
P(S[1a]  NP[1] VP[1]) = .10
P(S[1b]  NP[1] VP[1]) = .10
P(S[1a]  NP[1] VP[2]) = .04
P(S[1b]  NP[1] VP[2]) = .04
P(S[1a]  NP[2] VP[1]) = .20
P(S[1b]  NP[2] VP[1]) = .20
P(S[1a]  NP[2] VP[2]) = .16
P(S[1b]  NP[2] VP[2]) = .16
P(S[2a]  NP[1] VP[1]) = .15
P(S[2b]  NP[1] VP[1]) = .15
P(S[2a]  NP[1] VP[2]) = .08
P(S[2b]  NP[1] VP[2]) = .08
P(S[1a]  NP[1] VP[1]) = .10
P(S[1b]  NP[1] VP[1]) = .10
P(S[1a]  NP[1] VP[2]) = .04
P(S[1b]  NP[1] VP[2]) = .04
P(S[1a]  NP[2] VP[1]) = .20
P(S[1b]  NP[2] VP[1]) = .20
P(S[1a]  NP[2] VP[2]) = .16
P(S[1b]  NP[2] VP[2]) = .16
P(S[1a]  NP[1] VP[1]) = .10
P(S[1b]  NP[1] VP[1]) = .10
P(S[1a]  NP[1] VP[2]) = .04
P(S[1b]  NP[1] VP[2]) = .04
P(S[1a]  NP[2] VP[1]) = .20
P(S[1b]  NP[2] VP[1]) = .20
P(S[1a]  NP[2] VP[2]) = .16
P(`

P(S[1a]  NP[1] VP[1]) = .10
P(S[1b]  NP[1] VP[1]) = .10
P(S[1a]  NP[1] VP[2]) = .04
P(S[1b]  NP[1] VP[2]) = .04
P(S[1a]  NP[2] VP[1]) = .20
P(S[1b]  NP[2] VP[1]) = .20
P(S[1a]  NP[2] VP[2]) = .16
P(S[1b]  NP[2] VP[2]) = .16
P(S[2a]  NP[1] VP[1]) = .15
P(S[2b]  NP[1] VP[1]) = .15
P(S[2a]  NP[1] VP[2]) = .08
P(S[2b]  NP[1] VP[2]) = .08
P(S[1a]  NP[1] VP[1]) = .10
P(S[1b]  NP[1] VP[1]) = .10
P(S[1a]  NP[1] VP[2]) = .04
P(S[1b]  NP[1] VP[2]) = .04
P(S[1a]  NP[2] VP[1]) = .20
P(S[1b]  NP[2] VP[1]) = .20
P(S[1a]  NP[2] VP[2]) = .16
P(S[1b]  NP[2] VP[2]) = .16

EM

Markus Dreyer and Jason Eisner
Center for Language and Speech Processing, Johns Hopkins University

Better Informed Training of
Latent Syntactic Features

Introduction1

• Start with simple model (every nonterminal split in two), learn, then
selectively make more splits, learn, …

• Automatically refine the nonterminals in a treebank, by unsupervised learning
• NP becomes NP[1], NP[2], …, which behave differently (e.g. subject, object)
• Orthogonal strategies:

– Model: Add such features to nonterminals in such a way that they respect
patterns of linguistic feature passing: each node's nonterminal features are
either identical to, or independent of, those of its parent. This new model
learned interesting linguistic features, but did not improve parsing results.

– Training: Split nonterminals selectively only as needed
– Data: Treebank preprocessing (markovization)

• Dramatically reduce model size, but maintain high parsing accuracy
(compared to Matsuzaki (2005))

Previous model:
Constrain EM to learn refined nonterminals

a
• Previous approaches had introduced manual nonterminal splits (Collins

(1996) split S split into S and SG, Klein and Manning (2003) split several
POS tags into finer-grained tags).

• Matsuzaki et al (2005) introduce PCFG-LA model: systematic and automatic
split of nonterminals in treebank

• An annotation on each nonterminal token is learned -- an unspecified and
uninterpreted integer that distinguishes otherwise identical nonterminals:
S becomes S[0], S[1], S[2], …

• Similar to previous model (PCFG-LA, above),
but models inheritance of features within the tree

• A node's feature is either copied from its parent
or independent of its parent

• This linguistic constraint models agreement, reduces runtime and
decreases the number of parameters to be learned.

• Since we have less parameters we can increase the number of splits. The
number of parameters we needed for 8 splits in the previous model can
here be used to make 80 splits: NP is split into NP[1], NP[2], …, NP[80],
and similarly for other nonterminals.

• Additional parameters control feature passing:
P(pass to head | rule), P(pass to nonhead | rule),
P(pass to both | rule), P(pass to neither | rule),
Pann(feature | nonterminal)

Don’t split everything at once -
and don’t split everything!

3
Improve nonterminal tagset2

New model: Constrain EM even moreb

P(S  NP VP) = .5

P(S[1]  NP[1] VP[1]) = .25
P(S[1]  NP[1] VP[2]) = .25
P(S[1]  NP[2] VP[1]) = .25
P(S[1]  NP[2] VP[2]) = .25
P(S[2]  NP[1] VP[1]) = .25
P(S[2]  NP[1] VP[2]) = .25
P(S[2]  NP[2] VP[1]) = .25
P(S[2]  NP[2] VP[2]) = .25

Split all

Grammar from original treebank

• Here, we use simplified version (no entropy
constraint):
If two distributions, e.g. P(…|S[1]) and P(…|S[2])
move apart during EM learning, then split them
further into P(…|S[1a]), P(…|S[1b]), P(…|S[2a]),
P(…|S[2b]).

