
Finite-State Dirichlet Allocation: Learned Priors on Finite-State

Models

Jia Cui and Jason Eisner
Department of Computer Science / Center for Language and Speech Processing

Johns Hopkins University
Baltimore, MD 21218 USA

Abstract

To model a collection of documents, suppose that each document was generated by a different
hidden Markov model or probabilistic finite-state automaton (PFSA). Further suppose that all
these PFSAs are similar because they are drawn from a single (but unknown) prior distribution
over PFSAs. We wish to infer the prior, obtain smoothed estimates of the individual PFSAs,
and reconstruct the hidden paths by which the unknown PFSAs generated their documents.

As an initial application, particularly hard for our model because of its sparse data, we derive
an FSA topology from WordNet. For each verb, we construct the “document” of all nouns that
have appeared as its object. Our method then learns a better estimate of p(object | verb),
as well as which paths in WordNet, and hence which senses of ambiguous objects, tend to be
favored. Our method improves 14.6% over Witten-Bell smoothing on the conditional perplexity
of objects given the verb, and 27.5% over random on detecting the most common senses of nouns
in the SemCor corpus.

1 Introduction

1.1 Generative Models of Documents

Several recent machine learning papers have proposed fully generative models of document col-
lections. This is useful if one wishes to reconstruct hidden portions of a document, or infer the
underlying parameters of documents in order to cluster or classify them.

Such a model starts with hyperparameters α that describe the document collection. These are
used to generate document-specific parameters θ for each document, which in turn generate the
full text of that document. Both α and the θ’s are unknown.

In the original Latent Dirichlet Allocation (LDA) model of [2], the document-specific parameters
θ characterized only the mixture of topics in the document. The document text was then generated
by a simple class-based unigram model.

In this paper, we go beyond unigrams to learn the temporal properties of each document. In our
“Finite-State Dirichlet Allocation” (FSDA) model, the document-specific parameters describe the
probabilities of labeled transitions in a finite-state generative process. Only the emission sequence
Y is observed, but the hidden state sequence X can be reconstructed, which is useful.

1

There have been previous moves toward adding temporal structure to LDA. However, they did
not learn document-specific temporal structure. We review this work in section 1.4.

1.2 Learning from Multiple Datasets

Another contribution of this paper is that we apply our generative model to something other than a
document collection. Instead of learning how different documents generate their words, we attempt
to learn how different verbs generate their direct objects by choosing paths through WordNet,
which we regard as a finite-state process (following [1]).

Our point is that LDA and its relatives are applicable to multiple datasets that need not be
documents. Our FSDA model has the further advantage that we can inject domain knowledge
through the topology of the finite-state process, which in this case comes from WordNet.

Much machine learning uses a single dataset Y (not necessarily a document) with hidden labels
X, and a family p(X, Y | θ) of probability distributions. We wish to estimate the particular
parameter vector θ that was responsible for generating Y . Why? If we can guess θ (or better yet,
a posterior probability distribution over θ), then we can use it to infer the hidden labels X. This is
the basic setup in classic EM algorithms such as forward-backward, inside-outside, and Gaussian
clustering.

A prior distribution can help smooth the estimate of θ. In other words, we may suppose that
θ was itself sampled from, say, a Gaussian or a Dirichlet distribution, so that some θ vectors are
a priori more likely than others. But how are we to decide which Gaussian or Dirichlet? In other
words, how do we pick the so-called “hyperparameter vector” α that defines a particular prior in
the chosen family?

A traditional engineering approach is to seek the α vector that yields the best performance, as
evaluated on a small held-out dataset. However, this will not work well if α has many degrees of
freedom.

There is, however, a special circumstance where we can infer α from training data. Suppose
we have multiple datasets Y 1, Y 2, . . . Y D (the “documents”), which are assumed to be respectively
generated using some unknown θ1, θ2, . . . θD. Thus, there were multiple samples (the θd) from
the same prior. It is therefore conceivable to infer the prior from these samples, or rather from
our indirect evidence of them (the Y d). The prior’s mean will describe the “typical” θd, and its
variance will describe how widely the different θd scatter about the mean. If the datasets appear
to be underlyingly similar, then we will capture that fact by inferring a low-variance prior, which
(for sparse Y d) will smooth estimates of θd strongly back toward the mean.

Because the θd are not directly observed, this is a two-level inference problem: find α to
maximize

∏D
d=1

∫
θd p(Y d | θd)·p(θd | α) dθd. This approach is also known as “empirical Bayes.” One

could place a prior over α as well, but this paper assumes an uninformative (flat) prior throughout.

1.3 Two-Level Inference of Finite-State Models

Sequence data Y can often be modeled by a finite-state process. Estimating the process’s parameters
lets one predict future data, or reconstruct the hidden path X that underlies the observed sequence
Y .

2

This paper addresses the two-level-inference version of the problem. We perform joint estimation
on D finite-state processes, which are distinct but are presumed to be “similar” since they are all
drawn from the same unknown prior. In other words, we fit a generative model of generative
finite-state processes. Some possible applications:
• Each Y d is a distinct document

• Each Y d is a set of documents in a certain genre/topic

• Each Y d records the sequential behavior of a certain user [5]

• Each Y d is conditioned on a certain local context, e.g., it is a set of direct objects or syntactic
subcategorization frames observed with a certain verb d

In each example, our method jointly estimates models of the D observed documents, genres, users,
or verbs. At the same time, it estimates a prior that predicts what unobserved (or underobserved)
documents, genres, users, or verbs will tend to look like.

