historical linguistics;

• in bioinformatics and in system combination, multiple sequences need to be aligned
in order to identify regions of similarity.

We propose a unified model for multiple strings that is suitable for all the problems
mentioned above. It is robust and configurable and can make use of task-specific overlap-
ping features. It learns from observed and unobserved, or latent, information, making it
useful in supervised, semi-supervised, and unsupervised settings.
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English:
Japanese:

# � � � #
# #

# #
# #

1

ice cream

アイスクリーム

English:
Japanese:

# � � � #
# #

# #
# #

1

English orthography English phonology

Japanese orthography Japanese phonology

Figure 3.1: Transliteration using graphical models over strings: The orthographic forms in
Japanese and English constrain each other; hidden phonological forms give additional use-
ful constraints. This generalization of (Knight and Graehl, 1997) is one of many possible
applications of graphical models over strings.

3.3 Formal Modeling Approach

3.3.1 Variables
A Markov Random Field (MRF) is a joint model of a set of random variables, V =

{V1, . . . , Vn}. We assume that all variables are string-valued, i.e., the value of Vi may be
any string ∈ Σ∗i , where Σi is some finite alphabet.

We may use meaningful names for the integers i, such as V2SA for the 2nd singular past
form of a verb.

The assumption that all variables are string-valued is not crucial; it merely simplifies
our presentation. It is, however, sufficient for many practical purposes, since most other
discrete objects can be easily encoded as strings. For example, if V1 is a part of speech tag,
it may be encoded as a length-1 string over the finite alphabet Σ1

def
= {Noun,Verb, . . .}.

3.3.2 Factors
A Markov Random Field defines a probability for each assignment A of values to the

variables in V:

p(A)
def
=

1

Z

m∏
j=1

Fj(A) (3.1)

This distribution over assignments is specified by the collection of factors Fj : A 7→ R≥0.
Each factor (or potential function) is a function that depends on only a subset of A.
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egg sample
Misspelling

Pronunciation

example
Correct spelling

Figure 3.2: Spelling correction using graphical models over strings: In the example, the
misspelling and the correct spelling have the same pronunciation. Therefore, modeling the
pronunciation (as a hidden variable) can help find the correction; this would make spelling
correction a multiple-string problem.

Figure 3.3 displays an undirected factor graph, in which each factor is connected to
the variables that it depends on. F1, F3, F5 in this example are unary factors because each
one scores the value of a single variable, while F2, F4, F6 are binary factors.

In our setting, we will assume that each unary factor is specified by a weighted finite-
state automaton (WFSA) whose weights fall in the semiring (R≥0,+,×). Thus, since F3

is unary, the score F3(. . . , V2SA = x, . . .) is the total weight of all paths in F3’s WFSA
that accept the string x ∈ Σ∗2SA. Each path’s weight is the product of its component arcs’
weights, which are non-negative.

Similarly, we assume that each binary factor is specified by a weighted finite-state
transducer (WFST). As mentioned before, we use the finite-state transducer models de-
veloped in Chapter 2.1

Formally, a WFST is an automaton that resembles a weighted FSA, but it nondetermin-
istically reads two strings x, y in parallel from left to right. The score of (x, y) is given by
the total weight of all accepting paths in the WFST that map x to y. For example, differ-
ent paths may consider various monotonic alignments of x with y, and we sum over these
mutually exclusive possibilities.2

1We will use a simplified version; conjugation classes and latent regions are not used in this chapter.
2Each string is said to be on a different “tape,” which has its own “read head,” allowing the WFSM to

maintain a separate position in each string. Thus, a path in a WFST may consume any number of characters
from x before consuming the next character from y.
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F2 F6

F5F3

F1

F4

Vinf

V2SA V3SE

Figure 3.3: Example of a factor graph. Black boxes represent factors, circles represent vari-
ables (infinitive, 2nd past, and 3rd present-tense forms of the same verb; different samples
from the MRF correspond to different verbs). Binary factors evaluate how well one string
can be transduced into another, summing over all transducer paths (i.e., alignments, which
are not observed in training).

A factor might depend on k > 2 variables. This requires a k-tape weighted finite-state
machine (WFSM), an obvious generalization where each path reads k strings in some
alignment.3

To ensure that Z is finite in Equation 3.1, we can require each factor to be a “proper”
WFSM, i.e., its accepting paths have finite total weight (even if the WFSM is cyclic, with
infinitely many paths).

Global versus local normalization. Note that, while Markov Random Fields generally
allow global normalization and are therefore undirected graphical models, they allow local
normalization of the factors as a special case, so they subsume directed graphical models.
In such a case, Z in Equation (3.1) on page 60 becomes a product of smaller local factors.
Directed graphical models are sometimes preferred for efficiency reasons, since they avoid
computation of a global normalization constant (see, for example, 4.6.1.0.2, Page 105).

3.3.3 Parameters
The probability model has trainable parameters: a vector of feature weights θ ∈ R. In

general, each factor Fj in the factor graph evaluates to a non-negative value, according to
the values of the variables it is connected to. This non-negative value is the sum of weighted
feature values in log-linear space, exp

∑
θfj(A). In our setting, each of these values is

computed using a weighted finite-state machine. Each arc in each of the WFSMs has a
3Weighted acceptors and transducers are the cases k = 1 and k = 2, which are said to define rational

languages and rational relations.
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Z

YX

FXZ FYZ

FXY

FX

FX = “white_house” (obs.)

FXY = 

!

_:"

!:"

FYZ = ":_

":! !

FXZ = _:"

!:" !

":_

":!

[removes house]

[allows any word before white]

[removes white, leaves house, 

inserts any word after house]

Figure 3.4: Swapping arbitrary word pairs using a graphical model over strings. The
variables X , Y , and Z are input, auxiliary variable and output, respectively. As an ex-
ample, X is assigned the string 11-character string white_house. Given the specified
factors, the model assigns Y the string value white with probability 1, and Z the string
value house_white. A single finite-state transducer cannot perform such arbitrary swap
operations.

real-valued weight that depends on θ. Thus, tuning θ during training will change the arc
weights, hence the path weights, the factor functions, and the whole probability distribution
p(A).

Designing the probability model includes specifying the topology and weights of each
WFSM. In the previous chapter, we explained how to specify and train such parameterized
WFSMs (see also Eisner (2002b)). Typically, the weight of an arc in log-linear space is
a simple sum like θ12 + θ55 + θ72, where θ12 is included on all arcs that share feature
12. However, more interesting parameterizations arise if the WFSM is constructed by
operations such as transducer composition, or from a weighted regular expression.

3.3.4 Power of the Presented Formalism
Factored finite-state string models (3.1) were originally suggested in Kempe, Champar-

naud, and Eisner (2004). That paper showed that even in the unweighted case, such models
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could be used to encode relations that could not be recognized by any k-tape FSM. We
offer a more linguistic example.

Figure 3.4 specifies a factored model, consisting of three FSTs, that assigns positive
probability to just those triples of character strings (x, y, z) that have the form (red_ball,
red, ball_red), (white_house, white, house_white, white), etc. This uses the auxiliary vari-
able Y to help encode a relation between X and Z that swaps words of unbounded length.
By contrast, no finite-state machine can accomplish such unbounded swapping, even with
3 or more tapes.

Such extra power might be linguistically useful. Troublingly, however, Kempe et al.
(2004) also observed that the framework is powerful enough to express computationally
undecidable problems.4 This implies that to work with arbitrary models, we will need ap-
proximate methods.5 Fortunately, the graphical models community has already developed
many such methods, to deal with the computational intractability (if not undecidability) of
exact inference.

3.4 Approximate Inference
We will now focus on how belief propagation (BP)—a simple well-known method

for approximate inference in MRFs (Bishop, 2006)—can be used in our setting. BP in
its general form has not yet been widely used in the NLP community.6 However, it is
just a generalization to arbitrary factor graphs of the familiar forward-backward algorithm
(which operates only on chain-structured factor graphs). The algorithm becomes approx-
imate (and may not even converge) when the factor graphs have cycles. (In that case it is
more properly called “loopy belief propagation.”)

3.4.1 Belief Propagation
We first sketch how BP works in general. Each variable V in the graphical model

maintains a belief about its value, in the form of a marginal distribution p̃V over the possible
values of V . The final beliefs are the output of the algorithm.

Beliefs arise from messages that are sent between the variables and factors along the
edges of the factor graph. Variable V sends factor F a message µV→F , which is an (unnor-

4Consider a simple model with two variables and two binary factors: p(V1, V2)
def
= 1

Z · F1(V1, V2) ·
F2(V1, V2). Suppose F1 is 1 or 0 according to whether its arguments are equal. Under this model, p(ε) < 1
iff there exists a string x 6= ε that can be transduced to itself by the unweighted transducer F2. This question
can be used to encode any instance of Post’s Correspondence Problem, so is undecidable.

5Notice that the simplest approximation to cure undecidability would be to impose an arbitrary maximum
on string length, so that the random variables have a finite domain, just as in most discrete graphical models.

6Notable exceptions are Sutton, Rohanimanesh, and McCallum (2004) for chunking and tagging, Sutton
and McCallum (2004) for information extraction, Smith and Eisner (2008) for dependency parsing, and
Cromierès and Kurohashi (2009) for alignment.
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V

F

U

µV →F µF→U

Figure 3.5: Illustration of messages being passed from variable to factor and factor to
variable. Each message is represented by a finite-state acceptor.

malized) probability distribution over V ’s values v, computed by

µV→F (v) :=
∏

F ′∈N (V ),F ′ 6=F

µF ′→V (v) (3.2)

where N is the set of neighbors of V in the graphical model. This message represents a
consensus of V ’s other neighboring factors concerning V ’s value. It is how V tells F what
its belief p̃V would be if F were absent. Informally, it communicates to F : Here is what
my value would be if it were up to my other neighboring factors F ′ to determine.

The factor F can then collect such incoming messages from neighboring variables and
send its own message on to another neighbor U . Such a message µF→U suggests good
values for U , in the form of an (unnormalized) distribution over U ’s values u, computed by

µF→U(u) :=
∑

A s.t.A[U ]=u

F (A)
∏

U ′∈N (F ),U ′ 6=U

µU ′→F (A[U ′]) (3.3)

whereA is an assignment to all variables, andA[U ] is the value of variable U in that assign-
ment. This message represents F ’s prediction of U ’s value based on its other neighboring
variables U ′. Informally, via this message, F tells U : Here is what I would like your value
to be, based on the messages that my other neighboring variables have sent me about their
values, and how I would prefer you to relate to them.

Thus, each edge of the factor graph maintains two messages µV→F , µF→V . All mes-
sages are updated repeatedly, in some order, using the two equations above, until some
stopping criterion is reached.7 The beliefs are then computed:

p̃V (v)
def
=

∏
F∈N (V )

µF→V (v) (3.4)

If variable V is observed, then the right-hand sides of equations (3.2) and (3.4) are
modified to tell V that it must have the observed value v. This is done by multiplying in an

7Preferably when the beliefs converge to some fixed point (a local minimum of the Bethe free energy).
However, convergence is not guaranteed.
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extra message µobs→V that puts probability 1 on v8 and 0 on other values. That affects other
messages and beliefs. The final belief at each variable estimates its posterior marginal
under the MRF (3.1), given all observations.

3.4.2 Finite-state Messages in Belief Propagation
Both µV→F and µF→V are unnormalized distributions over the possible values of V—

in our case, strings. A distribution over strings is naturally represented by a WFSA. Thus,
belief propagation translates to our setting as follows:

• Each message is a WFSA.
• Messages are typically initialized to a one-state WFSA that accepts all strings in Σ∗,

each with weight 1.9

• Taking a pointwise product of messages to V in Equation 3.2 corresponds to WFSA
intersection.
• If F in Equation 3.3 is binary,10 then there is only one U ′. Then the outgoing message
µF→U , a WFSA, is computed as domain(F ◦ µU ′→F ).

Here ◦ composes the factor WFST with the incoming message WFSA, yielding a WFST
that gives a joint distribution over (U,U ′). The domain operator projects this WFST onto
the U side to obtain a WFSA, which corresponds to marginalizing to obtain a distribution
over U .
• In general, F is a k-tape WFSM. Equation 3.3 “composes” k − 1 of its tapes with k − 1

incoming messages µU ′→F , to construct a joint distribution over the k variables inN (F ),
then projects onto the kth tape to marginalize over the k − 1 U ′ variables and get a
distribution over U . All this can be accomplished by the WFSM generalized composition
operator � (Kempe et al., 2004).

After projecting, it is desirable to determinize the WFSA. Otherwise, the summation
in Equation (3.3) on the preceding page is only implicit—the summands remain as distinct
paths in the WFSA11—and thus the WFSAs would get larger and larger as BP proceeds.
Unfortunately, determinizing a WFSA still does not guarantee a small result. In fact it can
lead to an exponential blowup, or even infinite blowup.12 Thus, in practice we recommend

8More generally, on all possible observed values.
9This is an (improper) uniform distribution over Σ∗. Although is not a proper WFSA (see Section 3.3.2),

there is an upper bound on the weights it assigns to strings. That guarantees that all the messages and beliefs
computed by (3.2)–(3.4) will be proper FSMs, provided that all the factors are proper WFSMs.

10If it is unary, (3.3) trivially reduces to µF→U = F .
11The usual implementation of projection does not change the topology of the WFST, but only deletes the

U ′ part of its arc labels. Thus, multiple paths that accept the same value of U remain distinct according to the
distinct values of U ′ that they were paired with before projection.

12If there is no deterministic equivalent (Mohri, 1997).
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against determinizing the messages, which may be inherently complex. To shrink a mes-
sage, it is safer to approximate it with a small deterministic WFSA, as discussed in the next
section.

3.4.3 Approximation of Messages
In our domain, it is possible for the finite-state messages to grow unboundedly in size as

they flow around a cycle. After all, our messages are not just multinomial distributions over
a fixed finite set; they are distributions over the infinite set Σ∗. A WFSA represents this
in finite space, but more complex distributions require bigger WFSAs, with more distinct
states and arc weights.

Facing the same problem for distributions over the infinite set R, Sudderth, Ihler, Ihler,
Freeman, and Willsky (2002) simplified each message µV→F , approximating a complex
Gaussian mixture by using fewer components.

We could act similarly, variationally approximating a large WFSA P with a smaller one,
Q. Choose a family of message approximations (such as bigram models) by specifying the
topology for a (small) deterministic WFSA Q. Then choose Q’s edge weights to minimize
the KL divergence KL(P ‖Q). This can be done in closed form.13

A variant—used in the experiments of this thesis—approximates µV→F by pruning
it back to a finite set of most plausible strings.14 Such a set can be represented as a
determinized, minimized, acyclic WFSA. Equation 3.2 requests an intersection of sev-
eral WFSAs, e.g., µF1→V ∩ µF2→V ∩ · · · . Now approximate that intersection as Q =
((Q0 ∩ µF1→V ) ∩ µF2→V ) ∩ · · · . The WFSA Q0 is the topology of the message. It repre-
sents the uniform distribution over the set of strings we would like the message to contain.
The intersection with the incoming messages reweights it, which is an efficient operation.

How can we construct Q0? If the factors µF→V are already trained and therefore give
reasonable estimates, a straightforward way is to use and combine their predictions to ob-
tain Q0: List the k-best string predictions from all factors µFi→V , unionize them, minimize
and determinize, and remove all weights. ThisQ0 can then be used to perform the weighted
intersection as described above. If some factors are not trained to give good predictions
(yet), they can be left out of that union (see Section 3.5 on the next page). Of course
there must be at least one factor µF→V , however, that can be used to provide the message
topology Q0.

13See Li, Eisner, and Khudanpur (2009b, Footnote 9) for a sketch of the construction, which finds locally
normalized edge weights. Or if Q is large but parameterized by some compact parameter vector φ, so we are
only allowed to control its edge weights via φ, then Li and Eisner (2009b, section 6) explain how to minimize
KL(P ‖Q) by gradient descent. In both cases Q must be deterministic.

We remark that if a factor F were specified by a synchronous grammar rather than a WFSM, then its
outgoing messages would be weighted context-free languages. Exact intersection of these is undecidable, but
they too can be approximated variationally by WFSAs, with the same methods.

14In future work, we would like to explore other ways of adaptively choosing the topology of WFSA
approximations at runtime, particularly in conjunction with expectation propagation.
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3.5 Training the Model Parameters
Any standard training method for MRFs will transfer naturally to our setting. In all

cases we draw on Eisner (2002b), who showed how to train the parameters θ of a single
WFST, F , to (locally) maximize the joint or conditional probability of fully or partially
observed training data. This involves computing the gradient of that likelihood function
with respect to θ.15

We must generalize this to jointly train a product of WFSMs. Typically, training data
for an MRF (3.1) consists of some fully or partially observed independent and identically
distributed (i.i.d.) samples of the joint distribution p(V1, . . . Vn). It is well-known how
to tune an MRF’s parameters θ by stochastic gradient descent to locally maximize the
probability of this training set, even though both the probability and its gradient are, in
general, intractable to compute in an MRF. The gradient is a sum of quantities, one for
each factor Fj . While the summand for Fj cannot be computed exactly in a loopy factor
graph, it can be estimated using the BP messages to Fj . In semi-supervised training, where
some variable values are unobserved, the gradient for Fj is computed much as in supervised
training (see above), but treating any message µVi→Fj

as an uncertain observation of Vi—a
form of noisy supervision.16 We show results from supervised and semi-supervised joint
training in the experimental part of this chapter (Section 3.7 on page 70).

3.6 Comparison With Other Approaches

3.6.1 Multi-tape WFSMs
In principle, one could use a 100-tape WFSM to jointly model the 100 distinct forms

of a typical Polish verb. In other words, the WFSM would describe the distribution of
a random variable V = 〈V1, . . . , V100〉, where each Vi is a string. One would train the
parameters of the WFSM on a sample of V , each sample being a fully or partially observed
paradigm for some Polish verb. The resulting distribution could be used to infer missing
forms for these or other verbs.

As a simple example, either a morphological generator or a morphological analyzer
might need the probability that krzyczałoby is the neuter third-person singular conditional
imperfective of krzyczeć, despite never having observed it in training. The model deter-
mines this probability based on other observed and hypothesized forms of krzyczeć, using
its knowledge of how neuter third-person singular conditional imperfectives are related to
these other forms in other verbs.

Unfortunately, such a 100-tape WFSM would be huge, with an astronomical number of
arcs (each representing a possible 100-way edit operation). Our approach is to factor the

15The likelihood is usually non-convex; even when the two strings are observed (supervised training), their
accepting path through the WFST, i.e., the string alignment, may be ambiguous and unobserved.

16See Bishop (2006), or consult Smith and Eisner (2008) for notation close to the notation used here.
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problem into a number of (e.g.) pairwise relationships among the verb forms. Using a fac-
tored distribution has several benefits over the k-tape WFSM: (1) a smaller representation
in memory, (2) a small number of parameters to learn, (3) efficient approximate compu-
tation that takes advantage of the factored structure, (4) the ability to reuse WFSAs and
WFSTs previously developed for smaller problems, (5) additional modeling power.

3.6.2 Simpler Graphical Models on Strings
Some previous researchers have used factored joint models of several strings. To our

knowledge, they have all chosen acyclic, directed graphical models. The acyclicity meant
that exact inference was at least possible for them, if not necessarily efficient. The factors
in these past models have been WFSTs (though typically simpler than the ones we will
use).

Many papers have used cascades of probabilistic finite-state transducers. Such a cas-
cade may be regarded as a directed graphical model with a linear-chain structure. Pereira
and Riley (1997) built a speech recognizer in this way, relating acoustic to phonetic to lex-
ical strings. Similarly, Knight and Graehl (1997) presented a generative cascade using 4
variables and 5 factors: p(w, e, j, k, o) def

= p(w) · p(e | w) · p(j | e) · p(k | j)
·p(o | k) where e is an English word sequence, w its pronunciation, j a Japanese version of
the pronunciation, k a katakana rendering of the Japanese pronunciation, and o a version of
the katakana that is corrupted by OCR (optical character recognition). Knight and Graehl
used finite-state operations to perform inference at test time, observing o and recovering
the most likely w, while marginalizing out e, j, and k.

Bouchard-Côté, Griffiths, and Klein (2009) reconstructed ancient word forms given
modern equivalents. They used a directed graphical model, whose tree structure reflected
the evolutionary development of the modern languages, and which included latent variables
for historical intermediate forms that were never observed in training data. They used Gibbs
sampling rather than an exact solution (possible on trees) or a variational approximation
(like our BP).

Our work seeks to be general in terms of the graphical model structures used, as well
as efficient through the use of BP with approximate messages. We also work with globally
normalized models in this chapter.17

3.6.3 Unbounded Objects in Graphical Models
We distinguish our work from “dynamic” graphical models such as Dynamic Bayesian

Networks and Conditional Random Fields, where the string brechen would be represented
by creating 7 letter-valued variables. Those methods can represent strings (or paths) of
any length—but the length for each training or test string must be specified in advance, not
inferred. Furthermore, it is awkward and costly to model unknown alignments, since the

17In the next chapter, we will use locally normalized models for efficiency, see Page 105.
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variables are position-specific, and any position in brechen could in principle align with
any position in brichst. WFSTs are a much more natural and flexible model of string pairs.

We also distinguish our work from current non-parametric Bayesian models, which
sometimes generate unbounded strings, trees, or grammars. If they generate two un-
bounded objects, they model their relationship by a single synchronous generation process
(akin to Section 3.6.1), rather than by a globally normalized product of overlapping factors.

