
b     c

y     _

a     bc

z       _

a      b

x      _

a     ba

x       _ε:z /

ε:ε /
 

ε:y /

ε:x / 

insert z

insert x

substitute y for b

delete b
b      c

x      _   

read c

c:ε / 1

      p(INSERT(x) | (a,bc,x) )

       
p(INSE

RT(z) | (a
,bc,x

) )

p(SUBST(y) | (a,bc,x) )

      p
(DELE

TE(b) | (a,
bc,x) )

a     ba

x       _

a      bc

x       _

To demonstrate the utility of contextual edit transducers, we
examine spelling errors in social media data. We report on test data 
how much probability mass lands on the true     .  We also report how 
much mass lands “near”     , by measuring the expected edit distance 
of the predicted     to the truth. The graphs show that more context 
improves the performance under both metrics on test data.

The Contextual Edit Transducer
• We define a conditional probability distribution of an edit given a context using a 
log-linear model.                                               .

• An edit is one of four actions: COPY, SUBSTITUTE, DELETE or INSERT.

• The probability of a sequence of edits is a product where each edit’s probability is 
conditioned on the context produced by the previous edits.

• A context consists of three context windows: input left, input right and output left.

• Right output context is unavailable in PFSTs, so the model is left/right asymmetric. 

• For                , let               be the total probability of all edit sequences that map                                  
into   . Note that                                .    

• We construct a single probabilistic finite-state transducer to compute              .
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Stochastic Contextual Edit Distance 
and Probabilistic FSTs

Ryan Cotterell, Nanyun Peng, Jason Eisner

Given              with unobserved 
alignments (edit sequences), EM 
will locally maximize                      .                   
The E-step sums over all     -to-
alignment paths in the transducer 
(forward-backward algorithm). The 
M-step uses L-BFGS. The gradient 
takes the following well-known 
form:

When L-BFGS is not run to 
convergence we recover a 
generalized EM algorithm, which is 
more efficient because we do not 
keep adjusting parameters based 
on out-of-date counts. 

Probabilistic vs. Weighted Finite-State Transducers
PFSTs are locally normalized models. WFSTs, which are globally 
normalized models, do not suffer from label bias and are likely to beat 
PFSTs as a linguistic model. The distinction is identical to that between a 
MEMM and a CRF.  So why are we interested in PFSTs? 

• PFSTs do not require the 
computation of a separate partition 
function      for every x. This makes 
them tractable when x is uncertain 
e.g., in noisy channel models, channel 
cascades and Bayesian networks.

• PFSTs are more efficient to train 
under conditional likelihood. It is faster 
to compute the gradient, since we only 
have to raise the probabilities of arcs 
in                                 relative to competing 
arcs in             . 

We use four different topologies (context configurations). Note that 
(0,1,0) is standard weighted edit distance. We also use backoff 
features that each context shares with other contexts and      
regularization. 

• A WFST’s advantage is that the 
probability of an edit can be indirectly 
affected by the weights of other edits at 
a distance.

• One could construct WFSTs where an 
edit’s weight directly considers local right 
output context.

•WFSTs can also use a simpler topology 
while retaining determinism, since edits 
can be scored “in retrospect” after they 
have passed into the left context.

PFSTs WFSTs
Comparative Advantages
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Example from English Phonology
Consider the productive case of intervocalic alveolar flapping in 
American English e.g., compare the pronunciation of wet and wetter. 
We should map the underlying form /wɛtəәr/ to its surface form 
[wɛɾəәr]. This is predicted by a left-to-right, context sensitive editing 
process: 

p(COPY[t] | C) 
p(INS[z] | C)    
p(SUB[t, ɾ] | C)  
p(DEL[t] | C)    

...

Input Left Context Input Right Context

Output Left Context

Unavailable due to 
local normalization

Automaton head

 
Stochastic Choice of Edit in Context C:

= ...
= ...
= ...
= ...

The distribution over possible 
edits takes the form of a 
conditional log-linear model:

p(e | C)

def
==

1

Zc
exp

⇣
✓ · ~f(C, e)

⌘

Future Work - Inferring Underlying Forms
We will use a PFST with features inspired by linguistic theory to model 
phonology within a Bayesian network. Observed pronunciations are often 
explained as arising from the “underlying forms” of morphemes. Linguists try 
to reconstruct these latent strings. Our technique involves loopy belief 
propagation in a generative (directed) graphical model whose variables are 
unknown strings and whose factors are finite-state machines with unknown 
weights.

resignation resigns damns damnation

1) Morpheme Underlying Representations

2) Word Underlying Representations

3) Word Surface Representations

4) Word Pronunciations
Phonetics

Phonology (PFST)

Concatenation (e.g.)

See Keynote at MORPHFSM
on Friday at 9:15am for more details. 
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