Rather than use Hidden Markov Models, we adopt the similar framework of probabilistic finite-
state automata (PFSAs). This lets us use ε transitions and stopping probabilities. ε transitions
will be crucial. PFSAs are also simpler to notate, using only distributions over labeled transitions,
rather than an HMM’s separate distributions over transitions and emissions. Furthermore, they
generalize naturally to finite-state transducers, which could be used to model unaligned pairs of
sequences. A PFSA is an FSA where each state s ∈ {1, 2, . . . S} is equipped with a multinomial
distribution θs ∈ RKs over the Ks options for leaving that state: namely the outgoing arcs, plus
the option of halting if the state is final. We write θ = 〈θ1, . . . θS〉 for the full set of parameters of
the PFSA, using boldface to emphasize that it is a sequence of vectors, one per state.

Our model for two-level PFSA inference is shown in Figure 1. Each dataset Y d is now a
collection of strings that were generated by a particular PFSA defined by θd. We assume that all
of these PFSAs have the same underlying S-state FSA, which is given in advance. As our prior,
we assume that each θd

s is independently sampled from a Dirichlet distribution associated with
state s: i.e., θd ∼ Dirichlet(α1) × · · · × Dirichlet(αS), where each αs ∈ RKs . We write boldface
α = 〈α1, . . . αS〉 for the full set of hyperparameters that define the prior.

Notice that we cannot freely simplify the underlying FSA with operations such as ε-elimination.
That would alter the family of priors under consideration.

A Dirichlet is a smooth, unimodal distribution over multinomial distributions. A sample from
Dirichlet(αs) is a particular multinomial θs ∈ RKs (so

∑
i θsi = 1 and (∀i)θsi ≥ 0). If αs = 〈5, 1, 3〉,

then θs will tend to fall near 〈5/8, 1/8, 3/8〉; if αs = 〈50, 10, 30〉, then the Dirichlet is more sharply
peaked, and θs will tend to fall even closer to that same mean. The full density is given by
P (θs|αs) = 1

Z(αs)

∏Ks
i=1 θαsi−1

si , where Z(αs) is a normalizing factor.

1.4 Prior Work

Two-level inference is difficult; our approximation methods for carrying it out draw on previous
work.

In the discussion below, yi, xi, and si denote random variables, with only yi being observed.

3

1213 12143713843 1438

Prior
(Known topology)

PFSA Samples:

Transition sequences:

2

3

4

1 7

6

5

8

a

ε

b

a

ε

a
c

b
b

Emissions: bb babcbab aba

Figure 1: The FSDA model for generating documents. (1) A prior distribution (top) is given by
a finite-state automaton equipped with a Dirichlet prior αs at each state s. (2) The dth sample
from this prior is a PFSA with a multinomial distribution θd

s at each state s. It will generate the
dth document. (3) By taking random walks through this dth PFSA, we obtain a collection Xd of
paths. (4) Deterministically reading the labels off the paths in Xd, we obtain a set of strings, which
constitute the dth document Y d. Only the Y d are observed. Since the FSA has ε-transitions, even
short observed strings can have long hidden paths.

[7] smooth a bigram language model p(~y) by inferring a single Dirichlet prior from which, for each
word d in the vocabulary, the conditional distribution p(yi | yi−1 = d) was drawn. The mean of this
prior can be regarded as a “typical” p(yi | yi−1 = . . .) distribution toward which sparsely observed
distributions are smoothed. By contrast, the traditional backed-off distribution p(yi) mainly reflects
which words are used in frequent contexts (note that it equals

∑
d p(yi | yi−1 = d) · p(yi−1 = d)),

and thus may not be as appropriate for smoothing distributions that are not as well-observed.
In our terminology, whenever yi−1 = d, MacKay and Peto let yi ∼ Multinomial(θd), where in

turn θd ∼ Dirichlet(α). Evidence about θd (and hence indirectly about α) comes from the observed
dataset Y d, which is the sample of words y that were observed to follow d.

Latent Dirichlet Allocation [2] can be regarded as enriching the above with hidden variables.
Now Multinomial(θd) does not generate yi directly: it generates a hidden topic xi from a set of K

topics. The topic xi then generates the observed word yi. Concretely, p(yi | d) def=
∑K

k=1 p(yi | xi =
k) · p(xi = k | d). This reduces the number of parameters if K is small.

Applied to MacKay and Peto’s problem, LDA thus restricts the next-word distribution p(yi |
yi−1 = d) to be a mixture of K “topical” multinomials p(yi | xi = k). These multinomials
correspond to global senses or properties that different context words may draw on. For a given
context word d, the K mixture coefficients p(xi = k | d) are given by a vector θd ∈ RK that was
drawn from Dirichlet(α).

4

[5] (like us) reason that each of the D documents is not simply a bag of unigrams, but has
higher-order sequential structure. Their Sequential Activity Profiling (SAP) is a “straightforward
generalization of LDA.” Each word yi in document d is generated conditioned not only on the
word’s hidden topic xi, but also on the previous m − 1 words: p(yi | d) def=

∑K
k=1 p(yi | xi =

k, yi−1, . . . yi−m) · p(xi = k | d). As before, p(xi = k | d) is defined by Multinomial(θd) where
θd ∼ Dirichlet(α).