Conditional Neural Fields (CNF, Peng, Bo, and Xu (2009)) are another variant of
Markov Random Fields that is worth mentioning. It also adds additional, though not un-
bounded, structure. The log-linear formulation of factors, scoring the input and a particular
output label at time t, φ(x, yt) = wf(x, y), that is typically found in Markov Random
Fields, is replaced by a formulation that adds a hidden neural-network layer. However, all
variable domains are finite, and the added structure is enumerable, whereas in our model
the factors relate variables with unbounded structure, using dynamic programming.

3.7 Experiments
In this section, we present experiments in which we model multiple strings with Markov

Random Fields. We show a data-driven method to induce factor graphs; we train the factor
graphs jointly using belief propagation; and we present empirical results in terms using
various evaluation measures. We report results on a supervised and a semi-supervised case;
in the latter, most or all of the training examples are incomplete.

3.7.1 Model Structure Induction
Our experiments contrast separate prediction, where each form in the paradigm is pre-

dicted separately from the lemma, with joint prediction in a factor graph, where some forms
may influence each other as they are being predicted.

What factor graphs do we use?
We run on different factor graph topologies, all of which are obtained in a data-driven

way. We use average edit distance as the main criterion to decide if two forms should
be connected in the factor graph: In each training set, we first consider all possible n2

form pairs. For each form pair, we measure the average edit distance between the observed
instances. We then build a complete and connected undirected graphGwith all morpholog-
ical forms as vertices and their pairwise connections as edges. Using this graph G directly
as a factor graph would be very costly, and loopy belief propagation is known to perform
poorly when run on graph structures with many short loops.

Instead, we find a minimum-cost spanning tree T , using the pairwise edit distance
scores as costs. A spanning tree is a connected, undirected graph containing all n ver-
tices, but only a subset of the edges, such that a tree is formed that spans every vertex.
This excludes cycles. To find the minimum-cost spanning tree, we use Kruskal’s algorithm
(Kruskal Jr, 1956).
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The approach of using a minimum-cost spanning tree over the variables as model struc-
ture is not new in the graphical models literature. Chow and Liu (1968) constructed a
minimum-cost spanning tree using the mutual information between pairs of observed vari-
ables as cost.

In addition to the unconstrained spanning tree, we also find an approximate Hamiltonian
path P , which is a degree-constrained spanning tree, where each vertex has only one or two
neighbors. Graphical model topologies based on paths are often called chain-structured
models.

3.7.2 Training and Inference in the Experiments
After constructing a factor graph using the method just shown, we train the correspond-

ing probability model from incomplete or complete training data, A1, . . . ,An, where each
training example is an assignment to the variables. In the experiments in this chapter, the
lemma in each assignment, Ai[Vlemma], is observed; the lemma characterizes and identifies
a paradigm. In training, we wish to find

θ̂ = argmax
θ

n∑
i=1

log pθ(Ai | Ai[Vlemma]) (3.5)

= argmax
θ

n∑
i=1

log(
1

ZAi[lemma]

m∏
j=1

Fθ,j(Ai)) (3.6)

Since each factor Fθ,j in pθ has log-linear form (see Section 3.3.3 on page 62), the
gradients of the objective function with respect to the features is computed as the differ-
ence of the expected feature counts given the full training data minus the expected feature
counts given the input lemmas only, similar to Equation (2.2) on page 21 and to Conditional
Random Fields (Lafferty et al., 2001a).

We can follow the gradient using first-order methods like Stochastic Gradient
Descent (SGD) or RProp (resilient backpropagation; Riedmiller and Braun, 1992),
or, in some cases, second-order methods like L-BFGS (Limited-Memory Broy-
den–Fletcher–Goldfarb–Shanno; Liu and Nocedal, 1989b). Note that L-BFGS cannot
be used if the factor graph is loopy; in these cases we cannot compute the objective func-
tion exactly since loopy belief propagation obtains only approximate marginals. L-BFGS
would need the exact function value and corresponding exact gradients, otherwise its line
search steps will fail.

Since the training objective is highly non-convex, we chose to run training in stages, as
we did in Section 2.7, see Page 34.

We first initialize all weights to zero. Then we train all binary factors that connect the
lemma form with an output form, until convergence, ignoring all other factors in the model.
We then repeatedly add k more factors (drawn uniformly at random from the specified
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factor graph to train),18 and train until convergence again. Whenever we add more factors,
we keep the weights trained in the previous step fixed, in order to reduce the search space in
the maximization steps. At the end, when all factors are trained in this staged fashion and
the current weights θ are presumably in a good region of the search space, an additional
training stage can be run, where all weights may be changed (as opposed to earlier stages,
where weights from previous stages were fixed).

This training procedure is similar to Cascade-Correlation (CC; Fahlman and Lebiere,
1990).

The featurized finite-state machines that act as factors in our factor graphs are similar
to the finite-state machines described in Chapter 2. They use trigram-based n-gram and
backoff features, as described in Section 2.4 on page 24. Due to the increased runtime of
training and decoding in a graphical model as compared to just modeling two strings, we
do not include latent classes and regions in our experiments. The fact that the finite-state
machines do not necessarily model Σ∗ but instead work with a reduced alignment alphabet
(see Section 2.6.2 on page 31), means that the intersection in Equation (3.2) on page 65 may
be empty. To prevent this, we mix each factor F with a length-decaying n-gram model that
models Σ ∗ ×Σ∗. We choose a simple zerogram model and give it a very small mixture
weight, 10−12. So we have as a factor the union F ′ = F ∪ 10−12(0.999Σ × Σ), where the
factor 0.999 prevents the zerogram model from generating infinite-length strings.

3.7.3 Supervised Experiment
3.7.3.1 Data

In the following experiment, we use a supervised data set: The training data consist of a
number of lemmas with their correct, complete paradigms. A complete paradigm consists
of the lemma and 21 inflected forms. At test time, we are given previously unseen lemmas
and predict their complete paradigms. The predicted paradigms are then evaluated using
whole-word accuracy and edit distance to the correct answers for the various forms to be
predicted.

To create the training data, we first sample 200 lemmas and their complete paradigms
from the German CELEX morphological database. The remaining 5,415 lemmas and their
paradigms in the German CELEX morphological database are used as test data.

From the 200 training instances, we create additional, smaller training sets of sizes
100 and 50 by subsampling. All these training sets are relatively small in the number of
paradigms; this is a realistic condition for most of the world’s languages (see, for example,
Janecki, 2000). Note that each paradigm in itself contains 22 forms, so 100 observed
paradigms contain 2,200 observations. From each training set, we use 10% as development
data. We repeat this process 10 times, which results in 10 different training/development/
test splits of the data. All reported results are averaged over these 10 splits.

18k = 2 in our experiments.
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The same setup will be used in the next chapter (Chapter 4) as well, along with an
additional text corpus.

The German CELEX morphological database was filtered to remove verbs with detach-
able prefix, such as abheben/hebt ab, which create many redundancies in the data. This
is not to make the problem in this chapter easier—after all, predicting abhebt, which is
easy to generate, instead of the reordered hebt ab is in general correct as well, and which
form is used would depend on the context (a main clause would use er hebt ab versus a
subclause . . . dass er abhebt). Rather, we are making the data here similar to the data in the
next chapter, in which we will identify verbs in a text corpus but have no way of identifying
free-floating prefixes as verb parts (see the discussion in Section 4.8.4 on page 120).

3.7.3.2 Results
We evaluate the trained models on the 5,415 test paradigms; the task is to predict all

inflectional forms, given the lemma. Tables 3.1 and 3.2 show the results.
A baseline that simply inflects each morphological form according to the basic regular

German inflection pattern, reaches an accuracy of 84.5% and an average edit distance to
the correct forms of 0.27. This baseline applies simple rules like in observed lemma form,
replace word-final -en by -t and add ge- at the front, which is correct for regular words
like machen, gemacht, but not for others, e.g., brechen, gebrochen.

Table 3.1 on the next page shows that the used Hamilton-path factor graph increases
whole-word accuracy from 89.4% to 90.4%, and the spanning-tree topology increases ac-
curacy to 90.9% (error reduction of 8.1%), if 50 training paradigms are used (i.e. 1,100
observed morphological forms). If twice the number of training paradigms is used, the
baseline accuracy increases by about 1 point, as does the spanning-tree result. The Hamil-
ton path result increases by 0.5%.

50 100
Form Separate Path Tree Separate Path Tree
13PIA 74.81 82.55 81.68 81.39 85.07 85.58
13PIE 99.98 99.98 99.98 99.98 99.98 99.98

13PKA 74.67 82.55 81.99 81.15 85.39 85.76
13PKE 99.92 99.92 99.92 99.93 99.93 99.93
13SIA 84.24 82.81 83.96 85.82 84.97 85.45
13SKA 83.48 83.95 84.47 86.19 85.85 86.40
13SKE 99.75 99.76 99.78 99.68 99.69 99.70
1SIE 99.64 99.64 99.64 99.49 99.52 99.28
2PIA 83.98 83.03 84.22 85.87 85.24 85.63
2PIE 98.12 97.84 97.67 98.14 98.45 98.38
2PKA 83.03 83.73 84.51 85.15 85.62 86.19
2PKE 99.88 99.88 99.88 99.90 99.90 99.90

(continued on the next page)
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Table 3.1: (continued)

2SIA 83.75 83.04 84.34 85.78 85.14 85.68
2SIE 91.12 91.33 91.24 94.20 94.21 94.09
2SKA 82.23 83.36 84.22 84.98 85.91 86.10
2SKE 99.90 99.90 99.90 99.91 99.91 99.91
3SIE 93.88 93.79 93.77 94.41 94.19 94.13
pA 59.76 58.33 61.45 63.39 63.66 64.18
pE 99.38 99.32 99.38 99.39 99.38 99.39
rP 97.81 97.53 97.36 98.14 98.45 98.36
rS 98.67 98.68 98.72 98.71 98.72 98.63
all 89.89 90.51 90.85 91.49 91.85 92.02
Table 3.1: Whole-word accuracy of separate versus jointly
trained models on test data. Path and Tree are the shapes
of the factor graphs used: Path is an approximate Hamil-
tonian path based on average edit-distance scores between
pairs in training data, whereas Tree is a minimum-spanning
tree based on these scores. 13PIA, 13PIE, . . . , are the
forms to be predicted, see Table C.1 on page 141.

50 100
Form Separate Path Tree Separate Path Tree
13PIA 0.42 0.32 0.34 0.34 0.30 0.29
13PIE 0.00 0.00 0.00 0.00 0.00 0.00

13PKA 0.43 0.33 0.34 0.35 0.30 0.30
13PKE 0.00 0.00 0.00 0.00 0.00 0.00
13SIA 0.43 0.44 0.42 0.40 0.41 0.40
13SKA 0.34 0.32 0.31 0.30 0.29 0.29
13SKE 0.00 0.00 0.00 0.00 0.00 0.00
1SIE 0.01 0.01 0.01 0.01 0.01 0.01
2PIA 0.39 0.41 0.38 0.36 0.37 0.36
2PIE 0.02 0.02 0.02 0.02 0.02 0.02

2PKA 0.33 0.32 0.31 0.31 0.30 0.29
2PKE 0.00 0.00 0.00 0.00 0.00 0.00
2SIA 0.39 0.40 0.38 0.36 0.37 0.36
2SIE 0.10 0.10 0.10 0.07 0.07 0.07

2SKA 0.34 0.32 0.32 0.31 0.29 0.29
(continued on the next page)
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Table 3.2: (continued)

2SKE 0.00 0.00 0.00 0.00 0.00 0.00
3SIE 0.07 0.07 0.07 0.07 0.07 0.07
pA 0.91 0.95 0.88 0.84 0.83 0.82
pE 0.01 0.01 0.01 0.01 0.01 0.01
rP 0.02 0.02 0.03 0.02 0.02 0.02
rS 0.02 0.02 0.02 0.02 0.02 0.02
all 0.20 0.19 0.19 0.18 0.18 0.17

Table 3.2: Average edit distance of separate versus jointly
trained models on test data. Path and Tree are the shapes
of the factor graphs used: Path is an approximate Hamil-
tonian path based on average edit-distance scores between
pairs in training data, whereas Tree is a minimum-spanning
tree based on these scores.

Loopy factor graphs. In addition to evaluating factor graphs that are chain- and tree-
structured, we test what happens if we add loops to the factor graph. Note that in that case,
the inference procedure that we run during training—belief proagation—becomes approx-
imate (see Page 64). We add loops in a sequential fashion, using a greedy procedure:
Starting from the tree-structured factor graph, we first add the one additional factor that
reduces the likelihood of the training data most. This requires testing the likelihood reduc-
tion of all O(n2) potential factors to add, which is an expensive procedure. We make this
more manageable by just testing the likelihood reduction after one gradient step instead of
full training with each factor. After that, we add a second factor in the same fashion, and so
forth. Since this procedure is expensive, we stop after adding 8 factors to the spanning tree.
We also evaluate on 5 of the 10 datasets only, so the sep (separate prediction of non-lemma
forms) and span (spanning tree) baselines differ slighlty from Table 3.1 on the preceding
page, where the results were averaged over 10 splits.

Note that the greedy approach of adding factors one by one and the approximate likeli-
hood computation make this approach less optimal.

In addition, there is a trade-off: Adding these additional factors adds information to the
model, but at the same time it makes training and decoding less exact, due to the loopiness
of the graph.19 We run loopy belief propagation for several iterations. As convergence
criterion, we use the Jensen-Shannon (JS) divergence (Lin, 1991);20 we stop if the L2

19For a possible remedy, see ()Stoyanov, Ropson, and Eisner, 2011 (to appear).
20Unlike the Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951), the Jensen-Shannon diver-

gence is symmetric.
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50 paradigms 100 paradigms
sep 89.70 91.25
span 90.42 91.56
span + 1 89.77 91.70
span + 2 90.05 91.28
span + 3 90.21 91.32
span + 4 90.40 91.34
span + 5 90.48 91.31
span + 6 90.60 91.33
span + 7 90.65 91.39
span + 8 90.68 N/A

Table 3.3: Whole-word accuracies for models where 1,2,. . . loops were added to the span-
ning tree factor graph. This is averaged over only 5 of the 10 data splits.

norm of the JS divergences between messages in the previous iteration and messages in
the current iteration falls below 10−6. The messages converge quickly; it typically runs for
3 or 4 iterations.

The results are shown in Table 3.3. The findings differ somewhat between the runs
with 50 paradigms and with 100 paradigms. With 50 paradigms, we see an initial drop in
accuracy when the first loopy factor is added. After that, the accuracy increases steadily
as more factors are added, making the graph more and more loopy and adding more and
more informative features. With 100 paradigms, we see an inital accuracy gain when the
first loopy factor is added; then the performance drops, but increases again in a somewhat
unsteady line. However, it does not reach the performance of the first loopy factor again.

It is possible that our greedy procedure hurts accuracy, and a factor that is added early
may hurt performance later. It would be useful to have a mechanism to re-evaluate pre-
viously added factors after more factors are added. In summary, although the best overall
performances (with 50 or with 100 paradigms) can be observed on a loopy graph, the re-
sults are somewhat unstable. In future work, we would like to test further construction
procedures for loopy factor graphs (see, e.g., (Lee, Ganapathi, and Koller, 2006)).

Token-based Evaluation. In addition to the type-based evaluations described above
we now conduct a token-based evaluation of the separate, the chain-structured and the
spanning-tree factor graphs. These results will be directly comparable to Table 3.1 on
page 74. Here the goal is to find out how well our different models predict inflected forms
with varying degrees of frequency in a text corpus. This is especially interesting because
the more frequent an inflection is in text the more likely it is to be irregular (Jurafsky,
Martin, Kehler, Vander Linden, and Ward, 2000, p. 49). As an example, among the most
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Bin Frequency # Verb Forms
1 0-9 116,776
2 10-99 4,623
3 100-999 1,048
4 1,000-9,999 95
5 10,000- 10

all any 122,552

Table 3.4: The inflected verb forms from 5,615 inflectional paradigms, split into 5 token
frequency bins. The frequencies are based on a 10-million word corpus.

frequent verb forms in English are is, was, are, has, be, said, all of which are irregular.21

Less frequent forms tend to be more regular. Therefore, this evaluation is similar to our
analysis of regular versus irregular forms in Chapter 2 (see page 44).

We conduct this token-based evaluation on the same dataset and the same predictions
we evaluated above in this section; but here we split these predictions into different fre-
quency bins and report separate results, thereby answering the question how well our mod-
els perform on verb forms that have frequency counts of varying degrees in a large corpus,
ranging from very low, low, medium, high, to very high frequencies. In numbers, these five
frequency bins contain the verb forms with the following frequency counts in a 10-million
words corpus: 0-9; 10-99; 100-999; 1000-9999; 10,000 or higher. Note that most verb
forms have very low frequency, while there is a very small number of forms with very high
frequency (see Table 3.4).

As corpus for these frequency counts we used the first 10 million words from the
WaCky corpus (Baroni, Bernardini, Ferraresi, and Zanchetta, 2009); the same 10 mil-
lion words will later be used in Chapter 4, as an unannotated resource for learning (see
Page 105). This corpus does not contain any morphological annotations; therefore we can-
not directly count how often each form (e.g., the third person singular indicative of gehen)
occurs. However, given our supervised morphological paradigms, there are only one or a
few possible morphological forms per spelling; it is easy to roughly disambiguate these
using a simple model (see Appendix D).22

Table 3.5 shows the results; the whole-word accuracy results of our models are shown
separately for each frequency bin. We observe that the spanning tree model always per-
forms best on Frequency Bins 1 and 2, which contain less frequent and more regular verb
inflectins. There is a great number of different inflections in these bins (see Table 3.4),

21We indeed found these to be the most frequent word forms in a quick check on a subset of the English
Gigaword corpus (Graff and Cieri, 2003).

22As described above, the morphological paradigms that we predict are taken from the CELEX morpho-
logical database. These forms in those paradigms do have some frequency count attached, but they are not
useful here since they are just spelling frequencies. If various morphological forms have the same spelling
they all get the same count.
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50 100
Bin Separate Path Tree Separate Path Tree

1 90.50 91.17 91.48 92.09 92.46 92.63
2 78.07 77.70 78.70 80.17 80.26 80.38
3 71.64 70.95 71.83 73.29 73.16 73.28
4 57.35 56.86 57.11 57.35 56.62 56.25
5 20.73 20.73 20.73 20.73 20.73 20.73

all 89.89 90.51 90.85 91.49 91.85 92.02

Table 3.5: Whole-word acuracy on inflected verb forms in different token frequency
classes.

which results in overall best scores for that model. Apparently, the more complex factor
graph helps learn the regularities of the language better. On the more frequent inflec-
tions, separate prediction tends to be better, with a tie of all models on the very frequent
forms, which include forms of sein ’to be’ and similar. As we have pointed out, the more
frequently an inflection occurs in text the more irregular it tends to be. Therefore, it is
expected that the prediction numbers decrease, as can be seen in the table. Note that the
number of training paradigms we use is very small (50 and 100), and if certain irregular
verbs are not included there is no way for the model to obtain knowledge about how it is
correctly inflected. In Chapter 4, we will conduct the same token-based analysis again (see
Page 110), but on models that can learn from corpora, in addition to the seed paradigms.
Large corpora, even without any explicit annotation, can provide information on irregular-
ities and exceptions and give clues that lead to better performance on the more frequent
forms.

3.7.4 Semi-supervised Experiment
3.7.4.1 Data and Setup

We will now demonstrate that our string-based MRF model can be used to learn from
incomplete data as well. We ask the following question: If we just observe the spellings of
common (i.e., frequently occurring) morphological forms, can our model learn and predict
how all other morphological forms in the language are spelled?

Here we use a morphologically annotated corpus to obtain the frequencies of the various
inflected verb forms. It is only of moderate size, which made it unsuitable for the token-
based evaluation above (see Page 76),23 but here it can be useful. In this experiment, the

23Only 5,915 of the 63,778 different spellings contained in the CELEX paradigms we used above can be
found in the Tiger corpus. The 10 million words from the WaCky corpus, on the other hand, contain 13,216
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more frequently occurring morphological forms are the ones that are observed in this text
corpus of moderate size, the other forms will be predicted by our model.

We gather information from the German Tiger corpus for training. In that corpus, each
verb token is tagged with its correct morphological form in the sentence. The corpus con-
tains 50,474 sentences with 888,579 tokens. We use the given morphological forms of the
verb tokens to place each verb token in an inflectional paradigm. This results in 4,284 in-
complete paradigms, in which only 2.4 of 20 forms are observed on average. The number
of possible forms per paradigm is given by the union of forms found for any lexeme in the
corpus.

We use these 4,284 given incomplete paradigms as training data (1) to find a suitable
factor graph and (2) to estimate the model parameters of that factor graph. After training,
we run inference in these trained factor graphs in order to predict the most likely values
for the unoccupied cells in the paradigms. That is, we predict how the more uncommon
morphological forms of the language are spelled. In the evaluation, we measure how often
those forms were predicted correctly (whole-word accuracy) and how similar the predicted
forms were to the correct forms in terms of edit distance.

How does evaluation work, given the fact that the Tiger corpus does not actually give
the correct answers for the unoccupied cells, which are the ones we predict? We use infor-
mation from the CELEX morphological database. We find 3,178 of the 4,284 paradigms
in the CELEX database; here they are complete, so we can use them to evaulate the model
predictions for the unoccupied cells. Naturally, all other paradigms, for which we do not
have correct answers, are discarded.

