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1 Introduction

Key idea. As a prior over discrete distributions over X , it is common to use a Dirichlet or Dirichlet
process [9]. However, because of the neutrality property, these priors cannot capture correlations
among the probabilities of “similar” events. We propose obtaining the discrete distribution from
a random walk model or transformation model [7], in which each observed event has evolved via
a latent sequence of transformations. The transformation model is specified by a collection δ of
conditional distributions (the transformations), so placing any prior ∆ over δ yields the desired prior
over discrete distributions over X . Two events x1, x2 ∈ X have correlated probabilities in this
transformation process prior if they tend to emerge from similar transformation sequences.

We are exploring transformation models in which the conditional distributions δ have infinite support
and the prior ∆ is a nonparametric distribution, such as a hierarchical Dirichlet process. This allows
learning idiosyncratic transformations when they explain the data. Although for density estimation
the latent structure is just a means of relating different events, there are many applications where the
inferred sequences of transformations have a meaningful interpretation (examples below).

Relation to prior work. Similar to Dirichlet diffusion trees [14] (or more generally Pitman-Yor
diffusion trees [12]), transformation processes model correlations via latent structure. (A certain
nonparametric transformation process prior on X = R gives a discrete analogue of Dirichlet dif-
fusion trees.) Methods based on the Gaussian process, such as the discrete infinite logistic normal
distribution, model correlations explicitly via the parameters of a covariance function, but do not
reconstruct any latent structure [15]. The transformation process is especially appropriate as a prior
for discrete distributions where latent structure plausibly exists in the form of derivational history.
For instance, a suitable transformation process can be used to infer phylogenetic trees.

2 Transformation Models and their Priors

Prior. In a transformation model, each observation x is derived from a latent trajectory
(�, x1, x2, ..., xt,�) through X space, distributed according to a stationary Markov process. We
set x0 = � and draw each xi (i > 0) from the transition distribution δ(· | xt−1). Upon drawing the
distinguished “stop” event �, we set x to equal the immediately preceding draw, xt. Likely trans-
formations are given by the transition probabilities δ(x|x′), where x ∈ X ∪ {�} and x′ ∈ X ∪ {�}.
The transition graph with edges x′ → x for δ(x|x′) 6= 0 may be a tree, a DAG, or a cyclic graph.

The expected number of visits to x on a random walk, denoted a(x), emerges from the linear system

a(x) = 1(x = �) +
∑
x′

a(x′)δ(x|x′) (1)

and then P(x) = a(x)δ(�|x), which describes how often a random walk reaches x and stops. Thus,
each P(x) is a linear combination of the P(x′) values for x′ that satisfy δ(x|x′) > 0, where the
coefficients are determined by the conditional probabilities δ(x|x′), δ(� | x), and δ(� | x′). This is
similar to the way that in Gaussian process density estimation [1], with covariance matrix Σ, each
log P(x) is a linear combination of the log P(x′) values for x′ that satisfy (Σ−1)xx′ 6= 0.1

1Although Σ−1 is symmetric, unlike our conditional probabilities, it is possible in the case of finite X
to convert the Gaussian process model of log P(x) to a Bayesian network in which each log P(x) is a linear
combination of the log P(x′) values for the parents x′ of x.
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We place stick-breaking priors [11] over the transition distributions, and the transformation proba-
bilities are therefore given by

δ(x′|x) =

∞∑
j=1

pj1(yj = x′) (2)

where yj are drawn IID from a (usually sparse) base distribution δ0(x′|x), and pj ∼ GEM(αx) [8].
The base distributions may themselves be drawn from a hierarchical prior or share parameters.

Posterior inference. Given a dataset of observations x ∼ P , posterior inference consists of im-
puting the latent paths x and the collection δ of conditional distributions. (We may also optimize
hyperparameters.) Inference via MCMC sampling is possible using a slice sampler that works di-
rectly with stick-breaking representations rather than collapsing them out [16]. To sample latent
paths from the posterior, auxiliary variables are also sampled at each vertex. Conditioned on these
auxiliary variables, the sampler state consists of a finite portion of the graph, from which paths (in-
cluding cyclic paths and paths through unobserved events) may be sampled efficiently and without
bias. In the cyclic case, exact computation of the flow a(x) into each vertex requires solving a finite
system of equations; alternatively, the flow may be approximated using a relaxation algorithm [7].

3 Examples of Transformation Processes

String variation. Strings, such as genetic sequences [17], bibliographic entries [10], and proper
names, may undergo mutation when they are copied. Given a collection of strings, we hope to infer
their evolutionary history (and thereby cluster strings with a common ancestor), by fitting a distri-
bution over the infinite set of all strings, X = Σ∗. This involves learning a language model δ(x | �)
of the archetypal strings from which other string are derived, as well a stochatic edit model δ(x | x′)
of string mutation. These stochastic edit models may be constructed using domain knowledge, such
as an atomic “acronym” edit that abbreviates “Neural Information Processing Systems” to “NIPS”
[10]. Names exhibit even more variation: Mihail Sergeeviq Gorbaq�v, Mikhail Sergeyevich
Gorbachev, Pres. Gorbachev, Mikhail Sergeyevich, M. S. Gorbachev, Gorbachev M., Michael Gor-
bachev, Mike, and many misspellings.

Nonparametric priors over δ, with low concentration parameters, are crucial here to fit the fact that
only a few of the plausible edits have actually gained purchase. Mikhail Gorbachev’s first name is
much more often replaced by “Pres.” than by “Mike,” even though the base distributions may suggest
that “Mihail→ Mikhail→ Michael→ Mike→ �” is an a priori plausible way to transform his
first name. In turn, a nonparametric model of the family of base distributions is what lets us learn
that “Mikhail→Michael” is a common Anglicization (across all Russian names) and more generally
that “k→ c” is common before “h”.2 Sharing statistical strength among the base distributions allows
the sampler to propose plausible latent forms in the paths explaining the observed strings.

Syntactic transformations. Each word of a natural language sentence is analogous to a prefix,
postfix, or infix operator that takes several arguments. A word type may be overloaded with several
calling conventions, known as subcategorization frames. Linguistic tradition suggests that its frames
are derived from one another by transformation [4, 3, etc]. Estimating the distribution of frames for
each word is useful for syntactic parsing. While we have attempted to do so by MAP estimation
of a parametric transformation process with a log-linear parameterization of δ [7], a nonparametric
version would allow us to take a proper Bayesian approach to the infinite set of parameters.

Word sense disambiguation. WordNet [13] is a directed acyclic graph whose leaves are words and
whose internal nodes are meanings. A path through the graph successively specializes a meaning
until it arrives at a word: ENTITY → PHYSICAL ENTITY → · · · → LEADER → POLITICIAN →
STATESMAN → Gorbachev → �. A given word may be reachable by multiple paths because it
has multiple senses or because an internal node inherits from multiple parents. Suppose we wish to
use WordNet to help estimate a joint distribution P (context,word). We may use a transformation
process whose structure is drawn from the WordNet graph [5, 2]—or more precisely, a separate
copy of that graph for each context c. A hierarchical prior allows us to learn which sub-concepts of
(e.g.) PHYSICAL ENTITY are common overall, and which are unusually popular in a given context.
Raising the probability of any sub-concept also raises the probability of all words that descend from
it. As a result, words that are close in WordNet will have correlated probabilities, as desired.

2Nonparametric models for edits in arbitrary amounts of context may be defined using graphical Pitman-Yor
priors [18]. More simply, one could use any of the several parametric stochastic edit models, such as [6].
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