[6] also model the temporal structure of documents. Unlike SAP, they use hidden states, which
may capture a longer history than just the previous m − 1 words. In their model, all documents
are generated by the same HMM, with one twist. One of the HMM states is called “CONTENT
WORD” and has a document-specific emission model based on LDA. The words emitted from this
state are determined by a document-specific distribution over topics. This distribution is the only
document-level parameter, just as in LDA.

Our FSDA method goes beyond all this previous work by learning document-specific temporal
parameters. In FSDA, the transition probabilities and not just the emission probabilities can vary
across documents. The amount that they tend to vary depends on the variance of the prior, α.

In a final piece of prior work, [4] shows how to estimate parameters of a single PFSA (of known
topology) given a dataset and a prior. Our two-level inference procedure uses multiple datasets to
estimate parameters of a collection of PFSAs and their common prior. On the other hand, Eisner
considers a richer class of PFSA parameterizations. It would be interesting to extend our two-level
procedure accordingly.

2 Parameter Estimation

2.1 Method 1: Viterbi-EM Approximation

Suppose that we did not have any hidden path (or topic) variables. That is, suppose we observed
not only Y d, a collection of sequences generated by the dth PFSA, but also Xd, the corresponding
collection of paths through the PFSA.

Then [7], applied separately at each state s, would immediately solve our inference problem.
For each d, we would collect the edges that were observed in Xd to leave s. Then MacKay and
Peto’s method would find estimates of αs, as well as the posterior expectation of each θd

s .
This suggests a simple (but novel) method for inferring such estimates, using the Viterbi approx-

imation to EM. Start with a guess of θ. Use it to reconstruct the most likely paths X1, . . . XD from
Y 1, . . . Y D. Now apply MacKay & Peto’s method to find the optimal α and hence the posterior
expectation of θ. Repeat until convergence.

The observed variables are the Y d; the hidden variables are the Xd; and the parameters to
optimize are the θd and α. This method maximizes over θd.

While we have worked out the details of this Viterbi EM method, we did not implement it,
feeling that sparse data called for integrating out θd as promised in section 1.2. We now turn to
an approximate method for doing that.

5

2.2 Method2: Variational Approximation

Despite the intractability of full EM, we now derive a variational approximation method. We follow
the ideas detailed in section A.3 of [2], but generalize from LDA to two-level inference of PFSAs.
In some ways, the generalization is simpler, because each Y d is characterized by a single set of
parameters θd, specifying the next state as well as output, rather than two sets as in LDA; Our
exposition is also structured differently.

Our goal is to find α that maximizes log
∏

d p(Y d | α). As we are now assuming Xd is unknown,
and want to sum over all its possible values, this objective function equals

D∑
d=1

log
∫

θd

∑
Xd∈π(Y d)

p(Xd | θd) · p(θd | α) dθd

where π(Y d) is the set of paths that can generate Y d.
EM would require us to get the posterior distribution over the Xd and θd, which is intractable

as discussed in the previous section. Intuitively, the problem is that each value of θd yields a
completely different distribution over paths Xd (notice that Xd may reuse the arc probability θd

sk

many times). The variational EM idea is to instead maximize a lower bound that can be tractably
decomposed (factored) whereas the true objective function cannot. The steps for choosing the best
α are as follows:

Variational E step: Given our current α, for each document Y d, choose the tightest lower
bound on log p(Y d | α) ∈ R that we can find. This bound will be specified by two sets of parameters,
γd and φd, which fall in RK1×· · ·×RKs , just as α and θd do. (They will in fact serve as surrogates
for α and and θd—look at the symbols sideways—but they will take knowledge of the document Y d

into account.) These parameters are used to define a probability distribution q(θd, Xd | Y d,γd,φd)
from a preselected family of functions that is designed to be tractable yet yield good lower bounds.
Any probability distribution q yields the following lower bound by treating its values as mixture
coefficients in Jensen’s inequality:

log p(Y d|α) = log
∫

θd

∑
Xd∈π(Y d)

p(θd, Xd, Y d|α)

= log
∫

θd

∑
Xd∈π(Y d)

q(θd, Xd| . . .)p(θd, Xd, Y d|α)
q(θd, Xd| . . .)

≥
∫

θd

∑
Xd∈π(Y d)

q(θd, Xd| . . .) log
p(θd, Xd, Y d|α)
q(θd, Xd| . . .)

= Eq[log p(θd, Xd, Y d|α)]− Eq[log q(θd, Xd| . . .)]

Note that q must be defined to assign probability mass only to paths Xd that are consistent with
the observed Y d; otherwise the Jensen’s mixture coefficients q would not sum to 1 (unless the
summation were relaxed to range over all Xd, in which case the lower bound would reduce to an
unhelpful −∞).

6

At the E step, γd and φd are optimized to maximize this lower bound, making it as tight as
possible. The difference between the two sides of the inequality works out to be the Kullback-Leibler
divergence D(q(θd, Xd | Y d,γd,φd) || p(θd, Xd|Y d,α)), so the resulting bound is tight to the extent
that the resulting q is a good approximation of the posterior distribution p over parameters and
paths (given the evidence and prior).

Variational M step: Given our current γ1, . . . γD,φ1, . . . φD, we choose α to maximize the
same lower bound considered above. More precisely, we maximize its sum over all 1 ≤ d ≤ D. By
factorizing the p(θd, Xd, Y d | α) term as its definition p(Xd, Y d | θd) · (θd | α), and ignoring terms
that do not depend on α, we see this may be done by maximizing

D∑
d=1

Eq[log p(θd | α)]

Note that if q were a perfect approximation to posterior p at the E step, this would be precisely
how an ordinary non-variational M step would choose α. We have simply made this maximization
tractable by replacing p with q from an appropriate family, so that q can be expressed in a simple
factored form, just as in the forward-backward algorithm.