We use the same model structure induction method (described in Section 3.7.1 on
page 70) as in the previous, supervised experiment. The method requires us to determine
the average edit distance between each form pair. In the supervised case, every training
paradigm contains observations for all form pairs, whereas here in the semi-supervised
case, most or all paradigms are missing some of the form pairs. However, for each form
pair we can still compile a list of all examples that we do have. For some form pairs, that list
is very short (see Table 3.6 on the following page), which means that we cannot determine
the their average edit distance reliably, which may lead to suboptimal factor graphs. In fu-
ture work, we are interested in finding ways to induce good factor graphs even under these
adverse conditions. One could for example train a model on the potentially suboptimal
factor graph first, then use the model to predict values for the unoccupied cells, re-estimate
edit distance using the given values and the predicted values, create a better factor graph,
and so forth.

We train the factor graph using the same staged training method as in the supervised
case, described in Section 3.7.2 on page 71. The only difference from the supervised case
is that here, we take expectations wherever a form is unobserved.

of the spellings we were interested in. A concatenation of both contains hardly any more of the paradigm
spellings (13,572).
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3.7.4.2 Results
The results can be found in Table 3.6, which contains the whole-word accuracy results

for the various morphological forms that were to be predicted and that we evaluate on.
The table is sorted by the number of overall observations that the different morphological
forms have in the Tiger corpus and the derived incomplete paradigms. The column labeled
separate contains results from simply predicting each form separately from the lemma
form; there is no joint training or joint decoding in that case. The column labeled tree
contains results from joint training and joint prediction using a tree-shaped factor graph,
induced by the edit-distance method (Section 3.7.1).

Form # Obs. Separate Tree
pA 2917 51.85 53.39

3SIE 1900 89.93 90.95
13PIE 1424 99.47 99.47
13SIA 1293 82.02 84.08
13PIA 874 77.04 78.23

z 613 82.39 82.12
13SKE 533 99.53 99.64
13PKA 204 58.32 65.23
1SIE 149 99.18 99.44

13SKA 101 53.15 60.89
2SIE 33 72.68 72.72

rP 31 54.32 58.03
2PIE 28 95.57 96.20

rS 25 41.29 41.68
13PKE 20 65.64 74.57
2SIA 3 1.42 1.70
pE 2 99.59 99.59

2SKE 2 0.00 0.00
2PIA 2 0.00 0.00
2SKA 1 0.22 0.38

all 10155 58.13 60.01
Table 3.6: Whole-word accuracy results on the various mor-
phological forms to be predicted in the semi-supervised ex-
periment.
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We observe that joint prediction in the tree-shaped factor graph outperforms separate
prediction on almost all forms, often by a large margin. A few forms have been observed
three times or less; these are second-person forms and the present participle (pE). On these,
the performance of separate prediction and joint prediction are almost equally bad because
the few observed pairs contained irregular forms of the verb sein ’to be’. The present
participle form is an exception; here the few observed forms are regular, and prediction is
easy.

3.8 Summary
In this chapter, we have proposed that one can jointly model multiple related strings by

using Markov Random Fields. We described this formally as an undirected graphical model
with string-valued variables whose factors (potential functions) are defined by weighted
finite-state transducers. Each factor evaluates some subset of the strings. The topology of
this graphical model may be chain-structured, tree-structured or loopy.

Approximate inference can be done by loopy belief propagation. The messages take
the form of weighted finite-state acceptors, and are constructed by standard operations.
We explained why the messages might become large, and gave methods for approximating
them with smaller messages. We also discussed training methods.

We presented experiments on the task of jointly predicting multiple missing verb forms
in morphological paradigms. We demonstrated that we can learn from complete or in-
complete inflectional paradigms, and that the factor graphs outperform separate-prediction
models.

The factors were simplified versions of statistical finite-state models for supervised
morphology. Our MRF for this task might be used not only to conjugate verbs (e.g., in
MT), but to guide further learning of morphology—either active learning from a human or
semi-supervised learning from the distributional properties of a raw text corpus.

Our modeling approach is potentially applicable to a wide range of other tasks, includ-
ing transliteration, phonology, cognate modeling, multiple-sequence alignment and system
combination.

The work in this chapter ties into a broader vision of using algorithms like belief prop-
agation to coordinate the work of several NLP models and algorithms. Each individual
factor considers some portion of a joint problem, using classical statistical NLP methods
(weighted grammars, transducers, dynamic programming). The factors coordinate their
work by passing marginal probabilities. Smith and Eisner (2008) reported complementary
work in this vein.
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Figure 3.6: An approximate Hamiltonian path through all German CELEX forms in the
supervised experiment; the distances between form pairs are measured in edit distance.
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Figure 3.7: Minimum spanning tree over all German CELEX forms in the supervised ex-
periment; the distances between form pairs are measured in edit distance.

83



Chapter 4

Discovering Morphological Paradigms
from Plain Text using Graphical Models

4.1 Introduction

4.1.1 Outline
This chapter further extends our approach to learning the morphology of a language.

We will make use of the models developed in the previous chapter but add something
very natural: The ability to learn the morphology of a language—with its rules, exceptions
and oddities—from reading and analyzing large amounts of text that contains no prior
morphological annotation. For this task, we require no morphological supervision except a
small set of example paradigms to get started.

We will present a well-defined generative probability model along with a statistical
inference procedure for this task and give a detailed, formal definition in the next sections
of this chapter. Here we provide an overview and more intuitive explanation.

The probability model is based on the following ordinary linguistic notions:

1. There exist infinitely many lexemes in a language.

2. A lexeme’s paradigm contains systematically related spellings.

3. To generate a word, pick a lexeme and inflection, then look up the spelling in the
paradigm.

The inference procedure simultaneously analyzes text and constructs inflectional
paradigms accordingly. The analysis consists of assigning a part-of-speech (POS) tag (un-
less that is given by an external POS tagger), a lexeme and an inflection. In the next sub-
section, we give an example that illustrates the process and gives an intuition of how our
approach utilizes unannotated text data and and learns morphological information from it.
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The example is similar to the one given in Section 1.3.3.1 on page 11; here we emphasize
more what kinds of errors can potentially be fixed in our corpus-based inference procedure.

4.1.2 Example
Suppose you want to learn German verb morphology, and you know that the 3rd person

past indicative is usually built by appending -te to the stem, as in sagte, hörte or liebte.
But upon reading actual German text you also find verb forms that are very similar but
slightly different: redete, atmete, zeichnete. These end in -ete. You may (correctly)
hypothesize that this is a variation on the same 3rd person past-tense form that would
usually be built with just -te. You may think so especially since the otherwise expected
forms redte, atmte and zeichnte never occur and the ones you observed instead are
so similar. And what else would redete be? According to your knowledge it certainly
looks closest to a 3rd person past indicative. You (preliminarily) assume that that this past-
tense form can be built with -te or -ete, and with this assumption in mind you can search
and analyze other forms in the text. You may even try to generalize and hypothesize that
it is -ete only after the consonants d, m or n, like in the observed redete, atmete and
zeichnete. But as you read more text you will find exceptions like wandte, kämmte
or krönte (which should have been wandete, kämmete and krönete according to that
new rule). These observed exceptions will force you to relativize and further refine your
constantly evolving morphological knowledge of that language. You will often want to
go back to previously analyzed words and re-analyze them, according to newly acquired
knowledge.

These are the kinds of hypotheses, generalizations and decisions that we will make
during inference under our model.

Although the example above presented them almost as a thought process that sounds
like an agglomerate of heuristics and arbitrary rules of thumb, we will later see that all de-
cisions are made under one clean, well-defined joint model of morphological knowledge
that captures all the phenomena described above, making use of general and linguistically
motivated features in a well-understood statistical inference procedure.

Whenever a word in the corpus is preliminarily analyzed (e.g., redete as 3rd person
past indicative of reden) it is placed in an inflectional paradigm; this could be a previously
created paradigm that already contains slots filled with forms like reden and redetest,
or a new, otherwise empty one. And in any paradigm that still has unfilled slots because
we have not encountered the corresponding forms in the corpus, we maintain a probability
distribution over possible morphological forms that we would expect in that slot, given the
spellings in the occupied cells so far. Such a process of filling an inflectional paradigm and
maintaining uncertainty over so-far unoccupied slots is depicted in Figure 1.1 on page 5.
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4.1.3 Summary
To summarize our approach in more formal detail, our goal is to jointly reconstruct both

token and type information about a language:
First, we will tag each word token in a corpus with (1) a part-of-speech tag (unless

given), (2) an inflection, and (3) a lexeme. E.g., a token of broken might be tagged in
context as a VERB and more specifically as the past participle inflection of the abstract
lexeme �b&r��a�k.

Reconstructing the latent lexemes and inflections allows the features of other statistical
models to consider them. A parser may care that broken is a past participle; a search
engine or question answering system may care that it is a form of �b&r��a�k; and a translation
system may care about both facts.

Second, in carrying out the above, we will reconstruct morphological paradigms of the
language. A paradigm is a grid of all the inflected forms of some lexeme, as illustrated in
Table 1.1 on page 2. Our reconstructed paradigms will include our predictions of inflected
forms that were never observed in the corpus. This tabular information about the types
(rather than the tokens) of the language may be separately useful, for example in translation
and other generation tasks, and we will evaluate its accuracy.

Third, in the course of the above, we will estimate hyperparameters that describe
more general patterns in the language. Among others, we recover the weights of finite-
state transducers that serve to relate words within the same paradigm. These constitute a
morphological grammar of the language, which can be used to analyze and reinflect novel
words.

The model that we will describe in this chapter uses the models we have described in
previous chapters as ingredients. While the models from Chapter 2 are just factors in the
graphical model from Chapter 3, that graphical model now becomes a factor in the joint
probability model we are about to describe.

4.2 Random Variables and Their Values

4.2.1 Value Types
Our probabilistic model considers the following types of mathematical objects. (We

use certain lowercase letters to name non-random variables with these types, and certain
fonts for constants of these types.)

A word w, such as broken, is a finite string of any length, over some finite, given
alphabet Σ.

A part-of-speech tag t, such as VERB, is an element of a certain finite set T , which we
typically assume to be given.
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w word (observed)
s inflection
` lexeme
Π inflectional paradigm
D distribution over inflectional paradigms
θ parameters defining D
σ2 prior for θ
H lexeme-specific distribution over inflections (Dirichlet)
H0 base distribution for H: general distribution over inflections
φ parameters defining H0

σ2 prior for φ
α′ Dirichlet concentration parameter for H
G distribution over lexemes (Dirichlet)
G0 base distribution for G: uniform distribution over lexemes
α Dirichlet concentration parameter for G

Figure 4.1: Variables in Figure 4.2 on the next page

An inflection s,1 such as past participle, is an element of a finite set St. A token’s
part-of-speech tag t ∈ T determines its set St of possible inflections. For tags that do not
inflect, |St| = 1. The sets St are language-specific, and we assume here that they are given
by a linguist rather than learned. A linguist also specifies features of the inflections: the
grid layout in Table 1.1 on page 2 shows that 4 of the 12 inflections in SVERB share the
”3rd-person” feature.

A paradigm for t ∈ T is a mapping π : St → Σ∗, specifying a spelling for each
inflection in St. Table 1.1 on page 2 shows one VERB paradigm.

A lexeme ` is an abstract element of some lexical space L. In this paper, lexemes have
no internal semantic structure: the only question we can ask about a lexeme is whether it
is equal to some other lexeme. For present purposes, we will formally take L to be simply
the unit real interval [0, 1]. Thus �b&r��a�k is merely a suggestive nickname for a lexeme such
as 0.2538159.

4.2.2 Random Variables
Our generative model of the corpus is a joint probability distribution over the following

random variables (denoted by uppercase letters):

• The corpus is represented by a sequence of words W1, . . . ,WN ∈ Σ∗. In our setting,
these are observed, as is the integer N .

1We denote inflections by s because they represent “slots” in paradigms (or, in the metaphor of Sec-
tion 4.3.3, “seats” at tables in a Chinese restaurant). These slots (or seats) are filled by words.
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∞
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GG0
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Figure 4.2: Graphical depiction of our probability model. For simplicity, we left out the
random variable T that denotes part-of-speech tags. Assume all N tokens have the same
part-of-speech tag here. For explanations of the variables in this figure, see Table 4.1 on
the previous page.

• Our goal is to recover the corresponding part-of-speech tags T1, . . . , TN ∈ T (unless
observed), lexemesL1, . . . , LN ∈ L, and inflections S1, . . . , SN , where (∀i)Si ∈ STi .
These are token variables that describe the corpus.

• For each ` ∈ L, and each t ∈ T , the paradigm Πt,` is a random func-
tion from St → Σ∗. For example, Table 1.1 on page 2 shows a possible
value for Π

VERB,�b&r��a�k
. Thus, the various spellings in the paradigm, such as

Π
VERB,�b&r��a�k

(1st-person sing. pres.)=breche, are string-valued random variables
that are correlated with one another. The paradigms are type variables that describe
the language.

Note that we have just defined uncountably many paradigms, since L = [0, 1]. For-
tunately, at most N of these paradigms were involved in generating the corpus, namely
ΠTi,Li

for 1 ≤ i ≤ N . As a result, our inference method will be able to integrate out these
uncountably many random variables.
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What can we say about paradigms that were not used in the corpus? Might they still be
part of the language? Our generative model does define a posterior probability distribution
over the full language. For each tag t ∈ T , define the set of possible lexemes Lt as
those that have positive probability given that tag. The language’s lexicon comprises just
the paradigms of positive probability, i.e., the values of Πt,` for all t ∈ T , ` ∈ Lt. It
turns out that our model will generate only languages with countably infinite lexicons (see
Section 4.3.2).

4.3 A Dirichlet Process Mixture Model
We focus on the following directed graphical model, sketched in Figure 4.2 on the

previous page:

p(W = w,S = s,L = `,T = t,
−→
Π = π | τ ,α,φ,α′,θ)

def
= (t | τ ) · p(` | t,α) · p(s | `, t,φ,α′)

·
∏

t∈T ,`∈L

p(Πt,` | θ) ·
N∏
i=1

p(wi | πti,li(si)) (4.1)

Why this model? Because it corresponds to a simple and plausible generative story for
the corpus:

1. Generate the part-of-speech tags,

2. then select an abstract lexeme at each tag,

3. then decide how to inflect each lexeme;

4. finally (in the last factor), obtain the words simply by looking up the spellings of
the inflected lexemes in the lexicon of the language (which was generated by the
next-to-last factor).

We now define each factor of Equation 4.1 in more detail, and then explain how to view
this model as a variant on the Dirichlet process mixture model (Antoniak, 1974).

A key property of our model is that there are only finitely many hyperparameters
τ ,α,φ,α′,θ. We can therefore reasonably optimize these to maximize their posterior
probability given the finite corpus, i.e., we perform Empirical Bayes (McAuliffe, Blei, and
Jordan, 2006) for these hyperparameters. What about all of the parameters (paradigms and
probabilities) that describe the behavior of each of the infinitely many lexemes? The model
is carefully designed so that we can integrate out these infinitely many parameters. Thus,
given a setting of the finitely many hyperparameters, we will be able to do collapsed Gibbs
sampling directly over the O(N) token variables T ,L,S.
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In the following subsections, we will explain the different factors in Equation 4.1. See
also Figure 4.3 on page 92, which shows how W ,T ,L, and S interact in the Chinese
Restaurant process view of the Dirichlet process mixture model.

4.3.1 Part-of-speech Tag Sequence
We use a standard trigram model for the part-of-speech sequence T , where the param-

eter vector τ specifies the transition probabilities:

p(t | τ )
def
=

N+1∏
i=1

p(ti | ti−2, ti−1, τ ) (4.2)

Notice that this model is a proper probability distribution over the set of all possible T (of
any length), so it implicitly generates N = |T | along with T .

4.3.2 Lexeme Sequence
For each part-of-speech tag type ∈ T , we define a corresponding distribution over

lexemes, GT , so that there is a distribution over verb lexemes, a distribution over noun
lexemes, etc. How many verb lexemes (noun lexemes, etc.) are there in a language? We do
not know, and we do not impose an upper bound. Instead, we reserve probability mass for
infinitely many possible lexemes for each part-of-speech tag.

This is linguistically appropriate since speakers of a natural language are indeed capable
of inventing new lexemes and their paradigms. This may happen on request, as in Albright
and Hayes (2003), where speakers were asked to inflect nonsense words like bize, shurn
or bredge, or driven by the need to name new things, events or actions using neologisms,
such as reuploaded, shockvertising or un-follow, to list some relatively recent
English neologisms,2 which may be morphologically inflected.

In short, there is no upper bound on possible lexemes in a language; any new word may
be part of some new lexeme; therefore, any possible lexeme has some non-zero probability
under our model. As noted above, each of the infinitely many lexemes is indexed by one
of the numbers in [0, 1] and has an inflectional paradigm associated (see Section 4.3.4 on
page 93).

But what are these distributions GT and how do we define them?
A distribution GT in our model is a discrete probability distribution over (countably)

infinitely many lexemes, i.e. infinitely many lexemes are possible, but the same lexemes
may be drawn repeatedly. In fact, we want a distribution in which most probability mass
concentrates on relatively few of the infinitely many lexemes. Lexemes corresponding to
words that one would find in a dictionary of the language should be frequently drawn, while

2Taken from the lists here, http://rdues.uce.ac.uk/neologisms.shtml, accessed on Octo-
ber 11, 2010
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others should hardly ever be drawn, like, for example, the lexeme whose paradigm contains
the forms bredge, bredging, bredges, etc.

We obtain such probability distributions using the Dirichlet process (Ferguson, 1973).
This is a popular tool from the statistics literature and has recently been used for many tasks
in natural language processing as well, e.g., HMMs (Beal, Ghahramani, and Rasmussen,
2002a), word segmentation (Goldwater, 2006; Snyder and Barzilay, 2008), parsing (Beal,
Ghahramani, and Rasmussen, 2002b; Liang, Petrov, Jordan, and Klein, 2007), machine
translation (Post and Gildea, 2009; Yamangil and Shieber, 2010), information retrieval
(Haffari and Teh, 2009), the decipherment of lost languages (Snyder, Barzilay, and Knight,
2010), and others.

The Dirichlet process is a prior over discrete distributions with infinite support. As
such, the Dirichlet process is a distribution over distributions; sampling from a Dirichlet
process means obtaining a discrete probability distribution with infinite support. The sam-
ples (i.e., distributions) drawn from a Dirichlet process DP (G0, αT ) have mean G0 and
concentration parameter αT .

The mean G0 is the base distribution; all distributions drawn from the Dirichlet process
will be centered around and have the same support as the base distribution. Although the
drawn distributions are discrete, the base distribution is continuous, i.e. it has uncountably
infinite support. In our model, G0 is just uniform over all lexemes L = [0, 1]. The rela-
tion between the continuous base distribution and the discrete output distributions can be
explained by the stick-breaking construction of the Dirichlet process (Sethuraman, 1994).
Since the base distribution is continuous, we can use the same base distribution for all
DP (G0,α) in our model; the drawn sets of lexemes will be disjoint with probability 1.

The concentration parameter αT controls how often the same lexemes in the drawn
distribution GT repeat themselves. It can be understood as an inverse variance: A high αT
value means a low variance around the base distribution G0. This means that the drawn
distribution GT will be close to the base distribution G0, i.e. the probability mass in GT

will be spread among a high number of lexemes. If αT is low, on the other hand, the
probability mass in the drawn distribution GT will be spread among a few lexemes only;
these will be drawn frequently. This would be desirable for the few lexemes in closed-class
or nearly-closed class tags. In general, it can be shown that, when we draw n lexemes from
a GT distribution drawn from DP (G0, αT ), we will observe O(αT log n) different lexemes
on expectation (Teh, 2010).

In summary, we have the following distributions:

Gti ∼ DP (G0, αti) (4.3)
`i | ti, αti ∼ Gti (4.4)

We cannot reliably estimate the unknown distributions Gt from finite data, or even
represent samples of them during inference, since each Gt is an infinite object. However,
by integrating out all theGt, we obtain a conditional distribution over the random sequence
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L given T ,α. This conditional distribution is much easier to work with. It has a density
that can be written in closed form, using a product of interleaved Chinese restaurant
processes (CRPs) (Blei et al., 2004),

p(` | t,α) =
N∏
i=1

p(`i | ti, αti , `1, . . . `i−1, t1, . . . ti−1) (4.5)

where the factor that generates `i is proportional to |{j < i : `j = `i and tj = ti}| if that
integer is positive, and otherwise proportional to αtiG(`i).

1 2

3 43

1 2
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(POS tag)
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2 1
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2
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(inflection)
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(lexeme)
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(corpus token)

w1

w4
w5

w3 w6
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Figure 4.3: Illustration of the Chinese Restaurant Process for inflectional morphology:
Each customer sits down in a particular restaurant at a particular table, in a particular seat.
This corresponds to each corpus token (spelling) picking a part-of-speech tag, a lexeme and
an inflection. Each restaurant has potentially infinitely many tables. When new customers
enter a restaurant they are more likely to sit down at a more popular table and seat. Note
that the inflections in a lexeme constitute an inflectional paradigm, so it is more likely that
morphologically related spellings pick the same lexeme (given reasonable θ). Tokens w1

and w4, which have the same spelling, have a particular morphological relation with w2.

