Better Informed Training of Latent Syntactic Features

Markus Dreyer and Jason Eisner
Center for Language and Speech Processing, Johns Hopkins University

1 Introduction

- Automatically refine the nonterminals in a treebank, by unsupervised learning - NP becomes NP[1], NP[2], ..., which behave differently (e.g. subject, object) - Orthogonal strategies:
- Model: Add such features to nonterminals in such a way that they respect patterns of linguistic feature passing: each node's nonterminal features are either identical to, or independent of, those of its parent. This new model learned interesting linguistic features, but did not improve parsing results.
-Training: Split nonterminals selectively only as needed
- Data: Treebank preprocessing (markovization)
- Dramatically reduce model size, but maintain high parsing accuracy (compared to Matsuzaki (2005))

2 Improve nonterminal tagset

a Previous model:
Constrain EM to learn refined nonterminals

- Previous approaches had introduced manual nonterminal splits (Collins (1996) split S split into S and SG, Klein and Manning (2003) split several POS tags into finer-grained tags).
- Matsuzaki et al (2005) introduce PCFG-LA model: systematic and automatic split of nonterminals in treebank
- An annotation on each nonterminal token is learned -- an unspecified and uninterpreted integer that distinguishes otherwise identical nonterminals: S becomes S[0], S[1], S[2],

Penn Treebank tree with automatic annotations in red.
The parser sums over all possible annotations

b New model: Constrain EM even more

- Similar to previous model (PCFG-LA, above),
but models inheritance of features within the tree
- A node's feature is either copied from its parent
or independent of its parent
- This linguistic constraint models agreement, reduces runtime and decreases the number of parameters to be learned.
- Since we have less parameters we can increase the number of splits. The number of parameters we needed for 8 splits in the previous model can here be used to make 80 splits: NP is split into NP[1], NP[2], ..., NP[80], and similarly for other nonterminals.
- Additional parameters control feature passing:

P(pass to head | rule), P(pass to nonhead | rule),
P (pass to both | rule), P (pass to neither | rule),
$\mathrm{P}_{\text {ann }}$ (feature | nonterminal)

$P(\mathrm{ROOT} \rightarrow \mathrm{S}[2])$
$\times P(\mathbf{s}[2] \rightarrow \mathrm{NP} \underline{\mathrm{vp}})$
$\times P($ pass to head $\mid \mathrm{S} \rightarrow \mathrm{NP} \underline{\mathrm{VP}})$
$\times P_{\text {ann }}(1 \mid \mathrm{NP}) \times P\left(\mathrm{NP}[1] \rightarrow{ }^{*}\right.$ He $)$

$P($ ROOT $\rightarrow \mathbf{S}[2])$
$\times P(\mathbf{s}[2] \rightarrow \mathrm{NP} \underline{\mathrm{vp}})$
$\times P($ pass to both $\mid \mathrm{S} \rightarrow \mathrm{NP} \underline{\mathrm{vP}})$
$\times P\left(\mathrm{NP}[2] \rightarrow{ }^{*}\right.$ не $)$
$\times P\left(\mathrm{VP}[2] \rightarrow^{*}\right.$ loves cookies $)$
$\times P\left(\mathrm{Vp}[2] \rightarrow^{*}\right.$ loves cookies $)$

Two trees following different passpatterns and their probabilities. In the left tree, S passes its feature to the head child (underlined, given by Collins' rules) while the other child is free to pick its own feature according to $\mathrm{P}_{\text {ann }}$ (feature | nonterminal). In the right tree, the feature is passed to both children

C What was learned?

- Plural/Singular: NP[2] picks up more plural nouns than NP[1]. This effect is stronger in our more constrained INHERIT model, which is also more likely to pass the plural/singular feature to both children: Det. and noun must agree.
- A tensed auxiliary feature is learned: This feature on a VP makes it expand as V_Aux VP. It is passed to the head V_Aux, causing it to expand as a form of be, have, or do.
- Subordinate conjunctions (while, if) in IN[1], prepositions (under, after) in IN[2]
- Upper-case conjunctions at beginning of sentence (And, But) vs mid-sentence conjunctions

3 Don't split everything at once and don't split everything!

- Start with simple model (every nonterminal split in two), learn, then selectively make more splits, learn,
- Analogy to deterministic annealing:

Grammar from original treebank
In clustering by deterministic annealing (DA), number of clusters is gradually increased. Entropy of P (point, cluster) constrained to be high in the beginning, then entropy gradually lowered; clusters, initially uniform, start to move apart.

- Here, we use simplified version (no entropy constraint):
If two distributions, e.g. $\mathrm{P}(\ldots . \mathrm{S}[1])$ and $\mathrm{P}(\ldots \mid \mathrm{I}[2])$ move apart during EM learning, then split them further into $P(\ldots \mid S[1 a]), P(\ldots \mid S[1 b]), P(\ldots \mid S[2 a])$, P(...|S[2b]).
Use Jensen-Shannon Divergence (a.k.a. KL divergence to the mean) to decide if $P(\ldots \mid S[1])$ and $P(\ldots \mid S[2])$ have moved apart.
- Main differences to Petrov et al (2006)
(which was written and submitted independently at the same time)
- They split all, learn, merge, split all, learn, merge
- We split some, learn, split some, learn,
- Different measure used

Split both $\mathrm{S}[1]$ and $\mathrm{S}[2]$ if $P(\ldots \mid S[1])$ and $P(\ldots \mid S[2])$ diverge after some EM iterations. Same fo
NP[1] and NP[2],

$P(S[1] \rightarrow N P[1] \mathrm{VP}[1])=.25$
$P(S[1] \rightarrow N P[1] \mathrm{VP}[2])=.25$
$P(S[1] \rightarrow N P[2] V P[1])=.25$
$P(S[1] \rightarrow N P[2] \mathrm{VP}[2])=.25$
$\mathrm{P}(\mathrm{S}[2] \rightarrow \mathrm{NP}[1] \mathrm{VP}[1])=.25$
$P(S[2] \rightarrow N P[1] V P[2])=.25$
$P(S[2] \rightarrow N P[2] V P[1])=.25$
$P(S[2] \rightarrow N P[2] \mathrm{VP}[2])=.25$

SPLIT SOME

4 Results

Results on devset. Basic models are trained on a non-markovized treebank (as in Matsuzaki (2005)); all others trained on a markovized treebank PCFG-LA is the baseline The best model (PCFG split some $\mathrm{F}_{1}=87.31$) has also been decoded on the final test set, reaching $\mathrm{F}_{1}=86.25$. The Inherit model did not help, bu markovization and splitting only some nodes did

$100000 \quad 1 \mathrm{e}+06$
L is the number of splits, e.g. $L=2$
Free Parameters

References: Collins (1996), Goodman (1997), Johnson (1998), Klein and Manning (2003), Matsuzaki et al (2005), Petrov et al (2006), Prescher (2005), Rose (1998),