The alternation of E and M steps can be regarded as an alternating maximization procedure on
our formula that lower-bounds the true objective p(Y d | α). Each step increases this lower bound.
The E step does so by changing φd,γd; the M step, by changing α.

We now describe our family q and the concrete instantiations of the E and M steps for this
family. We define

q(θd, Xd | γd,φd, Y d) def= q(θd | γd) · q(Xd | φd, Y d)

where the first factor is defined as θd ∼ Dirichlet(γd
1)× · · · ×Dirichlet(γd

s), and Xd is a distributed
as a random path from a PFSA with our usual structure but parameterized by φd rather than θd.

However, by contrast with θd
s ∈ RKs , there is no requirement that each φd

s ∈ RKs is a probability
distribution over the arcs from state s. Such a requirement would turn the E step into a more
difficult constrained optimization problem, and would rule out some q functions that might be
good approximations to p. So the PFSA parameterized by φd is not actually a PFSA in the usual
sense, but rather a random field. It assigns each path Xd a positive weight (by multiplying φ values
along the path) rather than a probability. These weights are then normalized to define q so that∑

Xd∈π(Y d) q(Xd | θd, Y d) = 1. Formally,

q(Xd | φ, Y d) =
∏

i

(1/Z(φd, yd
i))

∏
sk

φ
csk(xd

i)
sk (1)

where csk(Xd) is the number of times that path xd
i traverses the kth arc from state s while generating

string yd
i .

The E-step iterative update of φd and γd by maximizing the lower bound is:(
φd

sk

γd
sk

)
←

(
exp(Ψ(γd

sk)−Ψ(
∑Ks

l=1 γd
sl))

αsk + Eq[csk(Xd)]

)
(2)

7

where
Eq[csk(Xd)] =

∑
Xd

q(Xd | Y d,φd)csk(Xd)

can be found by the forward-backward algorithm if the set of paths π(yd
i) is finite for each yd

i ∈ Y d.
If the set of paths is infinite, because the FSA contains ε-cycles or yd

i was not fully observed, the
expectation can be found by solving a linear system of equations [4].

An arc which is never used to generate Y d, thus having zero expectation, will still have nonzero
φ, but this φ will not influence the value of q in (2), nor the update of γd in (2).1

In the M step, α is updated depending only on γd. The optimal value of α can be obtained by
satisfying the following equations using a Newton-Raphson algorithm:

D(Ψ(
∑
k=1

αsk)−Ψ(αsk)) +
D∑

d=1

(Ψ(γd
sk)−Ψ(

∑
l=1

γd
sl)) = 0

The detailed derivation is similar to the one for LDA.

3 Inference

Once the generative model p(y | α) is trained, we wish to use it to infer the hidden path x for an
observed string y ∈ Y d. If we knew θd, we could simply run the Viterbi decoding algorithm to
reconstruct arg max p(x | y, θd). However, our only knowledge about θd is its prior α and the full
document Y d it generates. Therefore, we could either find the best θd which is likely to be sampled
from α and generates Y d or we rank all candidates paths according to their expected probability
given the distribution of θd.

To get the best θd, we maixmize p(Y d | θd)p(θd | α). This optimization requires another EM
run, which is easy to derive. Note the first part is just a normal PFSA and the E-step is a normal
E-step depending only on θd. In M-step, θd is optimized based on both expectations of hidden
paths and the prior: θsk ∝ Eθ′ [csk(Xd)] + αsk − 1 where θ′ denotes parameters in the previous
iteration.

When inferring the optimal θ, we shift away from our original goal of smoothing p(Y d|θd) by∫
θd p(Y d|θd)p(θd|α)dθd. To smooth over all possible θd as well as taking Y d into account, we select

1We could alternatively have presented φ as specifying, for each i, an individual weight for each arc in the “trellis”
of all FSA paths that generate yd

i . The trellis is obtained by intersecting the FSA with the string yd
i . Multiple trellis

arcs derived from the same FSA arc would then have separate parameters, but the parameters would turn out to
have equal values at the optimum. If a particular FSA arc goes unused by Y d and yields no trellis arcs, then no
parameters would be associated with it. This presentation would be similar to the LDA presentation in [2], where
longer documents give rise to more φ parameters, but multiple copies of the same word in a given document end up
having the same parameter value.

8

x to maximize p(x, y | Y d,α) for given y.

p(x, y | Y d,αd) =
∫

θd

p(x, y | θ)p(θd | Y d,αd)dθd

≈
∫

θd

p(x, y | θd)q(θd | γd)dθd

=
∫

θd

∏
sk

(θd
sk)

csk(x)
∏
s

1
Z(γd

s)

∏
k

(θd
sk)

γsk−1dθd

=
∏
s

Z(γd
s + cs(x))
Z(γd

s)

∫
θd
s

∏
k(θ

d
sk)

csk(x)+γsk−1

Z(γd
s + cs(x))

dθd
s

=
∏
s

Z(γs + cs(x))
Z(γs)

(3)

where cs(x) is a vector with the kth element being csk(x). Usually, cs(x) at different states have
complex dependent relationship with each other. But when there is no loop in the structure, cs(x)
are independent. They are vectors with only one element being 1 and the others being zero. In this
case, the optimization can be solved by dynamic programming in linear time. At any time when
we reach a state s, the next step depends only on arcs started from s. The weight from s to k′ is

Z(γs + cs(xk′))
Z(γs)

=

∏
k 6=k′ Γ(γsk)Γ(γsk′ + 1)

Γ((
∑

k γsk) + 1)
Γ(

∑
k γsk)∏

k Γ(γsk′)
=

Γ(γsk′ + 1)Γ(
∑

k γsk)
Γ(γsk)Γ(1 +

∑
k γsk)

This criterion could also be applied in cases when there are loops in the PFSA but we have limited
number of finite candidate x to choose from.