Note that the distribution over the lexeme sequence, p(` | t,α), is making a unigram
assumption in this model.

The metaphor underlying Equation 4.5 is a generative process in which each tag t ∈ T
corresponds to a Chinese restaurant. Each restaurant has an infinite number of tables corre-
sponding to the lexemes L. When customer i enters restaurant Ti, he or she chooses a table
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Li to sit at—choosing an already-populated table with probability proportional to the num-
ber of customers already at that table, or a random table (sampled from G) with probability
proportional to αti . Note that this random table will (with probability 1) be empty, since
the finite set of already-populated tables has measure 0 under G. See Figure 4.3 on the pre-
ceding page for an illustration of the process, which also includes the inflection sequence,
whose distribution we will now describe.

4.3.3 Inflection Sequence
In our basic model, we make another unigram assumption about the inflections: Si

depends only on Li and Ti. In other words, for each tagged lexeme (t, `), the language
specifies some distribution Ht,` over inflections of that lexeme.

What is this distributionHt,`? First, for each tag t ∈ T , letHt be some base distribution
over St. As St could be large, we will take Ht to be a log-linear distribution with hyper-
parameters φ. Now we model each Ht,` as an independent draw from a finite-dimensional
Dirichlet distribution with mean Ht and concentration hyperparameter α′t.

(Mimno and McCallum, 2008) similarly used a log-linear distribution as the mean of a
Dirichlet distribution.

We will learn explicit values for φ and α′. However, much as in the previous section,
we integrate over the infinitely many lexeme-specific distributions Ht,`. This again gives
us a simpler distribution to work with:

p(s | `, t,φ,α′) =
N∏
i=1

p(si | `i, ti, Hti , α
′
ti
, s1, . . . si−1, `1, . . . `i−1, t1, . . . ti−1) (4.6)

where the factor that generates si is proportional to |{j < i : sj = si and (tj, `j) =
(ti, `i)}|+ α′tiHti(si).

Instead of explaining this via Pólya urn processes (the finite analogue of the CRP), we
enrich the CRP from the previous section. Each table ` in Chinese restaurant t has a fixed,
finite set of seats corresponding to the inflections s ∈ St. When customer i chooses to
sit at table Li, as described in the previous section, he or she also chooses a seat Si at that
table—choosing an already-occupied seat (on someone’s lap) with probability proportional
to the number of customers already in that seat, or a random seat (sampled from Ht and not
necessarily empty) with probability proportional to α′t.

4.3.4 Paradigms
Each tagged lexeme (restaurant table) is associated not only with a probability of its own

and a distribution over inflections (seats), but also with a paradigm of spelled-out words as
in Table 1.1 on page 2. We assume that each of the infinitely many lexemes (tables) of
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tag t independently draws its paradigm Πt,` from some distribution Dt over paradigms,
parameterized by θ.

Naturally, this probability distribution over paradigms, Dt, is modeled by a finite-state
Markov Random Field (MRF), the novel multiple-string approach that we presented in
Chapter 3. Therefore, for a paradigm π, the probability Dt(π | θ) is proportional to a
product of non-negative factors of the form WFSAs(π(s)) and WFSTs,s′(π(s), π(s′)) (for
various inflections s, s′ ∈ St), see Equation (3.1) on page 60. Here WFSAs is a weighted
finite-state acceptor that evaluates the inflected word π(s) ∈ Σ∗, typically using an n-gram
character language model. It gives a high score to spellings that are appropriate (in this
language) for s-inflected words. Similarly, WFSTs,s′ is a weighted finite-state transducer
that evaluates how well the two spellings π(s) and π(s′) go together (in this language),
summing over all of the possible ways of aligning them. For example, WFSTpresent,past

might model the fact that the spellings of a lexeme’s present and past inflections are typ-
ically related by a specific change to the word ending or stem vowel. We use a general
architecture for the WFSAs and WFSTs, with language-specific weights derived from the
learned hyperparameters θ (Dreyer and Eisner, 2009).

4.3.5 Spell-out
The final factor in Equation 4.1 represents a deterministic spell-out step. Given the tag,

lexeme, and inflection at position i, we generate the word Wi simply by looking up its
spelling in the appropriate paradigm. That is, p(Wi = w | ΠTi,Li

(Si) = w′) = 1 if w = w′,
and = 0 otherwise.

To account for typographical errors in the corpus, the spell-out process could easily
be made nondeterministic, with the observed word Wi derived from the correct spelling
ΠTi,Li

(Si) by a noisy channel model (e.g., Toutanova and Moore, 2002) represented as a
WFST. This would make it possible to analyze brkoen as a misspelling of a common or
contextually likely word, rather than treating it as an unpronounceable, irregularly inflected
neologism, which is presumably less likely.

4.3.6 Discussion: Clustering and DPMMs
The lexeme sequence L induces a partition of 1, 2, . . . N into groups of tokens that

share a lexeme. Our model assigns higher probability to partitions L̂ that group similar
words into one paradigm. Why?

Suppose that in the process of generating the corpus, we have already generated
discombobulated twice, as the past tense of lexeme `. We are now generating a new
token Wi. We do not have a strong bias against having many lexemes; in fact, if αVERB > 2,
then we would rather pick a new lexeme than reuse the so-far-rare lexeme `. How-
ever, given that the next word is observed to be discombobulating, we are far more
likely to have obtained it as the present participle of `, which is already expected to be
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discombobulating or something similar, than by choosing a new lexeme and picking a
new paradigm for it that just happens to contain the spelling discombobulating. The
former explanation is more likely a posteriori because it avoids the cost of generating that
specific unlikely string from scratch. Instead, it predicts that string from a previously gen-
erated string, a cost that can be kept small by setting the WFSA/WFST weights θ.

This clustering of words is much like clustering of points in Rd, a well-studied problem.
Such points are commonly clustered using a mixture model. A non-parametric version that
allows unboundedly many clusters is the Dirichlet process mixture model or DPMM
(Neal, 2000), from which we will borrow inference methods.

The DPMM generative story is similar to ours: The tables in an infinite Chinese restau-
rant are identified with distributions `, such as Gaussians. Each customer i = 1, 2, . . . enters
the restaurant and chooses an old or new table Li to sit at, with probabilities exactly as in
Section 4.3.2. (If a new table is chosen, it is drawn from some prior G over Gaussians.)
The customer then assumes a spatial position Xi ∈ Rd, sampled from the chosen Gaussian
Li. Each ` tends to generate points xi in some region of Rd. Conversely, observed points
in the same small region of Rd are most easily explained as being generated from a single
`, giving a clustering behavior.

Our basic model of inflectional morphology is similar. In our setting, each table gener-
ates words Wi in a “region” of Σ∗, rather than points Xi in a region of Rd. There are three
differences:

First, we have a separate DPMM for each tag t.
Second, each table ` in tag t’s DPMM is associated not with a Gaussian distribution

over all of Rd, but rather with an “inflectional distribution” over Σ∗ that assigns positive
probability to only (at most) |St| strings in Σ∗. This “inflectional distribution” is param-
eterized by a paradigm of strings, Πt,`, together with a multinomial Ht,` over the finitely
many inflections in the paradigm.

Third, in a small departure from standard DPMMs, we opted in Section 4.3.2 to iden-
tify tables with distinct elements of L = [0, 1]—“lexemes”—rather than with inflectional
distributions over words. Each table’s inflectional distribution is constructed later (sec-
tions 4.3.3–4.3.4). Thus, we disentangled the notion of an abstract lexeme (cluster) from
the information associated with it. Our construction makes lexemes ` ∈ L and inflections
s ∈ S into first-class variables of the model, which can be (1) observed (Section 4.5.3), (2)
inferred (Section 4.4), (3) modulated by additional factors (Section 4.8.2), or (4) associated
with other linguistic information. The use of lexemes also permits polysemy, where two
lexemes remain distinct despite having the same paradigm or inflectional distribution.
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4.4 Inference

4.4.1 Collapsed Gibbs Sampling
Just as in a DPMM, our basic inference technique is collapsed Gibbs sampling. Given

the corpus w and the hyperparameters, we will obtain samples from the posterior distribu-
tion

p(S,L,T |W = w, τ ,α,φ,α′,θ) (4.7)

defined from the model (4.1). The sampler is initialized with some legal value of (S,L,T ),
and modifies it stochastically one step at a time (Section 4.4.3). As in any Monte Carlo
Markov Chain (MCMC) method, the tuple reached after m steps is a random quantity,
whose distribution converges to the desired posterior distribution as m→∞.

The sampler is said to be collapsed because it only represents the values of S,L,T . It
does not represent the distributionsGt andHt,` or the paradigms Πt,`. These infinitely large
or infinitely numerous objects do not appear in (4.7) because they have been integrated out,
i.e., we sum over all of their possibilities.

For convenience, our sampler is collapsed in another way as well. It does not actually
represent L, because we do not practically need to recover each lexeme Li as an arbitrary
value in L = [0, 1]. The state of our sampler will thus represent only the partition L̂
induced byL: that is, a partition of 1, 2, . . . N into groups of tokens that share a lexeme. We
represent this partition computationally as a finite collection of non-empty “table” objects,
each one labeled with some tag t and pointing to (and pointed to by) some disjoint group
of customers i such that Ti = t. This state may be regarded as a collapsed particle—a
uniform distribution over all values of L consistent with L̂.

4.4.2 Reconstructing the Paradigms
Although the paradigms are collapsed out of the sampler state, it is not too hard to re-

construct the posterior distribution over any table’s paradigm Π, given the collapsed sample
and the hyperparameters. This is needed to evaluate our model and also, as we will see, to
determine the probability of a stochastic move.

Recall from Section 4.3.4 that the prior distribution Dt over a table’s paradigm Π is a
finite-state graphical model. Crucially, the posterior distribution over Π depends only on
the set of 0 or more words wi sitting at the table, along with their seats si.

These words are observations that were generated using Π. For each one, we know
that Π(si) = wi (because the spell-out factor of Section 4.3.5 is deterministic). Thus—
conditioned on the state of the sampler—we know the spelling Π(s) for each non-empty
seat s at the table. This gives us a partially filled-in paradigm.

How about the other seats? We showed in Section 3.4 on page 64 how to run belief
propagation on the string-based graphical model Dt, which calls various finite-state algo-
rithms as subroutines.
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Applying this method, we obtain the marginal distribution over each unknown spelling
Π(s′) given the known spellings Π(s). In general, this marginal distribution is represented
as a probabilistic finite-state machine.

We find it convenient for each table in our sampler to maintain an approximate posterior
distribution over each spelling in its paradigm. There are 3 cases:3

1. For a known spelling Π(s) at a non-empty table, a single value has probability 1.

2. For an unknown spelling Π(s′) at a non-empty table, store a truncated distribution
that enumerates the 1000 most likely strings, according to belief propagation.

3. All empty tables (in a given restaurant t) are identical, so we maintain a single generic
empty table of tag t, where we again perform belief propagation. For each spelling
Π(s′) at the empty table, a 1000-best list would not cover enough possibilities, so
store a probabilistic finite-state acceptor that can score any string.

A hash table based on cases 1 and 2 can be used to map any word w to a list of seats
at non-empty tables that might plausibly have generated w. As for the seats at the generic
empty tables, we can score w using the finite-state acceptors from case 3 to see whether
any of them might have generated w.

4.4.3 How to do Gibbs Sampling
Given the above, we can build a Gibbs sampler similar to that for a Gaussian DPMM

(Rasmussen, 2000). For each token i = 1, 2, . . . n of the corpus, the sampler state specifies
the observed word wi, a tag ti, a table ˆ̀

i representing a particular but unknown lexeme, and
an inflection si. A move of the Gibbs sampler chooses a token i uniformly at random, and
resamples the triple (ti, ˆ̀

i, si) from its posterior distribution given the remaining state of
the sampler. That is, it resamples the location of customer i (possibly starting a new table).

This move really serves to morphologically reanalyze token wi in its current context. In
our CRP metaphor, it corresponds to making customer i invisible and then guessing where
she is probably sitting—which restaurant, table, and seat?—given knowledge of wi and the
locations of all other customers.

A well-known and easily verified property of our Chinese restaurant processes is their
exchangeability. Once we know what set of customers will enter restaurant t, the probabil-
ity that they will choose particular tables and seats does not depend on the order in which
they enter.4 Hence, when guessing whether i chose a particular seat given all the other
customers, we may as well pretend that she was the last customer to enter. This will not
change the answer and makes it easier to see what the answer must be.

3The first two cases must in general be recomputed whenever a seat at the table switches between being
empty and non-empty. All cases must be recomputed if the hyperparameters θ change.

4Given a tagging T , the subsequence 〈(Li, Si) : Ti = t〉 is defined for each t ∈ T and is exchangeable.
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Concretely, the sampler chooses location (ti, ˆ̀
i, si) with probability proportional to the

product of

• p(Ti = ti | Ti−2, Ti−1, Ti+1, Ti+2, τ )

• the probability (from Section 4.3.2) that a new customer in restaurant ti would choose
table ˆ̀

i, given all the other customers in that restaurant

• the probability (from Section 4.3.3) that a new customer at table ˆ̀
i would choose seat

si, given all the other customers at that table

• p(wi | ti, ˆ̀
i, si, seats of other customers at table ˆ̀

i)

All of these factors depend on the sampler’s current state. The last factor is determined from
the reconstructed paradigm Πti,ˆ̀i

as it stands without customer i (Section 4.4.2). It is just
the probability of wi according to the posterior distribution over the spelling Πti,ˆ̀i

(si). For
most locations (ti, ˆ̀

i, si), this last factor is 0 or extremely small, and so the Gibbs sampler
does not need to consider the location at all. The end of Section 4.4.2 explained how to
identify all plausible locations for a word wi, possibly including some seats at generic new
tables.

4.4.4 Sampling Strategies for Faster Mixing
Gibbs sampling for a DPMM can be slow to mix—often, resampling customer i will

not actually change its location, because it is immediately attracted back to her friends at
the seat it was just removed from.

We implemented two alternatives that are instances of type-based MCMC (Liang, Jor-
dan, and Klein, 2010):

• Lexeme-based sampler: A move in the Gibbs sampler consists of first picking one
of the currently active lexemes uniformly at random, removing all its customers at
once. Then, picking new tables and seats for these customers in random order. We
can then run intermediate Gibbs sampling steps for just these customers, before we
move on to another lexeme. One iteration of sampling is finished when N customers
have been resampled in this way.

• Spelling-based sampler: This is similar to the lexeme-based sampler, but here we
pick a spelling with probability proportional to its token frequency in the corpus,5

and remove all similarly spelled tokens from their current restaurant locations. Now
we can proceed as in the lexeme-based sampler.

Another technique would be to introduce Metropolis-Hastings moves that split and
merge entire tables (Jain and Neal, 2004).

5In other words, we pick a certain corpus position and pick its spelling.
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4.5 Training the Hyperparameters

4.5.1 Unsupervised Training
The goal of training is to adjust our hyperparameters to maximize the log-likelihood of

the observed corpus w,
log p(W = w | τ ,α,φ,α′,θ) (4.8)

A basic strategy is Monte Carlo EM. In the E step, we materialize an approximation to
the posterior distribution (4.7) by drawing a number of samples from it, using our sampler
from Section 4.4. Each sample is a possible annotation s, ˆ̀, t of the corpus w. In the
M step, we adjust our hyperparameters to maximize or at least increase the average log-
probability of these samples, using the supervised methods of the next section. The E and
M steps are alternated.

This learning method is similar to Wallach (2006) and Mimno and McCallum (2008).

4.5.2 Supervised Training
The M step is a supervised training problem, since it must increase the average log-

probability under (4.1) of fully observed samples (w, s, ˆ̀, t).6 This objective separates
into several maximization problems, one per factor of (4.1).

It is straightforward to train the tag sequence model τ from samples of T (Sec-
tion 4.3.1).

Next, we train the prior model of lexeme sequences (Section 4.3.2). For each tag t, we
must estimate αt. It is not too hard to see from the Chinese restaurant process that for a
lexeme partition ˆ̀and a tagging t, we have

log p(ˆ̀ | t, αt) = rt logαt −
nt−1∑
i=0

log(i+ αt) + const7 (4.9)

where rt is the number of tables in restaurant t and nt is the number of customers in restau-
rant t. Quantity (4.9) (and, if desired, its derivative with respect to αt) may be easily found
from t and ˆ̀ for each of our samples. Maximizing its average over our samples is a simple
one-dimensional optimization problem.

Note that Equation 4.9 will be replaced by Equation (4.15) on page 103 later when we
consider a speedup, in which we explicitly assign tables only to some customers, while
summing over possible tables for others (Section 4.5.4).

6We also add the log prior probability of the hyperparameters.
7The constant accounts for probability mass that does not depend on αt.
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For the inflection sequence model (Section 4.3.3), we must similarly estimate α′t for
each t, and also φ:

log p(s | ˆ̀, t,φ, α′t)

=
∑
`

(∑
s∈St

nt,`,s−1∑
i=0

log(i+ α′tHt(s))

−
nt,`−1∑
i=0

log(i+ α′t)

)
+ const (4.10)

where ` ranges over the rt tables in restaurant t, and nt,` is the number of customers at
table `, of which nt,`,s are in seat s. The summation over s may be restricted to s such that
nt,`,s > 0. Recall that Ht is the base distribution over seats: Ht(s) ∝ exp(φ · f(s)). For a
given value of φ and hence Ht, we can easily compute quantity (4.10) and its gradient with
respect to αt. Its gradient with respect toφ is α′t

∑
s∈St(cs−cHt(s))f(s), for c =

∑
s′∈St cs′

and

cs = Ht(s)
∑
`

nt,`,s−1∑
i=0

1

i+ α′tHt(s)
(4.11)

Finally, we estimate the parameters θ of our prior distribution Dt over paradigms of
the language (Section 4.3.4), to maximize the total log-probability of the partially observed
paradigms at the tables in restaurant t (averaged over samples). This can be done with belief
propagation, as explained by Dreyer and Eisner (2009). Crucially, each table represents a
single partially observed sample of Dt, regardless of how many customers chose to sit
there.8 The training formulas consider our posterior distributions over the spellings at the
empty seats (Section 4.4.2). In general, however, a table with many empty seats will have
less influence on θ, and a completely empty table contributes 0 to our total-log-probability
objective. This is because the probability of a partially observed paradigm marginalizes
over its unseen spellings.

4.5.3 Semi-supervised Inference and Training
In addition to the corpus w, we observe a small set of paradigms of the language (for

each tag t). This should help us find a reasonable initial value for θ. For evaluation pur-
poses, we also observe a set of partial known paradigms. In our experiments, these partial
paradigms are derived from simple lists of uninflected words, so each one specifies only the
spelling of the lemma inflection. The training and inference process will complete these

8In other words, θ generates types, not tokens. Each of the uncountably many lexemes prefers to generate
a paradigm that is likely under θ (Section 4.3.4), so the observation of any lexeme’s paradigm provides
information about θ. The fact that some tables have higher probability is irrelevant, since (at least in our
model) a lexeme’s probability is uncorrelated with its paradigm.
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paradigms —by placing tokens from the corpus in their inflectional slots, or by computing
marginals— and these completed paradigms can then be evaluated.

We condition our inference and training on our knowledge that the model gener-
ated these complete and partial paradigms along with the corpus w. However, since the
paradigms are type data rather than token data, we must posit a new generative process for
them:

Suppose we observe kt semi-supervised paradigms π for tag t. We assume that their
lexemes `were sampled independently (with replacement) from the language’s distribution
Gt. This implies that these lexemes tend to have reasonably high probability.

It is easy to modify the generative process of (4.1) on page 89 to account for these
observations. Our posterior estimate of the distribution Gt is implicit in the state of the
CRP once the CRP has generated all N tokens. To sample kt additional lexemes from Gt,
we simply see which table (lexeme) the next kt customers pick. Each of these customers
brings its whole (complete or incomplete) paradigm to the table. We call such a customer
host because it is at a table without actually taking any particular inflectional seat. It
just stands by the table, reserving it and welcoming any future customer that is consistent
with the observed paradigm at this table. In other words, just as an ordinary customer
in a seat constrains a single spelling in the table’s paradigm, a host standing at the table
constrains the table’s paradigm to be consistent with the complete or partial paradigm that
was observed in semi-supervised data.

The exchangeability of the CRP means that the hosts can be treated as the first cus-
tomers rather than the last. To modify our Gibbs sampler, we ensure that the state of a
restaurant t includes a reserved table for each of the distinct lexemes (such as �b&r��a�k)
in the semi-supervised data. Each reserved table has (at least) one host who stands there
permanently, thus permanently constraining its paradigm. Notice that without the host, or-
dinary customers would have only an infinitesimal chance of choosing this specific table
(lexeme) from all of L = [0, 1], so we would be unlikely to complete this semi-supervised
paradigm with corpus words.

The training of the hyperparameters from a sample is exactly as before. Notice that
θ will have to account for the partial paradigms at the reserved tables even if only hosts
are there (see footnote 8). The hosts are counted in nt in Equation 4.9 when estimating
αt. However, as they are not associated with any inflectional seat, they have no effect on
estimating α′t or φ; in particular, within Equation 4.10, interpret nt,` as

∑
s nt,`,s, which

excludes hosts.

4.5.4 Speeding up Inference by Summarizing Parts of the
Corpus

When using large corporaw, we may want to speed up the inference process by consid-
ering only certain parts of interest, while regarding the remaining parts only in summarized
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form. We utilize information from the reserved tables (Section 4.5.3) to find out what parts
of the corpus are of particular interest.

