Better Informed Training of Latent Syntactic Features

Markus Dreyer and Jason Eisner

Center for Language and Speech Processing, Johns Hopkins University

Introduction

- Automatically refine the nonterminals in a treebank, by unsupervised learning
- NP becomes NP[1], NP[2], ..., which behave differently (e.g. subject, object)
- Orthogonal strategies:
 - Model: Add such features to nonterminals in such a way that they respect patterns of linguistic feature passing: each node's nonterminal features are either identical to, or independent of, those of its parent. This new model learned interesting linguistic features, but did not improve parsing results.

What was learned?

- Plural/Singular: NP[2] picks up more plural nouns than NP[1]. This effect is stronger in our more constrained INHERIT model, which is also more likely to pass the plural/singular feature to both children: Det. and noun must agree.
- A tensed auxiliary feature is learned: This feature on a VP makes it expand as V Aux VP. It is passed to the head V_Aux, causing it to expand as a form of be, have, or do.
- Training: Split nonterminals selectively only as needed Melped parsing
- Data: Treebank preprocessing (markovization)
- accuracy

• Dramatically reduce model size, but maintain high parsing accuracy (compared to Matsuzaki (2005))

Improve nonterminal tagset

Previous model:

a

 \mathbf{O}

Constrain EM to learn refined nonterminals

- Previous approaches had introduced manual nonterminal splits (Collins (1996) split S split into S and SG, Klein and Manning (2003) split several POS tags into finer-grained tags).
- Matsuzaki et al (2005) introduce PCFG-LA model: systematic and automatic split of nonterminals in treebank
- An annotation on each nonterminal token is learned -- an unspecified and uninterpreted integer that distinguishes otherwise identical nonterminals: S becomes S[0], S[1], S[2], ...

$P(\text{ROOT} \rightarrow S[2])$ P(tree) =

• Subordinate conjunctions (*while, if*) in IN[1], prepositions (*under, after*) in IN[2]

• Upper-case conjunctions at beginning of sentence (And, But) vs mid-sentence conjunctions

Grammar from original treebank

 $P(S \rightarrow NP VP) = .5$

3 Don't split everything at once and don't split everything!

- Start with simple model (every nonterminal split in two), learn, then selectively make more splits, learn, ...
- Analogy to deterministic annealing: In clustering by deterministic annealing (DA), number of clusters is gradually increased. Entropy of *P(point, cluster)* lowered; clusters, initially uniform, start to move apart.
- constraint):
- If two distributions, e.g. P(...|S[1]) and P(...|S[2])move apart during EM learning, then split them further into P(...|S[1a]), P(...|S[1b]), P(...|S[2a]), P(...|S[2b]).
- Use Jensen-Shannon Divergence (a.k.a. KL divergence to the mean) to decide if P(...|S[1])and P(...|S[2]) have moved apart.

 $\times P(\mathbf{S}[2] \rightarrow \mathbf{NP}[1] \mathbf{VP}[3])$ $\times P(\operatorname{NP}[1] \to^* \operatorname{He})$ $\times P(\mathtt{VP}[3] \rightarrow^* \mathtt{loves cookies})$

Penn Treebank tree with automatic annotations in red. The parser sums over all possible annotations.

New model: Constrain EM even more

- Similar to previous model (PCFG-LA, above), but models inheritance of features within the tree
- A node's feature is either copied from its parent or independent of its parent
- This linguistic constraint models agreement, reduces runtime and decreases the number of parameters to be learned.
- Since we have less parameters we can increase the number of splits. The number of parameters we needed for 8 splits in the previous model can here be used to make 80 splits: NP is split into NP[1], NP[2], ..., NP[80], and similarly for other nonterminals.
- Additional parameters control feature passing: P(pass to head | rule), P(pass to nonhead rule), P(pass to both | rule), P(pass to neither rule), P_{ann}(feature | nonterminal)

Binarization and Markovization of $X \rightarrow ABHCD$:

 $< X^{TOP}, B, L>$

all

Two trees following different passpatterns and their probabilities. In the left tree, S passes its feature to the head child (underlined, given by Collins' rules) while the other child is free to pick its own feature according to P_{ann}(feature | nonterminal). In the right tree, the feature is passed to both children.

References: Collins (1996), Goodman (1997), Johnson (1998), Klein and Manning (2003), Matsuzaki et al (2005), Petrov et al (2006), Prescher (2005), Rose (1998), ...