Both above inference methods are originated from exploring α. But just as γd can be used for
approximation, φd can be used in some cases to simplify the tagging process too. If we rewrite
p(x | y, Y d,αd) as

∫
θd p(x,θd | y, Y d,α)dθd and take approximation p(x,θd | y, Y d,α) ≈ q(θd |

γd)q(x | y, Y d,φd), we get p(x | y, Y d,αd) ≈ q(x | y, Y d,φd). If y ∈ Y d, we could use φd obtained
in the training process for tagging directly. But according to the definition of q, this method works
only for y which belongs to Y d, because arcs which are not used by Y d have unconstrained values.

4 Applications

Given an FSDA model, we could do the following things:

1. Infer the unigram distribution p(Y | α).

2. Infer the bigram distribution p(Y | d, α).

3. Infer the path distribution given the observation Y : p(X | Y,α).

4. Infer the path distribution given the observation Y and the document type d: p(X | d, Y,α).

9

ROOT

SUBSTANCE ACTIVITY

MATERIAL FOOD

FINAL−STATE

SPORT

......

squash
squash

pasta

tuna

activity

rock

baseball

Figure 2: A finite-state machine corresponding to a tiny, simplified portion of WordNet. The
unlabeled arcs are epsilon transitions. (The full machine is acyclic (though that is not required
by our method) but not a tree: for example, PERSON can be reached via either LIFE-FORM or
CAUSAL-AGENT [1], so “man” is a likely object of both “kill” and “help.”)

Our experiments thus contain two parts: inferring the distribution of observed data as in 1. and
2., and inferring the hidden paths that underlie the observed data as in 3. and 4. In our task domain
(described in the next section), the former experiments build a model of p(directobject | verb),
which we evaluate by bigram perplexity; such models are useful in statistical parsing. The latter
experiments try to infer hidden paths through WordNet that correspond to hidden word senses; in
short, they attempt unsupervised word sense disambiguation.

4.1 WordNet as a Finite-State Model

A useful resource in modeling p(object | verb) and p(sense | object) is WordNet [9], a hierarchical
taxonomy of 94503 English nouns.

Figure 2 illustrates how we regard the directed acylic graph of WordNet as a sparse FSA, an
idea due to [1]. Each root-to-leaf path generates an English noun.

We presume that an instance of “eat” selects its direct object by taking a random walk in
a probabilistic FSA (PFSA) that has the structure of Figure 2. Starting at root, it first decides
stochastically whether to eat a substance or something else. Once it has chosen to eat a substance,
further decisions specialize its choice further until it has decided to eat “squash.” Verbs other
than “eat” will have to make the same choices, but will use different probabilities reflecting their
distinctive selectional preferences. Our prior treats all nodes as independent, since we suspect even
verbs with strong preferences at some nodes will have “typical” distributions at other nodes: for
example, “buy” is less likely to choose food than “eat” is, but once we have chosen food, the

10

distribution of bought foods resembles the distribution of eaten foods.
If we can estimate the parameters θeat of “eat”’s PFSA, we will obtain a probability distribution

over direct objects. If our training sample Y eat contains (eat,pizza), (eat,pasta), and (eat,squash),
then we might conclude that “eat” has a preference for direct objects that fall under the substance
node of WordNet and particularly its descendant food. This lets us predict that p(tuna | eat) >
p(rock | eat) > p(baseball | eat), which is useful for parsing and language modeling.

Even more interestingly, we will obtain a probability distribution over the hidden paths Xeat

in the PFSA. Notice that Figure 2 includes two paths that generate “squash.” We associate each
path with a different sense of that word. If we observe (eat, squash) in test data, we may guess the
intended sense by observing that the “eat” PFSA assigns a higher overall probability to the path
through food. By contrast, if we observe (play, squash), the parameters of the “play” PFSA tell
us that the direct object was more likely generated by the other path, through sport.

Applying our methods will estimate the hyperparameters α. As for θd, our variational EM
approximation finds γd such that q(θd | γd) approximates θd’s full posterior distribution (given the
prior α and the evidence Y d). Our variational approximation also estimates a posterior distribution
(1) over the hidden path Xd in training data.

Although each direct object y ∈ Y d is generated independently of the others, which suggests
unigrams, it is actually generated by some path x that is labeled with εε . . . εy. The temporal
structure that we are modeling is the structure of these hidden paths, which crucially represent the
hidden senses of words that we are trying to recover.

4.2 Predicting objects given verbs

In this section, we build a model of p(directobject | verb), which we sometimes abbreviate as p(n|v).
Because most of our training verbs are only observed with a few of the many nouns in WordNet,
we prune the enormous WordNet structure on a per-verb basis. The appendix describes how we
reconcile this shortcut with the FSDA approach, which assumes that all verbs use an FSA of the
same topology.