As described above, each table has a host that does not sit in any particular inflectional
seat; this host has (supervised) information about (some or all of) the inflectional seats at
that table. For those particular seats, the host will only welcome customers from the corpus
that match the preferred spelling; all other customers are rejected. This creates preferences
for the other seats as well: Given the distribution Dt over paradigms at that table and the
spelling information for supervised seats, we can run inference (Section 3.4 on page 64)
and obtain marginal distributions over the preferred spellings for the unsupervised seats
that the host has no information about.

As a result, every seat at a reserved table has a required spelling or a distribution over
plausible spellings, before any customer sits down. We prune each seat’s distribution to
its k-best values. We say that the host knows about all seats at its table, via supervised
information or inferred k-best list for that seat, and allows customers to sit down only if
their spelling matches that information.

We speed up inference by considering only those customers as visible that are wel-
comed by at least one host at a reserved table in a restaurant; all other tokens with the same
part-of-speech tag are only regarded as a big group of other, or invisible, customers; we
acknowledge that they are there and may sit down at some tables — but by definition not
at any of the reserved ones — but we ignore their spellings. We do not explicitly assign
them to tables in the restaurant; we collapse this information in the sampler and sum over
all possible table locations for them. This sum, again, excludes some of the tables, which
is valuable information.

Since we ignore the spellings of invisible customers, we can omit from the objective
function the terms that would generate their spellings, which also means that we can ignore
their seating arrangements by summing those out.

Why do we not just filter them out completely from the corpus? It would create a bias:
The visible customers are concentrated at a few tables (the reserved tables). If we ob-
served only those it could cause us to underestimate the concentration parameter α, which
regulates how many tables we create. As described above, we know something about the
invisible customers: They do not sit at any reserved tables (after all, they were not welcome
there). This is an observed fact about any corpus sample. Since in practice most customers
are invisible, the large fraction of such customers implies that the reserved tables are much
less popular than they would appear if we had only visible customers. Therefore we want
a higher estimate of alpha than we would get with visible customers only; this, of course,
means that even visible customers will be more willing to sit at unreserved tables.

A sample from the MC E step will contain, for each visible customer, its current restau-
rant, table and seat location; for the invisible customers we only know which restaurant
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they are in.9 Given such a sample, we would like to find the most likely value of αt at the
M step. We do this as follows:

• Let nt be the total number of customers and hosts in a particular restaurant.

• Let ct <= nt be the number of invisible customers in that restaurant.

• Let rt <= nt be the number of tables with at least one visible customer or host in the
restaurant.

• Let ut >= 0 be the number of visible customers sitting at unreserved tables in the
restaurant.

We want to compute the probability that all the customers and hosts would sit as ob-
served in the sample. We appeal to the Chinese Restaurant Process. For simplicity, suppose
without loss of generality that the visible customers and hosts entered the restaurant before
the invisible customers.

For the first visible customer or host at a table, the probability of them choosing that
table was αt/(αt+i), where i is the number of customers and hosts already in the restaurant.

For each additional visible customer or host at that table, the probability of them choos-
ing that table was (count)/(αt + i), where count is the number of previous customers or
hosts at that table already; note that the numerator is independent of alpha.

For each invisible customer, the probability of them choosing an unreserved and possi-
bly novel table (which is all we know about them from the sample) is (αt+ut+j)/(αt+ i),
where j is the number of previous invisible customers. This fraction represents the total
probability of all tables where the invisible customer could have sat.

It follows that the probability of the sampled lexeme sequence as a function of αt is

p(ˆ̀ | t, αt) = (αrt ∗ const ∗
ct−1∏
j=0

(αt + ut + j))/(
nt−1∏
i=0

(αt + i)) (4.12)

Taking the log and simplifying, we obtain

log p(ˆ̀ | t, αt) = rt logαt +
ct−1∑
j=0

log(αt + ut + j)−
nt−1∑
i=0

log(αt + i) + const (4.13)

= rt logαt − (
ut−1∑
i=0

log(αt + i) +
nt−1∑
i=ut+c

log(αt + i)) + const (4.14)

≈ r logαt + f(αt, 0)− f(αt, ut) + f(αt, ut + ct)− f(αt, nt) + const
(4.15)

9In the experiments in this chapter, the restaurant is always determined by an observed, if noisy, part-of-
speech tag.
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where we define f(αt, x) =
∫

log(αt + x)dx = (αt + x) log(αt + x)− x.
The step from Equation 4.14 to Equation 4.15 can be made by observing that

k−1∑
i=j

log(αt + i) ≈
∫ k

x=j

log(αt + x)dx (4.16)

= f(αt, k)− f(αt, j) (4.17)

Equation 4.15 can be minimized numerically using Brent’s method (Brent, 2002) or
any gradient-based method using its derivative with respect to alpha, (r/αt + log(αt) −
log(αt + ut) + log(αt + ut + ct)− log(αt + nt)).

As a side note, our method of analyzing only some words—the ones that seem interest-
ing based on prior knowledge—in a corpus, while treating others as “invisible”, may be of
interest from a cognitive point of view. Consider Chan’s criticism (Chan, 2006) of Gibbs
sampling (referring to the Gibbs sampler in (Goldwater, Griffiths, and Johnson, 2006)):

Such approaches are not suitable as cognitively [sic] models of human acqui-
sition, because they are based upon iterative refinement of a grammar covering
the entire data set, and this would predict that child learners have grammars
that reproduce every construction they hear.

This criticism would not affect our sampler, since we do not cover the entire data set and
do not explicitly model the exact lexemes, inflections or spellings of every construction.

4.5.5 Obtaining Results
In order to obtain results that we can then evaluate against the truth, we can record the

current state of the variables at any time, typically after each EM iteration.
We may be interested in recording the current state of certain paradigms or of the corpus

tagging.
To record the state of a particular inflectional seat s in a particular paradigm πt,` at time

m, we obtain its marginal probability pm(πt,`(s)) using belief propagation.10 From this
probability, we extract the k-best strings and store each of them together with its probability.
We repeat this whenever we record the results and report the string with maximum expected
probability, argmaxw

∑
m p

m(w) for that inflection. This can be done for all inflectional
seats in paradigms of the lexemes we are interested in; these are lexemes that were added
as semi-supervised data using just the lemma and a host.

Recording the token variables (T ,L,S) of the corpus is simpler since all of them are
clamped to a particular value at all times. To report the result at time m and corpus position
i we simply output the (t, l, s) tags that have been observed most frequently at this position
during the m time steps.

10Obviously, at a seat that has one or more customers w this probability is just 1 for the spelling of those
customers and 0 for all other spellings.
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4.6 Experiments

4.6.1 Experimental Design
In this section, we describe experiments and results on real-world data. The task is to

learn the inflectional morphology of a language.

4.6.1.0.1 DATA

Seed paradigms. We use the same inflectional paradigms as described in Sec-
tion 3.7.3.1 on page 72. To summarize here briefly, we use sets of 50 and 100 complete
seed paradigms. The smaller sets are subsets of the larger ones. Having sets of different
sizes enables us to obtain learning curves. For each size, we have 10 different sets, so that
we can get more stable, averaged results.

In each split, we have a test set of 5,415 lexemes in which the lemma is given and all
other forms are missing. These are the forms we will evaluate on.

For details, see Section 3.7.3.1.
Unannotated text corpus. The novelty in this chapter compared to Chapter 3 is that we

take advantage of and learn an unbounded number of paradigms discovered from additional
unannotated text data. In our experiments, we use subsets of the WaCky corpus (Baroni
et al., 2009), taking the first 1 million or 10 million words.

4.6.1.0.2 SIMPLIFICATIONS

In order to efficiently utilize large text corpora, we make two simplifications to our
probability model in Equation (4.1) on page 89: (1) Although the model is capable of
tagging the word sequenceW of the corpus with part-of-speech tags T as part of the infer-
ence, we condition on an observed, though noisy, tag sequence instead. This tag sequence
is delivered as part of the WaCky corpus and was automatically assigned using a part-of-
speech tagger. (2) We focus on finding verbal paradigms, so during inference we assign
(`, s) tags only to words marked in T as verb.

As described in Section 4.3.4 on page 93, we use the finite-state Markov Random Fields
that we developed in Chapter 3 to model inflectional paradigms. In particular, we use the
locally normalized version described in Section 3.3.2 on page 62, which allows for very
fast belief propagation.

The topology is star-formed, where the lemma form in the center is connected to all
other forms. Therefore, the probability of a paradigm can simply be expressed as

pθ(π) = pθ(x)
∏
i

pθ(yi | x) (4.18)

where x is the lemma form and yi are other forms in the paradigm π. Belief propagation is
fast in the associated factor graph because whenever a form yi is currently not observed—
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which is often the case during inference since most inflections of most verbs will never
occur in the text—the random variable does not have to send any message.

This star-formed directed graphical model over strings is different from what we re-
ferred to as separately predicting output forms from the lemma form in Chapter 3, since in
this chapter, the lemma forms are often unobserved. This is the case whenever we have
opened a new lexeme table and placed forms other than the lemma in it. In this case, there
is indeed information flow from all forms placed in the paradigm so far to all other so far
unobserved forms.

Note that some linguists argue for such a star-formed topology, where derived forms are
built by transforming a base into the desired form (Albright, 2002; Chan, 2006), as opposed
to derived forms influencing each other directly. We do not commit to any particular view
point and chose the base-centered approach here for greater efficiency.

4.6.1.0.3 INITIALIZATION OF THE SAMPLER

We initialize the variables and parameters of our model as follows:

• Initialize the θ parameters that define the distribution over paradigms, Dt by training
from the small number of observed seed paradigms (see Section 3.5).

• Initialize the φ parameters that define the lexeme-independent distribution over in-
flections uniformly at random from the interval [−0.01, 0.01].

• Initialize α and α′ to 1.

• Initialize L and S. The straightforward way to do this would be to draw L and S
from Equation 4.7 (T is here clamped to the observed T ), where the samples are
drawn in random order. However, we make two changes to obtain a better initializa-
tion:

1. p(Πt,`) is used in sampling to provide marginal probabilities of a spelling w at
a particular seat s of a particular lexeme `. We found in early experiments that
multiplying such marginal probabilities with a discriminatively trained proba-
bility distribution p(S | W ) gives a better initialization. This distribution is
trained from all (w, s) pairs contained in the seed paradigms. It is a simple
log-linear model, where the features f(w, s) fire on unigrams, bigram and tri-
grams of w.11 The feature weights for this simple maximum-entropy model
were trained using MegaM (Daumé III, 2004). Note that this distribution is
used only to obtain an initial tagging of the corpus, but not during inference.

2. We sample the initial ` and s for all corpus positions in the order of confidence:
First, determine that order by walking through the corpus positions in random

11w is annotated with a start and an end symbol.
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order and sampling ` and s values, but without actually tagging the corpus or
incrementing any counts in the Chinese Restaurant Process. Then, sort all posi-
tions by the probability of the drawn sample and obtain the actual initial tagging
of the corpus by sampling L and S in that order (still using p(S | W ) as de-
scribed above).
In this way, corpus positions that we are sure about get tagged first, and this will
help determining the ` and s tags for positions that we are less sure about. As
an example from English morphology, suppose we are initially not sure if cuss
is a third-person singular or a lemma form of some lexeme. If we tag words
we are confident about first and these include the word cusses, for which the
third-person singular tag is very likely, it will be easy to decide later that cuss
is the lemma form in the same paradigm that cusses was placed in.

Once all variables are initialized in the described way, we start training and decoding.
We do this on all 10 data sets.

We update θ every 5 iterations using L-BFGS (Liu and Nocedal, 1989a). The pa-
rameters α, α′ and φ are updated after every iteration. Maximizing α and α′ are simple
one-parameter optimization problems, which makes Brent’s algorithm (Brent, 2002) the
obvious choice. For updating φ we chose to run a few iterations of the RProp optimization
algorithm (Riedmiller and Braun, 1992).12 We avoided gradient descent for the optimiza-
tion problems here because of its need for a learning rate schedule.13

For sampling, we use the lexeme-based method with no additional intermediate sam-
pling steps, for speed.

These particular initialization and runtime settings have been determined to work well
in early experiments, where we trained on just the first two data splits and evaluated on the
corresponding development data.

4.6.2 Training π
Each of the probability distributions pθ(x) and pθ(yi | x) that constitute Dt (see Equa-

tion (4.6.1.0.2) on page 105) is modeled by a finite-state machine (Chapter 2). For training
θ, we consider the current state of the sampler, compute the marginal p(x) in each of
the currently active paradigms, which requires running belief propagation (Section 3.4 on
page 64) in all paradigms where X is not currently observed by a customer sitting at the
lemma inflectional seat. We then train all pθ(yi | x) separately, using the (p(x), y) pairs as
training corpus and maximizing Equation (2.4) on page 34.

12L-BFGS would have been a reasonable choice too, but it typically takes more iterations to converge than
RProp; for optimizing θ, L-BFGS was the only possibility because of the potentially divergent objective
function (see Section 2.8.2 on page 37).

13However, there exist variants that do not require such a schedule, e.g., (Crammer, Dekel, Keshet, Shalev-
Shwartz, and Singer, 2006).
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Note that from this training procedure we obtain an unnormalized finite-state machine
uθ(x, y)14 (see Section 2.2.2 on page 20), which can be normalized given a specific (dis-
tribution over) x, but is not a generally normalized distribution pθ(x) for all x. In order to
obtain such a normalized distribution we divide the finite-state transducer uθ(x, y) by the
normalizing machine uθ(x) =

∑
y uθ(x, y), which contains the normalization constants for

all x. That sum, however, obtained by projection, results in a big, highly non-deterministic
machine. Therefore we approximate it by constructing u′θ(x), which has bigram topology,
and minimizing the Kullback-Leibler divergence KL(uθ||u′θ). A pθ(y | x) obtained by
normalizing uθ(x, y) by u′θ(x) is only approximately normalized.

4.6.3 Results
Table 4.1 on the next page and Table 4.2 on page 110 show the results on running with

no corpus, versus with a corpus of size 106 and 107 words. The results are measured in
whole-word accuracy (Table 4.1) and average edit distance (Table 4.2).

As can be seen from the accuracy result (row “all”), just using 50 seed paradigms, but
no corpus, gives an accuracy of 89.9%.15 By adding a corpus of 10 million words we
reduce the error rate by 9.9%, corresponding to a one-point increase in absolute accuracy
to 90.9%.

A similar trend can be seen when we use more seed paradigms. Simply training on 100
seed paradigms, but not using a corpus, results in an accuracy of 91.5%. Adding a corpus
of 10 million words to these 100 paradigms reduces the error rate by 8.3%; this corresponds
to about half-point increase to 92.2%.

Compared to the large corpus, the smaller corpus of 1 million words goes more than
half the way; it results in error reductions of 6.9% (50 seed paradigms) and 5.8% (100 seed
paradigms). Interestingly, when we count how many of the spellings from all the 5,616
CELEX paradigms we use can be found in the smaller and in the larger corpus, we find
that the smaller corpus contains more than half the spellings that the larger corpus contains
(7,376 versus 13,572 of all 63,778 spellings).

As mentioned in Section 3.7, a baseline that simply inflects each morphological form
according to the basic regular German inflection pattern, reaches an accuracy of only 84.5%
and an average edit distance to the correct forms of 0.27. All improvements are statistically
significant; we used a pairwise permutation test (p < 0.05).

The improvements we have reported in this section so far are roughly similar to the
orthogonal improvements we reported in Section 3.7.16 Here we use a simple star-formed
factor graph topology, where messages flow from observed inflected forms through the
lemma to unobserved forms, but we use a large unannotated corpus in addition; there we use

14After composition with π−1x and π(y).
15This is the same accuracy number as shown in Table 3.1 on page 74 column sep, since we simply train a

star-formed factor graph on the seed paradigms.
16But see large differences in the token-based analysis below.
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no corpus but more complex factor graph topologies. These techniques could potentially
be combined to get further improvements. However, a more complex factor graph would
substantially slow down the inference process (Section 4.4 on page 96), which already takes
several days on a corpus of 10 million words.

50 paradigms 100 paradigms
Form 0 106 107 0 106 107

13PIA 74.81 78.31 81.49 81.39 82.04 84.68
13PIE 99.98 99.87 99.82 99.98 99.86 99.77

13PKA 74.67 77.75 81.95 81.15 81.55 83.56
13PKE 99.92 99.86 99.68 99.93 99.84 99.74
13SIA 84.24 84.79 84.61 85.82 85.71 83.53
13SKA 83.48 87.65 87.96 86.19 87.46 88.23
13SKE 99.75 98.11 98.73 99.68 99.71 99.41
1SIE 99.64 99.28 98.15 99.49 99.51 98.63
2PIA 83.98 81.84 81.97 85.87 84.92 85.26
2PIE 98.12 99.21 99.16 98.14 99.32 99.28

2PKA 83.03 79.61 77.16 85.15 85.39 84.36
2PKE 99.88 99.88 99.81 99.90 99.89 99.87
2SIA 83.75 83.32 82.53 85.78 85.99 85.98
2SIE 91.12 91.59 91.91 94.20 94.52 94.63

2SKA 82.23 82.35 82.66 84.98 85.30 85.13
2SKE 99.90 99.90 99.87 99.91 99.91 99.90
3SIE 93.88 95.76 95.91 94.41 95.80 95.94
pA 59.76 67.81 70.80 63.39 69.11 70.80
pE 99.38 99.38 99.37 99.39 99.39 99.38
rP 97.81 98.58 98.33 98.14 99.14 99.07
rS 98.67 98.40 97.88 98.71 98.98 98.82
all 89.89 90.61 90.92 91.49 92.04 92.17

Table 4.1: Whole-word accuracy on various morphological
forms. The numbers 0, 106 and 107 denote the size of the
corpus used. 50 (100) is the number of seed paradigms. All
results are statistically significant under a paired permutation
test, p < 0.05.
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50 paradigms 100 paradigms
Form 0 106 107 0 106 107

13PIA 0.42 0.36 0.32 0.34 0.32 0.29
13PIE 0.00 0.00 0.00 0.00 0.00 0.00
13PKA 0.43 0.37 0.32 0.35 0.34 0.31
13PKE 0.00 0.00 0.00 0.00 0.00 0.00
13SIA 0.43 0.41 0.39 0.40 0.39 0.40
13SKA 0.34 0.28 0.27 0.30 0.27 0.27
13SKE 0.00 0.01 0.01 0.00 0.00 0.00
1SIE 0.01 0.01 0.02 0.01 0.00 0.01
2PIA 0.39 0.42 0.44 0.36 0.38 0.37
2PIE 0.02 0.00 0.00 0.02 0.00 0.00

2PKA 0.33 0.38 0.43 0.31 0.30 0.34
2PKE 0.00 0.00 0.00 0.00 0.00 0.00
2SIA 0.39 0.39 0.42 0.36 0.36 0.37
2SIE 0.10 0.09 0.09 0.07 0.06 0.06

2SKA 0.34 0.34 0.34 0.31 0.30 0.31
2SKE 0.00 0.00 0.00 0.00 0.00 0.00
3SIE 0.07 0.05 0.05 0.07 0.05 0.05
pA 0.91 0.74 0.68 0.84 0.71 0.69
pE 0.01 0.00 0.00 0.01 0.00 0.00
rP 0.02 0.01 0.01 0.02 0.00 0.00
rS 0.02 0.02 0.03 0.02 0.01 0.01
all 0.20 0.19 0.18 0.18 0.17 0.17

Table 4.2: Average edit distance of the predicted morpholog-
ical forms to the truth. The numbers 0, 106 and 107 denote
the size of the corpus used. 50 (100) is the number of seed
paradigms. The numbers in bold denote the best model that
uses 50 (100) seed paradigms as well as statistically undis-
tinguishable ones.18

Token-based Analysis. We now conduct a token-based analysis of these results, similar
to the analysis in Section 3.7.3.2, see Page 76. We use the same frequency counts for
inflected forms, based on the 10-million-words corpus, see Page 76, and we use the same
five frequency bins (see Table 3.4 on page 77).

The analysis here reveals large performance gains for frequent verb inflections, which
tend to be more irregular (Jurafsky et al., 2000, p. 49); such inflected forms can be predicted
much better after learning from an unannotated corpus. On inflections that occur more
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50 paradigms 100 paradigms
Bin 0 106 107 0 106 107

1 90.50 90.95 91.29 92.09 92.41 92.58
2 78.07 84.51 84.42 80.17 85.51 85.06
3 71.64 79.28 78.08 73.29 80.18 79.09
4 57.35 61.36 61.77 57.35 62.04 59.86
5 20.73 25.00 25.00 20.73 25.00 25.00

all 52.58 57.47 57.79 53.41 58.48 57.76

Table 4.3: Token-based analysis: Effect of a using an unannotated corpus (106 or107 words)
on whole-word accuracy of predicted inflections, separated into frequency bins. (Bin 1:
least frequent, most regular.)

than 10 times in the large corpus (see Page 77), the 1-million-words corpus increases the
absolute prediction accuracy by 6.4%, 7.6%, 4.0% and 4.3% (see Table 4.3, Frequency
Bins 2, 3, 4 and 5) when 50 seed paradigms are used. When 100 seed paradigms are used,
the absolute gains are similar, though slighly smaller (5.3%, 6.9%, 4.7%, 4.3%).