• Use Jensen-Shannon Divergence (a.k.a. KL
divergence to the mean) to decide if P(…|S[1])
and P(…|S[2]) have moved apart.

• Main differences to Petrov et al (2006)
(which was written and submitted independently at the same time)

– They split all, learn, merge, split all, learn, merge…
– We split some, learn, split some, learn, …
– Different measure

used

• Analogy to deterministic annealing:
In clustering by deterministic annealing (DA), number of
clusters is gradually increased. Entropy of P(point, cluster)
constrained to be high in the beginning, then entropy gradually
lowered; clusters, initially uniform, start to move apart.

﻿ Results on devset. Basic
models are trained on a
non-markovized treebank
(as in Matsuzaki (2005));
all others trained on a
markovized treebank.
PCFG-LA is the baseline.
The best model (PCFG-LA,
split some, F1=87.31) has
also been decoded on the
final test set, reaching
F1=86.25. The Inherit
model did not help, but
markovization and splitting
only some nodes did.

Results4

References: Collins (1996), Goodman (1997), Johnson (1998), Klein and Manning
(2003), Matsuzaki et al (2005), Petrov et al (2006), Prescher (2005), Rose (1998), …

Two trees following different passpatterns and their probabilities. In the left tree, S
passes its feature to the head child (underlined, given by Collins’ rules) while the
other child is free to pick its own feature according to Pann(feature | nonterminal). In
the right tree, the feature is passed to both children.

What was learned?c

P(S[1a]  NP[1] VP[1]) = .10
P(S[1b]  NP[1] VP[1]) = .10
P(S[1a]  NP[1] VP[2]) = .04
P(S[1b]  NP[1] VP[2]) = .04
P(S[1a]  NP[2] VP[1]) = .20
P(S[1b]  NP[2] VP[1]) = .20
P(S[1a]  NP[2] VP[2]) = .16
P(S[1b]  NP[2] VP[2]) = .16
P(S[2a]  NP[1] VP[1]) = .15
P(S[2b]  NP[1] VP[1]) = .15
P(S[2a]  NP[1] VP[2]) = .08
P(S[2b]  NP[1] VP[2]) = .08
P(S[1a]  NP[1] VP[1]) = .10
P(S[1b]  NP[1] VP[1]) = .10
P(S[1a]  NP[1] VP[2]) = .04
P(S[1b]  NP[1] VP[2]) = .04
P(S[1a]  NP[2] VP[1]) = .20
P(S[1b]  NP[2] VP[1]) = .20
P(S[1a]  NP[2] VP[2]) = .16
P(S[1b]  NP[2] VP[2]) = .16

P(S[1a]  NP[1] VP[1]) = .10
P(S[1b]  NP[1] VP[1]) = .10
P(S[1a]  NP[1] VP[2]) = .04
P(S[1b]  NP[1] VP[2]) = .04
P(S[1a]  NP[2] VP[1]) = .20
P(S[1b]  NP[2] VP[1]) = .20
P(S[1a]  NP[2] VP[2]) = .16
P(S[1b]  NP[2] VP[2]) = .16
P(S[2a]  NP[1] VP[1]) = .15
P(S[2b]  NP[1] VP[1]) = .15
P(S[2a]  NP[1] VP[2]) = .08
…

P(S[1]  NP[1] VP[1]) = .20
P(S[1]  NP[1] VP[2]) = .08
P(S[1]  NP[2] VP[1]) = .40
P(S[1]  NP[2] VP[2]) = .32

P(S[2]  NP[1] VP[1]) = .30
P(S[2]  NP[1] VP[2]) = .16
P(S[2]  NP[2] VP[1]) = .04
P(S[2]  NP[2] VP[2]) = .50

P(S[1a]  NP[1] VP[1]) = .10
P(S[1b]  NP[1] VP[1]) = .10
P(S[1a]  NP[1] VP[2]) = .04
P(S[1b]  NP[1] VP[2]) = .04
P(S[1a]  NP[2] VP[1]) = .20
P(S[1b]  NP[2] VP[1]) = .20
P(S[1a]  NP[2] VP[2]) = .16
P(S[1b]  NP[2] VP[2]) = .16
P(S[2a]  NP[1] VP[1]) = .15
P(S[2b]  NP[1] VP[1]) = .15
P(S[2a]  NP[1] VP[2]) = .08
P(S[2b]  NP[1] VP[2]) = .08
 …

The grammar
gets bigger on
every cycle

Split both S[1] and S[2] if
P(…|S[1]) and P(…|S[2])
diverge after some EM

iterations. Same for
NP[1] and NP[2], … SPLIT SOME

• Plural/Singular: NP[2] picks up more plural nouns than NP[1]. This effect is
stronger in our more constrained INHERIT model, which is also more likely to
pass the plural/singular feature to both children: Det. and noun must agree.

• A tensed auxiliary feature is learned: This feature on a VP makes it expand as
V_Aux VP. It is passed to the head V_Aux, causing it to expand as a form of
be, have, or do.

• Subordinate conjunctions (while, if) in IN[1], prepositions (under, after) in IN[2]
• Upper-case conjunctions at beginning of sentence (And, But) vs mid-sentence

conjunctionsHelped parsing
accuracy

L is the number of splits, e.g. L=2
for NP split into NP[1] and NP[2].

Penn Treebank tree with automatic annotations in red.
The parser sums over all possible annotations.

P(tree)