Data preparation We have the (verb,object) pairs extracted from BNC data by [1]. We use
only the 486 verbs with count over 300, which give a total of 806K their (verb,object) tokens. We
split these tokens randomly, taking 90% for training the language model and 10% for test.

The vocabulary contains all verbs and objects in the training data. It is the same for our
baseline and the FSDA modeling.

Language model As noted in section 4.2, we prune WordNet differently for each verb when
modeling p(n | v). The goal is to keep as small as possible the structure for each verb FSA and
meanwhile ensure all nodes are either not used or in the same shape across verbs. The background
(α) structure contains all nodes and edges used by the objects in the training data. FSA for verb
d is the substructure used by objects following d in the training data. In order to assign non-zero
probability of words not covered in the FSA, an UNK node is added to that FSA. The probability

11

of the UNK node is the total probability mass to be assigned to all nouns which are not covered
by the FSA. This probability mass is used to backoff to the background unigram distribution.

Corresponding to the structure we described, we defined 4 sets of objects: V is the vocabulary,
used by SRI and LDA Vα contains all objects seen in the training data. Vγ(v) contains all objects
which follow v in training data, and their sisters which are also in Vα. T (v) is contains all objects
following v in training data.

For easy annotation, we define four un-intersected sets including T (v): Uγ(v) = Vγ(v) − T (v),
Uα(v) = Vα − Vγ(v) and U = V − Vα.

The FSDA language model will assign probability to words belonging to the first two sets with
PFSA of verbs and assign probabilities to words in the remaining sets with the background model.

The FSDA language model is described as follows:

p(n|v) =

P (n|v) n ∈ T (v)
P (n|v) n ∈ Uγ(v)
P (“UNK ′′|v)q(n|v) otherwise

q(n|v) =

{
(1− δ(v)) Q(n)∑

w∈Uα(v) Q(w) n ∈ Uα(v)

δ(v)1/|U | n ∈ U

where P (n|v) is the probability of generating n from v’s FSDA equipped with a real distribution,
Q(n|v) is the probability of generating n from the α structure equipped with a real distribution.
δ(v) is an discount coefficiency. δ(v) = |Uα(v)|

|Uα(v)|+
∑

w∈Uα(v) count(w) . δ(v) never changes during the
training process.

Perplexity results For each verb d, we would like to obtain its distribution over paths, and
hence over direct objects, by integrating over the posterior distribution of thetad. This posterior
distribution is conditioned on both the trained α and all the training data, so as before, the integral
is intractable. We simply rely again on the same approximation to the posterior that we used during
training: thus, we construct a single FSA for verb d by taking the transition distribution from each
state s to be the mean of Dirichlet(γd

s).
This model exploits the structure of WordNet. We compare it with standard baseline models

estimated from the same data that do not use WordNet: p(n | v) is smoothed back to p(n) using
Kneser-Ney or Witten-Bell smoothing. These models are constructed using the SRILM toolkit. As
another baseline, we estimate a Latent Dirichlet Allocation model, again regarding each verb’s set
of direct objects as a document; again this does not use WordNet, but like WordNet it recognizes
that each noun may have multiple senses and that multiple nouns may share a sense. LDA obtained
the best performance with k = 80 topics.

Our FSDA method improves perplexity by 14.7% over the best of these comparisons (Witten-
Bell). All results are presented in Table 1.

In order to better understanding why FSDA can beat Witten-Bell smoothing and LDA, we
present perplexities of different type of predictions in Table 2. S1 includes (verb,object) pairs
which are observed in the training data. S2 includes (verb,object) pairs which are not observed
in the training data but the object can be predicted from the FSA of the verb. S3 includes

12

Model Perplexity or Lowerbound
Kneser-Ney (SRILM) 1064
Witten-Bell(SRILM) 1051
LDA bigram-lowerbound 1183
LDA bigram 1171
FSDA bigram 896

Table 1: Perplexity of p(object | verb) from different model

predictions by the background model and the objects are seen in the training data. S4 is the set
of OOV predictions.

category % of test Witten-Bell FSDA
S1 79.50 379 389
S2 10.49 54983 15648
S3 9.54 55067 33773
S4 0.46 64873 35399

Table 2: Perplexity for different prediction

Table 2 shows that FSDA has much better predictions on the unseen (verb, noun) pairs, es-
pecially on data set S2 where the nouns are not seen to follow the verb in the training data, but
have similar senses to the seen objects. This improvement should be attributed to the WordNet
structure used in FSDA modeling.

4.3 Word Sense Disambiguation

In this subsection, we describe how to train our FSDA for unsupervised word sense disambiguation.
The structure of PFSA and the background models are the same as described in the language
modeling part (see again the Appendix). However, we are more careful about initialization because
there are many local optima in our training process, and we do not wish our initialization to favor
one path (sense) over another for a given noun.

There are several ways to initialize the parameters of variational training.

1. initialize all alpha value as 1.

This initialization favors short paths.

2. distribute the counts of all objects among the nodes properly so that if counts of edges are
normalized at each node as transition probabilities, all senses of an object are equally likely.
We call this method of distributing counts among edges as a ”fair” count allocation.

If we use these counts directly as α, α would have too low variance than expected. If we
normalize counts at each node as α, it is unclear what’s the best way to do it.

13

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Figure 3: Accuracy at each iteration in variational training

3. For each verb, do a ”fair” count allocation with smoothed counts of its objects. Then use
these counts as γd and use these γd to estimate an α as the initialized α.