Surprisingly, the gains that we observe from the 10-million-words corpus are often
smaller than the gains from the 1-million-words corpus. On more frequent forms, the large
corpus does increase the performance of the no-corpus baseline, but often by not as much
as the smaller corpus. This may indicate that the model cannot utilize the corpus perfectly;
it learns regularities at the cost of some irregularities, which hurts it in this token-based
analysis. We expect that further improvements to the model (see Section 4.8 on page 118)
would result in a more steady learning curve across all frequency bins.

In general, however, adding a corpus, be it 1 or 10 million words, increases the predic-
tion accuracy across all frequency bins, often dramatically. The performance on the less
frequent inflections in Bin 1 increases steadily as we increase the size of the corpus from 0
to 1 to 10 million words. The performance on the more frequent, more irregular inflections
increases greatly, especially when the 1-million-words corpus is used.

Note that, by using a corpus, we even improve our prediction accuracy for forms and
spellings that are not found in the corpus, i.e., novel words.19 In the token-based analysis
above we have already seen that prediction accuracy does increase for forms that are never
or extremely rarely found in the corpus (Bin 1). We add two more analyses that more
explicitly show our performance on novel words.

• We find all paradigms that consist of novel spellings only, i.e. none of the correct
spellings can be found in the corpus.20 The whole-word prediction accuracies for

19The reason for this is that we update the general FST parameters φ based on the spellings of corpus
samples.

20This is measured on the largest corpus used in inference, the 10-million-words corpus, so that we can
evaluate all models on the same set of paradigms.
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the models that use corpus size 0, 1 million, and 10 million words are, respectively,
94.0%, 94.4%, 94.4% using 50 seed paradigms, and 95.1%, 95.4%, 95.3% using 100
seed paradigms.

• Another, simpler measure is the prediction accuracy on all forms whose correct
spelling cannot be found in the 10-million-word corpus. Here we measure accu-
racies of 91.6%, 92.1% and 91.9%, respectively, using 50 seed paradigms. With 100
seed paradigms, we have 93.0%, 93.5% and 93.3%. The accuracies for the models
that use a corpus are higher, but do not always steadily increase as we increase the
corpus size.21

By definition, the novel words that we just tested on are rare; their spellings do not occur
in the large corpus. One might wonder why the accuracy on such, presumbably relatively
regular forms is below 96%. We look at the errors that the models make.

Table 4.4 on the next page shows some typical errors that the models without a corpus
make and that are fixed in the models that use a corpus; the listed errors are on novel words.
Most errors are due to an incorrect application of an irregular rule that was learned from the
seed paradigms. The corpus model learns not to apply these rules in many cases. The seed
paradigms are not very representative since they are drawn uniformly at random from all
types in CELEX.22 But from a corpus the model can learn that some phenomena are more
frequent than others.

Even if the prediction accuracy is overall higher when a corpus is used in addition to the
seed paradigms—there are also errors that are introduced from the use of a corpus. Such
errors are shown in Table 4.5 on the following page. Here, often a form that is found in the
corpus is used instead of the correct one.

For example, the past participle form of bitzeln was predicted to be besselt. The correct
form would be gebitzelt, but that does not occur in the corpus, while besselt does occur. The
pair (bitzeln, besselt) is also morphologically somewhat plausible considering the correct
pair (sitzen, gesessen) in German.23 Similarly, salierten was predicted as a past-tense form
of silieren. The correct form silierten does not occur in the corpus, while salierten does.
Salierten is somewhat plausible due to the common i→ a change, as in (bitten, baten),
so the morphological grammar did not give a very strong signal to prevent salierten from
being (mis-)placed in the silieren paradigm.

Overall, the errors in Table 4.5 help explain why the edit distance results in Table 4.1
improve by only small fractions while the corresponding whole-word accuracy improve-
ments are greater (Table 4.2): The corpus models make fewer errors, but the erors they do
make can be more severe. In some cases, the corpus component may force a corpus to-
ken into a paradigm slot where the finite-state parameters otherwise would have generated
a spelling that is closer to the truth. On the other hand, we have seen that the corpus is

21The differences are statistically significant, according to the paired permutation test, p < 0.05.
22In the future, we might want to experiment with more representative seed paradigms.
23In both pairs, we have the changes i→ e and tz→ ss.
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Form Error (no corpus) Correct Explanation
aalen, 2PIA aieltest aaltest ie as in (halten, hieltest)
flügeln, pA flügelt geflügelt no ge- as in (erinnern, erinnert)
welken, pA gewolken gewelkt wrong analogy to (melken, gemolken)
prüfen, 2SIA prüfst prüftest no -te- as in (rufen, riefst)

Table 4.4: Novel words and typical errors that a no-corpus model makes. These errors are
corrected in the model that has learned from a corpus. Most errors come from an incorrect
application of some irregular rule picked up from the seed paradigms (see the Explanation
column).

Form Error (corpus) Correct Explanation
bitzeln, pA besselt gebitzelt used corpus token
ringeln, 13SIE riegle ring(e)le unclear; incorrect rule
silieren, 13PIA salierten silierten used corpus token
bearbeiten, 2SIA bearbeitest bearbeitetest bearbeitest is frequent

Table 4.5: Novel words and typical errors that a corpus model makes. These errors are not
made by the no-corpus baseline model. Often, a spelling that can be found in the corpus
was preferred instead of the correct spelling.

often helpful in providing evidence on how high certain irregular constructions should be
weighed in the morphological grammar.

This concludes our analysis. The token-based analysis we have conducted in this sec-
tion shows the strength of the corpus-based approach presented in this chapter; we have
seen large gains especially on more frequently occurring forms (Table 4.3 on page 111).
The corpus as part of the overall graphical model (see Figure 4.2 on page 88) often plays
a corrective role; it fixes the predictions that the integrated string-based Markov Random
Field (MRF) from Chapter 3 makes. The MRF is good at learning the morphology di-
rectly from the seed paradigms; but the few seed paradigms cannot give much evidence
of the complex rules and exceptions that would be necessary to correctly predict regular
and irregular verbs; often irregular rules are applied too broadly or indistinctly. Integrating
a corpus addresses that insufficiency; the corpus implicitly contains much more evidence
than the sample paradigms. Building a joint model that combines the string-based MRFs
and corpus-based methods into a single joint model combines the strengths of both models,
and even if the corpus currently introduces some new errors, the overall prediction accuracy
improves.
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4.6.4 Some Statistics about the Inference Process
Here we briefly list some statistics that show how corpus size affects the inference

process in our experiments: When we use the 10-million-words corpus, each lexeme has 88
customers on average; while each lexeme has only 11 customers with the 1-million-words
corpus. With 10 million words, 1,516 of the 5,415 tables remain empty;24 with 1 million
words that number increases to 2,978. Still, most inflectional seats are empty: 96,758 of
113,715 inflectional seats are empty when using 10 million words, while 107,040 are empty
using 1 million words.

4.7 Related Work
We have described a generative, non-parametric approach to the semi-supervised dis-

covery of morphological paradigms from plain text, which is based on a probability model
over the text, its hidden lexemes, paradigms, and inflections. We emphasize that our model
seamlessly handles nonconcatenative and concatenative morphology alike. We now com-
pare our approach to other methods of unsupervised or semi-supervised discovery of mor-
phological knowledge from text.

4.7.1 Concatenative Approaches
Most previous work on unsupervised morphological discovery has modeled concate-

native morphology only, making the simplifying assumption that the orthographic form
of a word can be split neatly into stem and affixes. This, of course, is inappropriate for
many languages (Kay, 1987), even for English, which is morphologically relatively im-
poverished, but has stem changes, consonant doublings and other irregular phenomena.
However, concatenative morphology has proved to be a useful modeling assumption that
made much progress in morphological knowledge discovery possible. Such work is often
concerned with segmenting words of a corpus into their morphemes, or smallest mean-
ingful units, thus unsupervisedly learning the morpheme inventory of a language. Some
approaches cluster such morphemes into groups. A group of affixes can be regarded as a
simple form of inflectional paradigm, as described below.

(Harris, 1955) was the first to automatically find morpheme boundaries and segment
words accordingly. He proposed that, at any given point in a word, a morpheme boundary
is likely if there is a large set of possible next letters, given an unannotated text corpus. As
an example, in the word deny it is immediately clear that there is a morpheme boundary
between den and y because other letters can occur after den-, as in denies and denial.
Almost twenty years later, this approach was reinterpreted in information theoretic terms

24Remember that every paradigm that we evaluate on has a reserved, initially empty table during inference
(see Section 4.5.3 on page 101).
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by (Hafer and Weiss, 1974), who measured the confusability of possible next letters with
conditional entropy and other measures.

Later (Déjean, 1998) integrated these distributional ideas into a bootstrapping procedure
similar to Yarowsky (1995): He first used Harris’ method to find common prefixes and
suffixes in a corpus. For example, -ing was extracted as a common suffix because the letter
before -ing is very unpredictable—it could be almost any letter in the alphabet. He then
expanded this initial list by extracting other prefixes and suffixes in the corpus that appear
at similar places as the affixes already found in the first step. As a final step, he used this
expanded affix list to segment all words in the corpus.

Another frequently used approach to morphological segmentation is based on the Min-
imum Description Length (MDL) principle (Rissanen, 1989), which has its roots in infor-
mation theory and learning theory. According to this principle, we can think of segmenta-
tion as a way of compressing the corpus. Each segment is assigned a codeword. The best
segmentation of a corpus is the one that allows for the shortest codewords as well as the
shortest corpus when it is expressed using the codewords. There is a trade-off involved: To
find the shortest codewords one would, in the extreme case, assign each letter its own code;
to find the shortest corpus one would, in the extreme case, assign the whole corpus a single
codeword. The objective is to find the ideal balance.

(Brent, Murthy, and Lundberg, 1995) apply MDL to find the most common suffixes in
a corpus. They assume that each word consists of a stem and a (possibly empty) suffix.
They consider a list of candidate suffixes ranked by the ratio of the relative frequency of
the sequence (e.g., -ing) and the frequency of its individual letters (i, n, g). Then they test
suffixes in that order and pick them greedily if they decrease the description length.

(Goldsmith, 2001b) uses MDL as well in his Linguistica analysis system. He finds
what he calls signatures—sets of affixes that are used with a given set of stems, for ex-
ample (NULL, er, ing, s). The number of found signatures is very large. (Monson, Lavie,
Carbonell, and Levin, 2004) reduces such large numbers of signatures by connecting signa-
tures in a network, where signatures that share affixes are connected, and applying heuristic
pruning strategies based on occurrence counts.

An interesting variant of Goldsmith’s work is (Goldwater et al., 2006), which is a prob-
abilistic variant of Goldsmith’s model. It is related to our model in that it is a Bayesian
approach that uses Gibbs sampling for inference. It performs morphological segmenta-
tion of an unsupervised corpus, allowing only a stem and one suffix for each word. A
word is generated by first picking a conjugation class, then picking a stem given the class,
then picking a (possibly empty) suffix given the class. There are infinitely many classes,
stems, and suffixes; they are modeled by Dirichlet distributions. For a given word, any
position (presumably starting after the first letter) is considered as its segmentation point.
(Naradowsky and Goldwater, 2009) later extended this model to be able to handle sim-
ple nonconcatenative phenomena as well through the use of spelling rules (see discussion
below).
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(Snyder, Naseem, Eisenstein, and Barzilay, 2008) and (Johnson, Goldwater, and Grif-
fiths, 2008) use Bayesian approaches to segmentation as well. (Snover and Brent, 2001)
unsupervisedly discover sets of affixes.

(Creutz and Lagus, 2002) propose two models for segmentation, one based on MDL,
one based on maximum likelihood.

(Poon, Cherry, and Toutanova, 2009) use a global log-linear model for morphological
segmentation, in which they add global priors to the objective function that are reminiscent
of the MDL principle: A lexicon prior favors a small lexicon length, defined as the total
number of characters in the morpheme lexicon. This simultaneously reduces the number
of morpheme types as well as their respective lengths. And a corpus prior favors a corpus
segmentation in which words are split into as few morphemes as possible. Note that these
two priors pull the segmenter into different directions: The lexicon prior favors shorter
morphemes to keep the lexicon simple, while the corpus prior favors longer morphemes to
avoid over-segmentation of the words in the corpus. The model is trained on unsupervised
data to maximize the objective function, finding a balance between these priors.

In the annual Morpho Challenge (Kurimo, Virpioja, Turunen, and Lagus, 2010), partici-
pants compete in a morphological segmentation task; ParaMor (Monson, Carbonell, Lavie,
and Levin, 2007) and Morfessor (Creutz and Lagus, 2005) are influential contenders.

(Chan, 2008) presents a morphology model called base-and-transform that consists of
lexical categories, morphological base forms (lemmas) and simple suffix rules (transforms)
that convert a base form to a derived (inflected) form, e.g., -e → -ing. The vocabulary
is clustered into base words, derived words and unmodeled words. In earlier work, Chan
(2006) learns sets of morphologically related words using Latent Dirichlet Allocation (Blei,
Ng, and Jordan, 2003). He calls these sets paradigms but notes they are not substructured
entities, like the paradigms we model in this thesis. The paradigm discovery in Chan’s
work is restricted to concatenative and regular morphology.

4.7.2 Nonconcatenative Approaches
Morphology discovery approaches that handle nonconcatenative and irregular morpho-

logical phenomena are more closely related to our work; they are rarer.
Yarowsky and Wicentowski (2000a) present an original approach to identify inflection-

root pairs in large corpora without supervision. This approach is able to align even highly
irregular pairs like take, took through the use of distributional clues. The motivating
example for the main idea is the verb sing and two possible past-tense candidates, the
irregular sang and the regular singed. How can we decide without supervision which
one is the correct past tense of sing? Both occur in corpora (the latter as past tense of
the verb singe), so both may be plausible. An important insight of their approach is that
the frequency ratios of a root to its past tense are relatively stable across different lexemes.
Therefore, the frequency ratio of regular word pairs like walk and walked, which are easy
to identify, should be roughly similar to the frequency ratio of sing to its correct past

116



CHAPTER 4. DISCOVERING MORPHOLOGICAL PARADIGMS

tense. Measures based on such frequency ratios are used as one of several features that
guide the identification of root-inflection pairs. Other features are based on (distributional)
context similarity, string edit distance, rewrite rule probabilities including stem changes
and suffixes, and the pigeonhole principle. This principle says that (1) a root should not
have more than one inflection of a certain part-of-speech tag, and (2) different inflections of
the same part-of-speech tag should not have the same root. In our work, we use (1), which
is, in our terminology, a paradigm should not have more than one spelling in a given cell.25

This principle can simplify a model and is almost always appropriate, although there are
some exceptions like the alternative forms dreamed and dreamt, as noted in (Yarowsky
and Wicentowski, 2000a).

(Schone and Jurafsky, 2001) take a large corpus and extract whole conflation sets, like
"abuse, abused, abuses, abusive, abusively, ...". They use surface word similarity as well
as distributional similarity as clues, which enables them to extract irregular forms as well.
(Baroni, Matiasek, and Trost, 2002) have a similar objective, but they use mutual informa-
tion as a measure of semantic similarity, proposing that words that occur near each other
are semantically related.

(Naradowsky and Goldwater, 2009) is an extension of the Bayesian model in (Gold-
water et al., 2006), described above, to some simple nonconcatenative cases. They add
spelling rules that apply to the morpheme boundary in a word; such a rule can be an in-
sertion or a deletion of a character (but not a substitution). That way, they can analyze
shutting, which contains consonant doubling, as having the stem shut and suffix -ing,
with an insertion rule applied to the boundary. Simpler, purely concatenative models like
the ones described in the previous subsection would have to analyze as either shutt and
-ing or shut and -ting, both of which are wrong. The model in (Naradowsky and Gold-
water, 2009) is similar to ours in that it models some nonconcatenative processes, although
in a much more restricted manner, and is a Bayesian non-parametric approach. As in our
work, Gibbs-sampling inference and empirical Bayes hyperparameter estimation are used.

In summary, we have first contrasted our work against previous work in morphologi-
cal knowledge discovery that reduces morphology to its purely concatenative properties.
We have then described that some authors advanced the state of the art by using token
frequency, context similarity and simple spelling rules to model irregular and nonconcate-
native morphology. Compared to these approaches, ours is partially less and partially more
advanced. In terms of spelling and transformation rules, our approach is by far the most
flexible and adaptable of all, capable of learning any finite-state transformation between
words in a flexible probability model that allows for linguistic features. On the other hand,
we have not added frequency and contextual information to our model, but we regard this
as an interesting opportunity for future work (Section 4.8.2 on page 119).

25In (Yarowsky and Wicentowski, 2000a), the part-of-speech tags are the commonly used Wall Street
Journal tags which mark some inflectional forms, like 3rd person, or past participle. In our work, the part-of-
speech tags are coarse (Section 4.3.1 on page 90), but are then subsequently split by the inflectional forms,
s.
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Of all the approaches we listed, none has attempted to model highly structured inflec-
tional paradigms that exactly specify the spellings of all inflectional forms of the lexemes of
a language. Describing such paradigms in a well-defined probability model that allows for
arbitrary, nonconcatenative morphological processes, equipped with an inference algorithm
that works on large corpora is the main contribution of this work.

4.8 Remaining Challenges and Future Work
As described above, we believe our model (4.1) is a solid account of handling inflec-

tional morphology in a principled generative framework. Furthermore, we think this dis-
sertation could be a starting point to continue and explore this work further into different
directions.

4.8.1 Topic Models
Integrating topic information might be a useful extension of the presented work. If

each word in the corpus were tagged with a topic, we could exploit this as a signal for
better clustering behavior. As an example, consider a paradigm currently filled with the
spelling break. It might, due to a flat or wrong distribution Dt over paradigms, have a
low probability for the irregular broke as its past tense. However, one would hope that the
topic distributions of break and broke were similar, providing a signal that broke should
rather be in the break paradigm than in other candidate paradigms.

A specific way to integrate topics would be to run Latent Dirichlet Allocation (LDA;
Blei et al., 2003) or a similar unsupervised topic model on the text corpus first. This will
give each word token an observed topic, which it brings with it to the table and seat that
it picks during the sampling inference algorithm. This information can be used to split the
tables, which have already been split into inflectional seats, further, along the topics that
its customers bring. The more customers at a certain table have a certain topic the more
likely it is that a new customer with the same topic will sit down there. This model would
be another instance of a hierarchical Dirichlet process, with a fixed number of classes, like
in the inflection case (Section 4.3.3 on page 93).

It would also be possible to use the distributions p(word | topic) obtained from LDA as
base distribution for a Dirichlet process over topics. In this case, we use the topic tagging
that we get from LDA as initialization only. Our Gibbs sampler would now be able to
resample the topic of a spelling: A customer that sits down in some seat at the table also
orders a certain individual dish (topic), in proportion to the base distribution and the number
of customers at this table already eating the same dish. From this process, we could hope
to get a better topic tagging of the corpus than LDA does because tokens with different (but
morphologically related) spellings can now influence each other, even over long distances,
since they sit together at different tables.
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4.8.2 Adding Context to the Model
Context is important for morphological disambiguation (Smith, Smith, and Tromble,

2005). It is particularly important for unsupervised learning of morphology, since there
may be several types of external (“syntagmatic”) as well as internal (“paradigmatic”) clues
to the correct analysis of a word, and these can effectively bootstrap one another during
learning (Yarowsky and Wicentowski, 2000b).

In particular, inflections can be predicted to some extent from surrounding inflections,
lexemes, and tags. Verbs tend to agree with their preceding nouns. We see that broken is a
past participle because like other past participles, it is often preceded by the lexeme �h�a�v�

(or simply by the particular word has, a pattern that might be easier to detect in earlier
stages of learning). Immediate context is also helpful in predicting lexemes; for example,
certain verb lexemes are associated with particular prepositions.

Lexemes are also influenced by wide context. singed is not a plausible past tense for
sing, because it is associated with the same topics as singe, not sing (Yarowsky and
Wicentowski, 2000b).

How can we model context? It is easy enough to modulate the probability of the sam-
pler state using a finite number of new contextual features whose weights can be learned.
These features might consider inflections, tags, and common words. For example, we
might learn to lower the probability of sampler states where a verb does not agree in num-
ber with the immediately preceding noun. This is simply a matter of multiplying some
additional factors into (4.1) and renormalizing. This yields a Markov random field (MRF),
some of whose factors happen to be distributions over lexemes. The sampler is essentially
unchanged, although training in a globally normalized model is more difficult; we expect
to use contrastive divergence for training (Hinton, 2002).

It is more difficult to incorporate lexeme-specific feature templates. These would lead
to infinitely many feature weights in our non-parametric model, leading to overfitting prob-
lems that cannot be solved by regularization. Such feature weights must be integrated out.
Three basic techniques seem to be available. We can use richer non-parametric processes
that still allow collapsed sampling—e.g., we can use a Hierarchical Dirichlet Process (Teh,
Jordan, Beal, and Blei, 2006) to make lexeme probabilities depend on a latent topic, or
a Distance-Dependent CRP (Blei and Frazier, 2009) to make lexeme probabilities depend
on an arbitrary notion of context. We can multiply together several simple non-parametric
processes, thus generating the lexemes by a product of experts. As a last resort, we can
always do uncollapsed sampling, which integrates over arbitrary lexeme-specific parame-
ters by including their values explicitly in the state of our MCMC sampler. The sampler
state only needs to represent the parameters for its finitely many non-empty tables, but
reversible-jump MCMC techniques (Green, 1995) must be used to correctly evaluate the
probability of moves that create or destroy tables.
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4.8.3 Derivational and Agglutinative Morphology
The work we have presented deals with inflectional morphology; our model can change

the spelling of words to reflect different morphological properties like number, person,
tense, etc. However, these changes do not affect the part of speech of a word. There can be
one paradigm for the verb to act, and another for the noun action, and yet another one for
the adjective actionable; they are unrelated. In each each of these paradigms then, the typ-
ical verb, noun or adjective transformations apply. Derivational morphology, on the other
hand, is concerned with changing the meaning of words by applying transformations that
may change their parts of speech, e.g., relating the verb to act to the noun action, or the ad-
jective happy to the noun happiness. In future work, we could include such transformation
in our model. We could use the separate inflectional paradigms that we have described in
this and the previous chapter and add derivational factors that describe the typical deriva-
tional relationships, connecting noun, verb and adjective paradigms. Figure 4.4 on the next
page shows an example, where simple derivational factors turn the adjective wide into the
nouns width and wideness and the verb widen. Each of these paradigms for width, wideness
or widen is then a standard inflectional paradigm.

Note that further derivational factors can create longer and more exceptional variants,
such as a factor that changes wideness into widenessless, and widenessless into wideness-
lessness, and so forth. Each of these behaves like a standard noun; there is no particular
cell for a -less noun, for example.

At this point, it becomes clear that this is also the way we propose to model aggluti-
native morphology in languages like Finnish or Turkish. These languages often use words
like unsystematicalness (epäjärjestelmällisyys in Finnish), which can be modeled in our
framework with several inflectional paradigms connected by derivational factors that turn
the noun system, which has its own inflections, into the adjective systematic, which also
has its own inflections, and into another adjective systematical, and so on. To summarize,
there is no one cell that describes all morphological properties of epäjärjestelmällisyys;
rather it is modeled as a normal noun, which is derived from a negated adjective, which in
turn is derived from an adjective, etc. That way, we avoid the combinatorial explosion of
morphological properties in agglutinative languages.

4.8.4 Identifying Free-floating Verb Prefixes
In German, some verbs may be prepended with a prefix like ab-, an-, auf-, weg-, as

in ablegen, anlegen, auflegen, weglegen. These prefixes may be detached in a main
clause, for example:

• Wir legen ab. (’We put off, take off, . . . .’)

• Wir legen an. (’We put on, invest, connect, . . . .’)

• Wir legen auf. (’We hang up.’)
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width
singular

widths
plural

Noun

widen
infinitive

widens
third singular

widening
pres. participle

widened
past

Verb

wide

wider
comparative

widest
superlative

Adjective

wideness
singular

widenesses
plural

Noun

Derivational factors

Figure 4.4: Derivational morphology in our framework: Derivational factors connect dif-
ferent inflectional paradigms with one another, encoding typical transformations, such as
appending the suffix -ness to a verb to create a noun. Each inflectional paradigm is then
modeled in the standard way (see, e.g., Figure 3.3 on page 62).

• Wir legen weg. (’We put away.’)

These detachable prefixes may be far away from the verb in the sentence. Our model,
as presented in this chapter, will recognize the main verb (e.g., legen) and separately treat
ab-, an-, etc. as unrelated particles or conjunctions. We did not include a mechanism to
identify legen ... ab as belonging in the same lexeme as (ablegen, ablegte, . . . ).

The simplest way to do this would be to preprocess the data and reattach the prefix to
its verb, changing legen ... ab to ablegen before inference begins. The reattachment
model could be a simple binary classifier or a dependency parser; the latter will provide the
desired dependency information by design.

It would also be possible to integrate a dependency parser directly into our joint proba-
bility model. This would change the generative story such that, to generate a sentence, we
first pick a dependency structure, then proceed as before (see page 89): pick part-of-speech
tags for the leaves, then pick lexemes and inflections and look up the corresponding word
forms in the generated inflectional paradigms.

4.9 Summary
This chapter has attempted to formulate a clean framework for inducing inflectional

paradigms by statistical inference. Our model is distinguished by the fact that we consider
a prior distribution over entire structured paradigms and do not require inflection to be
concatenative. Our work also incorporates non-parametric modeling techniques to capture
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the notion of a potentially infinite vocabulary of inflectable lexemes, generalizing Goldwa-
ter et al. (2006)’s potentially infinite vocabulary of individual words. Practically, we have
shown that we are able to run our sampler over a large corpus (10 million word tokens),
which reduces the prediction error for morphological inflections by 10%. Especially for
more frequent, irregular inflections, our corpus-based method fixes many errors, increasing
absolute accuracy by up to 8%.
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Chapter 5

Conclusion

This concludes our presentation of novel probabilistic models for computational mor-
phology. In the three preceding chapters we have, step by step, presented a series of increas-
ingly complex and powerful models suited to learn morphological properties of a natural
language.

5.1 Contributions of Chapter 2
We started in Chapter 2 with the goal of developing a simple and robust framework

for modeling strings or string pairs. This framework is general enough to model many
string-to-string problems in natural language processing and neighboring disciplines (e.g.,
computational biology). Given the scope of this thesis we mainly focused on modeling
tasks in morphology, like inflecting or lemmatizing verbs, but also showed that we can use
the same model to reach high performance on a task like transliteration. In our framework,
many types of language properties can be learned from annotated or unannotated data. We
have shown:

• that string-to-string alignments are learned as a natural part of that model,

• that linguistic properties and soft constraints can be expressed and learned, which
may refer to parallel character sequences in the strings to be modeled, to vowels/
consonant sequences, general language model properties of the form to be generated,
sequences of identities versus substitutions, etc. Examples of such soft constraints
include:

– prefer CVC,

– prefer identity between input and output,

– transform -ing to -e or transform -ing to ε (useful in lemmatization),

– transform -eak- to -ok- in one conjugation class, but leave -eak- unmodi-
fied in another,
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– make certain vowel changes in certain regions,

– and tens of thousands more.

• that conjugation classes can be learned from data without annotation,

• that string (pair) regions can be learned without annotaton, determining where certain
vowel change, suffix or other regions start and end.

We have carefully investigated the learned models and found that many learned prop-
erties have the form of short rewrite rules that one might find in a grammar book (see
Section 2.9.2.3 on page 49 and Appendix B on Page 135.

All such information is encoded in a conditional log-linear model, in which the pre-
dicted string forms may have arbitrary length. This distinguishes our model from simple
linear-chain Conditional Random Fields (CRFs), where the output variables are fixed given
the input and are always enumerable. Since our approach is finite-state-based, it can gen-
erate output strings of different lengths (without having to impose artificial upper bounds)
using a finite number of states.

Our model is a probability model over strings. As such, it can be used to score string
hypotheses, generate k-best string output, or it can be plugged into other probability models
as a component. In this thesis, we made heavy use of the latter property, as we reused it in
all proability models of the following chapters.

The presented string model is surprsingly simple and performs very well. It is also
completely novel (at publication time, see Dreyer et al., 2008).

5.2 Contributions of Chapter 3
In Chapter 3, we extended the scope of our morphology models. While our model

from Chapter 2 was developed for string-to-string problems we were here concerned with
modeling whole morphological paradigms, which consist of 20 or more strings, all of which
are related to one another in some particular ways. We were interested in predicting whole
morphological paradigms for a given lexeme, or filling in empty paradigm cells, given
the neighboring cells—in short, building joint probability models over whole paradigms.
No suitable models for these tasks existed, so we developed a new one (first published in
Dreyer and Eisner, 2009).

The key idea was to bring together two known concepts: The finite-state-based mod-
els from Chapter 2 and graphical models from the machine-learning literature. Graphical
models are factored probability models in which the joint probability of interrelated random
variables is factored into manageable parts, which are then coordinated during inference,
in order to compute marginals and make predictions. The results of this combination is
a novel, finite-state-based variant of graphical models—graphical models over (multiple)
strings. In these models, the random variables range over strings of arbitrary length, and
the factors (potential functions) are finite-state machines.
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We also showed how to adapt a known inference algorithm for graphical models—
belief propagation—to work with string-based distributions and messages, locally negoti-
ating their various predictions.

Introducing string-based variable domains and finite-state-based factors into a graphical
model has far-reaching consequences for the power and expressivity of this formalism and
is a conceptually new idea: Factors in this model are not simple lookup tables of weights
for particular variable configurations; instead, they are functions whose values are com-
puted via dynamic programming. This new idea is potentially useful for other problems
in natural language processing: We know how to deal with many structures using dynamic
programming; the new variant of graphical models presented in this chapter can be a way
to make different dynamic programs interact with each other, where their predictions are
coordinated using belief propagation.

Taking a step back, a simple view of the novel work in this chapter is that, in order to
model multiple strings and their interactions, we built many (weighted) finite-state trans-
ducers (developed in Chapter 2), had each of them look at a different string pair, plugged
them together into a big network, and coordinated them to predict all strings jointly.

In this chapter, we also presented a novel way of structure induction for string-based
models, based on finding constrained graphs that minimize edit-distance between pairs of
string variables.

We then showed different ways of training the induced structures from supervised data
and showed experimentally that predicting cell content in morphological paradigms is usu-
ally more accurate in joint models than when predicted separately from a lemma form,
without modeling interactions between neighboring forms.

In short, the novel contributions in this chapter were the development of a string-based
variant of graphical models, a belief propagation algorithm that works with finite-state
acceptors, or messages over strings of unbounded lengths, investigations into the power of
this new formalism and a structure induction method for string-based graphical models.

5.3 Contributions of Chapter 4
In Chapter 4, we presented a novel, principled approach to learning the inflectional

morphology of a language. We developed a Bayesian non-parametric model that is a joint
probability distribution over ordinary linguistic notions, such as lexemes, paradigms and
inflections, and the spellings of a text corpus. We have shown that we can discover un-
bounded numbers of new paradigms from text by clustering its words into paradigms and
further into the different inflectional cells in the paradigms. Such clustering of the corpus
words results in partially observed paradigms; we maintain probability distributions over
inflectional forms that we do not find in the corpus.

Thanks to the methods we developed in earlier chapters, this becomes a manageable,
configurable system that makes use of trainable finite-state transducers (Chapter 2) and
finite-state-based graphical models over strings (Chapter 3) to model paradigms; it then
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uses other known methods in this new context, like the Dirichlet process and the Chinese
Restaurant process, to build and decode in a larger probability model over the unpredictably
large numbers of different lexemes and paradigms of a language, as observed from a large
text corpus. We ran inference on a corpus of 10 million words and achieved large reductions
of error rate for predicting inflectional paradigms.

The novel contributions in this chapter are a new, principled and configurable model
to learn structured inflectional morphology from text, the definition of a probability distri-
bution over an unbounded number of lexemes that are implicit and can be discovered in
text, a suitable generative story that explains the morphology of a text corpus, the use of
our novel string-based message passing inference methods as a way to collapse parts of the
Gibbs sampler, the combination of the Dirichlet process with finite-state graphical mod-
els over strings, a novel method to explicitly use only the relevant parts of a large corpus
while integrating out others, and in summary, a novel morphological knowledge discovery
method that models structured inflectional paradigms and seemlessly handles nonconcate-
native morphology.

5.4 Summary
In summary, this dissertation developed an integrated, generative, component-based

model for inflectional morphology that is capable of discovering inflectional paradigms
from text, with only minimal supervision.

We showed that the different components of the model itself provide novel contributions
to the field of natural language processing. The general string-to-string model component
is a new, principled way of performing inference over strings and predicting sequences
in morphology, transliteration and other natural-language tasks. The finite-state graphical
models over multiple strings are a novel way of building joint probabilities over strings and
predicting multiple output string jointly, and may, due to its highly general formulation that
generalizes concepts from the machine learning literature, find other uses in related fields
like historical linguistics and computational biology.

We showed that the overall model for inflectional morphology that we arrived at in
Chapter 4 is a novel and principled approach to semi-supervised morphological learning.
Not only can it be used to cluster the words of a large corpus into groups of morpholog-
ically related words, but also to further structure each of these morphological clusters, or
paradigms, such that each word is assigned its particular morphological inflection, e.g.,
past participle or third singular past, etc. Moreover, since most of these paradigms will
only be partially filled with words found in the text, the presented model maintains prob-
ability distributions over all other possible inflections in the paradigms. To illustrate, the
model might find the words shaken and shakes in the text, cluster them together as related
forms, or members of the same lexeme, assign the inflections past participle and third sin-
gular present to these words, and infer the exact spellings of all other inflections of shake,
such as the spellings for present participle, first singular present and others. In addition,
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the model can generate new complete paradigms for any previously unseen spelling. Our
model for these tasks is probabilistic and well-formed, and we present an effective statisti-
cal inference algorithm that can be used to learn from large text copora.

Much work has been done in minimally supervised or semi-supervised discovery of
morphological properties in language, but we do not know of any other work that attempts
to learn and discover the hidden structured inflectional paradigms from text. We think this
model is an interesting and useful contribution for several reasons:

First, we argue that it advances the state of the art in computational morphology, by
introducing a plausible generative model for the inflectional morphology of a language that
is based on common linguistic notions like lexemes, paradigms and inflections. We have
formalized and modeled inflectional morphology in a way that explains the data as well
as allowing for efficient computation, while being able to model concatenative as well as
nonconcatenative morphology and irregularities.

Second, we think that the probability distributions reflecting morphological knowledge
learned from unannotated text corpora can be a useful resource and may be used in even
larger models in the future. In machine translation, for example, one wishes to generate text
in the output language that contains the morphologically correct word forms. The same is
true for any natural language generation task. Our model provides useful generalization for
such tasks: Most translation systems learn direct correspondences from inflected spelling
in one language to inflected spelling in the other, without generalizing to the underlying
lexemes. However, the detailed morphological knowledge that our model provides can be
used to reduce forms to their lexemes when learning the lexical correspondences between
languages and generate the correctly inflected spellings when producing target text in a
morphologically rich language.
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Generative regularization: Ensuring
proper distributions

In this appendix, we present a solution to a general problem that we encountered when
training finite-state machines by maximizing their conditional log-likelihood.

The problem is that, in the case of training a globally normalized conditional likelihood
model in general, just maximizing the objective function is not guaranteed to give good,
even finite, output on previously unseen test data.

Suppose, during training we never observe the input symbols leading to a certain state
in the finite-state model topology (e.g., in Figure A.1). If a cycle starts there, the training
objective may truly have no reason to reduce the weight of that cycle C. If C cannot be
reached while reading any x in training data, then the objective function does not depend at
all on the weight of that cycle. The regularization term will then prefer the arcs onC to have
weight 1 (for typical L2 or L1 regularization of θ). If the arcs on C share parameters with
other arcs, then as we learn to downweight ε-cycles that are reached in training data, we
may get lucky and learn parameters that downweight C sufficiently as well. However, there
is no guarantee of this. For example, the ε-cycles in training data may be downweighted
with the help of additional context features that do not happen to appear on C, and C may
not be sufficiently downweighted. In any case, one cannot count on such dynamics since
an adversary could design an FST in which C did not share parameters with other cycles,
or in which downweighting other cycles would upweight C.

In general, log-linear probability models have attractive mathematical properties (con-
vexity of (2.4)) and computational properties (dynamic programming when f(x, y) decom-
poses according to a decomposition of y).1 Let us write ṕ(x, y) for the “hybrid distribution”
p̃(x)p(y | x), where p̃(x) is the empirical distribution. Choosing the log-linear model is
sometimes justified theoretically by the observation (Berger, Della Pietra, and Della Pietra,

1More generally, we may introduce a latent variable w, such as a path in an FST, and define pθ(y | x) =
1

Zθ,x

∑
w exp(θ · f(x, y, w)). This sacrifices convexity but preserves dynamic programming. We avoid this

case for simplicity of exposition; it is not necessary if the FST is unambiguous, i.e., any (x, y) pair is accepted
along only one path.
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Figure A.1: This finite-state transducer represents a language model over input and output
characters. Each state separately keeps track of the most recent input and output character.
(We show only few states and arcs here for clarity.) When trained to maximize the condi-
tional likelihood of training data, it is not guaranteed to give finite-length output to all test
input. The state (#,#) is the start state.

1996) that among all conditional distributions p(y | x) such that Eṕ[f ] = Ep̃[f ], i.e.,∑
x,y

ṕ(x, y)f(x, y) =
∑
x,y

p̃(x, y)f(x, y), (A.1)

the one whose hybrid distribution ṕ has maximum entropy is the log-linear distribution pθ
with θ. However, we wish to point out that this observation is misleading:2 many other
conditional distributions have the same entropy. Indeed, the maximum entropy principle
only tells us to use the above conditional distribution p(y | x) for x that have been observed
in training. For the vast number of other x (where p̃(x) = 0), the choice of p(y | x) affects
neither the entropy of ṕ nor the constraints (A.1), so the constrained entropy maximization
objective leaves us free to choose it as we like.3 The solution described here is to propose
a stronger principle for choosing p(y | x).

2Our objection only applies to conditional maximum entropy training, not to the simpler case of training
an unconditioned model p(y) or a joint model p(x, y).

3In the constrained entropy maximization problem, setting the derivatives of the Lagrangian to 0 deter-
mines the choice of p(y | x) for p̃(x) 6= 0, but becomes a degenerate condition of the form 0 = 0 when
p̃(x) 6= 0.
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A.0.0.1 Diagnosis
In essence, this is an overfitting problem that results from not having seen enough values

of x in training data. With enough values of x, we would manage to explore all parts of the
FST and learn to downweight all of the problematic cycles, ensuring that θ was feasible.

Thus, the problem arises from training a large log-linear model with many sparse fea-
tures on data that does not actually exercise all of the features. Such training setups are
relatively common nowadays; one relies on L1 or L2 regularization for feature selection.
However, the FST example shows that this common approach can lead to pathological
results in the case of conditional likelihood training.

For joint likelihood training, the issue would not arise, since there would be a single
shared Zθ, independent of x, that is computed during training using all features and all
parts of the FST. The joint likelihood formulation is

argmax
θ

(∑
x,y

p̃(x, y) log pθ(x, y)

)
(A.2)

pθ(x, y) =
1

Zθ
expθ · f(x, y) (A.3)

Zθ =
∑
x′,y′

expθ · f(x′, y′) (A.4)

The optimization here will certainly avoid Zθ = ∞, since that would drive log pθ(x, y) =
log 0 = −∞ for any specific x, y, and hence drive the objective function (which we are
trying to maximize) to −∞ as well.

The reason to do conditional likelihood training is to avoid the need to design and train
a real model of p(x). Instead, we approximate such a model by the observed distribution
p̃(x) (cf. the bootstrap).

The pathological case above illustrates just how badly this strategy can go awry on
sparse data. However, training of p(y | x) may be arbitrarily bad even when Zθ,x does not
become infinite.

• For example, suppose that cycle C in our example above has weight that is only close
to 1 (but still < 1). Then pθ(y | x) will assign a high probability to many very long
strings y. The expected length E[|y|] under this distribution will therefore be very
high, perhaps much higher than anything that is reasonable from training data. The
pathological case is simply the limit where E[|y|] becomes infinite.

• Similar problems can arise even with finite Y , even though Zθ,x must then remain
finite. Consider the simple case where Y = {+1,−1}, so that Equation 2.4 is simply
conditional logistic regression. Greenland, Schwartzbaum, and Finkle (2000) write:
“It does not appear to be widely recognized that conditional logistic regression can
suffer from bias away from the null value when it is used with too many covariates
[features] or too few matched sets [training examples].”
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It has been noted empirically that generative training tends to beat conditional training
on small datasets. Perhaps this discussion sheds some light on why. However, conditional
training also has advantages. In conditional training, we are not using the parameters θ to
try to match the distribution p̃(x), which means that it is okay to have a simple model that
does not try to model x (which may be rather complex!) and focuses only on modeling y
and the relation between x and y. Training such a simple model jointly would distort the
conditional distribution in order to do a better job of predicting x.

A.0.0.2 Solution as Optimization Problem
Our hybrid approach is to maximize Equation 2.4 as before, but now subject to the

constraint
Epθ [g] ≈ Ep̃[g], (A.5)

that is, ∑
x,y

pθ(x, y)g(x, y) ≈
∑
x,y

p̃(x, y)g(x, y) (A.6)

While Equation 2.4 still cares only about the conditional pθ(y | x) (and that only for
observed values of x), the constraint pays attention to the full distribution pθ(x, y) (which
is defined by Equation A.3; the resulting conditional distribution pθ(y | x) is given by
Equation 2.4 as before).

The constraint is very similar to Equation A.1, except

• we are willing to allow an approximate match (as is done in the “soft” or “regular-
ized” version of Equation A.1),

• we are stipulating that the model be log-linear with features f , rather than deriving
that from constraints on features f and a maximum-entropy criterion,

• the constraints are on features g, not f ,

• the constraints use expectations under the full distribution pθ(x, y), not under a hy-
brid distribution.

Here g is a small set of features (perhaps a subset of f ) that is used to ensure that
our conditional distribution is sane. In particular, recall that Equation 2.4 without any
constraints may result in a distribution over output strings Epθ(y|x)[|y|] whose expected
length is unreasonably large or infinite. Suppose we define g(x, y)

def
= (|x|, |y|), and that

Ep̃[g] = (12, 15). Then the resulting constraints ensures that the output y will have length
15 on average (like the training outputs: Epθ [|y|] ≈ Ep̃[|y|] = 15)—when the input x is
sampled from pθ(x), which has itself been constrained to have length 12 on average (like
the training inputs: Epθ [|y|] ≈ Ep̃[|y|] = 12). pθ(x) may be regarded as a smoothed version
of p̃(x), which has the same expected length but is positive for all x ∈ X (assuming that
the parameters θ are regularized to remain finite in the usual way).
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Note that if g has dimension 0, then our method reduces to ordinary conditional likeli-
hood training (2.4).