This initialization supports that α at nodes which have similar distributions in different verb
FSA will have low variance and vice versa.

A natual way of initializing φd is to first apply a ”fair” count allocation with smoothed counts
of objects of this verb and then normalized these counts at each node. This ensures that the weight
of all senses of an object are equal.

Word sense disambiguation on SemCor corpus This task uses a much smaller dataset—the
SemCor corpus, where the true WordNet senses of the nouns are known (for evaluation purposes).
We use the Minipar parser to extract 10k distinguished (verb,noun) pairs, including 3.5k noun
types. All these data are used for training, but only ambiguous nouns are used in testing. There
are about 7.6k distinguished test (verb,noun) pairs with 2.2k ambiguous noun types.

The first version of our task is to disambiguate nouns while using no context whatsoever at test
time. This is the task that [8] refer to as First Sense: discovering without supervision which of the
senses in WordNet are predominant in a given corpus. The random baseline, uniformly selecting
among the possible senses, is 26.5%. If we use the mean of the Dirichlet distribution with the
initialized α as transition distribution, the result is 27.1%. After our variational FSDA training, it
converges to 33.8% as showed in Figure 3. This shows that the model is extracting useful hidden
paths. (However, the performance is far less than the 60% obtained by [8], whose clustering-based
method used much richer context in training than just the single governing verb that we use.)

The second version of our task is to disambiguate a noun token whose governing verb d is known.
This can be done by using the trained γd to select paths favored by nouns. Unfortunately, our

14

result actually gets worse (29.0%) when we consider this additional context! Data analysis shows
that 831 out of 1701 verbs in the training data have only one object type, making this an especially
challenging task for the FSDA model. We believe that the sparsity of our observations causes the
FSDA to overestimate the variance (from verb to verb) of the transition distributions from a rarely
observed state, and therefore to smooth very little across verbs. In short, the FSDA model did not
see enough data to discover how to smooth the data that it did see. A solution would be to impose
an external prior on αs, to reflect our prior belief that verbs that select for VEGETABLE won’t
differ much as to which particular vegetables they like. Indeed, we found that performance was
improved by an ad hoc manipulation of α during training to lower its variance. In the final version
of this paper, we will evaluate the use of a real prior for all tasks.

WSD on Resnik test data 2

[10] built a small training dataset and hand-labeled test dataset that were subsequently used
by others [1, 3] for evaluating WordNet-based methods of learning selectional preferences from
(verb,object) pairs.

We caution that this training dataset is curiously small for an unsupervised method (< 400
tokens). Also, Resnik deliberately restricted to the verbs with the strongest selectional preferences,
so methods that can manage to learn from a wider range of verbs are not rewarded.

[1] separately learned PFSA parameters θd for each verb d, smoothing each θd
s toward a uniform

distribution. This is equivalent to fixing each αd
s at (1,1,1,. . . ,1). Of course, that is not necessarily

the appropriate prior. Our FSDA method tries to learn the prior αd
s , generalizing across verbs to

determine typical probabilities for the different children of s (the mean of the Dirichlet) and how
strongly typical they are (the variance of the Dirichlet). This is difficult because the paths are
hidden, the EM problem requires a variational approximation, and we suffer from overfitting, but
it does allow us to outperform Abney and Light (Table 3).

[3] built a Bayesian network whose topology, like our PFSA’s topology, mirrored WordNet.
Like Abney and Light, they assumed simple fixed parameters for their model and treated each verb
entirely separately. They tried to explain each verb’s pattern of observed nouns by inferring a set
of WordNet nodes that were explicitly “selected” by that verb. (Strikingly, they did not consider
the strength of selection.) Our method did not do quite as well as theirs.

Because the above methods attach fixed parameters to every node, they are sensitive to the
topology of WordNet. Short paths and nodes with few children end up introducing a bias in favor of
some senses over others. Both papers above were able to improve their performance by correcting
for such imbalances in an ad hoc way (Table 3). We note for the sake of principle that our method
does not suffer from these imbalances in the first place: it learns all its parameters and hence is
“self-balancing.”

[1] also tried a more realistic unsupervised training set extracted from the British National Cor-
pus. They kindly provided us with 1 million (verb, object) pairs. Retesting on Resnik’s hand-labeled
test data, we again get higher performance (rightmost column of Table 3), but the comparison is
not fair because they were only able to train on a subset of these pairs.3

2Initialization and smoothing are different in the following two paragraphs.
3We were unable to compare on this subset because it is no longer known.

15

Model Resnik BNC
Random 28.5% 28.5%
Resnik 44.3 -
Abney&Light (w/o balancing) 35.6 36.5
Abney&Light (w/ balancing) 42.3 54.2
FSDA 44.8 55.2
Ciaramita&Johnson (w/o balancing) 45.6 -
FSDA, oracle stopping criterion 48.3 58.6
Ciaramita&Johnson (w/ balancing) 51.4 -
First Sense of noun type (supervised) 82.7 82.7

Table 3: Word-sense disambiguation accuracy on the Resnik test set, with two different training
datasets.
Dominant senses We also evaluated whether our learned α, which describes typical paths
through WordNet, successfully captured the dominant senses of the noun types. This task was
recently addressed by [8]. Their method is entirely different in character from ours but makes use
of the same resources (parsed BNC data and WordNet). They predict that x is the dominant sense
for y if many words that tend to appear in the same syntactic contexts as y admit senses close to
x in WordNet.