A.0.0.3 Objective Function
To be precise, we would like to maximize

Λ(θ,λ) =
∑
x,y

p̃(x, y) log pθ(y | x) (A.7)

+ λ · (Epθ [g]− Ep̃[g])

(plus a regularizer on θ, which we omit for simplicity). Here, the interpretation of λ is that
λj > 0 iff Epθ [gj] is too small (compared to the empirical expectation Ep̃[gj]) and needs to
be increased.

If we want to enforce Epθ [g] = Ep̃[g] exactly, then λ represents a vector of Lagrange
multipliers (of the same dimensionality as g); these are to be optimized along with θ.4 Note
that the constraints are indeed exactly satisfiable in the case that g is a subset of f , since in
that case the joint maxent model would satisfy them exactly using a log-linear model with
features g being those having nonzero weight.

If instead we want to impose an L2 penalty on the difference Epθ [g] − Ep̃[g], then we
define λ = − 1

2σ2 (Epθ [g]− Ep̃[g]), so that λ is merely a function of θ. Similarly, if instead
we want an L1 penalty, then we define λ = −µ · sign(Epθ [g]− Ep̃[g]).

A.0.0.4 Gradient-based Optimization
A.0.0.4.1 EXPRESSION OF THE GRADIENT

It is instructive to write out an explicit representation of the gradient with respect to θ
(for fixed λ). After some expansion of definitions, rearrangement of summations, etc., we
find that

∇θΛ(θ,λ) = (A.8)∑
x,y

f(x, y) · [ p̃(x)(p̃(y | x)− pθ(y | x))

+ pθ(x, y)(λ · (g(x, y)− Epθ [g])) ]

Ascending this gradient means making θ more like the feature vector f(x, y) to the
extent that

• x is in training data and y is the supervised answer rather than the currently likely
answer

4We could also enforce the constraint approximately by using a slack variable and adding a penalty term
on that slack variable.
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• those g features whose expectations λ wants to increase (decrease) are respectively
larger (smaller) in (x, y) than their current expectation

The first bullet corresponds to the first term within [. . .], and is standard for conditional
likelihood training. The second bullet is our new addition, which pays attention to all x,
not just x in training data.

A.0.0.4.2 FINITE-STATE COMPUTATION

The summations
∑

x,y in equations (A.7) and (A.8) may be over an infinite set of string
pairs. We therefore wish to compute them using dynamic programming over finite-state
transducers.5

Assume that the feature vector function f can be computed by a weighted FST, in the
sense that that each FST arc is labeled with a feature vector and f(x, y) is the sum of these
feature vectors along the accepting path for (x, y).6 Assume likewise for g. (WLOG, the
same FST can be used for both computations, with two distinct feature vectors labeling
each arc.)

Then, for a fixed value of λ, we can use methods from (Li and Eisner, 2009a) to com-
pute the function Λ(θ,λ) and its gradient ∇θΛ(θ,λ). Our computation here is derived
from Equation A.7, not Equation A.8.

• First, it is necessary to compute log pθ(yk | xk) for each training example (xk, yk).
The numerator and denominator of pθ(yk | xk) are simply sums over the unnormal-
ized probabilities of all FST paths that accept (xk, yk) or xk, respectively. In the
notation of (Li and Eisner, 2009a), these are instances of computing Z.

• The gradient of log pθ(yk | xk) is

f(xk, yk)− Epθ(y|xk)[f(xk, y)] (A.9)

In the notation of (Li and Eisner, 2009a), the expectation is an instance of computing
r/Z.7

• The expectation Epθ [g], meaning Epθ(x,y)[g(x, y)], is likewise an instance of comput-
ing r̄/Z. (By contrast, Ep̃[g] is a constant that can be computed directly from training
data.)

5The approach in this section generalizes straightforwardly to synchronous grammars of any sort, such as
the hypergraphs in (Li and Eisner, 2009a).

6If there are multiple accepting paths, then f may be a function of the entire path; this takes us into the
latent-variable situation f(x, y, w) mentioned before.

7If there are multiple paths accepting (x,y), as discussed in passing earlier, then f(xk, yk) must be replaced
by an expectation over those paths, using another instance of r̄/Z.
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• Finally, Li and Eisner (2009a) also show how to compute the gradient of an expecta-
tion such as Epθ [g], using a “second-order expectation semiring.” This remains quite
efficient provided that either f or g has a small dimension, and in our setting we can
expect g to be small.

A.0.0.5 Following the Gradient
If λ is defined to be a function of θ, then we must augment the gradient by (∇θλ) ·

(Epθ [g] − Ep̃[g]). This is trivial to find using quantities already computed, when λ is
defined as discussed above for L1 or L2 regularization. It is now straightforward to use any
gradient-based optimizer, including a second-order optimizer.

If λ is taken to be a vector of Lagrange multipliers, then they must themselves be
adjusted during optimization. In a first-order gradient method, they should be updated
along the negation of the gradient, where the gradient is ∇λΛ(θ,λ) = Epθ [g] − Ep̃[g]. In
other words, to do our constrained maximization, we do gradient ascent on θ and gradient
descent on λ (Platt and Barr, 1988, sections 3.1–3.2).

A.0.0.6 Related Approaches
Related approaches include expectation regularization (Grandvalet and Bengio, 2004;

Mann and McCallum, 2007), where the expected conditional log probability on some un-
labeled data is maximized, and its generalized version, Generalized Expectation Criteria
(Mann and McCallum, 2010). Key differences to this paper are that the conditional proba-
bility is used, whereas we need generative regularization, and that a certain portion of un-
labeled data must be observed, whereas we generate all possible x in compact, smoothed
form and try to match their lengths as well as the expected lengths of corresponding out-
puts.
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Appendix B

Learned Lemmatization Rules

In this appendix, we show what our model has learned on the lemmatization task (Sec-
tion 2.9.2 on page 41). We show the highest-ranked features learned in the training process
for several languages.1

B.1 Basque Lemmatization

Rank Feature Feature (simplified)

1
(a,ε) a→
Ex.: elgarretaratzera→ elkarretaratu; elkarretaratzean→ elkarretaratu

2
(z,t) (e,ε) (ε,u) ze→ tu
Ex.: puntuatzeko→ puntuatu; konturatzeko→ konturatu

3
(z,t) (e,ε) (n,u) zen→ tu
Ex.: desegituratzen → desegituratu; gerturatzen → gerturatu; tortu-
ratzen→ torturatu

4
(z,d) (e,ε) (ε,u) ze→ du
Ex.: ihardukitzeak→ iharduki; erreproduzitzen→ erreproduzitu

5
(a,ε) (ε,a) a→ a
Ex.: irabazia→ irabazi; irabaziak→ irabazi; baloratzeko→ baloratu

6
(o,o) o→ o
Ex.: ondorioztatuko→ ondorioztatu; ondoriozta→ ondorioztatu

7
(n,n) n→ n
Ex.: mantentzen→ mantendu; engainatzen→ engainatu

8
(ε,t) (ε,u) (#,#) #→ tu#
Ex.: lur→ lurtu; lotuko→ lotu; lortzeagatik→ lortu

(continued on the next page)

1The numbers in some alignment characters denote the conjugation class or region; c2means conjugation
class 2, g5 means region 5.
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Table B.1: (continued)

9
(i,i) i→ i
Ex.: kontzientziatuta→ kontzientziatu; aurreiritzirik→ aurreiritzi

10
(ε,a) (a,ε) (ε,t) a→ at
Ex.: plante→ planteatu; sailkatze→ sailkatu; sailkatuko→ sailkatu

11
(n,n) (t,ε) (z,d) ntz→ nd
Ex.: mintzeko→ mindu; mantentzea→ mantendu; leuntzeko→ leundu

12
(z,d) (e,ε) (n,u) zen→ du
Ex.: mantentzen→ mantendu; zaintzen→ zaindu; apaltzen→ apaldu

13
(e,ε) e→
Ex.: patentatzearekin→ patentatu; bereganatzearekin→ bereganatu

14
(ε,e) (e,ε) e→ e
Ex.: betetzearren→ bete; betetzeke→ bete; asebetetzeko→ asebete

15
(t,ε) (ε,t) t→ t
Ex.: ustelduko → usteldu; usteltzen → usteldu; babestu-
takoen→ babestu

Table B.1: Lemmatization features for Basque

B.2 Dutch Lemmatization

Rank Feature Feature (simplified)

1
(ε,n) (#,#) #→ n#
Ex.: herkende→ herkennen; kende→ kennen; zweette→ zweten

2
(t,e) (e,ε) (n,n) ten→ en
Ex.: bedachten→ bedenken; ontsnapten→ ontsnappen

3
(g,ε) (e,ε) ge→
Ex.: toegelaten→ toelaten; aangetast→ aantasten

4
(ε,l) (l,l) (d,ε) ld→ ll
Ex.: gekweld→ kwellen; gestild→ stillen; gevuld→ vullen

5
(i,a) (e,ε) (ε,l) ie→ al
Ex.: vielen→ vallen; viel→ vallen; bevielen→ bevallen

6
(e,e) (e,ε) (r,r) eer→ er
Ex.: getempeerd→ temperen; getaxeerd→ taxeren

7
(ε,i) (e,j) e→ ij

(continued on the next page)
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Table B.2: (continued)

Ex.: afgeschreven→ afschrijven; prezen→ prijzen; grepen→ grijpen

8
(ε,e) (ε,n) (#,#) #→ en#
Ex.: onderhoud→ onderhouden; ruim→ ruimen; zuiver→ zuiveren

9
(g,g) g→ g
Ex.: voorgegeven→ voorgeven; doorgegaan→ doorgaan

10
(ε,k) (k,k) (t,e) kt→ kke
Ex.: aangeplakt→ aanplakken; zakten→ zakken; vertrekt→ vertrekken

11
(t,n) (#,#) t#→ n#
Ex.: bent→ zijn; geweest→ zijn; verstaat→ verstaan

12
(d,d) d→ d
Ex.: ordenend→ ordenen; ordende→ ordenen; orden→ ordenen

13
(ε,f) (f,f) (ε,e) f→ ffe
Ex.: geblaft→ blaffen; snuffelen→ snuffelen; snuffelden→ snuffelen

14
(d,ε) (e,e) (ε,n) de→ en
Ex.: verdedig→ verdedigen; verdedigt→ verdedigen

15
(n,n) (d,ε) (#,#) nd#→ n#
Ex.: aannemend→ aannemen; aanslaand→ aanslaan

Table B.2: Lemmatization features for Dutch

B.3 English Lemmatization

Rank Feature Feature (simplified)

1
(ε,e) (i,ε) (n,ε) in→ e
Ex.: freeing→ free; feeding→ feed; treeing→ tree

2
(e,ε) (ε,e) e→ e
Ex.: made→ make; been→ be; prepares→ prepare

3
(i,ε) (ε,i) i→ i
Ex.: materializes → materialize; materialize → materialize; peti-
tioned→ petition

4
(ε,e) (e,ε) (e,ε) ee→ e
Ex.: agree→ agree; been→ be; pioneer→ pioneer

5
(c2) (c2) (c2)

(continued on the next page)
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Table B.3: (continued)

Ex.: seeing→ see; wedding→ wed; tossing→ toss; founding→ found;
mounding→ mound

6
(i,ε) (e,ε) (d,y) ied→ y
Ex.: supplied→ supply; unified→ unify; allied→ ally

7
(ε,e) (e,ε) e→ e
Ex.: exceeded→ exceed; succeeded→ succeed; keened→ keen

8
(i,ε) (e,ε) (s,y) ies→ y
Ex.: fries→ fry; qualifies→ qualify; tidies→ tidy

9
(i,ε) (n,ε) (g,ε) ing→
Ex.: impinging → impinge; engendering → engender; possess-
ing→ possess

10
(ε,e) (e,ε) (s,ε) es→ e
Ex.: presides→ preside; wrestles→ wrestle; incenses→ incense

11
(ε,e) (e,ε) (#,#) e#→ e#
Ex.: tyrannize→ tyrannize; torture→ torture; tangle→ tangle

12
(e,ε) (d,ε) (#,#) ed#→ #
Ex.: manipulated→ manipulate; marched→ march; matched→ match

13
(ε,o) (e,ε) (w,w) ew→ ow
Ex.: grew→ grow; knew→ know; threw→ throw

14
(e,ε) (e,ε) (ε,e) ee→ e
Ex.: agree→ agree; been→ be; pioneer→ pioneer

15
(g5) (g5) (g5)
Ex.: engendered→ engender; seeing→ see; engendering→ engender

18
(w,b) (e,ε) (r,ε) wer→ b
Ex.: were→ be

19
(c1) (c1) (c1)
Ex.: would→ will; been→ be; tying→ tie; tried→ try; lying→ lie

Table B.3: Lemmatization features for English

B.4 German Lemmatization

Rank Feature Feature (simplified)

1
(s,n) (t,ε) (#,#) st#→ n#

(continued on the next page)

138



APPENDIX B. LEARNED LEMMATIZATION RULES

Table B.4: (continued)

Ex.: drosselst→ drosseln; durchsuchst→ durchsuchen

2
(t,n) (#,#) t#→ n#
Ex.: merktet→ merken; meinet→ meinen; neidet→ neiden

3
(t,t) t→ t
Ex.: rettetet→ retten; wettetet→ wetten; bettetet→ betten

4
(ε,e) (l,l) (e,ε) le→ el
Ex.: radlet→ radeln; radlen→ radeln; nahelegend→ nahelegen

5
(e,ε) e→
Ex.: kettetet→ ketten; kettetest→ ketten; ketteten→ ketten

6
(ε,n) (#,#) #→ n#
Ex.: verbanne→ verbannen; irrte→ irren; irritierte→ irritieren

7
(t,ε) t→
Ex.: kettetet→ ketten; bettetet→ betten; bewegtet→ bewegen

8
(ε,e) (r,r) (e,ε) re→ er
Ex.: bereichre→ bereichern

9
(e,ε) (e,ε) (ε,e) ee→ e
Ex.: entleere→ entleeren; entleeret→ entleeren; geleert→ leeren

10
(t,t) (e,ε) (t,ε) tet→ t
Ex.: verrottetet→ verrotten; rettetet→ retten; kettetet→ ketten

11
(n,ε) (g,h) ng→ h
Ex.: ergangen→ ergehen; hinausgangen→ hinausgehen

12
(ε,e) (i,i) (e,ε) ie→ ei
Ex.: bliebe→ bleiben; erschienet→ erscheinen

13
(ε,e) (t,n) (#,#) t#→ en#
Ex.: beruft→ berufen; besiegt→ besiegen

14
(d,d) d→ d
Ex.: beeindrucket→ beeindrucken

15
(n,n) (d,ε) (#,#) nd#→ n#
Ex.: entwertend→ entwerten; erbend→ erben; erfordernd→ erfordern

Table B.4: Lemmatization features for German

B.5 Tagalog Lemmatization
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Rank Feature Feature (simplified)

1
(a,ε) a→
Ex.: makakapagpakilala→ pakilala; nakakapagpakilala→ pakilala

2
(i,ε) i→
Ex.: makapakikinig→ pakinig; nakapakikinig→ pakinig

3
(s,ε) (a,ε) (s,s) sas→ s
Ex.: magsasauli’→ sauli’; naisasagot→ sagot; naisasali→ sali

4
(l,l) (a,ε) (l,a) lal→ la
Ex.: lalaki→ laki; lalapit→ lapit; magpakilala→ pakilala

5
(t,ε) (a,ε) (t,t) tat→ t
Ex.: makatatawid→ tawid; mapagtatakpan→ takip

6
(l,l) (i,ε) (l,i) lil→ li
Ex.: naipanglilinis→ linis; nalilimutan→ limot; nalilinis→ linis

7
(g,ε) (a,ε) (g,g) gag→ g
Ex.: gagaling→ galing; pinaggagamot→ gamot; pinagaganti→ ganti

8
(r,d) (a,ε) (n,ε) ran→ d
Ex.: bayaran→ bayad; pabayaran→ bayad; pinapabayaran→ bayad

9
(h,ε) (a,ε) (h,h) hah→ h
Ex.: nakahahabol→ habol; naipanghahagis→ hagis; naihahatid→ hatid

10
(t,ε) (i,ε) (t,t) tit→ t
Ex.: nakapagtitigil→ tigil; nagtitinda→ tinda; makatitingin→ tingin

11
(p,p) p→ p
Ex.: pinapapagipon→ ipon; magpapaipon→ ipon; nagpapaipon→ ipon

12
(d,d) (a,ε) (d,a) dad→ da
Ex.: nakapagdadala→ dala; makadadalaw→ dalaw; kadadala→ dala

13
(s,ε) (i,ε) (s,s) sis→ s
Ex.: magsisikap→ sikap; mapagsisikapan→ sikap; nagsisikap→ sikap

14
(s,s) s→ s
Ex.: ipinasasalubong→ pasalubong; pinasasalubungan→ pasalubong

15
(y,y) (a,ε) (y,a) yay→ ya
Ex.: ipayayakap→ yakap; yayakap→ yakap; payayakapin→ yakap

Table B.5: Lemmatization features for Tagalog
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List of German CELEX Forms

Name Explanation Examples
13PIA 1st or 3rd plural indicative past liebten, redeten, rieben, waren, zogen
13PIE 1st or 3rd plural ind. present lieben, reden, reiben, sind, ziehen
13PKA 1st or 3rd plural subjunctive past liebten, redeten, rieben, waeren, zögen
13PKE 1st or 3rd plural subj. pres. lieben, reden, reiben, seien, ziehen
13SIA 1st or 3rd singular ind. past liebte, redete, rieb, war, zog
13SKA 1st or 3rd singular subj. past liebte, redete, riebe, wäre, zöge
13SKE 1st or 3rd singular subj. pres. liebe, rede, reibe, sei, ziehe
1SIE 1st singular ind. pres. liebe, rede, reibe, bin, ziehe
2PIA 2nd plural ind. past liebtet, redetet, riebt, wart, zogt
2PIE 2nd plural ind. pres. liebt, redet, reibt, seid, zieht
2PKA 2nd plural subj. past liebtet, redetet, riebet, wärt, zögt
2PKE 2nd plural subj. pres. liebet, redet, reibet, seiet, ziehet
2SIA 2nd singular ind. past liebtest, redetest, riebst, warst, zogst
2SIE 2nd singular ind. pres. liebst, redest, reibst, bist, ziehst
2SKA 2nd singular subj. past liebtest, redetest, riebest, wärst, zögst
2SKE 2nd singular subj. pres. liebest, redest, reibest, seist, ziehest
3SIE 3rd singular ind. pres. liebt, redet, reibt, ist, zieht
pA past participle geliebt, geredet, gerieben, gewesen, gezogen
pE pres. participle liebend, redend, reibend, seiend, ziehend
rP imperative plural liebt, redet, reibt, seid, zieht
rS imperative pres. liebe, rede, reibe, sei, ziehe

Table C.1: List of German CELEX forms with some exam-
ples (to love, to speak, to rub, to be, to pull).
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Appendix D

Obtaining Frequency Estimates using
Indirect Supervision

We are given a large text corpus of observed words x. Each word xi has a correct tag
yi. The task is to obtain a frequency estimate for each tag in the overall tagset Yall without
relying on direct supervision; the tag sequence y is not directly observed. We do, however,
have a form of supervision: For each word xi, we observe a tag set Yi, a small set of
possible tags.

In our specific task (see Section 3.7.3.2 on page 76), the tags are lexeme-inflection
pairs, e.g. third person singular indicative of BRECHEN. From the CELEX inflectional
paradigms we know for each spelling the small set of possible lexeme-inflection pairs. For
many spellings in CELEX (37.9%), there is only one possible lexeme-inflection pair; on
average we have 2.0 possible pairs per spelling. In 99.5% of the spellings, all possible
lexeme-inflection pairs in the set have the same lexeme. Therefore, we simplify by using
only the inflection part as tag, dropping the lexeme. The model, described below, is then
used to disambiguate the possible inflections for each spelling.

We pick a simple model, since the task is almost entirely supervised and we are not
interested in predicting the exact tag sequence, only an estimate of how often each tag
occurs. Therefore we model the observed sequence of tag sets Y using the following log-
linear unigram model,

pθ(Y) =
n∏
i=1

∑
y∈Yi exp

∑
k θkfk(y)∑

y′∈Yall exp
∑

k θkfk(y
′)

(D.1)

where n is the length of the sequence. We train the weight vector θ by maximizing
log pθ(Y) minus a Gaussian regularization term, using stochastic gradient descent (SGD)
due to its ease of implementation. We arbitrarily fix the variance to 10 and run for 100
iterations.1 This can be implemented in less than 50 lines of Perl code.

1We also tried a variance of 5 and found it did not significantly affect the outcome.
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SUPERVISION

As features we use the obvious properties of the different inflections and combinations
thereof, e.g., (third person); (singular); (third person singular); etc. The full inflection
form (e.g., third person singular indicative) is always a feature as well.

After training, we compute for each spelling the probability of each inflection y in its
set using the log-linear feature sum exp

∑
k θkfk(y) and normalizing. For the very few

spellings whose possible morphological analyses allow more than one lexeme we assume
the distribution over these lexemes to be uniform.
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