Like McCarthy et al., we trained our model unsupervised on syntactic dependencies extracted
from the full British National Corpus. However, we had less training data because we only trained
on the (verb,object) pairs, whereas they also trained on other dependencies such as (verb,subject)
and (noun+preposition,object). We could in principle do this as well, training and testing on noun
tokens from a greater variety of syntactic contexts.

To predict the dominant sense of a noun n, we asked which sense would be most likely under
our model if n appeared with a novel verb. This depends on α.

Like McCarthy et al., we used our predicted dominant senses to tag all noun tokens in the
SENSEVAL-2 English all-words corpus. The disappointing results are shown in Table 4. Recall
that our initial model is a random classifier, because of the way we initialize α. As the stopping
criterion stopped learning quickly, we did not learn to be much different from the initial model.

Method Precision Recall
Random 47.7% 47.7%
FSDA dominant sense 50 50
McCarthy dominant sense 64 63
WordNet first sense (supervised) 69 68
True dom. sense if any (oracle) 92 72

Table 4: WSD on Senseval-2 English all-words corpus, when tagging each token with its type’s
predicted dominant sense. The first two rows use the actual dominant sense from the test data and
from SemCor, respectively. The next two rows use unsupervised learning.

16

5 Conclusions

We have presented a generative model of strings (e.g., sentences or paths through WordNet), shown
in Figure 1. The novel feature is that different groups of strings (e.g., documents, or objects of
different verbs) exhibit different internal temporal structure because each group is generated by a
slightly different finite-state process. We have also presented algorithms for jointly estimating the
parameters of all these processes.

Our model improves in a natural way on the unigram models of Latent Dirichlet Allocation, by
adding document-specific temporal structure.

By casting our model in terms of probabilistic finite-state automata rather than HMMs, we
allowed finite-state topologies with arbitrary ε-transitions and even ε-cycles. This means that
the hidden path may be arbitrarily longer than the observed sequence. The importance of such
topologies was illustrated by our experimental application to word sense disambiguation, in which
most transitions were silent ε-transitions.

Our method also applies naturally to incomplete data, where the observation Y d is not a fully
observed document (string) but may be any regular language in which the document was observed
to fall. As before, Y d simply serves to determine the set of possible paths Xd.

Our experimental problem, learning selectional preferences via WordNet, was inspired by a de-
sire to try a more principled version of Abney and Light’s [1] “WordNet as HMM” technique. In
order to have a better evaluation, we tested on the whole SemCor corpus and compared with the
random baseline. We were able to improve on the first sense detection. But when verb information
was added, the word sense disambiguation performance was worse than using the automatically ex-
tracted first sense. Preliminary results showed that imposing a prior on α might help by preventing
overfitting.

Another motivation of the FSDA model was [7]. They used Dirichlet prior to smooth the bigram
language model. Our FSDA model went further by adding WordNet structure as a latent layer. The
experimental results showed that in the case of predicting direct objects given verbs, this WordNet
structure improved the performance considerably.

We believe that the FSDA model itself, and the algorithms we have derived for it, are interesting
and useful contributions to the NLP/ML literature. In future work, we plan to try them on more
manageable tasks with fewer free parameters and hidden variables (see section 1.3). We also
point out a natural generalization. Imagine fitting the parameters θ of a large PFSA, under the
assumption that certain sets of multinomials {θs : s ∈ s} were all drawn from the same unknown
prior αs, where s is a given equivalence class of states and Ks is the same for all s ∈ s. We leave
it to the reader to see why this generalizes our framework, and why the more general framework
would allow (among other things) training a model of genres on strings whose genres (Y d) are not
known in advance.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No.
0347822. Any opinions, findings, and conclusions or recommendations expressed in this material are

17

those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

[1] Steven Abney and Marc Light. Hiding a semantic hierarchy in a Markov model. In Proceedings
of the ACL’99 Workshop on Unsupervised Learning in Natural Language Processing, pages 1–8,
1999.

[2] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, January 2003.

[3] Massimiliano Ciaramita and Mark Johnson. Explaining away ambiguity: Learning verb selec-
tional preference with Bayesian networks. In Proceedings of the 18th International Conference
on Computational Linguistics (COLING), pages 187–193. Association for Computational Lin-
guistics, 2000.

[4] Jason Eisner. Parameter estimation for probabilistic finite-state transducers. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, July
2002.

[5] Mark Girolami and ATa Kabán. Sequential activity profiling: Latent Dirichlet allocation of
Markov chains. Data Mining and Knowledge Discovery, 2005.

[6] T. Griffiths, M. Steyvers, D. Blei, and J. Tenenbaum. Integrating topics and syntax. In
Advances in Neural Information Processing Systems (NIPS) 17, 2004.

[7] David MacKay and Linda Peto. A hierarchical Dirichlet language model. Journal of Natural
Language Engineering,, 1(3):1–19, 1995.

[8] Diana McCarthy, Rob Koeling, Julie Weeds, and John Carroll. Finding predominant senses in
untagged text. In Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics, pages 280–287, Barcelona, Spain, 2004.

[9] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine J.
Miller. Introduction to WordNet: An on-line lexical database. International Journal of Lexi-
cography, 3(4):235–244, 1990.

[10] Philip Resnik. Selectional preference and sense disambiguation. In Proceedings of the ANLP-97
Workshop: Tagging Text with Lexical Semantics: Why, What, and How?, Washington, D.C.,
1997.

18

